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Extended Dualization:
Application to Maximal Pattern Mining

Lhouari Nourine∗and Jean-Marc Petit†

Abstract

The dualization in arbitrary posets is a well-studied problem in combinato-
rial enumeration and is a crucial step in many applications in logics, databases,
artificial intelligence and pattern mining.
The objective of this paper is to study reductions of the dualization problem
on arbitrary posets to the dualization problem on boolean lattices, for which
output quasi-polynomial time algorithms exist. Quasi-polynomial time algo-
rithms are algorithms which run in no(logn) where n is the size of the input
and output. We introduce convex embedding and poset reflection as key no-
tions to characterize such reductions. As a consequence, we identify posets,
which are not boolean lattices, for which the dualization problem remains in
quasi-polynomial time and propose a classification of posets with respect to
dualization.
From these results, we study how they can be applied to maximal pattern
mining problems. We deduce a new classification of pattern mining problems
and we point out how known problems involving sequences and conjunctive
queries patterns, fit into this classification. Finally, we explain how to adapt
the seminal Dualize & Advance algorithm to deal with such patterns.
As far as we know, this is the first contribution to explicit non-trivial reduc-
tions for studying the hardness of maximal pattern mining problems and to
extend the Dualize & Advance algorithm for complex patterns.
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1 Introduction
The dualization in arbitrary finite1 partially ordered sets (poset for short) is well-
studied in combinatorial enumeration such as minimal transversals of a hypergraph,
the blocker of a clutter, minimal dominating sets and maximal cliques of a graph.
The dualization problem is the following: Given a compact representation of a poset
P and an antichain B+ of P , find another antichain B− of P such that the union of
the ideal induced by B+ and the filter induced by B− is exactly P .2 The dualization
problem has been popularized largely through the work on artificial intelligence and
pattern mining [9, 12, 21, 10, 18, 19], where P is a boolean lattice and B+ is given
by a monotocally decreasing predicate. This link has been done through the well
known Dualize & Advance algorithm [21, 15, 3, 4, 23, 22]. Many authors have
investigated the existence of an output-polynomial time algorithm for listing without
duplications the antichain B−. An output-polynomial algorithm is an algorithm
whose running time is bounded by a polynomial depending on the sum of the sizes
of the input and output. The existence of an output-polynomial algorithm for the
enumeration of minimal transversals of a hypergraph is a widely open question and
is closely related to many data mining problems [11].

In this paper, we are interested in characterizing posets for which the dualiza-
tion is equivalent to the enumeration of minimal transversals of a hypergraph. The
strategy is based on reductions of the dualization problem on arbitrary posets to the
dualization problem on boolean lattices. On posets, the dualization problem can be
stated as follows:

DualizeOnPoset
Input: A representation of a poset (P,≤), B+ an antichain of P .
Output: B− such that (B+, B−) are dual sets.

On boolean lattices, it is stated as follows:

DualizeOnSet
Input: A finite set E, B+ an antichain of P(E) (the powerset of E).
Output: B− such that (B+, B−) are dual sets in P(E).

The complexity of DualizeOnSet is known to be quasi-polynomial time while
the complexity of DualizeOnPoset is still open in most posets (for example, lattice)

1It also works for infinite partially ordered sets that are well ordered, i.e. all antichains are finite.
2B+ and B− are dual sets, also known as blocker and anti-blocker or positive and negative

borders.

2



Figure 1: Reduction from DualizeOnPoset to DualizeOnSet

[11]. In this setting, we are interested in studying the reduction from DualizeOn-
Poset to DualizeOnSet, i.e. under which conditions DualizeOnSet is polyno-
mially equivalent to DualizeOnPoset. Notice that reductions for the hardness of
enumeration problems are not well established as for decision problems. In this pa-
per, we consider only polynomial time reductions, inspired from classic polynomial
reductions of decision problems (cf. Figure 1).

Contribution on dualization We introduce convex embedding and poset reflec-
tion as key notions to characterize such reductions. As a consequence, we identify
posets, which are not boolean lattices, for which the dualization problem remains
quasi-polynomial time (cf. Figure 1) and propose a classification of posets with
respect to dualization.

From these results, we study how they can be applied to maximal (or more spe-
cific) pattern mining problems. Mining interesting patterns in databases has been
extensively studied in the data mining community over the last twenty years, from
association rules and frequent itemset mining to frequent graph mining or functional
dependency inference to mention a few. For studying their complexity, the under-
lying dualization problem has been identified as the main bottleneck in [21, 15, 23].
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Roughly speaking, for a partial order (P,≤) (representing patterns) and some mono-
tonically decreasing predicate Q over P , the dualization consists in identifying all
maximal elements of P verifying Q from all minimal elements of P not verifying Q,
and vice versa.

The seminal work of Mannila and Toivonen [21] proposes a general framework,
especially they classify pattern mining problems that are (isomorphically) equivalent
to frequent itemset mining (FIM). Nevertheless, the isomorphism requirement is too
restrictive for many “complex” patterns such as sequences, episodes or graphs to
mention a few. The ambition of this paper is to take into account such complex
patterns and to propose a new framework for studying their complexity. From a
practical point of view, the idea is to be able to re-use as much as possible the
myriad of techniques and algorithms developed for FIM to such complex patterns.

Contribution on maximal pattern mining From the contributions on dualiza-
tion, we deduce a new classification of pattern mining problems. We point out how
known problems involving sequences and conjunctive queries patterns, fit into this
classification. Finally, we explain how to adapt the seminal Dualize & Advance
[15] algorithm to deal with such complex patterns.

As far as we know, this is the first contribution to explicit non-trivial reductions
for studying the hardness of maximal pattern mining problems and to extend the
Dualize & Advance algorithm for complex patterns.

This paper is a consolidation and an extension of two papers published in the
proceedings of the conference ECAI 2012 [23] and the workshop ISIP 2014 [24].

2 Preliminaries
We briefly recall definitions on partial orders, embeddings, borders and pattern min-
ing problems [6, 23].

A partial order is a binary relation ≤ over a set P which is reflexive, antisym-
metric, and transitive. Let x, y be elements of P , if x ≤ y or y ≤ x, then x and y
are comparable, otherwise they are incomparable. A partial order under which every
pair of elements is comparable is called a chain. A subset of a poset in which no two
distinct elements are comparable is called an antichain. We say that y covers x if
whenever x ≤ z ≤ y then z = x or y = z; we denote by ≺ the covering relation.
For S ⊆ P , ↓ S (resp. ↑ S) is the downward (resp. upward) closed set of S under
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the relation ≤ (i.e. ↓ S is an ideal and ↑ S a filter of (P,≤))3. In case of ambiguity,
↓ S (resp. ↑ S) will be denoted by ↓≤ S (resp. ↑≤ S). A subset S ⊆ P is convex
in P if for all x, y, z ∈ P , x, y ∈ S and x ≤ z ≤ y imply z ∈ S. We denote by
Max≤(S) (resp. Min≤(S)) the maximal (resp. minimal) elements of S with respect
to ≤. When ≤ is clear from context, (P,≤) (resp. Max≤(S) and Min≤(S)) will be
denoted by P (resp. Max (S), Min(S)).

Let (P,≤P ) and (Q,≤Q) be posets and f : P → Q a mapping. f is an embedding
if for all x, y ∈ P , x ≤P y iff f(x) ≤Q f(y). The mapping f is an isomorphism
if f is a bijective embedding. In this case P and Q are said to be isomorphic. f
is a convex embedding if f is an embedding and f(P ) is convex in (Q,≤Q). Since
f is injective, there exists another mapping g : f(P ) → P such that g ◦ f = Id ,
the identity function. A reflection4 of a poset (P,≤) is a poset (P,≤′) on the same
ground set P such that for all x, y ∈ P , x ≤′ y ⇒ x ≤ y, i.e. a reflection preserves
incomparibilities only.

