
HAL Id: hal-01261825
https://hal.science/hal-01261825

Submitted on 26 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Data Loading during Querying Deep Web and
Linked Open Data with SPARQL

Pauline Folz, Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, Maria-Esther
Vidal

To cite this version:
Pauline Folz, Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, Maria-Esther Vidal. Parallel Data
Loading during Querying Deep Web and Linked Open Data with SPARQL. 11th International Work-
shop on Scalable Semantic Web Knowledge Base Systems (SSWS2015) at ISWC, Oct 2015, Bethlehem,
United States. �hal-01261825�

https://hal.science/hal-01261825
https://hal.archives-ouvertes.fr

Parallel Data Loading during Querying Deep
Web and Linked Open Data with SPARQL

Pauline Folz1,2, Gabriela Montoya1,3, Hala Skaf-Molli1, Pascal Molli1, and
Maria-Esther Vidal4

1 LINA– Nantes University, France
{pauline.folz,gabriela.montoya,hala.skaf,pascal.molli}@univ-nantes.fr

2 Nantes Métropole - Direction Recherche, Innovation et Enseignement Supérieur,
France

3 Unit UMR6241 of the Centre National de la Recherche Scientifique (CNRS), France
4 Universidad Simón Boĺıvar, Venezuela

{mvidal}@ldc.usb.ve

Abstract. Web integration systems are able to provide transparent and
uniform access to heterogeneous Web data sources by integrating views
of Linked Data, Web Service results, or data extracted from the Deep
Web. However, given the potential large number of views, query engines
of Web integration systems have to implement execution techniques able
to scale up to real-world scenarios and efficiently execute queries. We
tackle the problem of SPARQL query processing against RDF views,
and propose a non-blocking query execution strategy that incrementally
accesses and merges the views relevant to a SPARQL query in a parallel
fashion. The proposed strategy is implemented on top of Jena 2.7.4, and
empirically compared with SemLAV, a sequential SPARQL query engine
on RDF views. Results suggest that our approach outperforms SemLAV
in terms of the number of answers produced per unit of time.

1 Introduction

Linked Open Data initiatives have motivated the integration of a large number
of RDF datasets into the Linking Open Data (LOD) cloud [4]. Different Web-
based interfaces are available to access these publicly accessible Linked Data
sets, e.g., SPARQL endpoints and Linked Data fragments [17]. However, the
Deep Web which has around 500 times the size of the Surface Web [11, 10]
has not been integrated as part of LOD cloud. Performing SPARQL queries
without considering the Deep Web can potentially deliver incomplete results. For
example, the execution of the SPARQL query: Which members of the Semantic
Web community are interested in Dalai Lama, Barack Obama, or Rihanna? (cf.
Figure 2) without the integration of the Deep Web will provide no answers [8].
Nevertheless, if data from social networks such as Twitter, Facebook, or LinkedIn
were considered, the query execution could return some answers.

Two main approaches exist for data integration: data warehousing, and the
virtual mediators [7]. Semantic data-warehouses such as Virtuoso with the Sponger

feature [1] allow for the implementation of wrappers able to create RDF data
from unsemantified data sources, e.g., Web services, CSV files; but this approach
may suffer from the freshness problem [2], i.e., data may become stale when data
sources are updated.

On the other hand, a mediator relies on a global schema to provide a uniform
interface for accessing the data sources. Global-As-View (GAV) and Local-As-
View (LAV), are the main paradigms for mapping data sources and the global
schema. In GAV mediators, entities of the global schema are described using
views over the data sources, but including or updating data sources may require
the modification of a large number of views [16]. Whereas, in LAV mediators,
the sources are described as views over the global schema, and adding new
data sources can be easily done [16]. Despite of its expressiveness and flexibility,
LAV query re-writting is in general intractable, i.e., NP-complete for conjunctive
queries [3]. State-of-the-art LAV query rewriters efficiently solve some families of
the query rewriting problem [3, 12]; nevertheless, they may not equally perform
on SPARQL queries [13]. Recently, SemLAV [13], the first scalable LAV-based
approach for SPARQL query processing, was proposed. Instead of enumerating
the query rewritings of a SPARQL query, SemLAV selects the most relevant LAV
views, accesses the selected views according to their relevance, and materializes
the downloaded data into an integrated RDF graph. Then, the SPARQL query
is executed against the integrated RDF graph.

