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Vesicles are closed fluid membranes with a size in the range 10− 100µm. Under flow they exhibit
various dynamics such as tank-treading, tumbling, and vacillating-breathing. Part of these dynamics
are studied experimentally both on earth and under microgravity conditions. We report on the basic
results of vesicles dynamics. Deviations from existing theories are discussed. A small deformation
theory is presented that shows notable differences from those imposing a fixed shape: the vesicle
shape is shown to undergo a temporal oscillation. This theory allows one to extract the effective
viscosity of the suspension.

PACS numbers: 47.15.Gf, 87.16.Dg

I. INTRODUCTION

Phospholipids are amphiphilic molecules that form bi-
layers in aqueous solutions to prevent contact between
hydrophobic aliphatic chains and water. Phospholipid
bilayers can form closed membranes known as vesicles or
liposomes (Fig.1). Specifically, giant vesicles have a di-
ameter between one and several hundred microns. The
mechanical characteristics of usual vesicles are simple.
Their internal fluid is generally a viscous liquid which
may be more or less complex in order to mimic viscoelas-
tic properties of real cells. The interest of such systems
lies in their relative simplicity in comparison to real cells
(though they are complex at the absolute level). They
are thus thought of as model systems allowing us for the
study of transport phenomena of blood elements. The
attractive feature of these systems was revealed in the
70’s when it became clear that a relatively simple model
(based on the curvature energy, very much like the prob-
lem of thin plate buckling), due to Helfrich[1], reproduced
several shapes which are reminiscent of those met in bi-
ology. Of particular interest is the biconcave shape of a
red blood cell which has been captured by the Helfrich
model, and which has been also reproduced experimen-
tally by vesicles[2].

Vesicles under flow have been the subject of intensive
work both theoretically[3] and exeprimentally[4, 5]. Let
us summarize the main types of dynamics in non confined
geometries. So far, three basic types of motion have been
reported on: (i) tank-treading, (ii) tumbling, (iii) and
vacillating-breathing (VB). Under shear flow and if there
is no viscosity contrast between the interior and the ex-
terior, the vesicle makes an angle (smaller than 45◦) with
the shear direction, while the membrane which is fluid ex-
ecutes a motion which is similar to a tank-treading one.
If the vesicle were solid inside, it would just tumble since
a shear flow possesses a solid-rotation component. If the
inside is fluid, part of the solid-rotation torque due to
the applied shear is transferred to the membrane, which
in turns transfers it to the enclosed fluid. If the inside
viscosity is not too large then an equilibrium position is
found with an orientation angle 0 < θ < 45◦. On increas-

FIG. 1: Schematic view of a vesicle made of a bi-layer of
phospholipid molecules

ing the inside viscosity, the transfer of the torque to the
enclosed fluid by the tank-treading membrane becomes
more and more difficult; dissipation inside the vesicle re-
frains membrane tank-treading. At a critical value of the
viscosity contrast, an equilibrium tank-treading solution
ceases to exist, whereby a new solution in the form of
tumbling takes place. This occurs as a true bifurcation:
a saddle-node bifurcation. In the tumbling regime, a new
type of motion is found. This motion is called vacillating-
breathing (VB mode): the vesicle orientation undergoes
an oscillation around the flow direction, while the shape
executes breathing dynamics. The first two solutions are
observed experimentally on vesicle and red blood cells,
while the VB has not yet been clearly identified.

The change of the internal viscosity of the vesicle is
achieved thanks, for example, to the dextran (see be-
low). This leads inevitably to a density contrast be-
tween the inside and outside. Adding additives in the
outside solutions would break the osmotic equilibrium,
and it is almost unfeasible to obtain an iso-density situa-
tion. Therefore, sedimentation is unavoidable. This has
several consequences: free and permanent tumbling can
not be easily studied, and for a suspension sedimenta-
tion leads to a rheolgy that should critically depend on
the vesicle-substrate interaction, and makes the analy-
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sis quite difficult. For all these reasons several experi-
ments were conducted under a microgravity environment
(CNES parabolic flights), and others are scheduled with
CNES and ESA, together with a sounding rocket exper-
iment which is scheduled in 2007. These series of studies
should help shedding light on the complex phenomena
related to dynamics of individual vesicles, and their col-
lective behavior, with both fundamental and potential
technological impacts. Here we report on the main re-
sults, some of them are obtained under microgravity con-
ditions. We report on tumbling and show the difference
with theory, and present theoretical results on dynamics
and rheology.

