
HAL Id: hal-01261660
https://hal.science/hal-01261660

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Using radiative cooling to condense atmospheric vapor:
a study to improve water yield

Daniel Beysens, Irina Milimouk, Vadim Nikolayev, Marc Muselli, Jacques
Marcillat

To cite this version:
Daniel Beysens, Irina Milimouk, Vadim Nikolayev, Marc Muselli, Jacques Marcillat. Using radiative
cooling to condense atmospheric vapor: a study to improve water yield. Journal of Hydrology, 2003,
276 (1-4), pp.1-11. �10.1016/S0022-1694(03)00025-8�. �hal-01261660�

https://hal.science/hal-01261660
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


 

 

 
1 

USING RADIATIVE COOLING TO CONDENSE ATMOSPHERIC VAPOR: A STUDY 

TO IMPROVE WATER YIELD 

 

Daniel Beysens
1,2, *

, Irina Milimouk
2,3

, Vadim Nikolayev
1,2

, Marc Muselli
2,4

, Jacques 

Marcillat
2,5

 

 

1
 Equipe du Supercritique pour l’Environnement, les Matériaux et l’Espace, SBT, CEA-

GRENOBLE (France) 
2
 International Organization for Dew Utilization, 26, rue des Poissonniers, 33600 PESSAC 

(France) 
3
 Equipe du Supercritique pour l’Environnement, les Matériaux et l’Espace, CNRS-ESEME, 

ICMCB, 87, Av. du Dr. Schweitzer, 33608 PESSAC Cedex(France) 
4 

Université de Corse, UMR CNRS 6134, Route des Sanguinaires, 20000 AJACCIO (France) 
5
 Laboratoire de Modélisation et de Simulation Numérique en Mécanique, IMT, Technopole de 

Chateau -Gombert, 13451 MARSEILLE Cedex 20 (France) 

 

Abstract: An inexpensive radiative condenser for collecting atmospheric vapor (dew) was 

tested in Grenoble (France). The surface temperature measurements are correlated with 

meteorological data (wind velocity, air temperature) and compared to the corresponding surface 

temperature of a horizontal Polymethylmethacrylate (Plexiglas) reference plate located nearby. 

The condenser surface is a rectangular foil (1 x 0.3 m
2
)
 
made of TiO2  and BaSO4 microspheres 

embedded in polyethylene. The foil has an angle  with respect to horizontal. The under-side of 

the device, thermally isolated, faces the direction of the dominant nocturnal wind. Both a 2-D 

numerical simulation of the air circulation around the foil and experimental measurements 

shows that the angle = 30° is a good compromise between weak wind influence, large light-

emission solid angle and easy drop collection. The study was conducted from November 25, 

1999 to January 23, 2001. In comparison to the reference plate, it is found that water yield can 

be increased by up to 20 % and water collection greatly facilitated. 
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INTRODUCTION 

 

One can go back to ancient lore to find literature that water can be collected from dew (Jumikis, 

1965). More recently, passive dew water collectors (i.e. without an energy supply) have been 

discussed by several authors. The massive dew collectors erected in France in the first quarter of 

the 20
th

 century by Knapen (Knapen, 1929) and Chaptal (Chaptal, 1932) gave very low yields. 

They both followed a passive collector constructed by Zibold in Crimea (Ukraine) in 1912 

(Milimouk and Beysens, 1995). The yield of the Zibold collector was greater because it made 

better use of nocturnal radiative cooling (Nikolayev et al. 1996, Beysens et al. 1998 and 2000). 

A good yield was obtained by Nilsson (Nilsson, 1996) using a small condenser made with a 

special foil specially designed to benefit from radiative cooling. In order to improve the yield of 

such dew water collectors that use radiative cooling to condense atmospheric vapor, the present 

systematic study was set up.  

For the purposes of condenser optimization, meteorological parameters such as air temperature, 

air humidity (that define the dew temperature) and sky radiation (cloud cover) are imposed 

parameters that cannot be adjusted (Monteith 1957, Beysens 1995). In order to increase the 

yield of dew harvesting, it is however possible to (i) maximize the long wavelength emitting 

properties of the condensing surface (near infra-red), (ii) minimize the short wavelength 

absorption (sun visible light) (iii) lower the wind velocity on the condensing surface (iv) 

increase the condensation time, and (v) recover most of the water drops. 

Below, it is shown how to construct an improved dew collector where all these conditions are 

fulfilled. The study was mainly directed to improve water yield in presence of strong wind, as 

regurlarly found in islands – and more precisely in Mediterranean islands. 