Two antichains (B+,B−) of P are said to be dual if ↓ B+∪ ↑ B− = P and
↓ B+∩ ↑ B− = ∅. The relationship between these dual sets is known as the dual-
ization, i.e. given B+, compute B− (or inversely). In the sequel, (B+,B−) will be
referred to as a border.

Let f : P → Q be a mapping and (B+,B−) a border in P . The border (E+, E−)
in Q is an extension of (B+,B−) with respect to f , if f(B+) ⊆ E+ and f(B−) ⊆ E−.
The extension (E+, E−) is said to be a polynomial extension of (B+,B−) if |E+|+ |E−|
is polynomial in |B+|+ |B−|.

The intuition of the reduction of enumeration problems used in this paper is based
on finding a mapping between posets such that borders are polynomially preserved,
i.e. every border has a polynomial extension.

2.1 Pattern mining problem

We recall the framework of Mannila and Toivonen [21]: Given a database d, a
description L of the language of patterns L∗ derivable from L , and a predicate Q
for evaluating whether a pattern ϕ ∈ L∗ is “interesting” in d. We assume that the
size of L∗ is exponential in the size of the description of L, otherwise the size of
L∗ is polynomial and the mining problem is obviously polynomial by brute force
enumeration. For instance, the description of the language for frequent itemset

3Here, an ideal or filter does not have to be upward directed
4A reflection of a poset P is a new poset obtained from P by deleting a subset of its compara-

bilities

5



mining is given by the set of items, the set of itemsets being exponential.
The discovery task is to find the theory of d with respect to L and Q, i.e. the

set Th(L,d,Q) = {ϕ ∈ L∗|Q(d, ϕ) holds}. We assume that the set of patterns L∗ is
structured with a partial order � and the predicate Q is monotonically decreasing wrt
�, i.e. for all θ, ϕ ∈ L∗, ϕ � θ, Q(d, θ)⇒ Q(d, ϕ). The antichain B+ ⊆ Th(L,d,Q)
such that ↓ B+ = Th(L,d,Q) is known as the positive border of Th(L,d,Q). The
antichain B− such that ↑ B− = (L∗ \ Th(L,d,Q)) is known as the negative border
of Th(L,d,Q). (B+,B−) is a border of (L∗,�).

2.1.1 Problem statement

In the data mining context, the problem statement is quite different since the an-
tichain B+ is known implicitly (given by a monotically decreasing predicate) and it
can be defined as follows:

Pattern mining problem (PMP)
Given a pattern mining problem (L,�,d,Q), enumerate the positive
border of Th(L,d,Q).

We now make explicit some usual assumptions, valid for almost every pattern
mining problem:

• The predicate Q is computable in polynomial time in the size of d,

• Given two patterns θ, φ ∈ L∗, checking θ � φ (or φ � θ) is computable in
polynomial time.

In this setting, the PMP problem can be simplified by ignoring both the
database d and the predicate Q. In the sequel, we shall use (L∗,�) instead of
(L,�,d,Q).

An enumeration algorithm is said to be incremental quasi-polynomial time, when
it enumerates one by one the positive border such that the time it takes to list another
one is quasi-polynomial in the size of the input and the previous output, i.e. no(logn)

where n is the sum of the sizes of the input and the output. It is worth noting that
whenever (L∗,�) is isomorphic to (P(E),⊆) for some set E, PMP can be solved in
incremental quasi-polynomial time [15] (known as Dualize & Advance algorithm)
in the size of the positive and negative borders.

In the next section, we shall consider dualization on arbitrary posets; we will
come back to maximal pattern mining problems in Section 4.
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3 Classification of posets with respect to dualization
In this section, we describe two properties of posets that lead us to have polynomial
time reductions to DualizeOnSet. First we show that a convex embedding from
a poset (L∗,�) to P(E) for some set E is sufficient to re-use algorithms of Dual-
izeOnSet. Second, we show that the convex embedding is not a necessary condition
and introduce the reflection of a poset (L∗,�) to obtain a new poset (L∗,�′) in which
there is a convex embedding. Indeed, a reflection of a poset (L∗,�) corresponds to an
embedding which preserves incomparabilities only, i.e. some comparabilities could
be lost. As a consequence, extra-elements may appear to the dualization. Intuitively,
whenever the number of extra-elements is bounded by a polynomial, the dualization
can be reduced to DualizeOnSet. To do so, we ask the following questions:

Given a poset of patterns (L∗,�),

• Does there exist a convex embedding of (L∗,�) into (P(E),⊆) for some finite
set E? If not,

• Does there exist a reflection (L∗,�′) of (L∗,�) such that there exists a convex
embedding of (L∗,�′) into (P(E),⊆) for some finite set E?

These two questions and their associated computational costs allow to come up
with new classes of posets with respect to dualization. Figure 2 gives an illustration
of the proposed framework. In the sequel, we first give some definitions of pattern
structures based on convex embedding. Then, we propose poset reflection as a key
notion to reach the convex embedding constraint.

(L∗,�) (L∗,�′) (P(E),⊆)

(B+,B−) (Ext(B+),Ext(B−)) (f(Ext(B+)) ∪B+
0 , f(Ext(B−)) ∪B−0 )

Reflection Convex embedding

Figure 2: Overview of the main transformations

3.1 Convex embedding

Wild [26] studied some sufficient and necessary conditions for posets to have a cover
preserving embedding into boolean lattices, but none of them can be re-used in this
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paper since the input poset is given implicitly in our case.
First, let us recall that any poset has an embedding into a boolean lattice.

Proposition 1 [6] For any poset (L∗,�), there exists an embedding from (L∗,�) to
(P(E),⊆), for some finite set E.

It follows that any poset has a set representation but obviously the dualization
on (L∗,�) may be more difficult than the dualization on (P(E),⊆) [23]. We define
the set of posets representable as sets ( RAS for short) as follows:

Definition 1 (L∗,�) ∈ RAS iff (L∗,�) and (P(E),⊆) are isomorphic, for some
finite set E.

This class of posets gathers together many patterns such as frequent itemsets
(FIM) [2], functional dependencies (FD) [20], inclusion dependencies (IND) [8]. This
class is known as representation as sets class of pattern mining problems defined in
[21] (also known as strong duality [25]).

Nevertheless, requirements to be in RAS are restrictive, since the poset must be
isomorphic to a boolean lattice, and therefore its size has to be equal to 2n where
n = |E|. One may remark that (L∗,�) is trivially convex in (P(E),⊆), suggesting
to relax the bijective constraint of RAS without losing the convexity on the set
representation. Hence, we extend RAS to a new class, called XRAS, for conveX
RAS.

Definition 2 (L∗,�) ∈ XRAS iff there exists a convex embedding from (L∗,�) to
(P(E),⊆), for some finite set E.

The idea is still to require an isomorphism but just between the poset of patterns
and some subset of P(E), instead of the entire set P(E) (see Figure 3). Moreover,
the subset of P(E) has to be convex, which was true but implicit in the definition
of RAS. Note also that f is injective since f is an embedding. The following
proposition points out a simple yet important characterization of XRAS problems.
An illustration is given in Figure 3.

Proposition 2 (L∗,�) ∈ XRAS iff there exist two antichains B+
0 and B−0 of P(E)

such that ↓ B+
0 ∪ ↑ B−0 = ∅ and (L∗,�) is isomorphic to (P(E) \ (↓ B+

0 ∪ ↑ B−0 ),⊆).

Proof: Let f be a convex embedding from (L∗,�) to (P(E),⊆) and F = f(L∗).
Let B+

0 = Max (↓ F \ F) and B−0 = Min(P(E)\ ↓ F).
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Figure 3: The class XRAS

We show that ↓ B+
0 , ↑ B−0 and F is a partition of P(E).