SemLAV provides a new paradigm to execute SPARQL queries against LAV
views, but because relevant views are loaded sequentially, SemLAV may get
blocked loading large views. In the worst case, if the first loaded view is huge and
it does not provide relevant data for the query answer, SemLAV will be blocked
without producing any answer. Following a sequential view loading strategy may
reduce the number of answer produced per unit of time, i.e., throughput, and
the time for first answer. Loading several views in parallel may overcome these
limitations. However, a parallel view loading strategy will introduce the problem
of concurrent writing on the integrated RDF graph. In this paper, we propose
a non-blocking query execution strategy to integrate the data from the relevant
views into the integrated RDF graph in a parallel fashion. We implement the
proposed non-blocking strategy on the top of Jena 2.7.4; we name this new
SPARQL query engine parallel SemLAV. Further, an empirical evaluation is
conducted to study the new parallel strategy with respect to SemLAV. The
Berlin Benchmark [5] and queries and views designed by Castillo-Espinola [6] are
used to evaluate both query engines. Results suggest that the parallel SemLAV
outperforms SemLAV with respect to answers produced per time unit.

The paper is organized as follows. Section 2 describes background and mo-
tivation. Section 3 presents strategies for integrating relevant views into the
integrated RDF graph in a parallel fashion. Section 4 reports our experimental
results. Finally, conclusions and future work are outlined in Section 5.

Fig. 1: SemLAV a mediator and wrapper architecture

2 Background and Motivation

SemLAV follows a mediator and wrapper architecture [18] where data from the
sources are virtually integrated by SemLAV in a global schema composed by
several RDF vocabularies, as shown in Figure 1. Sources are described by LAV
views and can be heterogeneous, e.g., from the Deep Web, RDF data sets, or
relational tables. SPARQL queries are expressed in terms of the global schema
and posed against the SemLAV mediator. A wrapper is specific for a data source,
and retrieves data on demand; the retrieved data are transformed to match the
global schema. Wrappers can be generated by tools like Karma [15] or OPAL [9].
The global schema is the interface between users and the data sources.

2.1 SemLAV Overview

Given a query and a set of views, SemLAV computes a ranked set of relevant
views for answering the query, no statistics are used to rank the views. Relevant
views are ranked based on the number of triple patterns of the original query
that each view covers [13]. Views are materialized by calling the wrappers, and
each time a new view is fully materialized, the original query is executed.

The benefits of SemLAV are illustrated in the following example [8]. Suppose
SemLAV global schema comprises different RDF vocabularies, e.g., foaf 5 and

5 http://xmlns.com/foaf/0.1/

p r e f i x r d f s : <ht tp : //www.w3 . org /2000/01/ rd f−schema#>
p r e f i x f o a f : <ht tp : // xmlns . com/ f o a f /0.1/>

SELECT DISTINCT ∗
WHERE {

?P f o a f : member ?C .
?C r d f s : l a b e l ” Semant ic Web” .
?P f o a f : knows ?WKP .
?WKP f o a f : name ?N .
FILTER (?N=”Da l a i Lama” | | ?N=”Barack Obama” | | ?N=”Rihanna ”)

}

Fig. 2: A SPARQL query over Deep Web and Linked Data

rdfs 6. Figure 2 presents a SPARQL query expressed using the global schema.
Views are expressed as conjunctive queries, where RDF predicates are repre-
sented by binary predicates, e.g., label(C,L) corresponds to ?C rdf:label ?L and
?P foaf:name ?N is expressed as name(P,N). Listing 1 defines five LAV views.
Triple patterns in the query are also seen as binary predicates and BGPs are
represented as conjunctive queries; the running SPARQL query is composed
of four subgoals on the predicates: member(P,C), label(C, “Semantic Web”),
knows(P,WKP), and name(WKP,N). The filter expression is modeled as a dis-
junction of atomic expressions on the equality comparison operator.

Listing 1: Views s1-s5 for Query Q

v1 (P ,A, I , C , L):−made (P ,A) , a f f i l i a t i o n (P , I) , member (P ,C) , l a b e l (C , L)
v2 (A,T,P ,N,C):− t i t l e (A,T) ,made (P ,A) , name(P ,N) ,member (P ,C)
v3 (P ,N,R ,M):−name(P ,N) , name(R ,M) , knows (P ,R)
v4 (P ,N,G,R ,C):−name(P ,N) , gender (P ,G) , knows (P ,R) ,member (P ,C)
v5 (P ,N,R ,C , L):−name(P ,N) , knows (P ,R) ,member (P ,C) , l a b e l (C , L)

Given a subgoal sg of a conjunctive query, e.g., label(C,“Semantic Web”), a
view v is relevant for sg, if sg is part of the body of v, e.g., v1(P,A,I,C,L) and
v5(P,N,R,C,L) are relevant for label(C,“Semantic Web”). Table 1a presents the
set of relevant views for each query subgoal of query in Figure 2.

SemLAV sorts relevant views according to the number of the subgoals of the
query that the view defines, e.g., view v5 is sorted first since it defines all the
subgoals. Table 1b represents the sorted relevant views for query in Figure 2.

