Contribution to image restoration using a neural network model
Contribution à la restauration d'images par un modèle de réseau de neurones
Résumé
The reduction of the blur and the noise is an important task in image processing. Indeed, these two types of degradation are some undesirable components during some high level treatments. In this paper, we propose an optimization method based on neural network model for the regularized image restoration. We used in this application a modified Hopfield neural network. We propose two algorithms using the modified Hopfield neural network with two updating modes : the algorithm with a sequential updates and the algorithm with the n-simultaneous updates. The quality of the obtained result attests the efficiency of the proposed method when applied on several images degraded with blur and noise.
La réduction du bruit et du flou est une tâche très importante en traitement d'images. En effet, ces deux types de dégradations sont des composantes indésirables lors des traitements de haut niveau. Dans cet article, nous proposons une méthode d'optimisation basée sur les réseaux de neurones pour résoudre le problème de restauration d'images floues-bruitées. Le réseau de neurones utilisé est le réseau de « Hopfield ». Nous proposons deux algorithmes utilisant deux modes de mise à jour: Un algorithme avec un mode de mise à jour séquentiel et un algorithme avec un mode de mise à jour n-simultanée. L'efficacité de la méthode mise en œuvre a été testée sur divers types d'images dégradées.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...