Clearly ↓ B+
0 ∪ ↑ B−0 ∪F = P(E), ↓ B+

0 ∩ ↑ B−0 = ∅ and F∩ ↑ B−0 = ∅. Now we show
that F∩ ↓ B+

0 = ∅. Suppose that exists F ∈ F∩ ↓ B+
0 . The fact that B+

0 ∩ F = ∅
implies that exist X ∈ B+

0 and F ′ ∈ F with F ⊂ X ⊂ F ′. This contradicts the fact
that F is a convex set in P(E) since X /∈ F .

The other direction holds since P(E) \ (↓ B+
0 ∪ ↑ B−0 ) is a convex set of P(E). �

The proof of Proposition 2 gives a particular pair of antichains (B+
0 , B

−
0 ), but

many such pairs exist to achieve the convex embedding. We also note that the size
of the sets B+

0 and B−0 could be exponential in the size of the description L.
The next definition introduces computationally efficient version of problems of

XRAS, called EXRAS.

Definition 3 (L∗,�) ∈ EXRAS if (L∗,�) ∈ XRAS and there is a pair (B+
0 , B

−
0 )

of antichains such that |B+
0 ∪B−0 | is polynomial in the size of the description L.

The following proposition points out that a polynomial extension of any border
of (L∗,�) exists if (L∗,�) ∈ EXRAS.
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Proposition 3 Let (L∗,�) ∈ EXRAS with f : L∗ → P(E) a convex embedding,
for some set E, and (B+

0 , B
−
0 ) two antichains such that (L∗,�) is isomorphic to

(P(E) \ (↓ B+
0 ∪ ↑ B−0 ),⊆) and |B+

0 ∪B−0 | is polynomial in the size of L.
Then for every border (B+,B−) of (L∗,�), (Max (B+

0 ∪ f(B+)), Min(B−0 ∪ f(B−)))
is a polynomial extension of (B+,B−) in (P(E),⊆).

Proof: Let (B+,B−) be a border of (L∗,�). By definition of EXRAS, we have
(B+,B−) as a border of (L∗,�) iff (f(B+), f(B−)) as a border of (P(E) \ (↓ B+

0 ∪ ↑
B−0 ),⊆) since (L∗,�) is isomorphic to (P(E) \ (↓ B+

0 ∪ ↑ B−0 ),⊆).
We show that (Max (B+

0 ∪ f(B+)), Min(B−0 ∪ f(B−))) is a border of P(E). First,
we show that ↓ Max (B+

0 ∪ f(B+)∩ ↑ Min(B−0 ∪ f(B−)) = ∅, or equivalentely
(↓ B+

0 ∪ ↓ f(B+))∩(↑ B−0 ∪ ↑ f(B−)) = ∅. By Proposition 2 we have ↓ B+
0 ∩ ↑ B−0 = ∅.

Moreover, ↓ f(B+)∩ ↑ f(B−) = ∅ since f is a bijective embedding of (L∗,�) into
(P(E) \ (↓ B+

0 ∪ ↑ B−0 ),⊆) and (B+,B−) a border of (L∗,�). Finally, we have
↓ f(B+)∩ ↑ B− =↑ f(B−)∩ ↓ B+ = ∅ since ↓ f(B+)∪ ↑ f(B−) ⊆ (P(E) \ (↓ B+

0 ∪ ↑
B−0 ).

Now we show that ↓ Max (B+
0 ∪ f(B+)∩ ↑ Min(B−0 ∪ f(B−)) = P(E). Since

(f(B+), f(B−)) as a border of (P(E) \ (↓ B+
0 ∪ ↑ B−0 ),⊆), we have ↓ f(B+)∪ ↑

f(B−) = P(E) \ (↓ B+
0 ∪ ↑ B−0 ) and it union with ↓ B+

0 ∪ ↑ B−0 ) gives P(E).
Thus (Max (B+

0 ∪ f(B+)), Min(B−0 ∪ f(B−))) is a border in P(E) which is a
polynomial extension of (B+,B−) since |B+

0 ∪ B−0 | is polynomial in the size of the
description L.
�

3.2 Polynomial reflection of posets

We now consider posets that are not in XRAS. Our idea is to transform the initial
poset to a new poset over the same ground set, in order to get a convex embedding.
As a consequence, two natural questions arise:

(1) For a given poset (L∗,�), does there exist a “polynomial reflection”
(L∗,�′) such that (L∗,�′) belongs to EXRAS?

(2) How to quantify the “loss of comparabilities” induced by a reflec-
tion?

In the sequel, we study poset reflection to give answers to the previous questions.
Since the reflection of a poset induces the lost of some comparabilities in the original
poset, we have to recover them efficiently.

Before that, we consider different examples of posets over sequences.
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3.2.1 Examples with different posets of sequences

Let us consider sequences with or without wildcard (see e.g. [3]).
Let Σ be a totally ordered alphabet which contains the wildcard ? as a minimal

letter. A sequence is an element of Σ∗ and a rigid sequence is of the form P =
P [1] . . . P [m] ∈ Σ∗ such that P [1] 6= ? and P [m] 6= ?. Let Σ∗R be the set of rigid
sequences and Σ∗ the set of sequences. We denote by Σn (resp. Σn

R) the set of all
(resp. rigid) sequences in Σ∗ (resp. Σn

R) of size at most n. We define different partial
orders over Σ∗R and Σ∗:

• (Σ∗,≤s) : Let P [1..m], Q[1..n] ∈ Σ∗ with m ≤ n. P is subsequence of Q,
denoted P ≤s Q, if P can be obtained from Q by deleting n − m letters.
Formally, P ≤s Q if there exist integers i1 < . . . < im in [1..n] such that
P [j] = Q[ij] for all j ∈ [1..m].

P is a prefix of Q, denoted by P ≤p Q, if P [1..m] = Q[1..m].

• (Σ∗R,v): Let P [1..m], Q[1..n] ∈ Σ∗R: P occurs in Q at position j ∈ [1..n],
denoted by P vj Q, if for every i ∈ [1..m], either P [i] = Q[j + i − 1] or
P [i] = ?. We say that P occurs as prefix in Q if P v1 Q. We write P v Q if
there exists j ∈ [1..m] such that P vj Q.

It is worth noticing, that (Σ∗,≤s), (Σ
∗,≤p), (Σ

∗
R ,v) and (Σ∗R ,v1) are partial

orders. Moreover (Σ∗R ,v1) (resp. (Σ∗,≤p)) is a reflection of (Σ∗R ,v) (resp. (Σ∗,≤s)),
since P v1 Q (resp. P ≤p Q) implies P v Q (resp. P ≤s Q).

The following example shows that the posets (Σ∗,≤s) and (Σ∗R ,v) cannot have
a convex embedding in the boolean lattice P(E) for some set E. Indeed, consider
the set A = {a, b, ab, ba} ⊆ Σ∗ ∩ Σ∗R . Then for any embedding f of (Σ∗,≤s) into
(P(E),⊆), there exists a set X ⊆ E such that f(a) ⊆ X ⊆ f(ab), f(b) ⊆ X ⊆
f(ba) and X is not an image of f . Otherwise (P(E),⊆) will not be closed under
intersection, since f(ab) ∩ f(ba) must contain f(a) and f(b) and there is no word
w ∈ Σ∗ such that a ≤s w ≤s ab and f(w) = f(ab)∩ f(ba). Thus the set of all images
of f is not a convex set in (P(E),⊆). The same reasoning applies for (Σ∗R ,v).

Now consider the posets (Σ∗R ,v1) and (Σ∗,≤p) which are refections of (Σ∗R ,v)
and (Σ∗,≤s) respectively. In the following, we first show that (Σ∗R ,v1) has a convex
embedding and that no convex embedding exists for (Σ∗,≤p) into (P(E),⊆).

(1) Let f : Σ∗R → P(E) be an embedding, for some finite set E [23, 3]: f associates
to each letter of a sequence a pair (index, letter). For instance, let ab and ba be two
patterns. Then f(ab) = {(1, a), (2, b)} and f(ba) = {(1, b), (2, a)}. It is easy to verify
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that f(Σ∗R) is convex in (P(E),⊆) [23]. Let us again consider A = {a, b, ab, ba}:
we only have a v1 ab, b v1 ba, (two comparabilities are lost) allowing to reach the
convexity constraint.