SemLAV identifies and ranks the relevant views of a query, and executes the
query over the data collected from the relevant views. Different strategies can
be followed to contact the views and load the data. For example, following a
blocking strategy, views are contacted one by one in order, and a view is not
contacted until all the data from the previous contacted view have been down-
loaded completely. This is the strategy followed by SemLAV, which is illustrated
in the Figure 3a, we can see that this strategy can be blocking if the first view
is huge. While the view v5 is loading we are not able to perform the query. This
blocking issue can have a negative impact on the performance of the query en-

6 "http://www.w3.org/2000/01/rdf-schema

Table 1: Relevant views of query Q (cf. Figure 2), and views from Listing 1.
(a) Unsorted relevant views

member(P, C) label(C, L) knows(P, WKP) name(WKP, N)

v1(P,A,I,C,L) v1(P,A,I,C,L) v3(P,N,R,M) v2(A,T,P,N,C)

v2(A,T,P,N,C) v5(P,N,R,C,L) v4(P,N,G,R,C) v3(P,N,R,M)

v4(P,N,G,R,C) v5(P,N,R,C,L v4(P,N,G,R,C)
v5(P,N,R,C,L) v5(P,N,R,C,L)

(b) Sorted relevant views

member(P, C) label(C, L) knows(P, WKP) name(WKP, N)

v5(P,N,R,C,L) v5(P,N,R,C,L) v5(P,N,R,C,L) v5(P,N,R,C,L)
v4(P,N,G,R,C) v1(P,A,I,C,L) v4(P,N,G,R,C) v4(P,N,G,R,C)
v1(P,A,I,C,L) v3(P,N,R,M) v2(A,T,P,N,C)
v2(A,T,P,N,C) v3(P,N,R,M)

gine if the performance is measured in terms of the number of answers produced
per unit of time, i.e., throughput.

To illustrate this problem, consider Figure 3a, where v5 is loaded first. Even
if v5 covers all the query subgoals, loading v5 first reduces the throughput,
because v5 is the biggest view and does not contribute to the result. On the other
hand, loading both v1 and v4, which together cover all the subgoals takes less
time and may produce query answers. If relevant views were loaded in parallel
following a non-blocking strategy, this situation would not affect the query engine
performance. This solution is illustrated in Figure 3b, where there are five threads
and each of them loads one of the first five top ranked views at the time; views are
allocated in different threads. Time to load v5 is greater than the time required
to load v4 and v1 in parallel. Additionally, v4 and v1 cover all the subgoals of
our running query; thus, answers are produced before loading v5 completely.

We propose a non-blocking strategy for executing SPARQL queries against
views. Like SemLAV, this approach does not rely on statistics to rank and select
the relevant views. The proposed strategy prevents the query engine from getting
blocked until all the data are retrieved from the relevant views.

3 Our Approach

A non-blocking strategy to access the views in a parallel fashion is defined. Al-
though this strategy improves the performance of a query engine, loading the
retrieved data into the integrated RDF graph in parallel, may generate con-
currency problems, i.e., many processes may simultaneously add data to the
integrated RDF graph. So, we define a new concurrent model for RDF, and we
propose a non-blocking query execution strategy able to adapt query execution
to different criteria, e.g., a query is executed after a certain number of triples

v5

v4

v1

v3

v2

Query Q

Query Q

Query Q

Query Q

(a) Sequential loading

v5

v4
v1

v3
v2 Query Q

Query Q

Query Q

(b) Parallel loading

Fig. 3: Views loading and Query execution. For sequential loading just one thread
is used, while for parallel loading five threads are used

are loaded into the integrated RDF graph. We implement the concurrency model
and the non-blocking query execution strategy on top of Jena 2.7.4 7 .

3.1 A Concurrency Model for the Integrated RDF Graph

Regarding our approach, we need a model that can handle concurrent insertions.
However, RDF stores like Jena do not handle concurrent insertions, they are only
able to favor one type of operation, e.g., reads or insertions. This strategy is im-
plemented thanks to locks, but read and insert locks are mutually exclusive,
i.e., they cannot be simultaneously activated. Existing RDF stores assume that
there are more readers than writers and follow the multiple-readers/single-writer
strategy (MRSW)8. According to MRSW, many readers may read simultane-
ously, while a writer must have exclusive access. MRSW assumes writers have
the priority to keep data up-to-date. Nevertheless, in our proposed approach,
data insertions are going to be more frequent than data reads. A reader is the
query engine that accesses the integrated RDF graph during query execution,
while writers are the wrappers of the relevant views which load the data into the
integrated RDF graph. The query engine cannot execute the query more often
than loading views into the integrated RDF graph, because executing the query
is expensive, and doing so too often may lead to performance degradation.

