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Introduction

We consider the following problem. Let X be a smooth complex projective variety of dimension n > 1, with an ample divisor L. For each positive integer s < n, describe the set P X,s of geometric genera of irreducible subvarieties V ⊂ X of dimension s, and, in particular, the subset P X,L,s ⊆ P X,s of geometric genera of irreducible complete intersections of n -s hypersurfaces from m 1 |mL|. The complement of each of these sets in {0} ∪ N is the corresponding set of s-gaps, and its maximal intervals are called s-gap intervals. For curves on a very general surface X in P 3 of degree d (i.e., n = 2, s = 1) with a natural polarization O X (1) the two sets P X,O X (1),1 and P X,1 coincide; the initial gap interval was found in [START_REF] Xu | Subvarieties of general hypersurfaces in projective space[END_REF] and the next one in [START_REF] Ciliberto | Genera of curves on a very general surface in P 3[END_REF]. In this case there exists a maximum G d for the set of gaps ([4, Thm. 2.4] and Remark 3.2 below). This means that a very general surface of degree d in P 3 carries a curve of geometric genus g for any g > G d . In the present note we show that the latter remains true for any smooth projective variety, and in particular, for any (not just for a very general) smooth surface of degree d in P 3 . One of our main results is the following: Theorem 0.1. Let X be an irreducible, smooth, projective variety of dimension n > 1, let L be a very ample divisor on X and let s ∈ {1, . . . , n -1}. Then there is an integer p X,L,s (depending on X, L and s) such that for any p p X,L,s one can find an irreducible subvariety Y of X of dimension s with at most ordinary points of multiplicity s + 1 as singularities such that p g (Y ) = p. Moreover, one can choose Y to be a complete intersection Y = D 1 ∩ . . . ∩ D n-s , where D i ∈ |L| for i = 1, . . . , n -s -1 are smooth and transversal and D n-s ∈ |mL| for some m 1 is such that Y has ordinary singularities of multiplicity s + 1.

Let Y be an irreducible variety of dimension s. A point y ∈ Y is ordinary of multiplicity m (m > 1), if (i) the Zariski tangent space of Y at y has dimension s + 1, and (ii) the (affine) tangent cone to Y at y is a cone with vertex y over a smooth hypersurface of degree m in P s .

An ordinary point of Y is an isolated hypersurface singularity, hence, it is Gorenstein. The proof of Theorem 0.1 is done in Section 1. In Section 2 we deduce an effective upper bound for gaps in the surface case. In Section 3, we focus on smooth surfaces in P 3 , proving in particular that in this case there is no absolute gap for geometric genera of curves. That is, for all d > 0, all non-negative integers are geometric genera for some curves lying on some smooth surfaces of degree d in P 3 .

Notation and conventions. We work over the field of complex numbers and use standard notation and terminology. In particular, for X a reduced, irreducible, projective variety, we denote by ω X its dualizing sheaf. We will sometimes abuse notation and use the same symbol to denote a divisor D on X and its class in Pic(X). Thus K X will denote a canonical divisor or the canonical sheaf ω X . When Y ⊂ X is a closed subscheme, I Y /X will denote its ideal sheaf.

1. Upper bound for gaps 1.1. Preliminaries. In the sequel, X is an irreducible, complex projective variety of dimension n 2. We assume usually that X is Gorenstein, so that ω X is a line bundle. This holds, in particular, if X has only ordinary singularities. We set p(X) := h 0 (X, ω X ) and q(X) := h 1 (X, ω X ) .

For smooth varieties, both p(X) and q(X) are birational invariants. Note that, if X is a smooth surface, then q(X) is the irregularity of X.

The geometric genus of X is defined as

p g (X) := p(X ′ ),
where X ′ → X is any desingularization of X.

Lemma 1.1. Let X be an irreducible, smooth projective variety of dimension n, and let Y be an irreducible, effective divisor on X. Assume that

h i (X, ω X ⊗ O X (Y )) = 0 for all i 1 1 . Then: (i) one has p(Y ) = h 0 (X, ω X ⊗ O X (Y )) + q(X) -p g (X)
, which is the geometric genus if Y is smooth; (ii) suppose that Sing(Y ) = {x 1 , . . . , x k }, where x 1 , . . . , x k are ordinary points of Y of multiplicity n. Then p g (Y ) p(Y ) -k, and the equality holds if and only if x 1 , . . . , x k impose k independent conditions to the linear system |ω X ⊗ O X (Y )|, i.e., if and only if the restriction map

H 0 (X, ω X ⊗ O X (Y )) -→ k i=1 O x i (1) 
is surjective.