(2) Consider the set A = {a, aa, aaa}. A is convex in (Σ∗,≤p) but its image by
any embedding cannot be convex in (P(E),⊆) since P(E) cannot contain a convex
set which is a chain of length 3.

3.2.2 Reaching convexity by poset reflection

The two previous examples point out that we have to transform the poset (through
reflection) to get a chance to obtain some convex embedding. Note that for any poset
there exists a reflection which has a convex embedding in a boolean lattice. But the
difficulty is how to retrieve lost comparabilities?

Given a poset reflection, we define the lost successors and lost predecessors in-
duced by a poset reflection for each element of the poset.

Definition 4 Let (P,≤′) be a reflection of a poset (P,≤) and x ∈ P . The lost
predecessors of x in the reflection of (P,≤) to (P,≤′), denoted by LostPred(x), are
defined by:
LostPred(x) = Max≤′{y ∈ P |y ≤ x, y 6<′ x}. Similarly, the lost successors are
defined by: LostSucc(x) = Min≤′{y ∈ P |x ≤ y, x 6<′ y}.

By extension, we note LostPred(X) =
⋃

x∈X LostPred(x) (resp. LostSucc(X))
for X ⊆ P .

Example 1 Let us consider the previous reflection (Σn
R ,v1) of (Σn

R , v). Let
S ∈ Σn

R. We have LostPred(S) = Maxv1{S[i..|S|] | 1 ≤ i ≤ |S|, S[i] 6= ?} and
LostSucc(S) = Minv1{x ? . . . ?︸ ︷︷ ︸

i

S | 0 ≤ i ≤ n − |S|, x ∈ Σ \ {?}}. For instance with

n = 5 and Σ = {?, a, b}, LostPred(a ? ba) = Maxv1{a ? ba, ba, a} and LostSucc(ba) =
Minv1{ba, aba, bba, a ? ba, b ? ba, a ? ?ba, b ? ?ba}.

As shown in the following lemma, we can recover the initial poset from any
reduced poset with LostPred and LostSucc.

Lemma 1 Let x ∈ P and (P,≤′) a reflection of (P,≤). Then:

1. ↓≤ x =↓≤′ LostPred(x) and

2. ↑≤ x =↑≤′ LostSucc(x).
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Proof: (1) Let y ∈↓≤ x. We have either y ≤′ x or y 6<′ x. If y ≤′ x, then
y ∈↓≤′ LostPred(x) since x ∈ LostPred(x). If y 6<′ x, then there exists z ∈ P such
that y ≤′ z, z ∈ LostPred(x), i.e. y ∈↓≤′ LostPred(x).

Now let y ∈↓≤′ LostPred(x). Then exists z ∈ LostPred(x) such that y ≤′ z. Since
f is a reflection we have z ≤ x and thus y ∈↓≤ x.

The same reasoning applies for (2). �
Some remarks have to be made: First, for any poset, there always exists a re-

flection that has a convex embedding into a boolean lattice. It suffices to take a
reflection which is an antichain, i.e. that deletes all comparabilities. In this case, the
number of lost comparabilities can be exponential in the size of the description of the
poset. Second, we would like to be able to recover lost comparabilities in polynomial
time. This is formalized with the notion of poly-reflection as follows.

Definition 5 (L∗,�′) is a poly-reflection of (L∗,�) if (L∗,�′) is a reflection of
(L∗,�) and for all x ∈ L∗, LostPred(x) and LostSucc(x) are computable in polyno-
mial time in the size of the description L.

Example 2 Continuing the previous example, for all S ∈ Σn
R, |LostPred(S)| is poly-

nomial in n and for all s v S, there exists s′ ∈ LostPred(S) such that s v1 s′.
Therefore, (Σn

R ,v1) is a poly-reflection of (Σn
R ,v).

Now we show the relationship between borders in a poset and its reflection. For
a given border on the initial poset, we define its extension in the reduced poset to
take into account lost comparabilities.

Definition 6 Let (L∗,�′) be a poly-reflection of (L∗,�) and (B+,B−) a border of
(L∗,�). The extension of (B+,B−) in (L∗,�′), denoted by (Ext(B+),Ext(B−)), is
defined by:

Ext(B+) = Max≤′{LostPred(x) | x ∈ B+}
Ext(B−) = Min≤′{LostSucc(x) | x ∈ B−}.

The "preservation" of borders can now be formally stated.

Proposition 4 Let (L∗,�′) be a poly-reflection of (L∗,�) and (B+,B−) a border of
(L∗,�). Then (Ext(B+),Ext(B−)) is a polynomial extension of (B+,B−).

Proof: We have to show:

1. (Ext(B+),Ext(B−)) is a border of (L∗,�′) with B+ ⊆ Ext(B+) and B− ⊆
Ext(B−),

13



2. |Ext(B+)|+ |Ext(B−)| is polynomial in |B+|+ |B−|.

(1) Any reflection preserves all incomparabilities and x ∈ LostPred(x) (resp x ∈
LostSucc(x)) for all x ∈ L∗. Since B+ and B− are antichains in (L∗,�), we have B+ ⊆
Ext(B+) and B− ⊆ Ext(B−). By definition, Ext(B+) and Ext(B−) are antichains in
(L∗,�′).

We show that (Ext(B+),Ext(B−)) is a border of (L∗,�′). Since (B+,B−) is a
border of (L∗,�), we have ↓ B+∪ ↑ B− = L∗ and ↓ B+∩ ↑ B− = ∅. By definition of
the polynomial extension, for any x ∈ B+ (resp. x ∈ B−) we have LostPred(x) ⊆↓
Ext(B+) (resp. LostSucc(x) ⊆↑ Ext(B−)), and, by Lemma 1, ↓≤ x =↓≤′ LostPred(x)
(resp. ↑≤ x =↑≤′ LostSucc(x)). Since B+ ⊆ Ext(B+) and B− ⊆ Ext(B−), we have
↓ Ext(B+)∪ ↑ Ext(B+) = L∗.

Now suppose that there is an element x ∈↓ Ext(B+)∩ ↑ Ext(B−). Then there
exist y ∈ B+ and z ∈ B− x ∈↓≤′ LostPred(y)∩ ↑≤′ LostSucc(z). By Lemma 1, we
deduce that x ∈ (↓≤ y) ∩ (↑≤ z) which is a contradiction with (B+,B−) a border of
(L∗,�).
(2) |Ext(B+)|+|Ext(B−)| is polynomial in |B+|+|B−| since (L∗,�′) is a poly-reflection
of (L∗,�) since computing LostPred(x) and LostSucc(x) can be done in polynomial
time in the size of the description of L. �

The notion of poly-reflection allows to define the last class of posets, called
EWRAS, meaning Efficient weak representation as sets. EWRAS is the more gen-
eral class ensuring the existence of quasi-polynomial time algorithms. It combines
both poly-reflection of posets and EXRAS.

Definition 7 (L∗,�) ∈ EWRAS iff there exists a poly-reflection (L∗,�′) of (L∗,�)
such that (L∗,�′) ∈ EXRAS.

Then, this definition means that if some comparabilities can be forgotten – up
to a polynomial cost to recover them – to get a new poset satisfying the condition
of EXRAS, then the dualization problem on the initial poset can be reduced to
DualizeOnSet.

Example 3 Continuing previous examples, we have (Σ∗R ,v1) is a poly-reflection of
(Σ∗R ,v) and (Σ∗R ,v1) belongs to EXRAS. Then, (Σ∗R ,v) belongs to EWRAS.

