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The dynamical analysis of large biological regulatory networks requires the development of scalable methods
for mathematical modeling. Following the approach initially introduced by R. Thomas, we formalize the
interactions between the components of a network in terms of discrete variables, functions and parameters.
Model simulations result in directed graphs, called state transition graphs. We are particularly interested
in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected com-
ponents (or "attractors”) in the state transition graph. A well-known problem is the exponential increase
of the size of state transition graphs with the number of network components, in particular when using the
biologically realistic asynchronous updating assumption. To address this problem, we have developed several
complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the
definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving
essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate
compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power
of an approach combining these different methods is demonstrated by applying them to a recent multilevel
logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen
cytokines. This model accounts for the differentiation of canonical Thl and Th2 lymphocytes, as well as of
inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been
implemented into the software GINsim, which enables the definition, the analysis and the simulation of logical
regulatory graphs.

Keywords: logical modeling, discrete attractors, T-helper cell differentiation, state transition graph, model

reduction, model-checking

The dynamical analysis of comprehensive biologi-
cal regulatory networks requires the development
of scalable mathematical modeling methods. In
this context, discrete (Boolean or multi-valued)
logical modeling is increasingly used to handle
and analyze large molecular networks'®. This ar-
ticle focuses on the presentation of several ap-
proaches to cope with the inherent exponential
growth of the discrete state space as the size of
the regulatory networks considered increases.

I. INTRODUCTION

To model biological regulatory networks, we rely on
the logical approach initially introduced by R. Thomas,
where the interactions between the components of a net-
work are formalized in terms of discrete variables, func-
tions and parameters'®37:3%,  This modeling approach
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has proved effective in its application to a variety of
regulatory and signaling networks, from yeast cell cycle
control'® to T lymphocyte differentiation?”.

The logical modeling approach has been implemented
into the software GINsim, which enables the definition
of logical regulatory graphs and provides a number of
original functionalities. These include the construction
of synchronous or asynchronous state transition graphs
that represent model dynamical behaviors, along with
algorithms enabling the determination of all logical sta-
ble states and the analysis of the roles of regulatory
circuits”?6. However, when focusing on transient as-
pects of the dynamics or on the reachability of the at-
tractors from specific initial conditions, we are facing the
recurrent combinatorial explosion inherent in these mod-
els: the size of the state space grows exponentially with
the number of regulatory components involved in the
model. This problem is particularly acute in the case of
asynchronous, non-deterministic updating mode, which
is usually more biologically realistic than the simpler,
deterministic synchronous updating mode!”37. Here, we
present an overview of three main complementary strate-
gies to cope with this combinatorial explosion.

The first strategy consists in reducing the model before

performing simulations or other kinds of analysis2®.



The second strategy simplifies the state transition
graphs by forcing choices between alternative transitions;
this can be achieved by defining priority (a/synchronous)
transition classes, which are similar to time-scale based
assumptions often used to simplify the dynamical analy-
sis of ODE models™.

The third, novel strategy consists in compressing the
state transition graph into a novel graph representation,
called hierarchical transition graph, which keeps track
of attractors and their basins of attraction, as well as
of transient oscillatory properties; here, we further pro-
pose an algorithm for the construction of this hierarchi-
cal graph. We also show that this method can be used
in combination with the two aforementioned approaches
to get insights into the dynamics of complex logical reg-
ulatory graphs.

In addition, model-checking approaches rely on sym-
bolic representations of the dynamics, exploring only the
necessary state space required for the verification of prop-
erties expressed as temporal logic formulas.

Section IT introduces the basics of the multilevel logical
formalism and provides an overview of selected methods
enabling the analysis of the dynamics of large logical reg-
ulatory networks.

The definition of hierarchical transition graphs is at
the core of Section III, referring to the relatively sim-
ple example of the bacteriophage lambda core regulatory
network.

Section IV takes advantage of a recent comprehensive
model of the regulatory network controlling T-helper cell
differentiation in response to antigen presentation and to
a dozen cytokines?” to illustrate the power of the com-
pression of state transition graphs into hierarchical tran-
sition graphs, as well as the insights gained into the cor-
responding logical dynamical behavior.

Finally, Section V proposes some global conclusions
and discusses current challenges and further prospects.