Proof. Part (i) follows from the adjunction sequence

0 -→ ω X -→ ω X ⊗ O X (Y ) -→ ω X ⊗ O X (Y ) ⊗ O Y ∼ = ω Y -→ 0.
As for part (ii), let π :

X ′ → X be the blow-up of X at x 1 , . . . , x k with exceptional divisors E 1 , . . . , E k . Set E = k i=1 E i . The union x of x 1 , . . . , x k is a 0-dimensional subscheme of X. The proper transform Y ′ of Y in X ′ is smooth and belongs to the linear system |π * (O X (Y )) ⊗ O X ′ (-nE)|, whereas ω X ′ = π * (ω X ) ⊗ O X ′ ((n -1)E). Hence, by (i), one has p g (Y ) = p g (Y ′ ) = h 0 (X ′ , ω X ′ ⊗ O X ′ (Y ′ )) + q(X ′ ) -p g (X ′ ) = h 0 (X ′ , π * (ω X ⊗ O X (Y )) ⊗ O X ′ (-E)) + q(X) -p g (X) = h 0 (X, ω X ⊗ O X (Y ) ⊗ I x/X ) + q(X) -p g (X) .

Now the assertion follows.

Lemma 1.2. Let X ⊂ P r be a non-degenerate, irreducible projective variety of dimension n. Let x 1 , . . . , x k ∈ X be general points. If k r -n = codim P r (X), then the scheme theoretical intersection of the linear space x 1 , . . . , x k with X is the reduced 0-dimensional scheme consisting of x 1 , . . . , x k .

1 By the Kawamata-Viehweg vanishing theorem this holds provided Y is nef and big (in particular, for Y ample).

Proof. The assertion is trivial for k = 1, so we assume k 2. For n = 1 and k = 2, this is the classical trisecant lemma, to the effect that a general chord of a non-degenerate curve in P r , where r 3, is not a trisecant (see, e.g., [START_REF] Chiantini | A few remarks on the lifting problem[END_REF]Example 1.8] for a simple proof). If n = 1 and k > 2, one proceeds by applying induction on k to the projection of X to P r-1 from one of the points x 1 , . . . , x k .

If n > 1, one proceeds by applying induction on n to the section of X with a general hyperplane containing x 1 , . . . , x k .

1.2. The theorem. Theorem 1.3. Let X be an irreducible, smooth, projective variety of dimension n > 1, and let L be a very ample line bundle on X. Then there is an integer p X,L (depending on X and L) such that for all p p X,L one can find an irreducible hypersurface Y ∈ m 1 |mL| with at most ordinary points of multiplicity n as singularities and with p g (Y ) = p.

Proof. Set d := L n . For a positive integer m we denote by p m the geometric genus of smooth elements in |mL| (which is of course a non-gap). We show that for m sufficiently large, any integer p in the interval [p m-1 + 1, p m -1] is the geometric genus of a hypersurface in |mL| with p m -p ordinary points of multiplicity n as singularities, which can be taken generically on X.

Since L is very ample, by Lemma 1.1-(i) and by the asymptotic Riemann-Roch Theorem [6, Vol. I, p. 21], we have

p m = χ(ω X ⊗ O X (mL)) + q(X) -p g (X) (2) = h 0 (ω X ⊗ O X (mL)) + q(X) -p g (X) = m n n! d + O(m n-1 ) .
Hence

δ m := p m -p m-1 -1 = m n-1 (n -1)! d + O(m n-2 ) . (3) 
Theorem 1.3 follows from the:

Claim 1.
There is an integer m X,L (depending on X and L) such that for all m m X,L , for all positive integers k δ m , and for general points x 1 , . . . x k in X, one can find an irreducible element Y ∈ |mL| with ordinary points of multiplicity n at x 1 , . . . , x k and no other singularity.

Indeed, suppose that Claim 1 holds. Then the map (1) is surjective by the generality of x 1 , . . . , x k . Thus Lemma 1.1-(ii) implies Theorem 1.3 with p X,L := p m X,L -1 .

