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Parallel Data Loading during Querying Deep Web and Linked Open Data with SPARQL

Web integration systems are able to provide transparent and uniform access to heterogeneous Web data sources by integrating views of Linked Data, Web Service results, or data extracted from the Deep Web. However, given the potential large number of views, query engines of Web integration systems have to implement execution techniques able to scale up to real-world scenarios and efficiently execute queries. We tackle the problem of SPARQL query processing against RDF views, and propose a non-blocking query execution strategy that incrementally accesses and merges the views relevant to a SPARQL query in a parallel fashion. The proposed strategy is implemented on top of Jena 2.7.4, and empirically compared with SemLAV, a sequential SPARQL query engine on RDF views. Results suggest that our approach outperforms SemLAV in terms of the number of answers produced per unit of time.

Introduction

Linked Open Data initiatives have motivated the integration of a large number of RDF datasets into the Linking Open Data (LOD) cloud [START_REF] Bizer | Linked data -the story so far[END_REF]. Different Webbased interfaces are available to access these publicly accessible Linked Data sets, e.g., SPARQL endpoints and Linked Data fragments [START_REF] Verborgh | Querying datasets on the web with high availability[END_REF]. However, the Deep Web which has around 500 times the size of the Surface Web [START_REF] He | Accessing the Deep Web. Commun[END_REF][START_REF] Furche | DIADEM: thousands of websites to a single database[END_REF] has not been integrated as part of LOD cloud. Performing SPARQL queries without considering the Deep Web can potentially deliver incomplete results. For example, the execution of the SPARQL query: Which members of the Semantic Web community are interested in Dalai Lama, Barack Obama, or Rihanna? (cf. Figure 2) without the integration of the Deep Web will provide no answers [START_REF] Folz | Semlav: Querying deep web and linked open data with SPARQL[END_REF]. Nevertheless, if data from social networks such as Twitter, Facebook, or LinkedIn were considered, the query execution could return some answers.

Two main approaches exist for data integration: data warehousing, and the virtual mediators [START_REF] Doan | Principles of Data Integration[END_REF]. Semantic data-warehouses such as Virtuoso with the Sponger feature [START_REF]White paper, OpenLink Software[END_REF] allow for the implementation of wrappers able to create RDF data from unsemantified data sources, e.g., Web services, CSV files; but this approach may suffer from the freshness problem [START_REF] Abiteboul | Web Data Management[END_REF], i.e., data may become stale when data sources are updated.

On the other hand, a mediator relies on a global schema to provide a uniform interface for accessing the data sources. Global-As-View (GAV) and Local-As-View (LAV), are the main paradigms for mapping data sources and the global schema. In GAV mediators, entities of the global schema are described using views over the data sources, but including or updating data sources may require the modification of a large number of views [START_REF] Ullman | Information integration using logical views[END_REF]. Whereas, in LAV mediators, the sources are described as views over the global schema, and adding new data sources can be easily done [START_REF] Ullman | Information integration using logical views[END_REF]. Despite of its expressiveness and flexibility, LAV query re-writting is in general intractable, i.e., NP-complete for conjunctive queries [START_REF] Arvelo | Compilation of query-rewriting problems into tractable fragments of propositional logic[END_REF]. State-of-the-art LAV query rewriters efficiently solve some families of the query rewriting problem [START_REF] Arvelo | Compilation of query-rewriting problems into tractable fragments of propositional logic[END_REF][START_REF] Konstantinidis | Scalable query rewriting: a graph-based approach[END_REF]; nevertheless, they may not equally perform on SPARQL queries [START_REF] Montoya | SemLAV: Local-As-View Mediation for SPARQL[END_REF]. Recently, SemLAV [START_REF] Montoya | SemLAV: Local-As-View Mediation for SPARQL[END_REF], the first scalable LAV-based approach for SPARQL query processing, was proposed. Instead of enumerating the query rewritings of a SPARQL query, SemLAV selects the most relevant LAV views, accesses the selected views according to their relevance, and materializes the downloaded data into an integrated RDF graph. Then, the SPARQL query is executed against the integrated RDF graph.