Il. LOGICAL MODELING AND ANALYSIS OF
REGULATORY GRAPHS

This section introduces the basics of the logical formal-
ism and presents a short overview of existing methods
that enhance the dynamical analysis of logical models.

A. Logical Regulatory Graphs

A logical model is defined by an interaction graph
where the nodes denote regulatory components (genes,
proteins, etc.) and the arcs denote regulatory interac-
tions. Moreover, a discrete variable is associated to each
component, accounting for its level of activity (or expres-
sion). Logical functions define the dynamical evolution
of the model.

Definition 1. A Logical Regulatory Graph R = (G, K)
is a graph, where

Q Logical functions

C“’ Kei(s) =2 —Cro v CII

Kcro(s) =3 =CI:2 N =Cro:3

Kcro(s) =2 =CI2 N Cro:3
Kcri(s)=1 =CI:2 A =Cro:3 A N
Kn(s)=1 —=CI AN =Cro:2

FIG. 1. Logical regulatory graph of the bacteriophage
lambda switch®®. Left: the interaction graph, with the four
components CI, Cro, CII and N. Right: the logical functions,
s denoting the vector (scr, Scro, Scrr,sn) of the component
levels. For legibility, we rewrite each rule in terms of logical
variables, e.g. C1I denotes an interaction going out CI with
a threshold 1, and it is true whenever sc;r > 1, while CT :2
denotes an interaction going out CI with a threshold 2; it is
true whenever scr > 2. Here, for each component, we provide
the rule(s) leading to a non-zero value of the logical function
(meaning that when none of these conditions is fulfilled, the
value is 0). For instance, the rule for Kcz(s) = 2 is satisfied
for 30 states (those such that scro = 0 or scrr = 1); for all
other states, CI’s target value is 0. Note that values 1 of CI
and Cro are always transient for this set of rules.

e G = {gi}ti=1..n is the set of n regulatory compo-
nents. Each component g; is associated with a dis-
crete variable s; in D; = {0,...,max;}. A state is
thus defined as a vector s € S =1y ec Dj.

o K ={K;}i=1..n is the set of logical functions;
K, : S — D; defines for each state, the target level
of gi-

The arcs are deduced from the functions in K; there is
a regulatory interaction from g; to g; iff there are two
states s and s, differing only by the value of g;, that lead
to different values of K;:

Js,s' € S s, = sk Vk #14, and s; # si,s.8. Kj(s) # K;(s).

Figure 1 illustrates this definition with a logical regu-
latory graph for the bacteriophage lambda switch.

The dynamics of logical models are represented in the
form of state transition graphs as defined in the following
subsection.

B. State Transition Graphs

Definition 2. Given a logical regulatory graph R =
(G, K), its (full) State Transition Graph (STG), denoted
by E=(S,T), is a directed graph with:

o S the state space of R: S =1ly.ec Dy,

o T : 5% — {0,1} the transition function: there is an

arc connecting a state s to its successor s' whenever
T(s,s")=1.

The transition function is defined according to an up-
dating policy, which indicates the components to be up-
dated in each transition. Here, for sake of brevity, we



only consider the asynchronous updating policy (Defini-
tion 3). All results could be extended to other updating
policies (including mixed (a)synchronous priority classes
as presented in Section IIC2).

Definition 3. Given a logical requlatory graph R =
(G, K), the transition function defined according to the
asynchronous updating policy specifies, for each state s,
its successor states (as many as the components called to
update in s): V(s,s') € S?,

1, if dg; € G s.t. K;(s) # sy,
sh=s;+ 7'?‘8:?‘ and Ng; # gi, 8 = 55
0, otherwise.

T(s,s") =

Note that updated are performed stepwise and thus
transitions connect neighbouring states (i.e. their Ham-
ming distance is 1).

