
HAL Id: hal-01261856
https://hal.science/hal-01261856

Submitted on 25 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ModClust: a Cytoscape plugin for modularity-based
clustering of networks

Laurent Tichit, Philippe Gambette, Alain Guénoche

To cite this version:
Laurent Tichit, Philippe Gambette, Alain Guénoche. ModClust: a Cytoscape plugin for modularity-
based clustering of networks. MARAMI 2011, Oct 2011, Grenoble, France. �hal-01261856�

https://hal.science/hal-01261856
https://hal.archives-ouvertes.fr

ModClust: a Cytoscape plugin for modularity-
based clustering of networks

Laurent Tichit a,b, Philippe Gambette b,c and Alain Guénoche b

aUniversité d’Aix-Marseille
bInstitut de Mathématiques de Luminy
cUniversité de Marne-la-Vallée

ABSTRACT. Large networks such as protein-protein interaction networks are usually extremely
difficult to understand as a whole. We developed ModClust, a Cytoscape plugin for modularity-
based clustering of large networks. The aim of this plugin is first to establish classes of high
density edges. It also allows to understand the relations between these classes, and how they are
assembled within the whole graph. It can be used to predict new protein functions. It implements
two novel algorithms: FT and TFit. Their results are compared both on random graphs and on
benchmarks where the optimal partition is known.

RÉSUMÉ. Les grands graphes, comme les réseaux d’interaction protéine-protéine, sont d’une
manière générale difficiles à analyser. Nous avons développé un plugin pour le logiciel Cy-
toscape, appelé ModClust, effectuant du partitionnement de graphes par optimisation de la
modularité. L’objectif de ce plugin est de comprendre quelles sont les relations entre classes
et comment ces dernières sont assemblées dans le graphe. Il nous aide finalement à prédire
de nouvelles fonctions protéiques. Deux nouveaux algorithmes, FT et TFit, sont implémentés.
Leurs résultats sont comparés sur des graphes aléatoires et sur des benchmarks dont on connait
les partitions optimales.

KEYWORDS: Graph partitioning, protein-protein interaction network, modularity

MOTS-CLÉS : Graphe, partitionnement, réseau d’interactions protéine-protéine, modularité

L. Tichit, P. Gambette & A. Guénoche : MARAMI. Volume 2 - n◦ 1/2011, pages 01 à 07

2 L. Tichit, P. Gambette & A. Guénoche : MARAMI. Volume 2 - n◦ 1/2011

1. Introduction

As soon as their number of vertices becomes important, large graphs such as
protein-protein interaction (PPI) networks become tremendously difficult to under-
stand as a whole. To get a clear visualization of such large graphs, it is necessary to
cluster them, to draw classes separately, and to emphasize the links between them. In
the same time, drawing and clustering are two unavoidable and intricate tools to pro-
vide understanding of the relation expressed by the graph. At a more specific level, in a
protein-protein interaction network [Schwikowski et al., 2000, Xenarios et al., 2000],
graph vertices are proteins and an edge exists between two proteins if they somehow
interact (and thus participate in the same function). Efficient clustering of PPI net-
works can lead to the prediction of novel protein functions.

The graph partitioning problem has a long history we don’t detail here. On a prac-
tical point of view, it has recently become highly relevant in at least three domains:

– biological problems modeled by graphs [Schwikowski et al., 2000],
– the study of large networks like the Web [Moody, 2001],
– the definition of communities in social networks [Newman and Girvan, 2004].

Every time, the aim is to gather together vertices sharing a large number of edges,
making some high density zones, compared to the percentage observed in the whole
graph. In the first part, we introduce two algorithms, FT and TFit. We compare them
to the optimal solution when possible, and to other heuristics, on graphs commonly
used as benchmark. Then, we present the software infrastructure of our Cytoscape
[Shannon et al., 2003] plugin, its features and capabilities. Finally, we apply them to a
biological graph (interactions between proteins in Plasmodium falciparum) and com-
pare the two obtained partitions.