In other words, our proposed approach prioritizes read operations over inser-
tions, i.e., a single-reader/multiple-writers strategy (SRMW) [14] is followed to

7 http://jena.apache.org/
8 https://jena.apache.org/documentation/notes/concurrency-howto.html

manage concurrency on the integrated RDF graph. So the reader, e.g., a query
execution engine, will have a higher priority rather than a writer, e.g., a wrapper
loading a view. Additionally, two insert locks cannot be activated at the same
time due to the specification of the integrated RDF model. However, the query
engine divides each view into blocks of n triples to allow for the loading of por-
tions of several views at the same time. A lock is requested before starting a
block loading, and it is released after n triples have been loaded completely. In
our example, the first block of v5 is loaded, then the first block of v4, and to load
the second block of v5, it may be necessary to wait until all the first blocks of the
currently loading views are already loaded. However, this order may fluctuate
depending on the system time allocation among the threads.

3.2 A Non-Blocking Strategy for SPARQL Query Execution

We implement a non-blocking strategy that is able to execute a query according
to the following criteria; the selection of the criteria can be either configured or
provided by the user during query execution.

– View dependent: the reader is woken up after a new view is loaded; thus, if v
is a new loaded view, then the query engine will re-execute the query against
the integrated RDF graph. If enough data is loaded into the integrated RDF
graph from v, then the query engine will be able to generate new results
when it is executed. This criterion is also implemented by SemLAV.

– Time dependent: the reader is woken up after a period of time t, i.e., if
t is n milliseconds, the query engine will re-execute the query against the
RDF graph every n milliseconds. If enough data is loaded into the integrated
RDF graph during the period t, the query engine will be able to generate
new results. But, the concurrency model prioritizes the reader over writers;
thus, if the writers are stopped and not able to load enough data into the
integrated RDF graph, the query will be inefficiently executed.

– Data dependent: the reader is woken up after a certain number n of triples
are inserted into the integrated RDF graph by the writers; thus, the query
engine will re-execute the query against the RDF graph whenever n new
triples are integrated. If the n new triples contribute to the results, then the
query engine will be able to generate new answers when it is executed.

– Two-phase execution: the reader is woken up either after a period of time t
or a certain number n of triples are inserted into the integrated RDF graph
by the writers. In the first phase, the reader performs ASK queries to check
if new results can be produced, if the answer is true, the second phase is
launched. The second phase strategy will directly execute the query, then the
reader will be woken up either after a period of time t or a certain number
n of new triples have been inserted into the integrated RDF graph.

4 Experimental Evaluation

The Berlin SPARQL Benchmark (BSBM) [5], and queries and views proposed by
Espinola-Castillo [6] are used to compare the performance of parallel SemLAV

with respect to SemLAV. Our goal is to reproduce the experiments reported by
Montoya et al. [13]; therefore, we used the Berlin Benchmark dataset composed of
10,000,736 triples using a scale factor of 28,211 products, 16 out of 18 queries, and
nine out of the ten defined views proposed by Espinola-Castillo [6]. In SemLAV
experiments, some queries and views were not considered because they included
constants and some of the evaluated rewriters only process queries with variables.
Five additional views were defined to cover all the predicates in the evaluated
queries, i.e., 14 views were evaluated. Furthermore, 476 views were produced by
horizontally partitioning each original view into 34 parts, such that each part
produces 1/34 of the answers given by the original view.

Queries and views are described in Tables 2a and 2b. The size of the complete
answer is computed by including all the views into the Jena RDF triple store
and by executing the queries against this centralized RDF dataset. The Jena
2.7.4 library with main memory setup is used to store and query the integrated
RDF graphs. We executed parallel SemLAV with a timeout of 10 minutes.

Table 2: Queries and their answer size, number of subgoals, and views size,
source [13]

(a) Query information

Query Answer Size # Subgoals

Q1 6.68E+07 5
Q2 5.99E+05 12
Q4 2.87E+02 2
Q5 5.64E+05 4
Q6 1.97E+05 3
Q8 5.64E+05 3
Q9 2.82E+04 1
Q10 2.99E+06 3
Q11 2.99E+06 2
Q12 5.99E+05 4
Q13 5.99E+05 2
Q14 5.64E+05 3
Q15 2.82E+05 5
Q16 2.82E+05 3
Q17 1.97E+05 2
Q18 5.64E+05 4

(b) Views size

Views Size

V1-V34 201,250
V35-V68 153,523
V69-V102 53,370
V103-V136 26,572
V137-V170 5,402
V171-V204 66,047
V205-V238 40,146
V239-V272 113,756
V273-V306 24,891
V307-V340 11,594
V341-V374 5,402
V375-V408 5,402
V409-V442 78,594
V443-V476 99,237
V477-V510 1,087,281

Experiments are also run on the same platform than SemLAV experiments,
i.e., on a Linux server with 128 GB of memory, 124 processors where 20 GB
of RAM are allocated for the experiments. Wrappers are implemented for each
view and to load data from RDF files, i.e., 476 wrappers are available.