II. EXPERIMENTAL TECHNIQUES

A. Vesicle preparation

Giant vesicles were prepared from dioleoyl-
phosphatidil choline (DOPC)(Sigma) using the electro-
formation method [6]. At room temperature, DOPC
membranes are in a fluid state. Vesicles were swollen
in aqueous solution with different concentrations of
glucose and a polymer (referred to as interior solution),
used in order to modify the inner viscosity of vesi-
cles. Two types of polymer where used : dextran or
sodium carboxymethylcellulose (CMC). In the range of
concentrations and shear rates we used, rheometer mea-
surements showed that the behaviour of all our solutions
was Newtonian. Dextran (D5251 from Sigma) is a bio-
compatible high molecular weight (MW ≈ 5 · 105g/mol)
polymer of glucose. It is necessary to use relatively high
weight concentrations of Dextran to obtain viscosities
around 10 times the viscosity of water. This makes
vesicles denser than the exterior solution.

We used dextran concentrations up to 11% w/w, pro-
viding viscosity ratios C = ηin/ηout between 8.7 and 19.9.
Longer polymers are also used: carboxy-methylcellulose.
With a concentration of 0.1 % w/w of CMC, we expect
a viscosity ratio of 23.6 from viscosity measurements.

In addition to polymers, glucose (or sucrose for CMC
vesicles) was added in electroformation solutions in or-
der to control the osmotic pressure inside the vesicle.
Sugar concentrations were in the range 50–400 mM. After
formation, vesicle suspensions were diluted with a hy-
perosmotic sucrose (glucose for CMC vesicles) solution
(hereafter referred to as exterior solution). Due to the
permeability of the membrane, this dilution leads to the
deflation of initially quasi-spherical vesicles. In addition
to their size and the viscosity ratio between interior and
exterior solutions, vesicles are therefore characterized by
a swelling factor or reduced volume whose definition is
given below, and which compares the volume of a vesicle
to that of a sphere having the same surface area.
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FIG. 2: Schematic view of the flow chamber

B. Experimental setup

Two types of flow chambers were used in this study:
a modified quartz Hellma flow chamber, and home made
pexiglass chambers with glass optical windows (micro-
scope cover slides). The system is depicted on Fig. 2.
Flow chamber dimensions are: L = 45 mm along the
flow axis x, b = 10 mm along the y axis and a = 1 mm
along the z axis. Previously deflated vesicles were gen-
tly injected at one end of the channel and mixed with
carrier fluid (exterior sucrose solution), and a constant
flow rate q (between 5 and 50 ml/h) is imposed by a
KDS syringe pump. A nearly 2D Poiseuille flow takes
place inside the chamber with a parabolic velocity profile
across the thickness a, which is approximately invariant
in the x and y directions, provided the observed object
is at least 1 mm away from optical windows and not too
close from the inlet and outlet channels. The flow cham-
ber is mounted on a phase contrast microscope stage The
microscope, ordinarily vertical, is rotated by 90 degrees
with respect gravity, to allow for a side view.

The local shear rate in the flow is:

γ̇(z) =
∂u

∂z
=

6q

a3b
(a− 2z) (1)

The maximum shear rate near the wall γ̇(0) = 6q/(a2b)
is therefore approximately between 1 and 10 s−1 in our
range of flow rates.

However, one consequence of the density difference be-
tween vesicles (especially with high dextran concentra-
tions) and carrier fluids, which is only partly reduced
by putting glucose in the inner solution and sucrose in
the outer one, is a sometimes significant sedimentation of
vesicles in the z direction, resulting in an unsteady shear
rate around the vesicle and possible wall effects if it comes
too close to the bottom wall. To avoid sedimentation
effects for heavier vesicles, some results presented here
were obtained in microgravity conditions (CNES par-
abolic flight campaign, April 2004, Bordeaux, France).