From Propositions 3 and 4 we deduce the main result concerning the EWRAS
class.
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Theorem 1 Let (L∗,�) ∈ EWRAS. Assume that (L∗,�′) is a poly-reflection of
(L∗,�) such that (L∗,�′) belongs to EXRAS, i.e. (L∗,�′) isomorphic to P(E) \ (↓
B+

0 ∪ ↑ B−0 ) for some antichains B+
0 , B

−
0 ⊆ P(E). Then, for every border (B+,B−)

of (L∗,�) the pair (Max (B+
0 ∪ f(Ext(B+))),Min(B−0 ∪ f(Ext(B−)))) is a border in

(P(E),⊆) and it is a polynomial extension of (B+,B−)

The following corollary gives the relationship between all the classes introduced
so far.

Corollary 1 Let (L∗,�′) be a poly-reflection of (L∗,�) such that (L∗,�′) belongs
to XRAS, i.e. there exists two antichains B+

0 and B−0 of P(E) such that (L∗,�′)
isomorphic to P(E) \ (↓ B+

0 ∪ ↑ B−0 ). We have:

1. (L∗,�) ∈ RAS if (L∗,�) = (L∗,�′) and B+
0 = B−0 = ∅.

2. (L∗,�) ∈ XRAS if (L∗,�) = (L∗,�′).

3. (L∗,�) ∈ EXRAS if (L∗,�) = (L∗,�′) and the size of B+
0 ∪B−0 is polynomial

in the size of the description L.

4. (L∗,�) ∈ EWRAS if the size of B+
0 ∪ B−0 is polynomial in the size of the

description L.

To sum up, Figure 4 gives inclusion between classes of posets introduced in this
paper.

In the rest of this section, we point out a surprising result: the dualization problem
on sequences is equivalent to the dualization problem on sets.

3.3 DualizeOnSeq is equivalent to DualizeOnSet

Recall that we consider rigid sequences only. The dualization problem can be stated
as follows:
DualizeOnSeq
Input: Let (Σn

R,v) the poset of rigid sequences, where Σ a totally ordered alphabet
with a minimal element ?, n a positive integer and B+ a positive border of Σn

R.
output: B− such that (B+, B−) is a border of Σn

R.

We have shown in the previous section that DualizeOnSeq is at most as hard
as DualizeOnSet (see also [23]). In the sequel, we point out that DualizeOnSet

15



Figure 4: Posets classification with respect to the dualization problem

is at most as hard as DualizeOnSeq, and therefore the two problems are poly-
nomially equivalent. Indeed, we show that DualizeOnSet is a particular case of
DualizeOnSeq.

Let Σ = {1, 2, ..., n, ?} be an ordered alphabet (i.e. ? < 1 < 2... < n) and S ∈ Σn.
The sequence S is said to be an ordered sequence if for every i, j ∈ [1..n] such that
i < j, S[i] 6= ? and S[j] 6= ? we have S[j] − S[i] = j − i. We denote Σn

O ⊆ Σn
R the

set of all ordered sequences of size at most n. For example, the sequence 2 ? ?5 is an
ordered sequence but 2 ? 5 is not.

We define the set of forbidden sequences B−0 = {i ∗k j | i, j ∈ Σ, i ≥ j, k ∈
[0..n− 2]} ∪ {i ∗k j | i, j ∈ Σ, i < j, k ∈ [0..n− 2], k 6= j − i− 1}. For example for
Σ = {1, 2, 3, ∗} and n = 3, we have B−0 = {11, 1 ∗ 1, 22, 2 ∗ 2, 33, 3 ∗ 3, 21, 2 ∗ 1, 31, 3 ∗
1, 32, 3 ∗ 2} ∪ {13, 1 ∗ 2, 2 ∗ 3}.

The following lemma characterizes ordered sequences.

Lemma 2 Let Σ = {1, 2, ..., n, ?} be an ordered alphabet and S ∈ (Σn
R,v). Then

S ∈ Σn
O iff for any S ′ ∈ B−0 , S ′ 6v S. Furthermore, Σn

R\ ↑ B−0 = Σn
O.

Proof:
Let S = x1x2...xm ∈ Σn

R. Suppose that S ∈ Σn
O. Then for all 1 ≤ i < j ≤ m

such that xj 6= ?, xi 6= ? and xj − xi = j − i. Since j > i then xj > xi. Moreover
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xi ? . . . ?︸ ︷︷ ︸
k

xj with k = j− i− 1 cannot belong to B−0 (by construction of B−0 ) and thus

for any S ′ ∈ B−0 , S ′ 6v S

Now suppose that S /∈ Σn
O. Then there exists 1 ≤ i < j ≤ m such that xj 6= ?,

xi 6= ? and xj − xi 6= j − i. Let k = j − i− 1 ∈ [0, n− 2]. We distinguish two cases:

• xi ≥ xj: then the sequence xi ? . . . ?︸ ︷︷ ︸
k

xj ∈ B−0 with xi ? . . . ?︸ ︷︷ ︸
k

xj v S.

• xi < xj: the sequence xi ? . . . ?︸ ︷︷ ︸
k

xj ∈ B−0 since k 6= xj−xi−1, and, xi ? . . . ?︸ ︷︷ ︸
k

xj v

S.

Finally we conclude that Σn
R\ ↑ B−0 = Σn

O. �

Let E = {1, ..., n} be a set. We define the mapping f : P(E)→ Σn
R such that for

any X ∈ P(E), f(X) = S with S[i] = i if i ∈ X and S[i] = ? otherwise. Without
loss of generality, we delete the symbols ? that are prefix or suffix of f(X). Note
that f(X)[i] = ? means that i /∈ X. For example f({2, 5}) = 2 ? ?5 and f({}) is the
empty sequence.

Proposition 5 Let E = {1, ..., n} be a set. Then the mapping f is a convex embed-
ding of P(E) into Σn

R. Moreover f(P(E)) = Σn
O.

Proof:
Let P,Q be two sequences that are images of two sets A ⊂ B ⊆ E, i.e. f(A) = P

and f(B) = Q. Clearly f(A) @ f(B).
Now suppose there is a sequence S such that P @ S @ Q.
For every i, j ∈ [1..n], i 6= j, we have either S[i] 6= S[j] or S[i] = S[j] = ?, by

definition of the embedding f . Then the set C = {x ∈ E | S[i] = x, i ∈ [1..n]} is
clearly defined. Moreover f(C) = S and A ⊂ C ⊂ B, since for any x ∈ Σ, x 6@ ?,
but ? @ x.

We have f(P(E)) = Σn
O by construction. �

Now we are able to show that the dualization on rigid sequences with wildcard is
equivalent to the dualization on set, i.e. enumerating minimal transversals of a given
hypergraph.

Theorem 2 DualizeOnSeq and DualizeOnSet are polynomially equivalent.
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Proof:
First we show that DualizeOnSeq is polynomially reducible to DualizeOnSet

[23]. Consider an instance of DualizeOnSeq: Let (Σn
R,v) be the poset of rigid

sequences and B+ a positive border of Σn
R. We construct an instance of DualizeOn-

Set, i.e. a set E, E+ an antichain of P(E) as follows:
Consider first the reflection (Σn

R,v1) of (Σn
R,v). By Lemma 1, we have ↓v x =↓v1

LostPred(x) and ↑v x =↑v1 LostSucc(x) with LostPred(S) = Maxv1{S[i..|S|] | 1 ≤
i ≤ |S|, S[i] 6= ?} and LostSucc(S) = Minv1{x ? . . . ?︸ ︷︷ ︸

i

S | 0 ≤ i ≤ n − |S|, x ∈

Σ}. Clearly (Σn
R,v1) is a poly-reflection of (Σn

R,v) since |LostPred(S)| ∈ O(n) and
|LostSucc(x)| ∈ O(n.m), i.e. their sizes are polynomial in the size of the description
Σn

R and n.
Now consider the embedding f : (Σn

R,v1) → P(E) that associates for every
P [1..m] ∈ Σn

R a set of pairs of E = ({1, ...,m} × (Σ \ {?})) as follows:

f(P ) = {(i, P [i]) | i ∈ [1..m], P [i] 6= ?}

Then f is a convex embedding with B+
0 = {{(i, x) | x ∈ Σ, i ∈ [2..n]}} and

B−0 = {{(1, x), (1, y) | x, y ∈ Σ, x 6= y}} ∪ {{(1, x), (i, y), (i, z)} | x, y, z ∈ Σ, y 6=
z, i ∈ [2..n]}. Hence |B+

0 ∪ B−0 | is polynomial in m and n since |B+
0 | ∈ O(n.m) and

|B−0 | ∈ O(n.m3), where m = |Σn
R| and n = |S|.