We are often interested in a sub-graph of the full STG,
which is generated considering a (set of) initial state(s).
Then, the property of interest relates to the attractors
reachable from this (set of) initial condition(s). Fig-
ure 2A displays the STG obtained for the phage lambda
model, starting from a state where all variables are set to
zero. Attractors, which denote asymptotical behaviors,
are defined in a STG as its terminal strongly connected
components (SCCs). Recall that strongly connected com-
ponents are defined as the maximal strongly connected
subgraphs (i.e. there is a path from each node to every
other node)®'3,

Given £ = (5,T) a STG, we introduce further notation
below.

e Sccis the set of the strongly connected components
(SCCs) of & ;

o Vs, s’ € S, s ~ s means that there exists a path
from sto s’ (We consider that a sequence of a unique
state forms a path of length 0, hence s ~ s);

e Vs € §,VC € Sce, s ~ C means that there exists
a path from s to any state s’ € C;

e .7 is the set of the trivial SCCs (i.e. reduced to a
single node) . = {{s} € Scc,s € S};

e ¢ is the set of the complex SCCs: € = {C €
Sce, #C > 2} (or € = Sec\ L);

e The sign * denotes terminal elements of Scc that
will be referred to as attractors: C* is terminal iff
Vs € C*, Vs' € S, T(s,s') =1 = s € C*. The
non-terminal components are transient. In addi-
tion, €* (resp. -*) denotes the set of the complex
attractors (resp. the set of stable states).

Definition 4. Let A* be an attractor, we define Ba~ the
basin of attraction of A*: By = {s € S,s ~» A*}. We
further define B 4+, the strict basin of attraction of A*,

EA* = {S € By« s.t. VX* e (%*Uy*)\{A*}, S §_i BX*}.

_ Hence, A* can be reached from any state in Ba- or in
B 4-; no other attractor can be reached from any state
in BA* .

C. Coping with large dynamics

Given a logical regulatory graph, the associated state
space has [, .o |Di| elements (i.e. 2/l in the case of
Boolean variables), meaning that its size grows exponen-
tially with the number of regulatory components. Most
properties are thus NP-complete, but one can mitigate
this problem by lessening the size of the search space.

Here, we briefly review strategies to ease the analysis of
large dynamics. A first approach consists in reducing the
model, while ensuring the preservation of key properties.
Another strategy lessens the number of transitions of the
STG (hence simplifying the dynamics) assigning priori-
ties to updating calls, relying on biologically well-founded
assumptions. Other methods enable the reduction of the
size of a STG, either by compacting it without losing
any information, by applying appropriate reductions, or
by considering alternate representations. Finally, we end
this section with a short discussion on model-checking
applied to multilevel logical models.

1. Model reduction

A first strategy to reduce the complexity of a model is
to reduce its size, by removing some components. This
is often done manually by the modeler, defining direct
interactions even when it is known that the regulatory
effects involve intermediate components. Obviously, by
lessening the number of components, such reductions lead
to smaller state spaces and hence simplified dynamics.

We have proposed to automate such model reductions
and characterized their impact on the dynamics?®. Basi-
cally, the reduction of a component amounts to attribute
its regulatory role to its own regulators and to modify
the logical function driving the behavior of its targets
accordingly. The reduction of a self-regulated compo-
nent is forbidden for it would not fit this rationale and
would change the dynamical properties of the model. In-
deed, we could prove that, provided this restriction on
self-regulated components, the stable states and elemen-
tary terminal cycles of a reduced model exactly corre-
spond to those of the original model. Moreover, the re-
duced model displays at least as many complex attrac-
tors, some corresponding to complex attractors of the
original model, while others correspond to original tran-
sient oscillatory behaviors. In short, the main property
of the proposed reduction is that it may suppress some
transitions or paths, but never generates new ones.

Considering signaling networks including non-
regulated input components, which usually account for
external stimuli, Saadatpour et al. recently proposed to
reduce input cascades that stabilize under constant input



conditions®2. This reduction has obviously no impact

on the number and nature of the attractors, although
it might change their reachability. Another type of
components that can be ignored are (pseudo-)output
components that have no outgoing interactions or that
only regulate (pseudo-)output components?®. Indeed,
such output cascades have no impact, neither on the
number and nature of the attractors, nor on their
reachability.

2. Priority classes

Asynchronous state transitions graphs can be some-
times simplified by reducing the number of transitions,
using relatively simple temporal assumptions. Indeed,
in all states, the asynchronous scheme defines as many
transitions as the number of components called to up-
date, thus potentially generating spurious trajectories.
A number of these can be ignored by defining priority
classes ranking updating calls'*. When two calls with
distinct priority ranks are enabled in a state, the one
with the lowest rank is discarded. Updatings belonging
to the same class can be treated synchronously or asyn-
chronously. In GINsim, it is thus possible to partition
component updatings into distinct classes that imple-
ment such a priority scheme?26. Needless to say, priority
classes should be biologically well-founded to ensure that
discarded trajectories are indeed irrelevant.