Vesicles are hereafter defined by their nominal radius
R0 =

√
S/4π and reduced volume ν = 3V/(4πR0

3). By
definition, ν = 1 corresponds to non-deflated sperical
vesicles.
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FIG. 3: Top: a snapshot of a tanktreading motion. The dark ”defect” on the membrane moves along the membrane from one
frame to the next, showing thus the tanktreading motion of the membrane. Bottom: tumbling motion of vesicles filled with
dextran. Viscosity ratio C = 22.5 , reduced volume ν = 0.993, R0 = 7.5µm, time interval between pictures = 0.5 s

III. RESULTS AND DISCUSSION

At low viscosity contrast the vesicle is oriented in the
flow (Fig.3, top) making a certain angle with the flow
direction. At the same time the membrane has a tank-
treading motion. The orientation angle decreases upon
an increase of the viscosity contrast for a given value of
the reduced volume ν. On the other hand, the same
tendency is found upon a decrease of ν by keeping the
same viscosity contrast. For a given ν, there is a critical
value of λ ≡ ηin/ηout = λc at which there is a bifurcation
from the tank-treading motion towards tumbling. In the
tumbling regime the membrane continues to make tank-
treading, albeit in a less pronounced fashion. Figure 3
shows a typical spanshot of tumbling. The orientation
angle as a function of time is shown on Fig.4. The be-
havior is nonlinear. It can be shown from a theoretical
point of view that if one assumes that the shape of the
vesicle remains unchanged, then θ obeys [7] the following
equation:

θ̇ = A + B cos 2θ (2)

where A = −γ̇/2 is the mean rotation velocity, due to
the rotational component of the shear flow, and B is a
function of the ellipsoid’s aspect ratio and viscosity ratio:

B = γ̇


1

2
+

C1(
C2 − ηin

ηout

)

 C3 (3)

C1, C2 and C3 are geometric constants depending on
the ratios between the ellipsoid’s axes[7, 8].

Physically, the term B cos θ in equation 2 is a conse-
quence of the elongational part of the shear flow, which
applies a torque on the particle, depending on its orien-
tation.

Equation 2 predicts two types of motion, depending on
the ratio −A/B. For −A/B < 1, there is a stationary
solution where the ellipsoid keeps a constant orientation
θ = 1

2 arccos(−A/B), and a tank treading motion of the
membrane occurs. This motion was well identified and
quantified experimentally by several authors [4, 9, 10],
with or without a viscosity contrast.

FIG. 4: Orientation θ of a tumbling vesicle with a viscosity
ratio C = 12.4, a reduced volume ν = 0.996, R0 = 13.5µm.

For a given shape, if the viscosity ratio ηin/ηout be-
comes sufficiently large, we get −A/B > 1 and the solu-
tion for θ(t) is a periodic tumbling motion:

θ (t) = arctan

(
A + B√
A2 −B2

tan
(√

A2 −B2 (t− t0)
))

(4)
An example of this motion can be seen in fig. 4. As far

as we know, quantitative data on the tumbling motion of
vesicles has never been reported before. Recently, an ana-
lytical treatment was conducted in the small deformation
theory[11]. The new feature of this study was to relax
the constraint of a fixed shape. During tumbling there
is ample experimental evidence that the shape evolves in
time. The result of this study was that the dynamics
are described by two coupled equations: one for θ, and
the other for the evolution of the shape. These equations
have the form

ε∂tR = h

[
1− 4

R2

∆

]
sin(2θ) (5)

ε∂tθ = −1
2

+
h

2R
cos(2θ) (6)
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FIG. 5: Full line: the full calculation. The dashed line: the
KS theory. The dashed-dotted line: a linear fit from the full
calculation. h = 0.3, ∆ = 1

R = 0 corresponds to a sphere. R represents the ampli-
tude of the second spherical harmonics. ∆ is the mem-
brane excess area defined by A = 4π+∆, and is related to
ν by ∆ = 4π[ν−2/3 − 1], and h = 60