The novel heuristics we have implemented try to optimize the modularity criterion.
Let G = (X,E) be an undirected, unweighted graph with |X| = n and |E| = m. Let
A(x, y) = 1 ⇐⇒ (x, y) is an edge (0 otherwise) and let Dx be the degree of x.
The aim of these algorithms is to optimize an integer modularity function equivalent
to Newman’s original definition of modularity. The problem becomes a clique parti-
tioning problem on a complete graph where each pair (x, y) is weighted by

w(x, y) = 2m×A(x, y)−Dx ×Dy.

Let π = (X1, . . . , Xp) be a partition ofX in p classes andW (Xk) =
∑
x,y∈Xk

w(x, y)
the modularity of class Xk. The modularity function to optimize over the set of all the
partitions of X is

W (π) =

p∑
k=1

W (Xk).

Both algorithms, FT and TFit, output a strict partition (disjoint classes covering the
whole set of vertices).

ModClust 3

2. Modularity-based Fusion-Transfer method: FT

As the clique partitioning problem is NP-complete, several approximation methods
have been developed, the first one being the Transfer method proposed by Régnier
[Régnier, 1965]. Starting from a random partition, it consists in moving one vertex
from its class to another one, as long as the modularity criterion increases. It is a
simple hill-climbing method which leads to a local maximum of the scoring function.
We present a heuristic to optimize Wπ which gives excellent results. It is based on
the average linkage ascending method and on the Transfer method, followed by a
stochastic optimization procedure. This algorithm is divided into three steps:

1) The first one, called Fusion, follows a bottom-up approach. It starts from the
atomic partition P0, and at each step, merges the two classes that maximize the score
of the resulting partition. These classes are the ones for which the sum of the inter-
class edge weights is maximum. The process stops when no further merge leads to
an increase of the score. This defines p as well as a partition π = (X1, . . . , Xp) such
that every partition πij resulting from the union of Xi and Xj has a lower score:
W (πij) < W (π).

2) In the second phase, called Transfer, we first compute the contribution of each
vertex xi to any class Xk. Let

K(xi, k) =
∑
xj∈Xk

w(xi, xj).

If xi ∈ Xk, K(xi, k) is the contribution of xi to its class and to the current partition.
Otherwise, this value corresponds to a possible allocation to another class Xk′ . The
difference K(xi, k

′)−K(xi, k) is the score variation resulting from the transfer of xi
from class Xk to class Xk′ . Our procedure consists in moving, at each step, the vertex
that maximizes the score increase. It can be moved either to another class or to a new
class, making a singleton. This deterministic algorithm returns a partition π.

3) The third step consists in a stochastic optimization procedure. For each trial, we
start from a random partition derived from π by swapping elements between classes.
Then we apply the transfer procedure until we get π′ which can improve the W crite-
rion. There are two parameters to define: the maximum number of swaps (SwapMax
fixed to 2 × N/NbClas), and the maximum number of consecutive trials without
modularity improvement (NbTrials fixed to N and bounded by 500).

3. The Iterated Transfer-Fusion Method (TFit)

This previous heuristic corresponds mostly to an agglomerative hierarchical clus-
tering methods, where cluster fusion is the basic operation. In the fast and popular
Louvain method [Blondel et al., 2008], the main operation is a transfer of elements
or clusters. Each step of cluster fusion consists in creating clusters of clusters, and
transferring the clusters of vertices, from one cluster of clusters to another, as long as
modularity increases. We call this operation “cluster transfer”. Once this step is over,
clusters of vertices belonging to the same cluster of clusters are merged.