3. Lessening the size of the state transition graph

Several studies have addressed the problem of the com-
binatorial explosion of the state space of asynchronous
transition systems.

Given a state transition graph (STG), an informative
view of the dynamics is provided by the graph of its
strongly connected components (SCCs), where each node
accounts for one SCC (possibly keeping the information
of the states it encompasses). The resulting graph is
a directed acyclic graph, which is often much smaller
than the original STG, yet keeping all the reachability
information (see Figure 2A-B). Tarjan defined an effi-
cient algorithm to compute the SCCs of a directed graph
(linear in the number of nodes and arcs)**. Tournier
and Chaves?® have already applied SCC decomposition
to STGs. However, SCC compaction remains limited in
the case of networks with long or numerous regulatory
cascades, which give rise to multiple linear (although po-
tentially branching) pathways in the resulting STGs.

Another approach that keeps the whole STG structure
applies to models that encompass a significant number
of input components. These account for external stimuli
(e.g. environmental cues) and the corresponding vari-
ables are generally maintained constant. In this case, the
STGs corresponding to different combinations of input
values are disconnected. Input components may also be

considered as “uncontrolled” variables, which are allowed
to freely vary at each time step. A natural reduction con-
sists in projecting the state space on the set of internal
components and labelling each transition with the values
of the input components that enable that transition (for
more details, see 24).

Other strategies, mainly developed by the formal ver-
ification community, reduce the state space yet ensur-
ing that truth values of (linear) temporal logic formulas
are preserved. This is the case of partial-order reduction
methods that basically consist in identifying, for each
state, a subset of transitions to explore (hence not ex-
ploring all the successors). Alternative (rather similar)
definitions of these sets have been proposed, called stub-
born, ample or persistent sets'?19.

Relying on the Petri net representation of logical reg-
ulatory graphs®, and using Petri net tools (e.g. TINA®),
we have recently applied such a partial-order reduction to
check reachability properties on a large logical model (en-
compassing 72 regulatory components). For this specific
model, due to the structure of its dynamics, partial-order
reduction proved to be poorly effective. However, there
is certainly room for improvements of these methods!®,
and further work might identify a class of logical graphs
more amenable to this kind of reductions.

4. Model-checking

During the recent years, formal verification techniques
based on model-checking have been successfully applied
to the analysis of molecular network models® 72425, This
approach is directly applicable to the verification of log-
ical regulatory graphs, which constitute a class of finite
state systems. In general, experimentally observed bio-
logical behaviors can be expressed in terms of temporal
logic statements, and model-checking algorithms used to
automatically verify if a model satisfies these statements.

When using explicit representations of states and tran-
sitions, model-checking may use partial-order reduction
to lessen the size of the search space. However, symbolic
model-checking relies on implicit representations, scaling
better for large models. The choice of the temporal logic
depends on the type of property to be checked'2. Here,
we are mainly interested in attractor reachability from a
(set of) initial condition(s) as well as in the conditions en-
abling such trajectories. This supposes a previous char-
acterization of the attractors, among which the stable
states can be efficiently identified beforehand®.

GINsim includes an export converting logical mod-
els into NuSMV symbolic descriptions®*. NuSMYV is a
symbolic model-checking tool capable of verifying finite
state machines against a set of property requirements,
expressed as temporal logic formulas'!. This export sup-
ports the definition of priority classes, and takes advan-
tage of the reduction over input components evoked in
Section I C 3, these being specified either as constant or
as freely varying variables. Noteworthy, in the case of



varying inputs, the notion of stable states needs to be
extended: a state may be stable for given values of input
components, and not for others?®. For models with input
components, it is thus possible to analyze switches be-
tween cellular types (i.e. stable states) and verify the cor-
responding input component variations (see Section IV
and Figure 6).

Il. HIERARCHICAL TRANSITION GRAPH

This section deals with the definition and properties
of a novel, compact hierarchical graph, where a set of
states is shrunken into a single node, whenever it forms
a strongly connected component (SCC), or a (set of) lin-
ear chain(s) leading to the same set of SCCs and attrac-
tors. Compared to the SCC graph mentioned above, this
graph generally corresponds to a further reduction of the
state transition graph (STG). Furthermore, the resulting
grouping of states greatly eases the interpretation of the
structure of the dynamics in terms of basins of attraction.

