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INVERSION IS POSSIBLE IN GROUPS WITH NO
PERIODIC AUTOMORPHISMS

MARTIN R. BRIDSON AND HAMISH SHORT

ABSTRACT. There exist infinite, finitely presented, torsion-free
groups G such that Aut(G) and Out(G) are torsion-free but G has
an automorphism sending some non-trivial element to its inverse.

INTRODUCTION

Several authors have investigated the nature of finite groups that
do not admit an automorphism sending any non-trivial element to its
inverse. H. Heineken and H. Liebeck [7] introduced the term NI (“no
inversions”) to describe such groups. If a finite group G has an au-
tomorphism sending an element of order greater than 2 to its inverse,
then G has an automorphism of order 2. P. Hegarty and D. MacHale
[6] enquired about the corresponding statement for infinite groups.

Theorem A. There exists an infinite, torsion-free, finitely presented
group G such that Aut(G) and Out(G) are torsion-free but there exist
a € Aut(G) and v € G ~ {1} such that a(y) = y~'. Moreover, G is
co-Hopfian and has a finite classifying space.

A group G is said to be co-Hopfian if every monomorphism G — G
is an isomorphism.

We shall assume that the reader is familiar with Gromov’s theory
of hyperbolic groups, as described in [5], [1] and [3] Chapter IIL.H. A
finitely generated subgroup A of a hyperbolic H is quasiconver if the
inclusion map A — H is a quasi-isometric embedding (with respect to
any choice of word metrics). Quasiconvex free subgroups abound in
hyperbolic groups. Indeed, if H is hyperbolic and torsion-free, then for
any a,b € H and all sufficiently large integers n, the subgroup (a™, b")
is free and quasiconvex. One says that a group G splits over a free
group if it can be expressed as an amalgamated free product or HNN
extension with free amalgamated subgroups.

We shall deduce Theorem A from the following extension theorem
for complete groups. Recall that a group G is termed complete (or
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asymmetric) if it has trivial centre and all of its automorphisms are
inner; so G = Inn(G) = Aut(G).

Theorem B. Let H be a complete, torsion-free, hyperbolic group, let
F < H be a quasiconvex subgroup that is free of rank two, let ¢ : F — F
be an automorphism that has infinite order in Out(F), and let G = H+,
be the corresponding HNN extension. If H does not split over any free
group, then G 1is torsion-free, complete, co-Hopfian, and has a finite
classifying space.

This theorem would be of little use if we were unable to exhibit
groups H with the stated properties. To this end, note that by Mostow
rigidity, if M is a closed oreintable hyperbolic manifold of dimension
n > 3, then m; M is asymmetric if and only if M is asymmetric, i.e. M
has no non-trivial isometries. If 7 = m; M splits non-trivially as an
amalgamated free product, say m = A x¢ B, then there is a Mayer-
Vietoris exact sequence for integral homology groups

= HA®H,B— H,m — H, .C — ---

By Poincaré duality, H,m = 7Z and (since A, B < 7 are of infinite
index) H,A = H,B = 0. Therefore H, ;C is infinite. In particular,
since n > 3, the group C' cannot be free. A similar argument shows
that 7 does not split as an HNN extension over a free group either.

Thus 7 M will have the properties that we require of H if we can find
a closed asymmetric hyperbolic manifold M in some dimension n > 3.
In fact, there exist such manifolds in every dimension n > 3: Kojima
[8] constructed examples in dimension 3 and, inspired by arguments of
Long and Reid [9], Belolipetsky and Lubotzky [2] constructed infinitely
many examples in each dimension n > 3.

With suitable groups H in hand, it is easy to deduce Theorem A
from Theorem B: if ¢ : F' — F has infinite order in Out(F') and sends
some element v € F' ~ {1} to its inverse, then it suffices to declare
a : G — G to be conjugation by the stable letter of G = Hx*y. To
obtain concrete examples, one can take ¢ to be the automorphism of
Free(a,b) given by a — a™', b~ b~ 1a™.

THE MAIN ARGUMENT

Our first aim is to prove that the centralizer C(F’) of the quasicon-
vex subgroup F' in the statement of Theorem B is trivial. For this, we
need four lemmas.

Lemma 1. Let A be a torsion—free group and let F < A be a free
subgroup of rank two. If |A : F| is finite, then A = F.

Proof. Torsion—free virtually free groups are free, and a proper sub-
group of finite-index in a finitely generated non-abelian free group has
rank greater than that of the ambient group. U
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Lemma 2. Let H be a torsion—free group that does not contain a copy
of Z*. If F < H is free of rank two, then Ny(F) = F.

Proof. Let t € Ny (F), the normalizer of F'in H. Every automorphism
of F' = (a,b) sends ¢ = [a, b] to a conjugate of ¢! (see for instance [10,
page 165]). Thus t?ct ™2 = xcx~! for some x € F. If ¢ has finite order
in Ny(F)/F, then F has finite index in A = (Ft) and by Lemma 1,
t € F' = A. If t has infinite order in Ny (F')/F, then (F.,t) contains
(t72x, c) = Z?, contrary to hypothesis. O

The following result is due to Mihalik and Towle [11]. We include a
proof for the sake of completeness.

Lemma 3. Let H be a torsion—free hyperbolic group. If K < H 1is
quasiconvez, then there does not exist an element x € H such that
v 'Kz C K.

Proof. 1t suffices to prove that if 27 'Kz C K, then some power of x
lies in K.