4.1 Implementation

We use critical section and lock to implement the single-reader/multiple-writers
SRMW concurrency model in Jena 2.7.4. The number of threads impacts the
SPARQL engine performance; thus, we consider this number as one of the inde-
pendent parameters of our study.

Table 3: Result of SemLAV and parallel SemLAV on BSBM using the View
Dependent Criterion with 20 threads (bold font is used to highlight the values
where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 604,254 30,481 88.7036 7

2 600,656 260,333 0.9823 66 605,729 72,515 0.9883 16

4 660,938 104,501 0.0004 47 359,635 288,558 0.0008 20

5 632,809 116,037 0.8916 28 457,269 257,097 1.2339 14

6 625,173 43,306 0.1892 24 273,662 211,313 0.7203 9

8 627,612 5,393 0.8990 42 318,475 24,877 1.7716 7

9 5,107 1,235 5.5240 18 2,453 1,839 11.5006 3

10 607,841 9,810 4.9243 44 439,562 32,438 6.8094 15

11 601,042 8,352 4.9800 43 105,684 31,660 28.3219 6

12 609,509 5,784 0.9822 121 372,481 15,542 1.6072 16

13 671,893 183,844 0.8910 124 392,147 41,799 1.5266 20

14 636,387 29,201 0.5419 24 333,754 201,864 1.6905 14

15 645,172 2,911 0.4373 37 388,061 20,016 0.7270 18

16 648,826 2,531 0.4348 46 306,694 15,390 0.9198 7

17 644,090 1,504 0.3060 32 278,330 5,894 0.7082 7

18 651,094 > 600,000 0.0000 12 509,646 259,598 1.1071 13

4.2 Impact of the Non-Blocking Query Execution Criteria

The goal of the experiment is to study the impact of the non-blocking query ex-
ecution criteria on the query engine performance. We hypothesize that parallel
SemLAV will outperform SemLAV in terms of throughput and time for the first
answer. We measure the following metrics: i) total time (TT) in milliseconds;
ii) time for first answer (TFA) in milliseconds; iii) throughput (answer/millisec-
ond); and iv) number of times the original query is executed (#EQ).

We evaluate parallel SemLAV for the non-blocking query execution criteria
defined in Section 3 with different number of threads, i.e., the number of writ-
ers and the configuration of the non-blocking query execution strategy. We use
setups with different number of threads 5, 10, and 20. Results suggest that 20
threads is the best number for writers. All the results are available at the project
web site https://sites.google.com/site/semanticlav.

Table 4: Result of SemLAV and parallel SemLAV on BSBM using the View
Dependent Criterion with 5 threads (bold font is used to highlight the values
where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 601,221 13,235 35.3143 8

2 600,656 260,333 0.9823 66 646,416 87,166 0.9261 25

4 660,938 104,501 0.0004 47 406,008 91,383 0.0007 50

5 632,809 116,037 0.8916 28 601,055 88,752 0.9387 29

6 625,173 43,306 0.1892 24 317,213 61,451 0.6214 25

8 627,612 5,393 0.8990 42 410,306 7,202 1.3751 12

9 5,107 1,235 5.5240 18 2,687 987 10.4991 4

10 607,841 9,810 4.9243 44 631,503 11,438 4.7398 31

11 601,042 8,352 4.9800 43 300,244 9,879 9.9691 13

12 609,509 5,784 0.9822 121 508,837 9,048 1.1765 37

13 671,893 183,844 0.8910 124 532,783 54,758 1.1236 40

14 636,387 29,201 0.5419 24 463,967 62,251 1.2161 28

15 645,172 2,911 0.4373 37 600,885 8,390 0.4695 36

16 648,826 2,531 0.4348 46 462,310 4,820 0.6102 12

17 644,090 1,504 0.3060 32 311,895 2,533 0.6320 17

18 651,094 > 600,000 0.0000 12 600,102 264,917 0.9402 37

Table 5: Result of BSBM over SemLAV and parallel SemLAV using the View
Dependent Criterion with 10 threads (bold font is used to highlight the values
where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 602,508 17,819 41.3346 8