4 L. Tichit, P. Gambette & A. Guénoche : MARAMI. Volume 2 - n◦ 1/2011

Algorithm 1 FT algorithm
Require: G = (V,E): graph

[Fusion procedure]
Starting from P0
Compute the weight of each pair of singletons (w(i, j))
while score increases do

merge the two classes giving the maximum score
update fusion costs between new class and every other

end while
[Transfer procedure]
For every class, compute the contribution of each element to each class
while exists an element with negative or non maximum weight do

transfer it to the class where its contribution is maximum, or make it a singleton
update weights in both modified classes

end while
[Stochastic optimization procedure]
trials← 0
while trials < NbTrials do

Let swap be a random integer between 1 and SwapMax
Starting from π, exchange swap randomly chosen elements
call the Transfer procedure which returns π
ifW (π′) > W (π) then
π ← π′; trials← 0;

else
trials← trials+ 1

end if
end while
return Partition π;

The function which decides which pair will be fusioned next is called a “merge
prioritizer” in a recent comparative study of heuristics for modularity optimization
[Noack and Rotta, 2009]. In the Louvain method [Blondel et al., 2008] as well as in
TFit, we use no “merge prioritizer” (those may create unbalanced clusters), and just
consider in turn all clusters or vertices to transfer. Noack and Rotta also mention some
possible post-processings, called “refinements”, based on vertex transfers, to improve
modularity. They claim that this step increases the running time. However, for some
graphs like protein-protein interaction graphs which have a few thousands of vertices,
we are not limited by this running time issue, and we can use the “fast greedy” version
of this improvement heuristic, which consists in transferring each vertex to the cluster
with best modularity improvement, if any. Furthermore, we do not only apply it at the
end of the algorithm, but before each cluster fusion step, which explains the name of
our algorithm. Briefly speaking, TFit is a multi-level algorithm in which an element
transfer procedure has been inserted at each level change.

More formally, algorithm TFit is described in Fig. 2. Note that as it is explained
for FT , it is easy to compute the potential modularity increase for each vertex transfer,
and to add a final modularity stochastic optimization procedure.

4. Performance of FT and TFit

4.1. On Benchmark Graphs

A set of graphs corresponding to real data have been used as common benchmarks
in many articles which compare graph clustering algorithms through modularity opti-

ModClust 5

Algorithm 2 TFit algorithm. A call to Transfer(v,Pi,P) deletes the element v (either
a vertex or a cluster) from its cluster in P , adds it to the cluster Pi ∈ P , and returns
P . A call to Fusion(P ′ = {P ′i}) returns P = {

⋃
Ci∈P ′

i
Ci}.

Require: G = (V,E): graph
P ← {{x}, x ∈ V };mod← 0; currentmod← mod; continue← true;
while continue do

while ∃v ∈ V,Ci ∈ P ∪ {∅} such that
modularity(G,P)< modularity(G,Transfer(v,Ci,P)) do

Ci ← argmax
(

modularity(G,Transfer(v,Ci,P)) - modularity(G,P))
)

P ← Transfer(v,Ci,P)
currentmod← modularity(G,P)

end while

P ′ ←
{
{Ci}

}
;

while ∃Ci ∈ P, P ′
j ∈ P

′ ∪ {∅} such that

modularity(G,P ′)< modularity
(
G,Fusion(Transfer(Ci,P ′

j ,P ′))
)

do

P ′
j ← argmax

[
modularity

(
G,Fusion(Transfer(Ci,P ′

j ,P ′))
)

- modularity
(

G,Fusion(P ′)
)]

P ′ ← Transfer(Ci,P ′
j ,P ′)

currentmod← modularity
(

G,Fusion(P ′)
)

end while
P ← Fusion(P ′)
if currentmod ≤ mod then
continue← false

else
continue← true
mod← currentmod

end if
end while
return Partition P ;

mization. For some of them (with at most a few hundred vertices), an optimal solution
was computed by Integer Linear Programming [Aloise et al., 2010]. We compared our
heuristic to the Louvain method and to the best modularity value obtained by the set of
heuristics described by Noack & Rotta. As shown in Table 1, our methods give better
results than the Louvain method, and sometimes outperforms the ten Noack & Rotta
heuristics. Note that if we compare TFit and FT with each of those heuristics, the
modularity found is equal or better in at least 5 of the 8 benchmark graphs.