Fix a finite generating set S for K and a finite generating set T' for
H that contains x and S. Fix k € K \ {1} and a geodesic word v for
k. Consider the rectangle in the Cayley graph of H with sides labelled
x7" v, 2", w™ ! where w is a geodesic word in the generators S. These
sides are quasigeodesics in H with constants depending only on S, T
and z. Such rectangles are uniformly thin, so for n sufficiently large,
there is a repetition in one of the following two lists of elements of H
(see the figures):

case 1 : (z7'%kz' | i < n),
case 2 : (z'w; | i < n), where w; is a prefix of w minimizing d(z~", w;).

In case 1, we have x~*ka’ = x7ka’ for some i # j, and hence 27~
commutes with k. But Cy (k) is a cyclic group that intersects K non—
trivially, so some power of x lies in K.

In case 2, we have z'w; = z/w; for some i # j, and so 277" =
wiwj_l € K as wiwj—l is a word in the generators S of K. O
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/ x’ ; \wi

Lemma 4. Let A be a group and let K < A be a subgroup such that
K={a€eA|a'KaCK}. Let ¢ : K — K be an automorphism and
let G = Axg be the corresponding HNN extension with stable letter t.

Then Ng(K) = (K, t) = K x4 (1), and Co(K) = Z(K x4 (1)), the
centre of K x4 (t).

Proof. If g € G ~ (K,t) then, replacing g by gt* for some i € Z if
necessary, we may assume that ¢ has a Britton normal form

g = apt"ay...t"ay,

where either ¢ > 0 and n; # 0, a; € A~ K for 1 < i </, or else
g=ay=a; € ANK.
Fix k € K such that aska,' ¢ K. Then

apt"™ay ... t" (agka; ™. ait T Mag
is in normal form, and hence gkg~' & K. U

Proof of Theorem B. We maintain the notation established in the
statement of the theorem. Lemma 2 tells us that /' = Ny (F'), Lemma
3 tells us that Ny (F) = {r € H | 27'Fx C F}, and Lemma 4 assures
us that Cq(F) = Z(F x,2Z). It follows from these results that Cq(F) =
{1} (and hence that Z(G) = {1}). Indeed, with the lemmas in hand,
it is enough to note that a semidirect product F' x4 Z has trivial centre
if and only if ¢ € Out(F’) has infinite order.

As an HNN extension of a torsion-free group, G is torsion-free.
Moreover, torsion-free hyperbolic groups have finite classifying spaces
(see, e.g. [3, II1.I".3.21]), and hence so does any HNN extension amal-
gamating subgroups which themselves have finite classifying spaces
(e.g. finitely generated free groups).

To complete the proof of the theorem, it only remains to prove that
every injective homomorphism ¢ : G — G is an inner automorphism.
For this we invoke Bass-Serre theory. The subgroup ¢ (H) < G acts
on the Bass-Serre tree for the HNN decomposition G = Hx*4. The
edge-stabilizers for this action are free and H = ¢(H) does not split
over a free group, so 1(H) fixes a vertex. The vertex stabilizers are the
conjugates of H in G, and hence ¢)(H) C g~ 'Hg for some g € G. But
H is co-Hopfian [13], so in fact ¢(H) = g~'Hg. By composing with
the inner automorphism ad,, we may assume that ¢)(H) = H. Since
H is complete, | = ady|y for some h € H, so composing with ad;, '
we may assume that |y = idy.
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Let ¢ be the stable letter of the HNN extension G = Hx*4. Then
t~tut = ¢(u) for every u € F. Applying ¢ we obtain () tu(t) =
d(u) = t7'ut. Hence ¥(t)t™! € Cq(F) = {1}. Since G = (H,t), we
deduce that ¢ (adjusted by inner automorphisms) is the identity map
on G. U

REMARKS AND VARIATIONS

(1). Theorem B remains valid if one replaces the hypothesis that
F' < H is quasiconvex and free of rank 2 by the hypothesis that F' is
free and malnormal (i.e. 7' Fx N F = {1} for all x ¢ F'). Lemmas 1,
2, 3 become unnecessary with this alternative hypothesis.

(2). It is not essential that F' be free: instead, one can assume that
Fis malnormal and belongs to a subgroup-closed class of groups C such
that H does not split over any group in C.

(3). Regardless of whether one uses the original hypotheses on F
or one of the above alternatives (with F' # H), one can replace the
hypothesis that ¢ has infinite order in Out(F’) by the hypothesis that ¢
has order p > 2, say ¢” = ad,. In this case, one can no longer conclude
that G is co-Hopfian but it will still be complete. Indeed, if ¢ : G — G
is a monomorphism, then following the proof of Theorem B, one reduces
to the situation where ¢(H) = H and ¢(t)t™* € Cg(F). But now
Co(F) = {(at™P). If (t)t™' = (at™?)" for r # 0, then (H,(t)) =
(H,t'7P") and one sees that this is a proper subgroup of G by observing
that G/{(H)) = (t) = Z and |1 — pr| > 2.

(4). The reader may be dissatisfied with the fact that the inverting
automorphism « : G — G in our proof of Theorem A is inner. One
can remedy this by taking a second, non-isomorphic, group G’ of the
type described in Theorem B, defining @ : G * G’ — G * G’ to be the
automorphism that restricts to « on G and the identity on G'.

(5). Miller and Schupp [12] prove that if p and g are integers and G is
a countable torsion-free group, then GG can be embedded in a complete
hopfian group G* that has p torsion and ¢ torsion, but has no r-torsion
if r is coprime to p and ¢. If G is finitely presented then so is G*. Thus
if p and ¢ are odd and G is a torsion-free group in which some element
is conjugate to its inverse, for example the fundamental group of the
Klein bottle, then G* will be a group of the type asked for by Hegarty
and MacHale [6]. This begs the question of whether one might adapt
the construction of [12] to ensure that G* is torsion-free if G is. We
shall return to this point in a future article [4].
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