2 600,656 260,333 0.9823 66 608,174 70,504 0.9843 25

4 660,938 104,501 0.0004 47 332,060 127,329 0.0009 50

5 632,809 116,037 0.8916 28 505,404 128,097 1.1164 29

6 625,173 43,306 0.1892 24 272,134 98,736 0.7243 25

8 627,612 5,393 0.8990 42 323,938 11,994 1.7418 12

9 5,107 1,235 5.5240 18 2,479 1,489 11.3800 4

10 607,841 9,810 4.9243 44 601,192 17,710 4.9787 31

11 601,042 8,352 4.9800 43 168,108 16,997 17.8051 13

12 609,509 5,784 0.9822 121 390,470 11,081 1.5331 37

13 671,893 183,844 0.8910 124 409,106 39,892 1.4633 40

14 636,387 29,201 0.5419 24 326,745 91,049 1.7268 28

15 645,172 2,911 0.4373 37 496,533 11,419 0.5682 36

16 648,826 2,531 0.4348 46 321,641 9,723 0.8771 12

17 644,090 1,504 0.3060 32 252,595 3,643 0.7803 17

18 651,094 > 600,000 0.0000 12 600,785 221,434 0.9391 37

The View Dependent Criterion: The thread which executes the query is woken
up when a new view is loaded. Table 3 shows the result of SemLAV and parallel
SemLAV using the view strategy, i.e., re-execute the query after a new view is
loaded. Parallel SemLAV outperforms SemLAV in terms of throughput and total
execution time. But surprisingly, the time for first answer is increased, for all
queries except queries 2, 13, and 18; for these queries the time for the first answer
is at most half of the SemLAV time. In most queries the time for first answer is
increased because the number of times the original query is executed (#EQ) in
parallel SemLAV is less than in SemLAV; furthermore, parallel SemLAV breaks
the views ranking established by SemLAV, i.e., SemLAV starts by loading the
view ranked in first place and executes the query. However, parallel SemLAV
loads views in parallel, and the query is re-executed when a new view is loaded,
which is not necessarily the first ranked view by SemLAV. In setups with 5
and 10 threads, the time for first answer is better than for 20 threads, but the
throughput is lower as shown in Tables 4 and 5.

Table 6: Result of BSBM over SemLAV and parallel SemLAV using the Time
Dependent Criterion with 20 threads; queries are executed every 500 msecs
(bold font is used to highlight the values where parallel SemLAV outperforms
SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 604,465 28,033 67.3762 16

2 600,656 260,333 0.9823 66 602,164 73,074 0.9941 17

4 660,938 104,501 0.0004 47 370,372 262,367 0.0008 102

5 632,809 116,037 0.8916 28 465,548 254,253 1.2119 27

6 625,173 43,306 0.1892 24 266,556 184,145 0.7395 83

8 627,612 5,393 0.8990 42 334,311 18,176 1.6877 17

9 5,107 1,235 5.5240 18 2,343 1,772 12.0405 4

10 607,841 9,810 4.9243 44 460,109 31,589 6.5054 28

11 601,042 8,352 4.9800 43 114,680 23,886 26.1002 19

12 609,509 5,784 0.9822 121 357,470 15,481 1.6746 22

13 671,893 183,844 0.8910 124 363,735 41,237 1.6458 24

14 636,387 29,201 0.5419 24 305,013 161,527 1.8498 94

15 645,172 2,911 0.4373 37 412,315 20,019 0.6842 23

16 648,826 2,531 0.4348 46 302,547 12,336 0.9325 14

17 644,090 1,504 0.3060 32 235,062 5,910 0.8386 21

18 651,094 > 600,000 0.0000 12 509,085 276,665 1.1083 99

The Time Dependent Criterion: The thread which executes the query is woken
up each 500 milliseconds. Table 6 shows the result of SemLAV and parallel
SemLAV using the time dependent strategy for 20 threads. The results also
show that parallel SemLAV outperforms SemLAV in terms of throughput and

total execution time; however, the time for first results is increased as when the
view dependent criterion is executed.

Table 7: Result of BSBM over SemLAV and parallel SemLAV using the Data
Dependent Criterion with 20 threads; queries are executed whenever 500 triples
have been inserted in the integrated RDF graph (bold font is used to highlight
the values where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 604,668 27,306 62.8580 10

2 600,656 260,333 0.9823 66 603,706 68,132 0.9916 14

4 660,938 104,501 0.0004 47 343,267 234,513 0.0008 21

5 632,809 116,037 0.8916 28 431,564 162,773 1.3074 16

6 625,173 43,306 0.1892 24 248,937 165,997 0.7918 14

8 627,612 5,393 0.8990 42 318,207 17,766 1.7731 8

9 5,107 1,235 5.5240 18 2,717 1,731 10.3831 4

10 607,841 9,810 4.9243 44 459,995 24,917 6.5070 15

11 601,042 8,352 4.9800 43 112,908 25,505 26.5099 7

12 609,509 5,784 0.9822 121 377,970 15,762 1.5838 15

13 671,893 183,844 0.8910 124 385,730 42,222 1.5520 24

14 636,387 29,201 0.5419 24 304,364 163,948 1.8538 17

15 645,172 2,911 0.4373 37 410,031 13,808 0.6880 19

16 648,826 2,531 0.4348 46 315,466 13,349 0.8943 8

17 644,090 1,504 0.3060 32 297,911 4,792 0.6616 9

18 651,094 > 600,000 0.0000 12 520,845 302,575 1.0833 13

The Data Dependent Criterion: The query thread is woken up each time the
integrated RDF graph grows up to 500 new triples. Table 7 shows the results
of SemLAV and parallel SemLAV using data dependent strategy for 20 threads.
As in previous experiments, parallel SemLAV outperforms SemLAV in terms of
throughput and total execution time for all queries; but the time for the first
result is increased for the majority of the queries.