SemLAV provides a new paradigm to execute SPARQL queries against LAV views, but because relevant views are loaded sequentially, SemLAV may get blocked loading large views. In the worst case, if the first loaded view is huge and it does not provide relevant data for the query answer, SemLAV will be blocked without producing any answer. Following a sequential view loading strategy may reduce the number of answer produced per unit of time, i.e., throughput, and the time for first answer. Loading several views in parallel may overcome these limitations. However, a parallel view loading strategy will introduce the problem of concurrent writing on the integrated RDF graph. In this paper, we propose a non-blocking query execution strategy to integrate the data from the relevant views into the integrated RDF graph in a parallel fashion. We implement the proposed non-blocking strategy on the top of Jena 2.7.4; we name this new SPARQL query engine parallel SemLAV. Further, an empirical evaluation is conducted to study the new parallel strategy with respect to SemLAV. The Berlin Benchmark [START_REF] Bizer | The berlin sparql benchmark[END_REF] and queries and views designed by Castillo-Espinola [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF] are used to evaluate both query engines. Results suggest that the parallel SemLAV outperforms SemLAV with respect to answers produced per time unit.

The paper is organized as follows. Section 2 describes background and motivation. Section 3 presents strategies for integrating relevant views into the integrated RDF graph in a parallel fashion. Section 4 reports our experimental results. Finally, conclusions and future work are outlined in Section 5. SemLAV follows a mediator and wrapper architecture [START_REF] Wiederhold | Mediators in the architecture of future information systems[END_REF] where data from the sources are virtually integrated by SemLAV in a global schema composed by several RDF vocabularies, as shown in Figure 1. Sources are described by LAV views and can be heterogeneous, e.g., from the Deep Web, RDF data sets, or relational tables. SPARQL queries are expressed in terms of the global schema and posed against the SemLAV mediator. A wrapper is specific for a data source, and retrieves data on demand; the retrieved data are transformed to match the global schema. Wrappers can be generated by tools like Karma [START_REF] Taheriyan | Rapidly integrating services into the linked data cloud[END_REF] or OPAL [START_REF] Furche | OPAL: automated form understanding for the deep web[END_REF]. The global schema is the interface between users and the data sources.

SemLAV Overview

Given a query and a set of views, SemLAV computes a ranked set of relevant views for answering the query, no statistics are used to rank the views. Relevant views are ranked based on the number of triple patterns of the original query that each view covers [START_REF] Montoya | SemLAV: Local-As-View Mediation for SPARQL[END_REF]. Views are materialized by calling the wrappers, and each time a new view is fully materialized, the original query is executed.

The benefits of SemLAV are illustrated in the following example [START_REF] Folz | Semlav: Querying deep web and linked open data with SPARQL[END_REF]. Suppose SemLAV global schema comprises different RDF vocabularies, e.g., foaf 5 FILTER ( ?N=" D a l a i Lama" | | ?N=" B a r a c k Obama" | | ?N=" R i h a n n a " ) } Fig. 2: A SPARQL query over Deep Web and Linked Data rdfs 6 . Figure 2 presents a SPARQL query expressed using the global schema. Views are expressed as conjunctive queries, where RDF predicates are represented by binary predicates, e.g., label(C,L) corresponds to ?C rdf:label ?L and ?P foaf:name ?N is expressed as name(P,N). Listing 1 defines five LAV views. Triple patterns in the query are also seen as binary predicates and BGPs are represented as conjunctive queries; the running SPARQL query is composed of four subgoals on the predicates: member(P,C), label(C, "Semantic Web"), knows(P,WKP), and name(WKP,N). The filter expression is modeled as a disjunction of atomic expressions on the equality comparison operator.

Listing 1: Views s1-s5 for Query Q v1 (P , A , I , C , L): -made (P , A ) , a f f i l i a t i o n (P , I ) , member (P , C ) , l a b e l (C , L ) v2 (A , T , P , N, C): -t i t l e (A , T) , made (P , A ) , name (P , N) , member (P , C) v3 (P , N, R ,M): -name (P , N) , name (R ,M) , knows (P , R) v4 (P , N, G , R , C): -name (P , N) , g e n d e r (P , G ) , knows (P , R ) , member (P , C) v5 (P , N, R , C , L): -name (P , N) , knows (P , R ) , member (P , C ) , l a b e l (C , L )

Given a subgoal sg of a conjunctive query, e.g., label(C,"Semantic Web"), a view v is relevant for sg, if sg is part of the body of v, e.g., v1(P,A,I,C,L) and v5(P,N,R,C,L) are relevant for label(C,"Semantic Web"). Table 1a presents the set of relevant views for each query subgoal of query in Figure 2.