 

OPTICAL PROPERTIES 

 

A foil made with material elaborated by Nilsson and collaborators (Vargas et al. 1994, Nilsson, 

1996) was used. This foil is 0.39 mm thick and  made of 5.0 vol % of TiO2 microspheres of 

0.19 m diameter, and 2.0 vol % of BaSO4 of 0.8 m diameter embedded in a matrix of low-

density polyethylene (LDPE). It also contains approximately 1 vol % of surfactant additive. This 
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material is discussed by Nilsson et al., 1994 and Nilsson, 1996, where it is explained why the 

foil improves the near infra-red emitting properties to provide radiation cooling at room 

temperature and why it efficiently reflects the visible (sun) light.  

One of the major concerns with such synthetic foils is aging as polyethylene is sensitive to UV 

radiations. During the period of data collection (more than one year) no characteristic aging 

effects were observed.  However, recent experimentation (Muselli et al, 2002) indicates that the 

average lifetime of the foil is of order 18 months (data are taken in Ajaccio, in Corsica island). 

Aging depends on the cumulated amount of UV radiation and is dependent on the measurement 

site.  



WIND INFLUENCE 



Wind is necessary to bring humid air towards the condenser but strong wind will lower and 

eventually cancel radiative cooling by heating effects. As a matter of fact, a study of dew events 

in Grenoble (Beysens et al., 2001) showed that nearly all dew events occurred when wind 

velocity, as measured at 10 cm above an horizontal dew collecting surface, was less than 1 m/s.  

It is one of the goal of the present study to increase the range of dew formation to larger wind 

velocities. One of the major applications is water recovery in islands, where wind is often 

strong. For this purpose, the study of a plane condenser that makes a non-zero angle with 

horizontal was decided. Such an arrangement has two benefits: it reduces the wind velocity very 

close to the condensing surface and it favors the sliding of the dew drops. The combined effects 

work best for angles close to 90°. However, since the emission solid angle towards the open sky 

decreases with angle, a compromise has to be found.  

A numerical study was first undertaken. The circulation of air around a model plane of AB = 

1.2 m (lateral) length and 10 mm thickness was studied (Fig.1). Computations were carried out 

using the FIDAP numerical Code (Khris, 1997) based on the Finite Elements digitization 

method using the Navier-Stokes equations. A two-dimensional study was performed. Wind 

velocity at the upstream section of the computation domain has been taken equal to a value of V 

= 10 m/s at the height H  OM = 10 m above the ground (see Fig.1a). The main results of the 

study are concerned with streamlines and velocity distribution (by means of constant velocity 
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values lines) of the air circulation above the model and especially the plane surface. Figure 1a 

presents the streamlines around the condenser making an angle  = 30° with horizontal. In 

Fig.1b is reported the wind speed evolution along the vertical axis with respect to the middle 

point of the inclined plane at point M such as H  OM . The main result is that the flow is still 

laminar although the air velocity is large at 10 m elevation. In addition, air flow close to the foil 

is seen to come from a vortex that recirculates air in the opposite direction with a much lower 

velocity, a well-known result. 

The angle  variation of the wind speed V0.1, as measured at KM  = OKOM   = 0.1 m from 

the foil surface center K, see Fig.1a is scaled on Fig. 2 by the velocity V10 ( = 10 m/s) at 10 m 

off the ground. As expected, V0.1 is about 10 times less than the velocity measured at H = 10 m 

with a weak minimum at  = 30°. This minimum can be understood as follows. When the angle 

 increases, the high-pressure regions (to which correspond the lower wind velocities) lift from 

the plate and cross the point K. In K is therefore seen successively an increase of pressure 

(lowering of velocity) for small , then, for large , a decrease of pressure (increase of velocity). 

The minimum velocity is observed around  = 30°.

Another quantity of interest is the height where the velocity suddenly decreases. In Fig.1b one 

can see that the magnitude of the velocity decreases steeply from the upper heights when H 

becomes less than some value H0 shown in Fig.1b. Above H0 the wind velocity increases 

according to a power law variation, as expected in the laminar flow limit (Pal Arya, 1988). The 

variation with angle  of the layer of quiescent air H1 = H0 – OK , rescaled by the foil height He 

= OK is reported in Fig.2. Here sin
2

AB
OK   = 0.6 sin  (m) is the elevation of the foil 

center. Fig.2 shows that the layer H1 is nearly constant and of order 3 times the elevation of the 

foil center. 