In turn, Claim 1 is a consequence of the following

Claim 2. There is an integer m X,L n such that for all m m X,L , one has

δ m dim(|νL|) -n , where m = nν + µ with µ ∈ {0, . . . , n -1} . (4) 
Indeed, assuming that Claim 2 holds, let x be the reduced 0-dimensional scheme formed by the points x 1 , . . . , x k , and let Λ := νL ⊗ I x/X . By Lemma 1.2, (4) ensures that x is the base locus scheme of the linear system |Λ|. Therefore, by Bertini's theorem the general Y ∈ |Λ ⊗n ⊗ O X (µ)| ⊂ |mL| is irreducible having x 1 , . . . , x k as ordinary points of multiplicity n and no other singularity. Thus, Claim 2 implies Claim 1.

Finally, we prove Claim 2.

Proof of Claim 2. By the asymptotic Riemann-Roch Theorem (cf. ( 2)), one has

dim(|νL|) = ν n n! d + O(ν n-1 ) .
Hence, by (3), Claim 2 holds if, for m ≫ 0, one has

n m n-1 < ν n . ( 5 
)
Since m n < ν + 1, ( 5) is true for m ≫ 0. This ends the proof of Theorem 1.3.

Remark 1.4. As follows from the proof, the upper bound p X,L depends only on the Hilbert polynomial of m 1 H 0 (X, ω X ⊗ O X (mL)) and of m 1 H 0 (X, O X (mL)). The former coincides with the Hilbert function by Kodaira's Theorem. Assuming that h i (X, O X (mL)) = 0 for all positive integers m and i, it is possible to replace the asymptotic Riemann-Roch theorem with the true Riemann-Roch, which is then purely numerical. This gives in principle an effective bound on the integers m X,L and p X,L in Theorem 1.3 (cf. Section 2 for a particular case).

Proof of Theorem 0.1. With X, L, n, and s as in Theorem 0.1, it suffices to apply Theorem 1.3 to

X ′ = D 1 ∩ . . . ∩ D n-s-1 instead of X and L| X ′ instead of L, where D 1 , . . . , D n-s-1 ∈ |L| are general.

Genera of curves on smooth surfaces

In this section we compute an effective upper bound for gaps of geometric genera of curves on surfaces.

Theorem 2.1. Let S be a smooth, irreducible, projective surface, and L a very ample line bundle on S. Set p := p g (S), q := q(S), d := L2 , and e := K S • L .

For ε ∈ {0, 1}, set ∆(ε) := 4(3 + 2ε)d 2 + 12de + e 2 -8d(p -q), (6) 
n 1 = n 1 (ε) :=    2 if ∆(ε) < 0, 4 + ε + e d + ∆(ε) d 2 if ∆(ε) 0, (7) 
n 2 = n 2 (ε) := 6(p -q) + d(1 + ε) + e(2ε -1) -12 e + 2d(1 + ε) , (8) 
n 3 := min n ∈ N | n 2 2 d > nd - d -e 2 -1 , (9) 
n 4 := min n ∈ N | h 1 (S, O S (nL)) = h 2 (S, O S (nL)) = 0 , (10) 
and

n 0 = n 0 (ε) := max{n 1 (ε), n 2 (ε), n 3 , n 4 } . (11) 
Set finally

ϕ(d, e, n 0 ) = 1 2 [(n 0 -1)((n 0 -1)d + e)] + 1 . ( 12 
)
Then for any g ϕ(d, e, n 0 ) the surface S carries a reduced, irreducible curve C of geometric genus g with only nodes as singularities.

The proof of Theorem 2.1 is basically the same as the one of Theorem 1.3 in the case of surfaces, with a slight improvement, based upon the following: Theorem 2.2. ([1, Thm. 1.4], [5, Thm. 1.3]) Let X ⊂ P r be an irreducible, projective, non-degenerate variety of dimension m. Assume X is not k-weakly defective for a given k 0 such that r (m + 1)(k + 1) .

(13)

Then, given general points p 0 , . . . , p k on X, the general hyperplane H containing T X,p 0 ,...,p k 2 is tangent to X only at p 0 , . . . , p k . Such a hyperplane H cuts out on X a divisor with ordinary double points at p 0 , . . . , p k and no further singularities.