A. Definitions

Let us first define the application o that associates to
each SCC C, the set of SCCs, complex or terminal, that
are reachable from C|, including C' itself if it is complex
or terminal:
c(X)={CeCUuS"st. X=CorVseX,s~C}.

Furthermore, we define Z C 2, the set of irreversible
transient components in which trivial non-terminal SCCs
(elements of .77\ .*) that have the same o-image are
grouped together:

I={I¢€ 29 st. Vsel, {s} €.\ .7 and
s, s el =o({s})=c({s'})}.

Definition 5. Given a STG € = (S,T), we denote H =
(FUZUS*,T) its corresponding Hierarchical Transition
Graph (HTG), where T : (€ UZU.S*)? — {0,1} defines
the arcs of H,

T(C,C)=1+=3s€C,3s" € ' s.t. T(s,s")=1.

Each complex SCC of the STG is contracted to a single
node in the HT'G. Similarly, a single HT'G node accounts
for all trivial SCCs sharing the same o-image. Figure 2
provides an illustration of the HT'G construction for the
lambda phage model.

B. Properties

For two components C, C' € € UZ U .*, the notation

C % ¢ indicates the existence of a path from C to C’
in the HTG. The following property relates paths in the
STG to paths in the corresponding HTG.

Property 1. 1. A path connecting any HTG compo-
nent to a non-irreversible component implies the
existence of a path in the corresponding STG:

VCe¥UTI,C' €€,

cho —sws VseO, Vs e

2. A path between two states implies the existence of a
path between the HTG components they belong to:

Vs, s’ € 8,5~ s — C %O withse C,s € C'.

Proof. 1. Let C ket C', with C € ¥ UZ and C' €
¢ U.*. Then C' € 0(C) : Vs € C, s ~ C' and
the first item of Property 1 is proved by definition.

2. Let s, € S st. s~ s, and denote C and C’
the components of the HT'G such that s € C and
sedd.

e If C = (’, the statement is obviously true.

o If C # (', let (s = s1,82,...5; = §') be the
path from s to s’ in the STG: Vi =1,...k—1,
s; € Sand T(s;,8i41) =1;ifVi=1,...k, C;
denotes the component of Scc such that s; €
C;, we have T(C;,Ci11) = 1 or C; = Ciyqs.
Hence, following the path s ~~ s’, we obtain
that C' 25 €.

O

Remark 1. Property 1 does not ensure equivalence of
path existence in STG and related HTG. Indeed, in item

1, we have the restriction that C' € T: when C X c’,
with C' € T, given s € C, we cannot ensure the existence
of a path in the STG from s to a state s’ € C'.

In Figure 2 we have such a situation, where C et c’,
with C' € T, and 3s € C s.t. there is no path in the
STG from s to any state in C’'. Indeed, considering Fig-
ure 2, panel C, the irreversible component i#7 contains
the state 1000 (see panel B), and the arc from i#7 to
1#3 indicates that there exists a state s € i#7 and a
state s’ € i#3 such that s ~ ' (e.g. T(1011,2011)=1,
in panel A or B). However, there is no path from state
1000 to any state of i#3 as illustrated in panel D.

Another typical situation for which we have C i c’,
C" € Z, and no path in the STG from s € C to s’ € (',
may arise when a hierarchical (irreversible) component
contains disconnected states.

We propose an algorithm to generate HT'Gs of logical
regulatory graphs, given a (set of) initial condition(s).
Described in the supplementary file*3, this algorithm is
based on Tarjan’s method®* and compacts a STG on-the-
fly.
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FIG. 2. Lambda phage model: different views of the dynamics. All the graphs, except that of panel (D), have been
generated starting from the initial state (CI, Cro, CII, N) = 0000. (A) State transition graph (STG) with the unique stable
state indicated in a rectangular node; states sharing the same color belong to the same strongly connected component (SCC).
(B) Corresponding graph of the SCCs (same coloring as in panel A). (C) Corresponding hierarchical transition graph (HTG);
arc labels refer to transitions in the underlying STG (i.e. updates of regulatory components). (D) HTG obtained using 1000
as initial state, which belongs to component i#7 in panel C; note the absence of a path from this state to the component i#3
(cf. Remark 1). In the SCC and HTG graphs, node labels indicate the nature of the components: i irreversible; ct complex
transient SCC; ss stable state; ca complex attractor; followed by the numbers of states in the component. For components

reduced to a single state, the value of this state is displayed.