SemLAV sorts relevant views according to the number of the subgoals of the query that the view defines, e.g., view v5 is sorted first since it defines all the subgoals. Table 1b represents the sorted relevant views for query in Figure 2.

SemLAV identifies and ranks the relevant views of a query, and executes the query over the data collected from the relevant views. Different strategies can be followed to contact the views and load the data. For example, following a blocking strategy, views are contacted one by one in order, and a view is not contacted until all the data from the previous contacted view have been downloaded completely. This is the strategy followed by SemLAV, which is illustrated in the Figure 3a, we can see that this strategy can be blocking if the first view is huge. While the view v5 is loading we are not able to perform the query. This blocking issue can have a negative impact on the performance of the query en-Table 1: Relevant views of query Q (cf. Figure 2), and views from Listing 1. gine if the performance is measured in terms of the number of answers produced per unit of time, i.e., throughput.

To illustrate this problem, consider Figure 3a, where v5 is loaded first. Even if v5 covers all the query subgoals, loading v5 first reduces the throughput, because v5 is the biggest view and does not contribute to the result. On the other hand, loading both v1 and v4, which together cover all the subgoals takes less time and may produce query answers. If relevant views were loaded in parallel following a non-blocking strategy, this situation would not affect the query engine performance. This solution is illustrated in Figure 3b, where there are five threads and each of them loads one of the first five top ranked views at the time; views are allocated in different threads. Time to load v5 is greater than the time required to load v4 and v1 in parallel. Additionally, v4 and v1 cover all the subgoals of our running query; thus, answers are produced before loading v5 completely.

We propose a non-blocking strategy for executing SPARQL queries against views. Like SemLAV, this approach does not rely on statistics to rank and select the relevant views. The proposed strategy prevents the query engine from getting blocked until all the data are retrieved from the relevant views.

Our Approach

A non-blocking strategy to access the views in a parallel fashion is defined. Although this strategy improves the performance of a query engine, loading the retrieved data into the integrated RDF graph in parallel, may generate concurrency problems, i.e., many processes may simultaneously add data to the integrated RDF graph. So, we define a new concurrent model for RDF, and we propose a non-blocking query execution strategy able to adapt query execution to different criteria, e.g., a query is executed after a certain number of triples 

A Concurrency Model for the Integrated RDF Graph

Regarding our approach, we need a model that can handle concurrent insertions. However, RDF stores like Jena do not handle concurrent insertions, they are only able to favor one type of operation, e.g., reads or insertions. This strategy is implemented thanks to locks, but read and insert locks are mutually exclusive, i.e., they cannot be simultaneously activated. Existing RDF stores assume that there are more readers than writers and follow the multiple-readers/single-writer strategy (MRSW) 8 . According to MRSW, many readers may read simultaneously, while a writer must have exclusive access. MRSW assumes writers have the priority to keep data up-to-date. Nevertheless, in our proposed approach, data insertions are going to be more frequent than data reads. A reader is the query engine that accesses the integrated RDF graph during query execution, while writers are the wrappers of the relevant views which load the data into the integrated RDF graph. The query engine cannot execute the query more often than loading views into the integrated RDF graph, because executing the query is expensive, and doing so too often may lead to performance degradation. In other words, our proposed approach prioritizes read operations over insertions, i.e., a single-reader/multiple-writers strategy (SRMW) [START_REF] Peterson | Concurrent reading while writing II: the multiwriter case[END_REF] is followed to manage concurrency on the integrated RDF graph. So the reader, e.g., a query execution engine, will have a higher priority rather than a writer, e.g., a wrapper loading a view. Additionally, two insert locks cannot be activated at the same time due to the specification of the integrated RDF model. However, the query engine divides each view into blocks of n triples to allow for the loading of portions of several views at the same time. A lock is requested before starting a block loading, and it is released after n triples have been loaded completely. In our example, the first block of v5 is loaded, then the first block of v4, and to load the second block of v5, it may be necessary to wait until all the first blocks of the currently loading views are already loaded. However, this order may fluctuate depending on the system time allocation among the threads.

A Non-Blocking Strategy for SPARQL Query Execution

We implement a non-blocking strategy that is able to execute a query according to the following criteria; the selection of the criteria can be either configured or provided by the user during query execution.