√
2π/15/(32 + 23λ),

and ε is a small parameter measuring the strength of devi-
ation from a sphere. The additional feature here is that R
is an oscillating function of time which is in qualificative
agreement with the observation. At first sight we found
that θ has the same qualitative feature as that shown on
Fig.4. However, a comparison of the KS theory to the
present analysis reveals significant differences. dθ/dt is
plotted as a function of cos(2θ) (Fig.5). This leads, for
the KS theory, to a straight line (as can be seen from
eq.(6). Taking into account the deformability of the vesi-
cle, a marked difference is found as shown on Fig.5 (full
line). A linear fit, dictated by the KS theory, produces
the dashed-dotted line in that figure. This fit conveys
the impression that the effective rotation frequency (rep-
resented by A ) is smaller (in absolute value) than the KS
one. The same holds for B (representing the slope). The
present state is that we have not yet made a systematic
comparison between theory and experiments (especially
that A and B are significantly smaller than those ob-
tained from the KS theory, and that this becomes more

dramatic upon an increase of the shear rate)[8]. When
allowance is made for deformability one finds from the
small deformation theory smaller values than the KS ones
(as seen experimentally). However the small deformation
theory does not contain the information about the evo-
lution of A and B as a function of the shear rate. This
requires pushing the analytical theory to the next order
in the deformation expansion in order to capture this ef-
fect. This is why we have not attempted here to make
a quantitative comparison with the experimental study,
and this is currently under investigation. Nevertheless,
for the set of parameters explored so far in the small
deformation theory provides us with values of A and B
which are smaller than those which follow from the KS
theory.

Following Einstein[12] we could derive the expression
of the effective viscosity of a dilute suspension of vesicles.
The result is given by

ηeff = η

[
1 +

5
2
φ− φ

∆(23λ + 32)
16π

]
(7)

For ∆ = 0, we recover the Einstein result, ηeff = η[1 +
5
2φ]. For ∆ = 0.5 (corresponding to only 4% in relative
excess area where a perturbative scheme is expected to
make a sense), we find for λ = 1 and 2, ηeff ' η[1 + 2φ]
and ηeff = η[1+1.5φ], respectively. These are significant
shifts. Note that the above relation was derived in the
tank-treading regime. In the tumbling regime and the
VB one we do not know how would this be altered. In
addition, our study allows one to derive a rheological
constitutive law, which is currently under preparation.

The overall rheology will be made in connection with
the rheological measurement which will be performed
soon on the ground (in a cone-plate rheometer), and un-
der microgravity conditions (sounding rocket in 2007),
as well as in parabolic flights shortly before the sounding
rocket experiments. We hope then to report on exten-
sive results of rheology under gravity and its comparison
under microgravity conditions.

[1] Helfrich H., Z. Naturforsch., Teil C 28, 693 (1973).
[2] Kraus M., Wintz W., Seifert U., and Lipowsky R., Phys.

Rev. Lett. 77, 3685 (1996).
[3] Biben T., Misbah C., Phys. Rev. E 67, 031908 (2003);

Beaucourt J., et al. Phys. Rev. E 69, 011906 (2004);
Noguchi H. and Gompper G., Phys. Rev. Lett. 93,
258102 (2004); Cantat I. and Misbah C., Phys. Rev.
Lett.83,880 (1999); Seifert U., Phys. Rev. Lett. 83, 876
(1999); Sukumaran S. and Seifert U., Phys. Rev. E,64,
011916 (2001); Pozrikidis C., Annals Biomed. Eng. 31,
1194 (2003).

[4] de Haas K., Bloom C., van den Ende D., Duits M.,
Mellema J., Pys. Rev. E 56, 7132 (1997); Lorz R., Sim-
son R., Nardi J., Sackmann E., Europhys. Lett. 51, 468
(2000).

[5] Abkarian M., Lartigue C., Viallat A., Phys. Rev. Lett.

88, 068103 (2002); Vitkova V., Mader M., Podgorski T.,
Europhys. Lett. 68, 398 (2004); Kanstler V., Steinberg
V., Phys. Rev. Lett. 95, 258101 (2005).

[6] Angelova M.I. , Soleau S., Meleard P., Faucon J.-F.,
Bothorel P., Prog. Colloid Polym. Sci. 89, 127 (1992).

[7] Keller S.R., Skalak R., J. Fluid Mech. 120, 27 (1982).
[8] Mader M., Vitkova V., Abkarian M., Viallat V. and Pod-

gorski T., Euro. Phys. J. E (2006) (in press).
[9] Abkarian M., Lartigue C., Viallat A., Phys. Rev. Lett

88, 068103 (2002)
[10] Abkarian M., Viallat A., Biophys. J. 89, 1 (2005)
[11] Misbah C., Phys. Rev. Lett. 96, 028104 (2006).
[12] Einstein A., Annln. Phys. 19, 289 (1906); Corrections.

Annln. Phys. 34, 591 (1911).