4.2. Comparison on random graphs

We have also developed a test program comparing the results of these two graph
partitioning algorithms on random graphs. We first define a reference partition Pr of
the vertices. The number of classes (whose sizes are more or less balanced) is given as
user input. Then, the edges are drawn according to two different probabilities which
give densities (Di, De) for intra (internal) or inter-class (external) edges. FT and
TFit respectively compute partitions π1 and π2; in Table 2, we indicate the average

6 L. Tichit, P. Gambette & A. Guénoche : MARAMI. Volume 2 - n◦ 1/2011

graph n m Opt Louvain N-R FT TFit
Dolphins 62 159 .5285 .5185 .5276 .5285 .5268
polBooks 105 441 .5272 .5266 .5272 .5221 .5269
afootball 115 613 .6046 .6046 .6045 .6032 .6046

A01 249 635 .6329 .6145 .6293 .6310 .6294
USAir97 332 2126 .3682 .3541 .3678 .3682 .3612

netscience 379 914 .8486 .8475 .8474 .8474 .8477
s388 512 819 .8194 .7962 .8143 .8122 .8154

emails 1133 5452 .5438 .5816 .5556 .5747

Table 1. Comparison of FT and TFit on benchmark graphs, with stochastic opti-
mization.

N / Di/De FT TFit Mod. Rand Mod. Rand
classes edges # classes # classes gain gain decr. decr.
200 / 5 .30 / .10 5.7 4.9 0.04 0.08 0.17 0.26

.20 / .5 6.8 5.4 0.05 0.11 0.19 0.28

.10 / .1 7.8 6.7 0.04 0.12 0.10 0.12
500 / 5 .30 / .10 5.0 5.0 0.00 0.00 0.02 0.02

.20 / .5 5.0 5.0 0.00 0.00 0.01 0.00

.10 / .1 5.0 5.0 0.00 0.00 0.03 0.01
300 / 10 .30 / .10 8.0 7.3 0.03 0.01 0.32 0.45

.20 / .5 8.8 8.0 0.04 0.00 0.22 0.46

.10 / .1 11.0 10.4 0.04 0.06 0.03 0.18

Table 2. Comparison of FT and TFit on random graphs

number of computed classes. Once the partition has been computed, the proximity be-
tween it andPr is measured using the corrected Rand index [Hubert and Arabie, 1985].

Then, we compute the modularity gain of TFit with regard to FT (Mod. gain =
(W (π2)−W (π1))/W (π1)) and the modularity decrease, that is the rate of tests where
FT is better than TFit, modularity-wise. We compute as well the rand gain of TFit
with regard to FT (Rand gain = Rand(π2, P r) − Rand(π1, P r)) and the rand
decrease.

Evaluating the benchmarks, we can conclude that TFit is in average better than
FT, modularity-wise, especially on low density graphs. TFit tends to find less classes
(hence bigger classes) than FT . But in 20 % of the tests, FT achieves better results,
modularity-wise. If Pr already contains huge classes, both algorithms succeed in find-
ing them. In these cases, the benchmark results fail showing any difference between
them.

ModClust 7

Figure 1. Clustering of Plasmodium Falciparum PPI (1355 nodes, 12253 edges) us-
ing FT algorithm. After two passes of FT, this figure shows the class of 15 pro-
teins working with kinase PFA0515w putatively involved in the phosphatidylinositol
metabolic process.

5. Plugin features

We have implemented both algorithms into a Cytoscape plugin based on Clus-
terViz [Chen et al., 2010]. Beside the abilities of this plugin (free labels for nodes,
automatic visualization and layout of the classes, class export as a new graph, cluster-
ing of just a part of the graph), ModClust makes use of all the power of the Cytoscape
platform [Shannon et al., 2003].