-View dependent: the reader is woken up after a new view is loaded; thus, if v is a new loaded view, then the query engine will re-execute the query against the integrated RDF graph. If enough data is loaded into the integrated RDF graph from v, then the query engine will be able to generate new results when it is executed. This criterion is also implemented by SemLAV. -Time dependent: the reader is woken up after a period of time t, i.e., if t is n milliseconds, the query engine will re-execute the query against the RDF graph every n milliseconds. If enough data is loaded into the integrated RDF graph during the period t, the query engine will be able to generate new results. But, the concurrency model prioritizes the reader over writers; thus, if the writers are stopped and not able to load enough data into the integrated RDF graph, the query will be inefficiently executed. -Data dependent: the reader is woken up after a certain number n of triples are inserted into the integrated RDF graph by the writers; thus, the query engine will re-execute the query against the RDF graph whenever n new triples are integrated. If the n new triples contribute to the results, then the query engine will be able to generate new answers when it is executed. -Two-phase execution: the reader is woken up either after a period of time t or a certain number n of triples are inserted into the integrated RDF graph by the writers. In the first phase, the reader performs ASK queries to check if new results can be produced, if the answer is true, the second phase is launched. The second phase strategy will directly execute the query, then the reader will be woken up either after a period of time t or a certain number n of new triples have been inserted into the integrated RDF graph.

Experimental Evaluation

The Berlin SPARQL Benchmark (BSBM) [START_REF] Bizer | The berlin sparql benchmark[END_REF], and queries and views proposed by Espinola-Castillo [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF] are used to compare the performance of parallel SemLAV with respect to SemLAV. Our goal is to reproduce the experiments reported by Montoya et al. [START_REF] Montoya | SemLAV: Local-As-View Mediation for SPARQL[END_REF]; therefore, we used the Berlin Benchmark dataset composed of 10,000,736 triples using a scale factor of 28,211 products, 16 out of 18 queries, and nine out of the ten defined views proposed by Espinola-Castillo [START_REF] Castillo-Espinola | Indexing RDF data using materialized SPARQL queries[END_REF]. In SemLAV experiments, some queries and views were not considered because they included constants and some of the evaluated rewriters only process queries with variables. Five additional views were defined to cover all the predicates in the evaluated queries, i.e., 14 views were evaluated. Furthermore, 476 views were produced by horizontally partitioning each original view into 34 parts, such that each part produces 1/34 of the answers given by the original view.

Queries and views are described in Tables 2a and2b. The size of the complete answer is computed by including all the views into the Jena RDF triple store and by executing the queries against this centralized RDF dataset. The Jena 2.7.4 library with main memory setup is used to store and query the integrated RDF graphs. We executed parallel SemLAV with a timeout of 10 minutes. Experiments are also run on the same platform than SemLAV experiments, i.e., on a Linux server with 128 GB of memory, 124 processors where 20 GB of RAM are allocated for the experiments. Wrappers are implemented for each view and to load data from RDF files, i.e., 476 wrappers are available.

Implementation

We use critical section and lock to implement the single-reader/multiple-writers SRMW concurrency model in Jena 2.7.4. The number of threads impacts the SPARQL engine performance; thus, we consider this number as one of the independent parameters of our study. 