The Two-phase Criterion: The first phase of this strategy performs an ASK query
and when it returns true, the second phase is conducted. First, the second phase
executes the original query, then the query engine will be woken up either each
n milliseconds or when n triples are inserted into the integrated RDF graph.
Table 8 reports on the results for the two-phase strategy when the query is exe-
cuted whenever 500 triples are inserted into the integrated RDF graph. Parallel
SemLAV outperforms SemLAV in terms of throughput for all the queries, but
throughput values of parallel SemLAV are lower than in previous experiments.

Table 8: Result of SemLAV and parallel SemLAV on BSBM using the Two-phase
Criterion with 20 threads; queries are executed whenever 500 triples have been
inserted in the integrated RDF graph (bold font is used to highlight the values
where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 604,693 26,624 62.4690 4

2 600,656 260,333 0.9823 66 603,290 72,463 0.9923 8

4 660,938 104,501 0.0004 47 358,149 261,954 0.0008 11

5 632,809 116,037 0.8916 28 441,166 169,437 1.2789 13

6 625,173 43,306 0.1892 24 275,440 186,320 0.7156 6

8 627,612 5,393 0.8990 42 329,872 24,852 1.7104 7

9 5,107 1,235 5.5240 18 2,572 1,966 10.9685 3

10 607,841 9,810 4.9243 44 475,523 25,193 6.2945 15

11 601,042 8,352 4.9800 43 111,739 25,490 26.7872 7

12 609,509 5,784 0.9822 121 396,899 16,209 1.5083 14

13 671,893 183,844 0.8910 124 369,586 44,197 1.6197 10

14 636,387 29,201 0.5419 24 308,277 155,879 1.8302 10

15 645,172 2,911 0.4373 37 400,752 14,299 0.7040 18

16 648,826 2,531 0.4348 46 330,846 12,741 0.8527 8

17 644,090 1,504 0.3060 32 274,087 5,984 0.7192 8

18 651,094 > 600,000 0.0000 12 517,814 285,958 1.0896 13

Table 9: Throughput of SemLAV and parallel SemLAV (PS) using the Data-
Dependent Criterion each 500 triples (DDC), Time-Dependent Criterion each
500 milliseconds (TDC), and Two-phase Criterion that combines ASK queries
with DDC. With 20 threads for each criterion (bold font is used to highlight
the values where parallel SemLAV outperforms SemLAV)

Throughput

Query SemLAV PS PS+DDC PS+TDC PS+DDC+ASK

1 37.3501 88.7036 62.8580 67.3762 62.4690

2 0.9823 0.9883 0.9916 0.9941 0.9923

4 0.0004 0.0008 0.0008 0.0008 0.0008

5 0.8916 1.2339 1.3074 1.2119 1.2789

6 0.1892 0.7203 0.7918 0.7395 0.7156

8 0.8990 1.7716 1.7731 1.6877 1.7104

9 5.5240 11.5006 10.3831 12.0405 10.9685

10 4.9243 6.8094 6.5070 6.5054 6.2945

11 4.9800 28.3219 26.5099 26.1002 26.7872

12 0.9822 1.6072 1.5838 1.6746 1.5083

13 0.8910 1.5266 1.5520 1.6458 1.6197

14 0.5419 1.6905 1.8538 1.8498 1.8302

15 0.4373 0.7270 0.6880 0.6842 0.7040

16 0.4348 0.9198 0.8943 0.9325 0.8527

17 0.3060 0.7082 0.6616 0.8386 0.7192

18 0.0000 1.1071 1.0833 1.1083 1.0896

4.3 Discussion

Table 9 summarizes the results of the throughput with 20 threads in the different
empirical evaluations. In all experiments, parallel SemLAV outperforms SemLAV
in terms of the throughput and total execution time. However, none of the defined
execution criterion dominates other criterion. For instance, parallel SemLAV
with query execution every 500 milliseconds is the best execution strategy for
query2; whereas parallel SemLAV with execution strategy whenever 500 triples
have been inserted into the integrated RDF graph is the most suitable strategy
for query5. We repeat the experiments with different number of threads. In setup
with 20 threads, parallel SemLAV outperforms SemLAV in terms of throughput
and total execution time but it increases time for first answer. Preliminary results
suggest that there is a tradeoff between throughput and time for first answer. To
confirm these results, in the future, we plan to evaluate parallel SemLAV with
different time and data setups.