From Theorem 1, we conclude that DualizeOnSeq is polynomially reducible
to DualizeOnSet, i.e. (B+,B−) are duals in (Σn

R,v) iff (B+
0 ∪ f(Ext(B+)), B−0 ∪

f(Ext(B−))) are duals in P(E).
Conversely, Proposition 5 shows the existence of a convex embedding from P(E)

into Σn
R. Moreover we have shown that B+

0 = ∅ and according to Lemma 2 the
size of B−0 is bounded by O(n3). Thus DualizeOnSet is polynomially reducible to
DualizeOnSeq. �

4 Applications to Maximal Pattern Mining Prob-
lems

We are now interested in the PMP problems given in Section 2.1.1, i.e. the mining
of maximal interesting patterns. In the simplest case, it is well-known that maximal
interesting patterns(i.e. the positive border) can be computed incrementally by using
the Dualize & Advance algorithm [15] as a subroutine. In this section, we study
how to modify the Dualize & Advance algorithm in more complex cases.
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Table 1: A new classification of pattern mining problems

DualizeOnPoset PMP problems
RAS RASPM

XRAS XRASPM

EXRAS EXRASPM

EWRAS EWRASPM

From the classification of posets given in previous sections (see Figure 4), it follows
immediately a similar classification for PMP problems, as depicted in Table 1.

Note that most of PMP problems are known to be NP-Hard [5, 15]. Nevertheless,
some of them can be solved in incremental quasi-polynomial time in the size of the
positive and negative borders (see [15] for RASPM problems).

In the sequel, we recall basic results of the simplest case, i.e. pattern mining
problems said to be representable as sets [21]. Then we show how to apply the
materials defined in previous sections to the problem of frequent simple conjunctive
queries in databases [14] and the problem of frequent rigid sequences.

4.1 Known results

We recall RAS problems defined in Section 3.1, and we give the relationship be-
tween the positive and negative borders through the notion of minimal transversal
of hypergraphs.

Let H ⊆ P(E) be a hypergraph on a set E. We denote by Max (H) (resp.
Min(H)) the set of maximal (resp. minimal) hyperedges of H with respect to set
inclusion. H is said to be simple if H = Min(H) = Max (H). A minimal transversal
of H is a set of elements X ⊆ E such that (1) X has a non-empty intersection with
every hyperedge of H and (2) X is minimal w.r.t. this property. We denote by
MinTr(H) the set of minimal transversals of H and H = {E \ e | e ∈ H} the set of
complements in E of the edges of H.

Let S ⊆ P(E). We define B+(S) = Max (S) and B−(S) = Min(P(E)\ ↓ S).
Note that for a given set S of P(E), the sets B+(S) and B−(S) are duals in P(E).

The relationship between the positive and negative borders is given as follows
[21]:

Theorem 3 [21] Let (L∗,d,Q) ∈ RASPM, S ⊆ L∗ and f : L∗ →P(E) a bijective
mapping. Then B−(↓ S) = f−1(MinTr(f(B+(↓ S))))
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We recall the complexity of the Dualize & Advance algorithm proposed in
[16] for problems representable as set (aka RASPM). Let us denote by width(L∗, �)
the maximal number of immediate successors on (L∗,�), and t(n) = no(log n).

Corollary 2 [15] Let (L∗,�,d,Q) ∈ RASPM and Th its theory.
B+(Th) can be computed in time polynomial in |B+(Th)| and t(|B+(Th)|+|B−(Th)|),
while using at most |B−(Th)|+ width(L∗,�)×|B+(Th)| queries.

4.2 Application to Frequent simple conjunctive queries

The frequent queries problem has been studied for instance in [7, 13, 14, 17]. We
consider the simple problem statement defined in [14]5 and we assume a set semantic
for the relational model. Let R = {R1, . . . , Rn} be a database schema, D the domain
of R and sch(R) = {Ri.A|Ri ∈ R, A ∈ Ri}. A (simple) conjunctive queries Q over
R is of the form πX(σF (R1 × · · · × Rn)) where X ⊆ sch(R), F a conjunction of
equalities of the form Ri.A = Rj.B or Ri.A = c with i 6= j, Ri.A,Rj.B ∈ sch(R) and
c ∈ D and (R1 × · · · ×Rn) a cartesian product between n relation schemas (with no
repetition). When clear from context, πX(σF (R1 × · · · ×Rn)) will be noted πX(σF ).
The reader may refer to [1] for more details on database notations.

Let Qr be the set of all possible simple conjunctive queries over R. Note that any
query which is syntactically correct belongs to Qr. For a given database d over R,
we note Adom(d) ⊆ D the active domain of d and Q(d) the result of the evaluation
of Q against d.

Let Q1, Q2 be two simple conjunctive queries over R. Q1 is contained in Q2,
denoted Q1 ⊆ Q2, if for every database d over R, Q1(d) ⊆ Q2(d). Q1 is diagonally
contained in Q2, denoted Q1 ⊆∆ Q2, if Q1 is contained in a projection of Q2, i.e. for
instance Q1 ⊆ πX(Q2)

The frequency of Q = πX(σF (R1 × · · · × Rn)) in d, denoted by freq(Q,d), is
defined by: freq(Q,d) = |πX(σF (R1×· · ·×Rn))(d)|. A query Q is frequent in d with
respect to a threshold ε if freq(Q,d) ≥ ε. freq(Q, d) is monotonically decreasing
with respect to ⊆∆ [13].

The problem statement can now be given:

FQ problem: Given a database d over R and a threshold ε, enumerate the
positive border of ε-frequent queries of (Qr,⊆∆) in d.

5Query containment being NP-Complete, we restrict ourselves to a simple fragment, the so-
called “Simple Conjunctive Queries” where every relation occurs only once. Thus, the number of
Simple Conjunctive Queries is finite and deciding containment is possible in linear time (syntactic
check of the where clause).
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In the following, we show that (Qr,⊆∆) is isomorphic to a boolean lattice, i.e.
FQ belongs to RAS.

To do so, we denote by F the finite set of all possible selection formulas over R
and Adom(d), i.e. F = {{A,B} | A ∈ sch(R), B ∈ sch(R) ∪ Adom(d)}. First,
notice that a bijection trivially exists between Qr and P(F ∪R). So it remains to
show that Qr ordered under ⊆∆ is a boolean lattice.

Proposition 6 Let Q1 = πX1(σF1) and Q2 = πX2(σF2) be two queries of Qr. Then
Q1 ⊆∆ Q2 iff X1 ⊆ X2 and F2 ⊆ F1. Equivalently, Q1 ⊆∆ Q2 iff X1 ∪ (F \ F1) ⊆
X2 ∪ (F \ F2).

Proof: (⇒) Suppose Q1 ⊆∆ Q2. Then there exists X ⊆ R such that Q1 ⊆ πX(Q2).
Clearly X ⊆ X2 and X = X1, which implies that X1 ⊆ X2. Moreover, for every
database d over R, πX1(σF1) ⊆ πX1(σF2) and it follows σF1 ⊆ σF2 and then F2 ⊆ F1.