Impact of the Non-Blocking Query Execution Criteria

The goal of the experiment is to study the impact of the non-blocking query execution criteria on the query engine performance. We hypothesize that parallel SemLAV will outperform SemLAV in terms of throughput and time for the first answer. We measure the following metrics: i) total time (TT) in milliseconds; ii) time for first answer (TFA) in milliseconds; iii) throughput (answer/millisecond); and iv) number of times the original query is executed (#EQ). We evaluate parallel SemLAV for the non-blocking query execution criteria defined in Section 3 with different number of threads, i.e., the number of writers and the configuration of the non-blocking query execution strategy. We use setups with different number of threads 5, 10, and 20. Results suggest that 20 threads is the best number for writers. All the results are available at the project web site https://sites.google.com/site/semanticlav. The View Dependent Criterion: The thread which executes the query is woken up when a new view is loaded. Table 3 shows the result of SemLAV and parallel SemLAV using the view strategy, i.e., re-execute the query after a new view is loaded. Parallel SemLAV outperforms SemLAV in terms of throughput and total execution time. But surprisingly, the time for first answer is increased, for all queries except queries 2, 13, and 18; for these queries the time for the first answer is at most half of the SemLAV time. In most queries the time for first answer is increased because the number of times the original query is executed (#EQ) in parallel SemLAV is less than in SemLAV; furthermore, parallel SemLAV breaks the views ranking established by SemLAV, i.e., SemLAV starts by loading the view ranked in first place and executes the query. However, parallel SemLAV loads views in parallel, and the query is re-executed when a new view is loaded, which is not necessarily the first ranked view by SemLAV. In setups with 5 and 10 threads, the time for first answer is better than for 20 threads, but the throughput is lower as shown in Tables 4 and5. The Time Dependent Criterion: The thread which executes the query is woken up each 500 milliseconds. Table 6 shows the result of SemLAV and parallel SemLAV using the time dependent strategy for 20 threads. The results also show that parallel SemLAV outperforms SemLAV in terms of throughput and total execution time; however, the time for first results is increased as when the view dependent criterion is executed. The Data Dependent Criterion: The query thread is woken up each time the integrated RDF graph grows up to 500 new triples. Table 7 shows the results of SemLAV and parallel SemLAV using data dependent strategy for 20 threads. As in previous experiments, parallel SemLAV outperforms SemLAV in terms of throughput and total execution time for all queries; but the time for the first result is increased for the majority of the queries.

The Two-phase Criterion: The first phase of this strategy performs an ASK query and when it returns true, the second phase is conducted. First, the second phase executes the original query, then the query engine will be woken up either each n milliseconds or when n triples are inserted into the integrated RDF graph. Table 8 reports on the results for the two-phase strategy when the query is executed whenever 500 triples are inserted into the integrated RDF graph. Parallel SemLAV outperforms SemLAV in terms of throughput for all the queries, but throughput values of parallel SemLAV are lower than in previous experiments. 

Discussion

Table 9 summarizes the results of the throughput with 20 threads in the different empirical evaluations. In all experiments, parallel SemLAV outperforms SemLAV in terms of the throughput and total execution time. However, none of the defined execution criterion dominates other criterion. For instance, parallel SemLAV with query execution every 500 milliseconds is the best execution strategy for query2; whereas parallel SemLAV with execution strategy whenever 500 triples have been inserted into the integrated RDF graph is the most suitable strategy for query5. We repeat the experiments with different number of threads. In setup with 20 threads, parallel SemLAV outperforms SemLAV in terms of throughput and total execution time but it increases time for first answer. Preliminary results suggest that there is a tradeoff between throughput and time for first answer. To confirm these results, in the future, we plan to evaluate parallel SemLAV with different time and data setups.

Conclusions and Future Work

We tackle the problem of executing SPARQL queries against LAV views in a parallel fashion. The query execution model relies on an RDF graph that temporally materializes the data retrieved from the relevant views of a SPARQL query.

The query engine respects a concurrency model that prioritizes the execution of queries against the integrated RDF graph over loading data from the views. Additionally, a non-blocking query execution strategy allows for the execution of a SPARQL query on an RDF graph depending on different criteria. Similarly than SemLAV, our proposed parallel query execution model, named parallel SemLAV, was implemented on top of Jena. We empirically compared parallel SemLAV and SemLAV in terms of the impact of the non-blocking strategy on the query engine throughput. The observed results suggest that independently of the criterion followed by the non-blocking query engine strategy, parallel SemLAV outperforms SemLAV in terms of throughput. One limitation of our current implementation is inherent from the techniques implemented by Jena to handle concurrent insertions in an RDF graph. To overcome this limitation, we plan to consider a graph database engine as the RDF store backend, in order to provide more robust concurrency management of the RDF graph for incremental query processing.
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 1 Fig. 1: SemLAV a mediator and wrapper architecture
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 3 Fig.3: Views loading and Query execution. For sequential loading just one thread is used, while for parallel loading five threads are used

  and

	p r e f i x r d f s :	<h t t p : / /www . w3 . o r g /2000/01/ r d f -schema#>
	p r e f i x f o a f :	<h t t p : / / x m l n s . com/ f o a f /0.1/ >
	SELECT DISTINCT *
	WHERE {	
	?P f o a f : member ?C .
	?C r d f s : l a b e l " S e m a n t i c Web" .
	?P f o a f : knows ?WKP .
	?WKP f o a f : name ?N .