Recall (see [3, p. 152]) that a variety X as in Theorem 2.2 is said to be k-weakly defective if, given p 0 , . . . , p k ∈ X general points and a general hyperplane H containing T X,p 0 ,...,p k (i.e., tangent to X at p 0 , . . . , p k ), then H cuts out on X a divisor H X such that there is a positive dimensional subvariety Σ ⊆ Sing(H X ) containing p 0 , . . . , p k (Σ is then called the contact variety of H). The general curve in |O S (⌊n/2⌋L) ⊗ I {x 0 ,...,x k }/S | is reduced and irreducible. Letting C 1 and C 2 be two different such general curves, and C 0 a general member of L, we obtain a divisor

C = εC 0 + C 1 + C 2 ∈ |O S (nL) ⊗ I T S,x 0 ,...,x k /P l(d,e,n) | ,
where ε ∈ {0, 1}, ε ≡ n mod 2. Since C is reduced, with nodes at x 0 , . . . , x k , this shows that (a) holds. Now (b) follows. Indeed, since k + 1 δ(d, e, n), (18) yields ( 13) with m = 2 and r = l(d, e, n). Hence Theorem 2.2 applies, and so, the general curve in |O S (nL) ⊗ I T S,x 0 ,...,x k /P l(d,e,n) | has nodes at x 0 , . . . , x k and is elsewhere smooth. This curve is irreducible by Bertini's theorem. Indeed, if n is odd, then |O S (nL) ⊗ I T S,x 0 ,...,x k /P l(d,e,n) | has no fixed component and is not composed with a pencil. Assume that n is even. By (9),

C 1 • C 2 = n 2 4 d > δ(d, e, n) k + 1 ,
which motivates (9). So, the general curve in |O S (nL)⊗ I T S,x 0 ,...,x k /P l(d,e,n) |, being singular only at x 0 , . . . , x k , cannot be of the form C 1 + C 2 , hence it must be irreducible.

Lemma 2.4. Let ε ∈ {0, 1} be such that ε ≡ n (mod 2), and let ∆(ε) be as in [START_REF] Lazarsfeld | Positivity in Algebraic Geometry[END_REF]. Then (a) (19) holds for any n n 1 , with n 1 as in [START_REF] Xu | Subvarieties of general hypersurfaces in projective space[END_REF]; (b) if (19) holds, then also (18) holds, provided that n n 2 , with n 2 as in (8).

Proof. (a) Write n = 2t + ε, with t 1 since n n 1 2. From ( 15) and ( 16), (19) reads

t 2 d -t(4d + e) + 2(p -q) -e + (1 -2ε)d 0 . ( 20 
)
and the discriminat of the left hand side is ∆(ε) as in [START_REF] Lazarsfeld | Positivity in Algebraic Geometry[END_REF].

When ∆(ε) 0, (20) holds for t

4d+e+ √ ∆(ε) 2d
, and so (19) holds for

n 4 + ε + e d + ∆(ε) d 2 .
If ∆(ε) < 0, then (19) holds for any n 2. This motivates the definition of n 1 in ( 7) and proves (a). (b) As above, (18) reads

n 2 d -n(6d + e) + 2(p -q) + 3(d -e) + 12 0 . (21) Moreover, (20) reads 
n 2 d -8nd -2ne + 8(p -q) + 4(d -e) + ε(εd -2nd + 2e) 0 . (22) 
The difference between the left hand side in (21) and that of ( 22) is

2nd + ne -6(p -q) -(d -e) -ε(εd -2nd + 2e) + 12 ,
which is non-negative as soon as

n 6(p -q) + d(1 + ε) + e(2ε -1) -12 e + 2d(1 + ε) .
Assuming (a), this motivates the definition of n 2 in (8) and proves (b).

Proof of Theorem 2.1. The integer n 0 in (11) satisfies both (a) and (b) in Lemma 2.4. Hence (18) and ( 19) hold, and we can conclude by Proposition 2.3.

Genera of curves on smooth surfaces in P 3

Here we focus on the case S is a smooth surface of degree d 4 in P 3 . In [START_REF] Ciliberto | Genera of curves on a very general surface in P 3[END_REF] we considered the case of a very general S ∈ |O P 3 (d)|; here we drop this assumption, and simply assume S smooth and d 4 (the case d < 4 being trivial for our considerations, because then S carries curves of any genus). As a direct consequence of Theorem 2.1, we have: Corollary 3.1. For any integer d 4 there exists an integer c d such that, for any smooth surface S in P 3 of degree d and any integer g c d , S carries a reduced, irreducible nodal curve of geometric genus g, whose nodes can be prescribed generically on S.