(⇐) Suppose X1 ⊆ X2 and F2 ⊆ F1. Let d be a database over R and t ∈ Q1(d)
a tuple over X1. Then t satisfies F1 and also F2 since F2 ⊆ F1. Since X1 ⊆ X2, we
have t ∈ πX1(Q2)(d) and therefore Q1 ⊆∆ Q2. �

From the Proposition 6, the mapping f : Qr → P(R ∪ F) with f(πX(σF )) =
X ∪ (F \ F ) is a bijective embedding and FQ belongs to RAS.

Example 4 LetR = {R1, R2} be a database schema, d a database overR, Adom(d) =
{1, 2} and R = R1×R2 such that sch(R) = {A,B,C}. The set of possible conditions
F is {{A,B}, {A,C}, {B,C}, {A, 1}, {B, 1}, {C, 1}, {A, 2}, {B, 2}, {C, 2}}.
Let us consider two queries:
Q1 = π{B}σ(A=B∧C=1)(R) and Q2 = π{A,B}σ(C=1)(R).
Then, f(Q1) = {B, {A,C}, {B,C}, {A, 1}, {B, 1}, {A, 2}, {B, 2}, {C, 2}}
and f(Q2) = {A,B, {A,B}, {A,C}, {B,C}, {A, 1}, {B, 1}, {A, 2}, {B, 2}, {C, 2}}. Re-
mark that Q1 ⊆∆ Q2 and f(Q1) ⊆ f(Q2).

Clearly, FQ belongs to RASPM and from Corollary 2, the following result is
straightforward. Let Th be the theory of (Qr,⊆∆, d, freq(Q, d)).

Corollary 3 B+(Th) can be computed in time t(|B+(Th)|+|B−(Th)|), where t(k) =
ko(log k), while using at most (|B−(Th)|) + (n2 + pn).(|B+(Th)|) queries, where n =
|R| and p = |Adom(d)|.

It means that the complexity of mining frequent simple conjunctive queries in
databases is incremental quasi-polynomial time in the size of the two borders, i.e.
classic algorithms like Dualize & Advance can be re-used up to a polynomial
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transformation. Nevertheless, this result is rather artificial since whenever we con-
sider consistent simple conjunctive queries only, the problem is no longer inRASPM .

Indeed, the set of queries Qr allows queries which are not consistent, i.e. there
is no database such that their evaluation returns a value different from zero. For
instance, σ(B = 1 ∧ B = 2) or σ(A = B ∧ A = 1 ∧ B = 2) are not consistent but
belong to Qr.

In the following, let us consider the set of all consistent queries, denoted by QC ,
defined by QC = {Q ∈ Qr| there exists a database d such that freq(Q,d) 6= 0}. A
new problem statement, slightly modified from FQ, can be given as follows:

CFQ problem: Given a database d over R and a threshold ε. Enumerate the
positive border of ε-frequent queries of (QC ,⊆∆) in d.

Consider the mapping f ′ : QC → P(R ∪ F) with f ′(Q) = f(Q). f ′ is no longer
bijective and the problem does not belong to RASPM . Now we show that CFQ
belongs to XRASPM , but does not belong to EXRASPM .

Lemma 3 Let Q1 = πX1(σF1) and Q2 = πX2(σF2) be two queries of Qr such that
Q1 ⊆∆ Q2. Then Q1 is consistent implies Q2 is consistent.

Proof: Q1 ⊆∆ Q2 implies F2 ⊆ F1 or equivalently σ(F1) ⊆ σ(F2). Q1 consistent
means there exists a database d such that Q1(d) 6= ∅. Let t ∈ Q1(d). Then
t ∈ πX1(πX2(σF2))(d), i.e. Q2 is consistent. �

We now point out how the restriction to consistent queries changes the classifi-
cation of the initial problem.

Proposition 7 CFQ ∈ XRASPM but CFQ 6∈ EXRASPM .

Proof: From lemma 3, we deduce that (Qc,⊆∆) has a convex embedding, and there-
fore CFQ belongs to XRASPM . From Proposition 2, there exists two antichains
B+

0 and B−0 such that (Qc,⊆∆) isomorphic to P(R ∪ F) \ (↓ B+
0 ∪ ↑ B−0 ). Clearly,

the set B−0 is empty whereas the set B+
0 contains all maximal non-consistent queries.

Without loss of generality, we assume a total order < on attribute set. A maximal
non-consistent query has the following form:
πR(σA1=A2∧···∧An−1=An∧A1=v∧An=v′) where v 6= v′ and A1, A2, . . . An−1, An is a chain
with Ai < Ai+1 and Ai, Ai+1 pairwise distinct for all i ∈ [1..n− 1].

Thus, the size of B+
0 is exponential in the size of R∪Adom(d) since the number

of chains is exponential in the number of attributes. We conclude that CFQ does
not belong to EXRASPM . �

22



4.2.1 Application to Frequent Rigid Sequences with Wildcard

Continuing examples given in section 3.2.1, we consider the poset (Σn
R,v) of rigid

sequences with wildcard. Let us fix a finite string, called an input sequence, S =
S[1] . . . S[n] ∈ Σn

R of length n ≥ 0. Consider P ∈ Σn
R. The location list for P in S

is the set LS(P ) = {p ∈ [1..n] | P vp S}. The frequence of P in S is defined by:
freq(P, S) = |LS(P )|, i.e. the number of times that P occurs in S. A motif P is
said to be k-frequent in S if freq(P, S) ≥ k. A k-frequent motif P in S is said to be
maximal if for every motif Q such that P v Q, Q is not k-frequent in S.

The corresponding frequent sequence mining problem is the following:

SEQ problem: Given a sequence S ∈ Σn
R and a threshold ε. Enumerate the

maximal ε-frequent rigid sequences of S.
From the proof of Theorem 2 and [23], we deduce that SEQ ∈ EWRASPM

and then, we have the following complexity result. Let Th be the theory of (Σn
R,v

, S, freq(P, S)).

Corollary 4 SEQ can be computed in time t(nm+n.|B+(Th)|+nm3+nm.|B−(Th)|),
where t(k) = ko(log k), while using at most |B−(Th)| + nm.|B+(Th)| queries, where
m = |Σn

R| and |S| = n.

5 Algorithms for Dualization
In this section, we assume that the reader is familiar with the Dualize & Advance
algorithm proposed for RASPM in [15]. Dualize & Advance has the best known
complexity for this class of problems, i.e. incremental quasi-polynomial time in the
sum of the sizes of the positive and negative borders. Dualize & Advance takes as
input a set of items E, a database d and a Interestingness predicate Q : P(E)×d→
{0, 1}, referred to as Dualize & Advance(E,d,Q). A setX is said to be interesting
if Q(X,d) holds.

Suppose now we are given a pattern mining problem P = (L∗,�,d,Q). We
distinguish the three efficient classes of problems identified in the previous sections,
leading to three algorithms derived from Dualize & Advance. They are given
hereafter.
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5.1 P ∈ RASPM

By definition of RAS, there is an isomorphism f : (L∗,�) → (P(E),⊆). Given
A ⊆ E, let us consider the predicate Pred1 defined as follows:

Pred1(A,d) = Q(f−1(A),d)

Algorithm 1: Mining for RASPM

Input: (L∗,�,d,Q) ∈ RASPM, E
Output: The positive border B+

C = Dualize & Advance(E,d,Pred1)
Return f−1(C)

Algorithm 1 is the Dualize&Advance on the powerset of E with the corre-
sponding predicate Pred1.

5.2 P ∈ EXRASPM

By definition of EXRAS, there are two antichains B+
0 and B−0 of P(E) such that

(L∗,�) is isomorphic to P(E)\ (↓ B+
0 ∪ ↑ B−0 ). Let f : L∗ → P(E) be the associated

convex embedding. Given A ⊆ E, let us consider the predicate Pred2 defined as
follows:

Pred2(A,d) =


1 if A ∈↓ B+

0

0 if A ∈↑ B−0
Q(f−1(A),d) otherwise

Again, Algorithm 2 is also similar to Dualize&Advance, with two key differ-
ences: First, the predicate Pred2 has to verify whether or not a given pattern is
covered by B+

0 or B−0 before accessing to the data; Second, at the end, elements of
B+

0 have to be removed from the output.