Table 2 :

 2 Queries and their answer size, number of subgoals, and views size, source[START_REF] Montoya | SemLAV: Local-As-View Mediation for SPARQL[END_REF] 

	(a) Query information	(b) Views size
	Query Answer Size # Subgoals	Views	Size
	Q1	6.68E+07	5	V1-V34	201,250
	Q2	5.99E+05	12	V35-V68	153,523
	Q4	2.87E+02	2	V69-V102	53,370
	Q5	5.64E+05	4	V103-V136	26,572
	Q6	1.97E+05	3	V137-V170	5,402
	Q8	5.64E+05	3	V171-V204	66,047
	Q9	2.82E+04	1	V205-V238	40,146
	Q10 2.99E+06	3	V239-V272 113,756
	Q11 2.99E+06	2	V273-V306	24,891
	Q12 5.99E+05	4	V307-V340	11,594
	Q13 5.99E+05	2	V341-V374	5,402
	Q14 5.64E+05	3	V375-V408	5,402
	Q15 2.82E+05	5	V409-V442	78,594
	Q16 2.82E+05	3	V443-V476	99,237
	Q17 1.97E+05	2	V477-V510 1,087,281
	Q18 5.64E+05	4		

Table 3 :

 3 Result of SemLAV and parallel SemLAV on BSBM using the View Dependent Criterion with 20 threads (bold font is used to highlight the values where parallel SemLAV outperforms SemLAV)

			SemLAV				parallel SemLAV	
	Query	TT	TFA Throughput #EQ	TT	TFA Throughput #EQ
	1 606,697	6,370	37.3501	15 604,254 30,481	88.7036	7
	2 600,656 260,333	0.9823	66 605,729 72,515	0.9883	16
	4 660,938 104,501	0.0004	47 359,635 288,558	0.0008	20
	5 632,809 116,037	0.8916	28 457,269 257,097	1.2339	14
	6 625,173	43,306	0.1892	24 273,662 211,313	0.7203	9
	8 627,612	5,393	0.8990	42 318,475 24,877	1.7716	7
	9	5,107	1,235	5.5240	18	2,453	1,839	11.5006	3
	10 607,841	9,810	4.9243	44 439,562 32,438	6.8094	15
	11 601,042	8,352	4.9800	43 105,684 31,660	28.3219	6
	12 609,509	5,784	0.9822 121 372,481 15,542	1.6072	16
	13 671,893 183,844	0.8910 124 392,147 41,799	1.5266	20
	14 636,387	29,201	0.5419	24 333,754 201,864	1.6905	14
	15 645,172	2,911	0.4373	37 388,061 20,016	0.7270	18
	16 648,826	2,531	0.4348	46 306,694 15,390	0.9198	7
	17 644,090	1,504	0.3060	32 278,330	5,894	0.7082	7
	18 651,094 > 600,000	0.0000	12 509,646 259,598	1.1071	13

Table 4 :

 4 Result of SemLAV and parallel SemLAV on BSBM using the View Dependent Criterion with 5 threads (bold font is used to highlight the values where parallel SemLAV outperforms SemLAV)

			SemLAV				parallel SemLAV	
	Query	TT	TFA Throughput #EQ	TT	TFA Throughput #EQ
	1 606,697	6,370	37.3501	15 601,221 13,235	35.3143	8
	2 600,656 260,333	0.9823	66 646,416 87,166	0.9261	25
	4 660,938 104,501	0.0004	47 406,008 91,383	0.0007	50
	5 632,809 116,037	0.8916	28 601,055 88,752	0.9387	29
	6 625,173	43,306	0.1892	24 317,213 61,451	0.6214	25
	8 627,612	5,393	0.8990	42 410,306	7,202	1.3751	12
	9	5,107	1,235	5.5240	18	2,687	987	10.4991	4
	10 607,841	9,810	4.9243	44 631,503 11,438	4.7398	31
	11 601,042	8,352	4.9800	43 300,244	9,879	9.9691	13
	12 609,509	5,784	0.9822 121 508,837	9,048	1.1765	37
	13 671,893 183,844	0.8910 124 532,783 54,758	1.1236	40
	14 636,387	29,201	0.5419	24 463,967 62,251	1.2161	28
	15 645,172	2,911	0.4373	37 600,885	8,390	0.4695	36
	16 648,826	2,531	0.4348	46 462,310	4,820	0.6102	12
	17 644,090	1,504	0.3060	32 311,895	2,533	0.6320	17
	18 651,094 > 600,000	0.0000	12 600,102 264,917	0.9402	37