EXPERIMENTAL SETUP 

 

The measurement site was located north of Grenoble (45°11’ latitude N, 5°42’ longitude E) 

approximately 215 m a.s.l., in the middle of a 10 km wide glacial valley, between the 
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Chartreuse and Vercors mountains (2100 m maximum elevation). Two dominant wind 

directions, N-NE and S-SW, characterize the wind regime.  

A small condenser, 1 x 0.3 m
2
 was made of the special foil that was maintained on a steel grid 

with mesh 13mm (Figs.3a-b). The foil and the grid were thermally isolated from below with a 

20 mm thick sheet of polystyrene foam. Studies were carried out with and without thermal 

isolation. The surface temperature (Tc) was measured by means of a thermocouple fixed by tape 

on the foil surface, approximately in its center. The tape was transparent, and the bulb of the 

thermocouple was located near the tape edge, so that the thermocouple measured the foil 

surface temperature while being nearly unaffected by the presence of the tape. Systematic 

measurements were performed with two thermocouples, by varying sensor distance to tape 

edge–thermocouple and varying the color of the tapes. Only negligible variations were found.  

The plane of the condenser made an angle  with respect to horizontal; could be varied in the 

range [0 - 45°]. A reference condensing surface was used for comparison. It consisted of a 5mm 

thick, 0.4 x 0.4 m
2
 plate of Polymethylmethacrylate polymer (PMMA, commercial name: 

Plexiglas), placed on a thermally isolated mount formed of an aluminum foil and a 5mm thick 

sheet of polystyrene foam. Plexiglas is a polymer whose long chain radiates in the near-infrared 

and thus behaves close to the black body (the emissivity factor is 0.94). In addition, PMMA is 

transparent to direct sun illumination. Aluminum reflects the infra-red radiation and increases 

the thermal isolation from below.  

Dew mass was measured on PMMA. For this purpose, the PMMA plate was placed on an 

electronic, temperature compensated Mettler Toledo balance. The balance was protected from 

the wind up to the plate level, to lower the effect of an additional pressure from the wind. A 

wind effect was however noticeable in case of strong wind, it resumes in a vertical force due to 

the Bernouilli pressure. In Fig.4, there is a clear correlation between a noisy signal from the 

balance and the presence of strong wind. Both the foil condenser and the reference PMMA were 

set on a table 1 m off the ground, in an open area (Fig.3b). 

The following physical parameters were recorded every 15 minutes in a data logger connected 

to a computer: (i) surface temperature of the reference plate Tref  (measured with a taped 

thermocouple as for Tc), (ii) condenser temperature Tc, (iii) water condensed mass on PMMA, 

(iv) relative air humidity H% (v) air temperature Ta, (vi) wind velocity V, with a cup 
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anemometer at 0.1 m above the plate. From Nov. 25, 1999 to Jan. 20, 2000, the stalling speed of 

the anemometer was 0.2 m/s. From Jan. 20, 2000 to Jan. 23, 2001, it was 0.5 m/s. The wind 

data are averaged over a period of 15 minutes. The dew temperature Td was calculated from Ta 

and H%. Temperature was measured within 0.1 °C accuracy, and the wind velocity within 0.1 

m/s for windspeed above the stalling velocity. A typical recording is shown in Fig.4. 

During the period of study, frost formed sometimes instead of dew. Both come from a phase 

transition from atmospheric vapor, the difference being in the different latent heats (the latent 

heat of sublimation is different from that of condensation). However this difference did not 

influence our later analyses as it was always proceeded by comparing the condenser and the 

reference plate (for details, see Nikolayev et al., 2001). 

 

RESULTS AND ANALYSIS 

 

Typical data 

Data were recorded from 25 November 1999 to 27 March 2000 for several foil inclination 

angles, and from 23 March 2000 to 2 March 2001 for the constant angle  = 30°.  

In order to compare the yield of such an inclined condenser with the horizontal reference plate, 

a relative efficiency of cooling factor or “temperature gain” T* can be defined as 

    
aref

ac

TT

TT
T




 * .      (1) 

The ratio T* was studied as a function of the following factors: isolation/no isolation beneath 

the foil; angle ; wind velocity V (as measured at 0.1 m above the reference plate). A typical 

recording with average windspeed at  = 45° is shown in Fig.4 where only few daytime data are 

considered. The temperature gain is nearly constant (mean value 0.93) till the morning, when it 

varies sharply, reaching sometimes negative values. This is due to the difference in shadow and 

direct sun illumination between the plate and the tilted condenser (compare Fig.4a and 4b). It is 

noticeable that the temperature gain is insensitive to the wind value, although it varies from a 

value lower than 0.2 m/s (stalling speed of the anemometer) till 1.4 m/s. When the wind is 

stronger, the signal of the balance (h, expressed in mm) becomes noisy, with a lowering of the 

signal because of the increasing Bernoulli pressure.  
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The temperature gain T* 