5 Conclusions and Future Work

We tackle the problem of executing SPARQL queries against LAV views in a
parallel fashion. The query execution model relies on an RDF graph that tempo-
rally materializes the data retrieved from the relevant views of a SPARQL query.
The query engine respects a concurrency model that prioritizes the execution of
queries against the integrated RDF graph over loading data from the views. Ad-
ditionally, a non-blocking query execution strategy allows for the execution of a
SPARQL query on an RDF graph depending on different criteria. Similarly than
SemLAV, our proposed parallel query execution model, named parallel SemLAV,
was implemented on top of Jena. We empirically compared parallel SemLAV and
SemLAV in terms of the impact of the non-blocking strategy on the query engine
throughput. The observed results suggest that independently of the criterion fol-
lowed by the non-blocking query engine strategy, parallel SemLAV outperforms
SemLAV in terms of throughput. One limitation of our current implementation
is inherent from the techniques implemented by Jena to handle concurrent inser-
tions in an RDF graph. To overcome this limitation, we plan to consider a graph
database engine as the RDF store backend, in order to provide more robust
concurrency management of the RDF graph for incremental query processing.

Acknowledgement

We thank Maxime Pauvert and Nicolas Brondin, both students of the Com-
puter Science Department at the University of Nantes for implementing the
non-blocking strategy.

References

1. Virtuoso sponger. White paper, OpenLink Software.

2. S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset, and P. Senellart. Web Data
Management. Cambridge University Press, New York, NY, USA, 2011.

3. Y. Arvelo, B. Bonet, and M.-E. Vidal. Compilation of query-rewriting problems
into tractable fragments of propositional logic. In AAAI, pages 225–230. AAAI
Press, 2006.

4. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst., 5(3):1–22, 2009.

5. C. Bizer and A. Schultz. The berlin sparql benchmark. Int. J. Semantic Web Inf.
Syst., 5(2):1–24, 2009.

6. R. Castillo-Espinola. Indexing RDF data using materialized SPARQL queries. PhD
thesis, Humboldt-Universität zu Berlin, 2012.

7. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan
Kaufmann, 2012.

8. P. Folz, G. Montoya, H. Skaf-Molli, P. Molli, and M. Vidal. Semlav: Querying
deep web and linked open data with SPARQL. In The Semantic Web: ESWC
2014 Satellite Events - ESWC 2014 Satellite Events, Anissaras, Crete, Greece,
May 25-29, 2014, Revised Selected Papers, pages 332–337, 2014.

9. T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, and C. Schallhart. OPAL:
automated form understanding for the deep web. In Proceedings of the 21st World
Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages
829–838, 2012.

10. T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, C. Schallhart, and C. Wang.
DIADEM: thousands of websites to a single database. PVLDB, 7(14):1845–1856,
2014.

11. B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the Deep Web. Com-
mun. ACM, 50(5):94–101, 2007.

12. G. Konstantinidis and J. L. Ambite. Scalable query rewriting: a graph-based ap-
proach. In T. K. Sellis, R. J. Miller, A. Kementsietsidis, and Y. Velegrakis, editors,
SIGMOD Conference, pages 97–108. ACM, 2011.

13. G. Montoya, L. D. Ibáñez, H. Skaf-Molli, P. Molli, and M.-E. Vidal. SemLAV:
Local-As-View Mediation for SPARQL. Transactions on Large-Scale Data- and
Knowledge-Centered Systems XIII, Lecture Notes in Computer Science, Vol. 8420,
pages 33–58, 2014.

14. G. L. Peterson and J. E. Burns. Concurrent reading while writing II: the multi-
writer case. In 28th Annual Symposium on Foundations of Computer Science, Los
Angeles, California, USA, 27-29 October 1987, pages 383–392, 1987.

15. M. Taheriyan, C. A. Knoblock, P. A. Szekely, and J. L. Ambite. Rapidly integrating
services into the linked data cloud. In P. Cudré-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber,
A. Bernstein, and E. Blomqvist, editors, International Semantic Web Conference
(1), volume 7649 of Lecture Notes in Computer Science, pages 559–574. Springer,
2012.

16. J. D. Ullman. Information integration using logical views. Theor. Comput. Sci.,
239(2):189–210, 2000.

17. R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V. Sande,
R. Cyganiak, P. Colpaert, E. Mannens, and R. V. de Walle. Querying datasets
on the web with high availability. In The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part I, pages 180–196, 2014.

18. G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, 1992.