C. Basins of attraction

A classical way to study the dynamics is to focus on at-
tractors and their basins of attraction (cf. Definition 4).
When using the synchronous dynamics, their computa-
tion is facilitated by the fact that all states have at most
one successor (for more details, see 42). But in the case
of concurrent behavior, it is computationally much more
costly (see 1, 39, and 41 for the fully asynchronous case).

By construction, the HT'G nodes group together states
of the STG and thus allow to easily recover the basins of
attractions. Indeed, given A* an attractor in the STG,
and C € ¥ UZU.¥* a node of the HTG, the states of C
are in By~, the basin of attraction of A*, iff A* € o(C).
The states of C are in B 4«, the strict basin of attraction
of A*, iff o(C) N (€* U .S*) = {A*}. Hence, for all
attractors, it is much easier to identify their basins of
attraction on the basis of the HTG.

Irreversible decisions are taken at the intersections of
the basins of attraction. Given two consecutive nodes
X and X in the HTG (7 (X1, X2) = 1), crucial deci-
sions can be associated with the arc linking these nodes if
o(X1)N(€*U.S*) £ o(X2)N(E*U.S*) (i.e. the system
enters a more restricted basin of attraction). Consider
two attractors A} and A} such that A € o(X1)No(X2),
A5 € 0(X;) and A & o(X3). We say that the transi-
tion (X1, X3) belongs to the boundary of Bay: removing
all such transitions would isolate B Az from the rest of
the HTG. In Figure 2 (C), transitions (ct#31, ct#2) and
(ct#31, ca#£2) constitute the boundary of Bss-2000-

IV. APPLICATION TO TH CELL DIFFERENTIATION

T-helper lymphocytes play a key role in the regulation
of the immune response in vertebrate. Various T-helper
subtypes (Thl, Th2, Th17, Treg) have been identified
over the years, characterized by the expression of spe-
cific transcription factors and cytokines, which have a
critical influence on the selection of specific immune re-
sponses, driving pro-inflammatory or allergic responses,
promoting alternative antibody classes, or yet preventing
(auto)immunity by inhibiting the activation and prolif-
eration of other cells.

Several modeling studies have been proposed to shed
light on the regulatory network controlling T-helper cell
activation and differentiation (see e.g. 20, 21, 23, 33, and
40 and references therein).

To gain insight into the heterogeneity and the plas-
ticity of late T-helper lineages, we have recently built
an integrated logical model of the core regulatory net-
work and main signaling pathways controlling Th cell
differentiation®” (Figure 3). Encompassing 65 compo-
nents (including 13 inputs, corresponding to antigen pre-
sentation and a dozen different cytokines), this multilevel
logical model proved to be too complex to be straight-
forwardly simulated. This situation motivated the devel-
opment of the reduction method mentioned above?7:29.
In the case of our T-helper model, we were led to hide
31 components (shown in grey in Figure 3) and thus ob-
tained a more compact model encompassing 34 nodes
(including the same 13 inputs).

Using the resulting reduced T-helper model, we have
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FIG. 3. Th differentiation regulatory graph. The top nodes correspond to inputs (APC and external input cytokines),
while nodes placed at the bottom correspond to key transcription factors. Nodes considered for reduction are emphasized in

grey. Green arrows denote activations, red blunt arcs denote
interaction (see 27 for details).

performed a series of simulations to assess the effects
of heterogeneous environments on Th cell differentia-
tion. This led us to identify stable states correspond-
ing to canonical Thl, Th2, Th17 and Treg subtypes, but
also to hybrid cell types co-expressing combinations of
Thl, Th2, Treg and Th17 markers in an environment-
dependent fashion.

Here, we apply the HTG construction to this reduced
model in order to demonstrate how the dynamics can be
compressed in a meaningful way, emphasizing the struc-
ture of the underlying STG, as well as crucial decision
points along dynamical pathways. In this respect, we
have selected a limited number of simulations leading to
STGs of increasing complexity.