Moreover, ModClust implements novel functionalities:

– Specific coloring for each class. We aim to color classes automatically, without
any manual intervention. The color proposition could then be interactively corrected
by user-provided colors if necessary. The number of colors should be equal to the
degree of the quotient graph. The quotient graph is a graph whose vertices are the
classes and where an edge exists if and only if there exists at least one inter-class edge
in the original graph.

– Emphasis and selection of border/internal nodes of each class. In a class, an
internal node is a node whose direct neighbors belong to the same class. A border node
is also adjacent to at least another class. This functionality aims to make a distinction
between interactions that should be robust and the ones that tend to be weaker.

– Pruning of border nodes. Once the distinction between the border nodes and the
internal nodes has been done, it is possible to get rid of the border nodes in order to
focus on the strongest interactions.

8 L. Tichit, P. Gambette & A. Guénoche : MARAMI. Volume 2 - n◦ 1/2011

– Selection/extraction of several classes to build another entry graph. It is possible
to focus on a sub-partition and start a new partitioning process on this new graph. This
process can be done iteratively on smaller sub-networks.

– Emphasis of inter-class edges. These edges between two classes are often inter-
esting in that they connect proteins which could have several potential functions.

Due to the Cytoscape/Java overhead, the plugins are able to deal with 5000 nodes
for FT and 10000 for TFit (the C-version of the algorithms work respectively on
10000 and 50000 nodes). The C source code is available on
http://bioinformatics.lif.univ-mrs.fr/GraphPartitioning/. The current
version of the Java plugin is available on request to the first author.

6. References

[Aloise et al., 2010] Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S. and Liberti,
L., Column generation algorithms for exact modularity maximization in networks, Physical
Review E, 82:046112, 2010.

[Blondel et al., 2008] Blondel, VD., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E., Fast
unfolding of community hierarchies in large networks, Journal of Statistical Mechanics:
Theory and Experiment, P10008, 2008.

[Chen et al., 2010] Chen, G., Cai, J. and Wang, J., A Cytoscape plugin for biological network
clustering and visualization, ISCB SCS, 6, 2010.

[Gambette and Guénoche, 2011] Gambette, P. and Guénoche, A., Bootstrap clustering for
graph partitioning, submitted, 2011.

[Newman and Girvan, 2004] Newman, ME. and Girvan, M., Finding and evaluating commu-
nity structure in networks, Phys. Rev. E, 69(2), 2004.

[Hubert and Arabie, 1985] Hubert, L. and Arabie, P., Comparing partitions, Journal of Classi-
fication, 2:193–198, 1985.

[Moody, 2001] Moody, J., Peer influence groups: Identifying dense clusters in large netwoks,
Social Networks, 23(4):261–283, 2001.

[Noack and Rotta, 2009] Noack, A. and Rotta, R., Multi-level Algorithms for Modularity
Clustering, SEA 2009, 257–268, 2009.

[Régnier, 1965] Régnier, S. Sur quelques aspects mathématiques des probl‘èmes de classifica-
tion automatique, Mathématiques et Sciences humaines, 82:13-29, 1983, reprint of I.C.C.
Bulletin 4: 175–191, 1965.

[Schwikowski et al., 2000] Schwikowski, B., Uetz, P. and Fields, S., A network of protein-
protein interactions in yeast, Nature Biotechnology, 18(12):1257–1261, 2000.

[Shannon et al., 2003] Shannon, P., Markiel, A., Ozier, O., Baliga, NS., Wang, JT., Ramage,
D., Amin, N., Schwikowski, B. and Ideker, T., Cytoscape: A software environment for inte-
grated models of biomolecular interaction networks, Genome Research, 13(11):2498–504,
2003.

[Xenarios et al., 2000] Xenarios, I., Rice, DW., Salwinski, L., Baron, MK., Marcotte, EM. and
Eisenberg, D., DIP: the database of interacting proteins, Nucleic Acids Res., 28(1):289–291,
2000.