Table 5 :

 5 Result of BSBM over SemLAV and parallel SemLAV using the View Dependent Criterion with 10 threads (bold font is used to highlight the values where parallel SemLAV outperforms SemLAV)

			SemLAV				parallel SemLAV	
	Query	TT	TFA Throughput #EQ	TT	TFA Throughput #EQ
	1 606,697	6,370	37.3501	15 602,508 17,819	41.3346	8
	2 600,656 260,333	0.9823	66 608,174 70,504	0.9843	25
	4 660,938 104,501	0.0004	47 332,060 127,329	0.0009	50
	5 632,809 116,037	0.8916	28 505,404 128,097	1.1164	29
	6 625,173	43,306	0.1892	24 272,134 98,736	0.7243	25
	8 627,612	5,393	0.8990	42 323,938 11,994	1.7418	12
	9	5,107	1,235	5.5240	18	2,479	1,489	11.3800	4
	10 607,841	9,810	4.9243	44 601,192 17,710	4.9787	31
	11 601,042	8,352	4.9800	43 168,108 16,997	17.8051	13
	12 609,509	5,784	0.9822 121 390,470 11,081	1.5331	37
	13 671,893 183,844	0.8910 124 409,106 39,892	1.4633	40
	14 636,387	29,201	0.5419	24 326,745 91,049	1.7268	28
	15 645,172	2,911	0.4373	37 496,533 11,419	0.5682	36
	16 648,826	2,531	0.4348	46 321,641	9,723	0.8771	12
	17 644,090	1,504	0.3060	32 252,595	3,643	0.7803	17
	18 651,094 > 600,000	0.0000					

Table 6 :

 6 Result of BSBM over SemLAV and parallel SemLAV using the Time Dependent Criterion with 20 threads; queries are executed every 500 msecs (bold font is used to highlight the values where parallel SemLAV outperforms SemLAV)

			SemLAV				parallel SemLAV	
	Query	TT	TFA Throughput #EQ	TT	TFA Throughput #EQ
	1 606,697	6,370	37.3501	15 604,465 28,033	67.3762	16
	2 600,656 260,333	0.9823	66 602,164 73,074	0.9941	17
	4 660,938 104,501	0.0004	47 370,372 262,367	0.0008 102
	5 632,809 116,037	0.8916	28 465,548 254,253	1.2119	27
	6 625,173	43,306	0.1892	24 266,556 184,145	0.7395	83
	8 627,612	5,393	0.8990	42 334,311 18,176	1.6877	17
	9	5,107	1,235	5.5240	18	2,343	1,772	12.0405	4
	10 607,841	9,810	4.9243	44 460,109 31,589	6.5054	28
	11 601,042	8,352	4.9800	43 114,680 23,886	26.1002	19
	12 609,509	5,784	0.9822 121 357,470 15,481	1.6746	22
	13 671,893 183,844	0.8910 124 363,735 41,237	1.6458	24
	14 636,387	29,201	0.5419	24 305,013 161,527	1.8498	94
	15 645,172	2,911	0.4373	37 412,315 20,019	0.6842	23
	16 648,826	2,531	0.4348	46 302,547 12,336	0.9325	14
	17 644,090	1,504	0.3060	32 235,062	5,910	0.8386	21
	18 651,094 > 600,000	0.0000	12 509,085 276,665	1.1083	99

Table 7 :

 7 Result of BSBM over SemLAV and parallel SemLAV using the Data Dependent Criterion with 20 threads; queries are executed whenever 500 triples have been inserted in the integrated RDF graph (bold font is used to highlight the values where parallel SemLAV outperforms SemLAV)