Figure 4 displays the HTGs obtained when simulating
a naive T-helper cell stimulated by an antigen present-
ing cells in the presence of IL2 alone, or in the presence
of pro-Thl, Th2, Treg or Thl7 cytokines. In all cases
but the last one, we obtain a unique stable state corre-
sponding to the expected cellular state (activated ThO,
Thl, Th2, or Treg). In each of these HTGs, all other
states reachable from the initial conditions are grouped
together into a single irreversible transient component,
encompassing between 25 and 255 states. The label as-
sociated with each arc denotes the ultimate elementary
transitions going out the HT'G node. In contrast, in pro-
Th17 conditions, the system can reach two different sta-
ble states expressing Th17 transcription factor RORGT,
IL10, IL21 and IL23, one expressing also FOXP3, the

inhibitions while the blue arc from NFKB to IL17 denotes a dual

other expressing IL2. From the arc labels, it follows that
the selection between these two stable states depends on
the concurrent activation of RORGT and FOXP3.

Figure 5 (top) displays the HTG obtained when sim-
ulating a naive T-helper cell stimulated in mixed pro-
Th2/pro-Thl7 environment, i.e. in the presence of I1L4,
IL6, TGFB, and in the absence of IL2. The resulting
HTG merely comprises 13 nodes, to be contrasted with
the 1146 states of the corresponding STG. Furthermore,
the HT'G structure emphasizes the progressive commit-
ment of cells when following pathways from the root
to the leaves (stable states). The states encompassed
by other nodes belong to two or more basins of attrac-
tion. Note that the system can reach four stable states,
more precisely two pairs of activated versus anergic Th2
RORGT+ subtypes. Within each of these pairs, the sta-
ble states differ by the expression level of FOXP3. The la-
bels associated with the arcs clearly emphasize the tran-
sitions implementing differentiation decisions. As illus-
trated in Figure 5 (bottom), the use of priorities signif-
icantly decreases the size of the dynamics; selecting up-
dates of ILR2, NFAT and any of the STAT factors against
other component updates led to an HTG of 5 nodes (en-
compassing 31 states) instead of 13 nodes (encompassing
1146 states), where the two anergic cellular types are the
only reachable stable states.

A thorough discussion of the biological significance of
these observations would go beyond the scope of this arti-
cle. However, these examples demonstrate the compres-
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FIG. 4. HTG representation of asynchronous simulations of naive Th cells in simple polarizing environments.
These HTGs correspond to the simulation of ThO cells in the presence of APC signalling + IL2 alone, with INFG (pro Thl), or
with IL4 + IL6 (pro Th2), or with TGFB (pro Treg), or with TGFB and IL6 (pro Th17), from top to bottom and left to right.
All other nodes are set to zero at the initial state. In the notation of the logical stable states (prefixed by ”ss-”), the node order
considered starts with APC, followed by the external input cytokines IFNB, IL2, 114, I1L6, IL10, IL12, IL15, 1121, 1123, 1127,
TGFB, followed the cytokines produced by the Th cell considered 1L2, 114, IL10, IL21, IL23, TGFB, then the transcription
and signal transduction factors TBET, TBET, GATA3, FOXP3, NFAT, STAT1, STAT3, STAT4, STAT5, STAT6, followed by
the proliferation node, followed by RORGT and IL17. Arc labels indicate transitions (regulatory component updates) driving

the system out of an HTG node toward another one.

sion and clarification of asynchronous simulations that
can be achieved using the HT'G representation.

Finally, Figure 6 displays the reachability analysis be-
tween cellular types through the use of model-checking.
For this, we considered the environmental conditions de-
fined by specific valuations of the 13 input components
(see Figure 5 of the original study, i.e. in reference 27)
and the stable expression patterns (see Figure 6 in ref-
erence 27). These stable states correspond to cellular
subtypes, which are stable under specific environmental
conditions. So, for each input combination, we verify the
existence of a direct path between each possible pair of
cellular types. More precisely, we check whether there
is a fixed valuation of inputs such that there is a direct
path between two cellular subtypes, C'1 and C2 (without
going through other cellular subtypes) and C2 being sta-
ble. Using this approach, we could reproduce the results
obtained at the cost of extensive simulations in the orig-
inal study (Figure 7 in reference 27). Three main groups
are defined over the Th cell subtypes (Th0, Thl and Th2,
see Figure 8 in reference 27). We could also verify that
Thl and Th2 subtypes can never switch back to a ThO
one, even when inputs are allowed to vary freely. How-
ever, in such case, switches between all cellular subtypes
are possible within each group.