5.3 P ∈ EWRASPM

This case corresponds to the more sophisticated extension of Dualize&Advance,
since we have to deal with the poly-reflection of the initial poset.

Let (L∗,�,d,Q) ∈ EWRAS. Then, we consider the following notations:

• B+ (resp. B−) is the positive (resp. negative) border of Th(L∗,�,d,Q)
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Algorithm 2: Mining for EXRASPM

Input: (L∗,�,d,Q) ∈ EXRASPM, E, B+
0

Output: The positive border B+

C = Dualize & Advance(E,d,Pred2)
Return f−1(C \B+

0 )

• E is a finite set, f : L∗ → P(E) a map and B+
0 , B

−
0 two antichains of P(E) such

that (Max (B+
0 ∪f(Ext(B+))),Min(B−0 ∪f(Ext(B−)))) is a border of (P(E),⊆)

• For θ ∈ L∗,LostPred(θ) is an algorithm which computes the set of predecessors
of θ in L∗ that are lost in the associated reflection, from which Ext(B+) can be
computed.

Conveniently, we also define f−1(E) = ∪X∈Ef−1(X), for E ⊆ f(L∗).

Algorithm 3: Dualize & Advance revisited
Input: (L∗,�,d,Q) ∈ EWRAS, (E, f,LostPred , B+

0 ,B
−
0 )

Output: The positive border B+ of Th(L,d,Q).
1 C0 = B+

0 ; i = 0; Continue = true;
while Continue do

2 Di = {complements of sets in Ci}
3 Continue = false
4 for each minimal transversal X of Di do
5 if X 6∈ B−0 then
6 if Q(d, f−1(X)) holds then
7 θ = AMSS(f−1(X));
8 Ci+1 = Max⊆(Ci ∪ f(LostPred(θ)));
9 i = i+ 1; Continue = true;

quit for loop

10 if Not(Continue) then
11 return Max�(f−1(Ci \B+

0 )) and exit;

The main changes in Algorithm 3 with respect to the original version of Dualize
& Advance [15] are:
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Algorithm 4: AMSS revisited
Input: φ, a counter-example
Output: θ ∈ B+(Th(L∗,�,d,Q)) such that φ � θ
θ = φ;
while there exists α such that θ ≺ α and Q(d, α) holds do

θ = α
return θ

• C0 is initialized with B+
0 instead of ∅ (line 1),

• a minimal transversal of Di may belong to B−0 and will not be evaluated against
the database (line 5),

• finding a maximal superset θ of a counter example f−1(X) (line 7): Algorithm
4 performs a search in L∗ instead of P(E),

• the lost comparabilities of a maximal pattern have to be added to the border
of P(E) thanks to LostPred() (line 8),

• the final result has to delete all patterns in f−1(Ci \B+
0 ) that are not maximal

in (L∗,�) (line 11), those extra elements were added to the current solution
by LostPred().

Consider the two particular cases:

• If P belongs to RAS then LostPred(θ) = {θ}, B+
0 = B−0 = ∅ and f is bijective

since f(L∗)= P(E). Algorithm 3 is the classic Dualize & Advance algorithm
of [15].

• If P belongs to EXRAS then LostPred(θ) = {θ} and (B+
0 6= ∅ or B−0 6= ∅).

Algorithm 3 starts with B+
0 (line 1) and it avoids to check (in line 5) the

predicate for sets in B−0 . Note also that elements of B+
0 are first enumerated

and then removed at the end in Algorithm 2 whereas Algorithm 3 avoids to
enumerate them with the initialization (line 1).

The proofs are extensions of the proofs given in [15].

Lemma 4 At any step i of Algorithm 3, ↓ (B+
0 ∪f(Ext(B+))) 6⊆ ↓ Ci iff at least one

minimal transversal of Di is interesting.
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Proof: We have ↓ (B+
0 ) ⊆ ↓ Ci since C0 = B+

0 (see Line 1 in Algorithm 3) and
↓ Ci ⊆↓ Ci+1. Moreover, only elements in ↓ f(Ext(B+)) corresponding to ↓ B+ are
interesting.

Suppose ↓ f(Ext(B+)) 6⊆ ↓ Ci. Then exists a set X ∈ (↓ f(Ext(B+))\ ↓ Ci).
Since � is monotone, there is a minimal interesting set not in Ci, that is, there is an
interesting set Y in the negative border of Ci, i.e. Y is minimal transversal of Di.

Conversely, suppose f(Ext(B+)) ⊆ Ci. From Theorem 1, we have any minimal
transversal of Di is not interesting. �

Lemma 5 At any step of Algorithm 3, the size of minimal transversals computed at
line 4 is bounded by |B−0 |+ |Ext(B−)|.

Proof: Each enumerated set X (line 4) either matches an element of B−0 , or an
element of Ext(B−) or is interesting, i.e. Q(d, f−1(X)) holds. �

Theorem 4 Let (L∗,�,d,Q) ∈ EWRASPM. Then Algorithm 3 computes B+ in
time polynomial in |B+| and t(|Ext(B+)| + |Ext(B−)| + |B+

0 | + |B−0 |), while using
at most (|Ext(B−)|)+ width(L∗,�)×high(L∗)×|B+| queries, where high(L∗) is the
maximal size of patterns in L∗.

Proof: According to Lemma 4, Algoritm 3 computes f(Ext(B+)). In line 11,
Algorithm 3 returns the border B+ which corresponds to maximal patterns in Ci

with respect to (L∗,�), i.e. it deletes the added predecessors sets and the set B+
0 .

Therefore the algorithm is correct.
By Lemma 5, in each iteration the algorithm calls the minimal transversals sub-

routine that enumerates the negative border of Ci.
Each minimal transversal X is either a set in f(Ext(B−)) ∪B−0 or is interesting.

Thus if we keep all sets in f(Ext(B−)) ∪ B−0 that we have already found, then for
each minimal transversal X we check if it is already found. If yes we ignore it,
otherwise we check if is interesting. If yes we compute a maximal interesting set θ
using Algorithm 4. The extension of X to θ needs a search in the poset (L∗,�) of
depth high(L) the maximal size of a pattern, and for each level in the search we check
at most width(L∗,�) the maximum number of immediate successors of a pattern in
(L∗,�). Thus the total number of queries is bounded by |Ext(B−)|+ width(L∗,�)
×high(L∗)×|B+| since the predicate is not checked for elements in LostPred().

Finally, since the number of calls of the minimal transversals subroutine is bounded
by |B+|, the result follows. �
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6 Conclusion
In this paper, we have defined the reduction of the dualization problem on arbitrary
posets to the dualization problem on boolean lattices. We have proposed two key
properties, namely convex embedding and poset reflections, to identify “good” reduc-
tions. Classes of posets have been identified to define the hardness of the dualization
problem. Moreover, a new and somewhat surprising result have been given: dual-
ization on set is equivalent to dualization on rigid sequences. We have also applied
these results to maximal pattern mining problems. We have studied the complex-
ity of two problems: mining of frequent conjunctive queries and mining of frequent
rigid sequences. Finally, from the classification on posets, we have deduced a new
classification on maximal pattern mining problems and we have shown how the best
enumeration algorithm for maximal itemset mining, Dualize & Advance, can be
adapted to those new classes.

Many perspectives remain to be addressed. Complex patterns (e.g. trees, graphs)
have to be studied with respect to these new classes. From a theoretical point of view,
an interesting open question is to identify the smallest number of comparabilities to
be broken on a poset to ensure the existence of a convex embedding. It could be
also interesting to study dualization of product of chains, known to have a quasi-
polynomial time complexity [11]. Another interesting point would be to study the
duality gap [25] with respect to the polynomial extension introduced in this paper.
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