			SemLAV				parallel SemLAV	
	Query	TT	TFA Throughput #EQ	TT	TFA Throughput #EQ
	1 606,697	6,370	37.3501	15 604,668 27,306	62.8580	10
	2 600,656 260,333	0.9823	66 603,706 68,132	0.9916	14
	4 660,938 104,501	0.0004	47 343,267 234,513	0.0008	21
	5 632,809 116,037	0.8916	28 431,564 162,773	1.3074	16
	6 625,173	43,306	0.1892	24 248,937 165,997	0.7918	14
	8 627,612	5,393	0.8990	42 318,207 17,766	1.7731	8
	9	5,107	1,235	5.5240	18	2,717	1,731	10.3831	4
	10 607,841	9,810	4.9243	44 459,995 24,917	6.5070	15
	11 601,042	8,352	4.9800	43 112,908 25,505	26.5099	7
	12 609,509	5,784	0.9822 121 377,970 15,762	1.5838	15
	13 671,893 183,844	0.8910 124 385,730 42,222	1.5520	24
	14 636,387	29,201	0.5419	24 304,364 163,948	1.8538	17
	15 645,172	2,911	0.4373	37 410,031 13,808	0.6880	19
	16 648,826	2,531	0.4348	46 315,466 13,349	0.8943	8
	17 644,090	1,504	0.3060	32 297,911	4,792	0.6616	9
	18 651,094 > 600,000	0.0000	12 520,845 302,575	1.0833	13

Table 8 :

 8 Result of SemLAV and parallel SemLAV on BSBM using the Two-phase Criterion with 20 threads; queries are executed whenever 500 triples have been inserted in the integrated RDF graph (bold font is used to highlight the values where parallel SemLAV outperforms SemLAV)

			SemLAV				parallel SemLAV	
	Query	TT	TFA Throughput #EQ	TT	TFA Throughput #EQ
	1 606,697	6,370	37.3501	15 604,693 26,624	62.4690	4
	2 600,656 260,333	0.9823	66 603,290 72,463	0.9923	8
	4 660,938 104,501	0.0004	47 358,149 261,954	0.0008	11
	5 632,809 116,037	0.8916	28 441,166 169,437	1.2789	13
	6 625,173	43,306	0.1892	24 275,440 186,320	0.7156	6
	8 627,612	5,393	0.8990	42 329,872 24,852	1.7104	7
	9	5,107	1,235	5.5240	18	2,572	1,966	10.9685	3
	10 607,841	9,810	4.9243	44 475,523 25,193	6.2945	15
	11 601,042	8,352	4.9800	43 111,739 25,490	26.7872	7
	12 609,509	5,784	0.9822 121 396,899 16,209	1.5083	14
	13 671,893 183,844	0.8910 124 369,586 44,197	1.6197	10
	14 636,387	29,201	0.5419	24 308,277 155,879	1.8302	10
	15 645,172	2,911	0.4373	37 400,752 14,299	0.7040	18
	16 648,826	2,531	0.4348	46 330,846 12,741	0.8527	8
	17 644,090	1,504	0.3060	32 274,087	5,984	0.7192	8
	18 651,094 > 600,000	0.0000	12 517,814 285,958	1.0896	13

Table 9 :

 9 Throughput of SemLAV and parallel SemLAV (PS) using the Data-Dependent Criterion each 500 triples (DDC), Time-Dependent Criterion each 500 milliseconds (TDC), and Two-phase Criterion that combines ASK queries with DDC. With 20 threads for each criterion (bold font is used to highlight the values where parallel SemLAV outperforms SemLAV)

				Throughput
	Query SemLAV	PS	PS+DDC PS+TDC PS+DDC+ASK
	1	37.3501 88.7036 62.8580 67.3762	62.4690
	2	0.9823 0.9883	0.9916 0.9941	0.9923
	4	0.0004 0.0008 0.0008 0.0008	0.0008
	5	0.8916 1.2339 1.3074	1.2119	1.2789
	6	0.1892 0.7203 0.7918	0.7395	0.7156
	8	0.8990 1.7716 1.7731	1.6877	1.7104
	9	5.5240 11.5006 10.3831 12.0405	10.9685
	10	4.9243 6.8094	6.5070	6.5054	6.2945
	11	4.9800 28.3219 26.5099 26.1002	26.7872
	12	0.9822 1.6072	1.5838 1.6746	1.5083
	13	0.8910 1.5266	1.5520 1.6458	1.6197
	14	0.5419 1.6905 1.8538	1.8498	1.8302
	15	0.4373 0.7270	0.6880	0.6842	0.7040
	16	0.4348 0.9198	0.8943 0.9325	0.8527
	17	0.3060 0.7082	0.6616 0.8386	0.7192
	18	0.0000 1.1071	1.0833 1.1083	1.0896

http://xmlns.com/foaf/0.1/

"http://www.w3.org/2000/01/rdf-schema

http://jena.apache.org/

https://jena.apache.org/documentation/notes/concurrency-howto.html

600,785 221,434 0.9391
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