V. CONCLUSION AND PROSPECTS

Hierarchical transition graphs (HTGs) emphasize rele-
vant transient and asymptotic dynamical properties. We
have defined a novel algorithm enabling the compaction
of state transition graphs and the generation of HTGs
on-the-fly. This approach has been implemented into a
development version of the software GINsim, available as
a pre-release’.

We have applied this approach to a comprehensive
model for T-helper cell differentiation. Although this
model still needs to be further refined and tested, the
analysis presented here clearly demonstrates the assets of
the HTG representation, which leads to significant graph
compression and clearly emphasizes the organization of
the state space into attractors and basins of attraction.

Interestingly, applying our algorithm for HTG con-
struction onto a HTG produces a further compacted
graph-based representation of the dynamics, where the
nodes correspond to basins of attraction.

Should a given dynamics be too large and complex to
be effectively compacted using the HTG representation,
we can rely on complementary methods presented in this
manuscript. These methods aim at reducing the size of
the search space, including the model reduction method
that preserves key dynamical properties and the defini-
tion of transition priority classes, relying on biologically
well-founded assumptions. Moreover, we have presented
model-checking techniques to analyse reachability prop-
erties. Used jointly, these methods enable the dynamical
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FIG. 5. Compressed representation (HTG) of the asynchronous simulation of ThO in the presence of APC
signaling + IL4 + IL6 + TGFB (combination of pro Th2 and Thl7 cytokines, in the absence of IL2). Four
stable states can be reached: two pairs of activated versus anergic Th2 RORGT+ cells, differing by the expression of FOXP3.
The bottom part shows the HTG obtained for the same initial conditions but using two asynchronous priority classes. In
this configuration, transitions involving IL2R, NFAT, or any of the STAT factor are selected against those involving any
other component. In contrast with the results obtained without prioritization, only two stable states can be reached, both
corresponding to anergic Th2 RORGT+ cells, which differ by the expression of FOXP3. The labels associated with the arcs

emphasize the crucial transitions underlying the choice of one or

analysis of logical models of unprecedented sizes.

It is worth noting that the HT'G structure could be con-
sidered in the context of other formal approaches relying
on state transition graphs, including Petri nets (see e.g.
8 and references therein) and piecewise-linear differential
equation (PLDE) models®!7. Model-checking techniques
also apply to these models, once their dynamics can be
represented by Kripke structures'2. Our model reduction
could be applied to PLDE models, but its impact on the
dynamics still needs to be clarified.

HTG construction could be optimized and improved,
e.g. using parallel algorithms. Although depth-
first search algorithms are known to be difficult to
parallelize3!, different methods have been proposed to
tackle this problem?.

Further analysis relying on HT'G structures should al-
low the assessment of finer properties. For instance, some
well-established rules (Thomas’ rules®®) assert that dif-
ferentiation (resp. homeostasis) phenomena lean on the
action of a positive (resp. negative) circuit in the reg-
ulatory graphs. In practice, circuit functionality analy-
sis often points to combinations of intertwined circuits,
which are difficult to analyze. HT'Gs appear particularly

the other differentiation state.

well suited to the dynamical analysis of complex networks
endowed with differentiation properties (i.e. present-
ing multiple alternative stable states, which can be all
reached from given initial conditions), as they capture the
general organization of the corresponding STGs. Hence,
based on the analysis of HTG structures, we should be
able to identify the circuits at the core of cell commitment
and thereby focus on the genes responsible for irreversible
decisions.

An alternative strategy to analyze large regulatory net-
works takes advantage of their modularity. Recently,
we have defined a compositional framework that relies
on process algebra to incrementally compose, abstract
and minimize (using the safety equivalence) logical reg-
ulatory modules, enabling impressive reductions of the
dynamics??. However, as proper methods to decompose
large networks into functional modules are still lacking,
we have focussed on regulatory networks that encompass
several identical modules connected by inter-cellular sig-
naling. In this respect, one could take advantage of HTG
structures to come up with relevant model decomposi-
tion.
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