One can give an effective upper bound for c d . We keep here the notation of Section 2. Letting L = O S [START_REF] Chiantini | A few remarks on the lifting problem[END_REF] we obtain e = d(d -4), q = q(S) = 0, and p = p g (S) = Thus, ∆(0) 0 for 4 d 32 and ∆(0) 0 for d 33, while ∆(1) 0 for 4 d 33 and ∆(1) 0 for d 34. Now ( 7), (8), and (9) give, respectively,

n 1 (0) =    2 if d 33 , d + ∆(0) d 2 if 4 d 32 , n 1 (1) =    2 if d 34 , d + 1 + ∆(1)
d 2 if 4 d 33 , n 2 (0) = d -5 + 6(d -3) d(d -2) , n 2 (1) = d -5 + 9(d -2) d 2 ,
and

n 3 (0) = 3 + 2d -6 -(4/d) , n 3 (1) = 4 + 2d -2 -(4/d) .
In particular, for d ≫ 0, one has

n 1 = 2, n 2 ∼ d -5, n 3 ∼ √ d, hence n 0 = n 4 = d -4 .
So, by ( 12) and ( 23 

:= l(d, d(d -4), n) = n(n 2 +6n+11) 6 if n < d d 3n 2 -3n(d-4)+(d 2 -6d+11) 6 -1 if n d , (24) 
and

p d,n := p(d, d(d -4), n) = dn(d + n -4) 2 + 1 . (25) 
By [4, Thm. 2.4 and Rem. 2.5], for S ⊂ P 3 very general one has

Gaps(d) ⊂ [0, p d,n-1 -ℓ d,n-1 -1] = 0, d(d -1)(5d -19) 6 -1 if d > n 3 √ 12d 2 .
Plugging n = d -1 in this formula, we obtain the desired result for all In this way we find nodal curves of any geometric genus g p 4,d -ℓ 4,d = 0 on smooth surfaces of degree d, proving the assertion.

Let us conclude by the following conjecture.

Conjecture. For any smooth, rational variety X of dimension n + 1, any very ample line bundle L on X, any s ∈ {1, . . . , n -1}, and any integer g 0 there is a smooth hypersurface D ∈ |O X (L)| carrying an s-dimensional subvariety S ⊂ D of geometric genus g.

In particular, for any n 3, d 1, s ∈ {1, . . . , n -1}, and g 0 there is a smooth hypersurface D ∈ |O P n+1 (d)| and a subvariety S ⊂ D as before.

One can ask whether the same holds, more generally, for any smooth Fano variety X.

2. 1 .Proposition 2 . 3 .

 123 Proof of Theorem 2.1. The arithmetic genus of curves in |nL| is p(d, e, n) := 1 2 n(nd + e) + 1 . (14) For n n 0 set l(d, e, n) := dim(|nL|) = 1 2 n(nd -e) + p -q ,(15)where the latter equality follows by the Riemann-Roch Theorem and (10), since we assume n n 0 n 4 . Consider the embedding ϕ |nL| : S ֒→ P l(d,e,n) . Since ϕ |nL| is an isomorphism of S to its image S n , we may identify S with S n . Setδ(d, e, n) := p(d, e, n) -p(d, e, n -1) -1 = nd -1 2 (d -e) -1 . (16)As in the proof of Theorem 1.3, we show that for any n n 0 and any positive integer k δ(d, e, n) -1, one can find an irreducible curve C ∈ |nL| with exactly k +1 nodes at general points of S as its only singularities. Then, for any n n 0 , all the integers in the intervalJ n = [p(d, e, n-1), p(d, e, n)] are non-gaps. Since the intervals J n and J n+1 overlap, this proves Theorem 2.1, because ϕ(d, e, n 0 ) := min(J n 0 ) = p(d, e, n 0 -1) (17) is exactly (12). The proof follows by Proposition 2.3 and Lemma 2.4 below (which are of independent interest). Let S be a smooth, irreducible, projective surface, and L a very ample line bundle on S. Assume that n max{n 3 , 2} and that (with the above notation) the following inequalities hold l(d, e, n) 3(δ(d, e, n) -1) (18) and l(d, e, ⌊n/2⌋) δ(d, e, n) + 1 . (19) Then for any k ∈ {0, . . . , δ(d, e, n) -1}, (a) the smooth surface S n ⊂ P l(d,e,n) is not k-weakly defective, and (b) there exists a reduced, irreducible curve C ∈ |nL| in S with nodes at k + 1 general points of S and no other singularity. Proof. Let x 0 , . . . , x k be general points of S. Inequality (19) guarantees that, for any k ∈ {0, . . . , δ(d, e, n) -1}, one has dim |O S (⌊n/2⌋L) ⊗ I {x 0 ,...,x k }/S | = l(d, e, ⌊n/2⌋) -k -1 l(d, e, ⌊n/2⌋) -δ(d, e, n) 1 .

2 ∼ d 3 . 3 . 2 . 6 -1 for d 6 .

 233266 ), c d ϕ(d, d(d -4), d -4) = d(d -5)(2d -9) Remark Let Gaps(d) be the set of gaps for geometric genera of irreducible curves on S ∈ |O P 3 (d)| very general. By [4, Theorem 2.4], one has Gaps(4) = ∅, Gaps(5) = {0, 1, 2}, and Gaps(d) ⊂ 0, d(d -1)(5d -19) This is compatible with the results of the present section. A more refined analysis based on [4, Remark 2.5], shows that the maximum G d of Gaps(d) goes like G d = O(d 8 3

g p d,d- 2 -ℓ d,d- 2 .

 22 Take now n d -2. By [2, Theorem 3.1], for a general surface Σ ⊂ P 3 of degree n with 4 n d -2 and for any g ∈ [p n,d -ℓ n,d , p n,d ] there is a reduced, irreducible component V of the Severi variety of complete intersections of Σ with surfaces of degree d having δ = p n,d -g nodes as the only singularities.Notice that the union of integers in the non-gap intervalsJ d-1 (n) = [p n,d-1 -ℓ n,d-1 , p n,d-1 ] and J d (n) = [p n,d -ℓ n,d , p n,d ]is an integer interval for n d -2. To see this, it suffices to observe thatp n,d -ℓ n,d p n,d-1 + 1 < p n,d .The inequality on the right is trivial. To show the other inequalityℓ n,d p n,d -p n,d-1 -1 , using(24), (25), and the fact that d n + 2 > n, we can rewrite it as 3d(d -n + 2) + (n 2 -9n + 26) 0 , which holds if d n + 2. Any curve C ∈ V is cut out on Σ by a surface S of degree d. We claim that S can be taken to be smooth. Since the linear system |I C/P 3 (d)| is base point free outside C, by Bertini's theorem S can be choosen to be smooth off C. Suppose S is singular at a point p ∈ C. Since C has δ nodes and no other singularity, and it is the complete intersection of S and Σ, then p is a node of C. But the general surface in |I C/P 3 (d)| is non-singular at the nodes of C, because |I C/P 3 (d)| contains all surfaces of the form Σ + Φ, where Φ is a general surface of degree d -n (so it does not contain the nodes of C), and Σ is smooth (thus Σ + Φ is smooth at the nodes of C).

  Thus, we are left to compute n 0 as in (11). Since, by Serre duality, n 4 = d -3, this amounts to compute n 1 , n 2 , and n 3 as in (7), (8), and (9).

	cf. (12). From (6) we get				
	∆(ε) = d -	1 3	d 3 + 12d 2 -	1 3	(104 -24ε)d + 8 .
	The polynomial ∆(ε)/d has three positive roots		
	d 1 , d 2 , d 3 ∼		0, 25, 2, 89, 32, 86 0, 36, 2, 33, 64	if ε = 0, if ε = 1 .
	By Theorem 2.1 one has					1 6	(d -1)(d -2)(d -3) .
	c d ϕ(d, d(d -4), n 0 ) ,	(23)

  ). It is an open problem to see if this is sharp.3.1. Absence of absolute gaps for curves on smooth surfaces in P 3 . We say that an integer g is a d-absolute gap if there is no irreducible curve with geometric genus g on any smooth surface of degree d. We show here that there is no absolute gap at all. Theorem 3.3. For any positive integer d and for any non-negative integer g, there is a smooth surface S ⊂ P 3 of degree d and an irreducible, nodal curve C on S with geometric genus g.

	Proof. We may assume d 5, otherwise the result is well known (cf. e.g. [4, Prop. 1.2 and Cor. 2.2]).
	We set
	ℓ d,n

TX,p 0 ,...,p k stands for the linear span of the union of the embedded tangent spaces TX,p i , i = 0, . . . , k.
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