 

Heat losses by air convection on a plane surface is a classical problem (see e.g. Monteith and 

Unsworth, 1990). This problem is complicated in an open area where one has to account for 

small and large values of air flow velocities, and difference in air temperature, which mixes 

forced and free air convection. As already noted in the introduction, this work aims to focus on 

the cooling gain under strong wind. The numerical study above shows that the air flow is 

laminar even though the wind at 10 m off the ground is as high as 10 m/s. Then only the case of 

laminar forced convection will be discussed here. The temperature differences Tc-Ta and Tref – 

Ta can be obtained from the evaluation of the heat flux issued from the reference and condenser 

surfaces. 

The heat flux (Q) from air to a surface can be classically written as 

   )(
1

TaTNu
e

TT
Q i

ai






,    (2) 

with Ti the surface temperature (= Tc or Tref) and  the air thermal conductivity. The number Nu 

is the Nusselt number, which relates the boundary layer thickness  to a typical dimension e of 

the surface: 

    Nu = 


e
      (3) 

Measurement of heat losses are described by a Nusselt number that varies as a power (x) of the 

Reynolds number Re, resulting in (Monteith and Unsworth, 1990) 

    Nu = E Re
x
  V

x
  .     (4) 

Here the velocity V is characteristic of the flow. The factor E is a numerical coefficient, which 

depends on the air viscosity and the particular geometry of the surface (the Prandtl number, 

which is a constant here, is hidden in E). For a horizontal plane surface, x = 1/2 if the flow is 

laminar (Re<2 10
4
). 

Cooling of the surface is ensured by radiative heat flux that is  dependent. When  = 0, 

radiative cooling is maximum. 

The surface temperature is then a complicated function of  and V: 

    T* = F(, V) ,     (5)  
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 Windspeed dependence 

 

A first question arises on how to decide which velocity is appropriate for use in Eq.(5). In the 

2D simulation (Fig.2), the velocity ratio V0.1/V10 at 0.1 m and 10 m from the surface does not 

vary appreciably with . In the classical configuration of the reference plate ( = 0) one can 

relate the measurement V0.1 above the plate with the measurement V10 at 10 m above according 

to a classical power law variation, valid during the neutral conditions assumed here (see e.g. Pal 

Arya, 1988): 

   V(H) = V10(H/10)
n
,   (6) 

Here H is expressed in m. The exponent n depends on both the surface roughness and stability. 

For near neutral conditions and a clear area with a few buildings, n  0.3. The measurement of 

the wind velocity V0.1 at 0.1 m above the reference plate, which is proportional to V10, allows 

therefore the velocity to be determined in Eq.(5) within a constant.  

The windspeed dependence of T* comes from the ratio of the Nusselt numbers corresponding 

to the plate at = 0 and   0, respectively. The dependence should then be low. This argument 

is qualitatively supported by the measurements reported in Fig.4 for the angle  = 45° where 

T* does not vary appreciably for windspeed ranging from 0 to 1.4 m/s. Long term 

measurements (from Nov. 25, 1999 to Jan 23, 2001) are reported in Fig.5 for  = 30°. Here all 

the data below the stalling speed have been suppressed. Windspeed as measured at 0.1 m from 

the plate ( 1 m from the ground) and at 10 m are both reported. The velocity at 10 m (upper 

axis) has been deduced by inverting Eq.6 with H = 1 m and n = 0.3. In Fig.5, there is no obvious 

variation of T* with V. The mean value is T* = 1.19  0.05 (three standard errors). 

 

 -dependence

 

Since T* does not vary appreciably with V in the laminar regime, the only remaining 

parameter is the tilt angle . The -dependence ofcorresponds to the Nusselt numbers and 

radiation flux and is very difficult to estimate. However, its asymptotic behavior can be 

determined. For  = 0, T*  1; for   0, T*  1, as the wind, and therefore the heat losses on 
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the condenser, decreases while the radiation flux does not change appreciably; for  >> 0, T* 

< 1, as the radiation flux strongly decreases. One thus expect T* to exhibit a maximum 

between 0 and 30° angle. In order to obtain the value of the maximum, we fit the experimental 

data to the simplest development in  that exhibits a maximum, that is  

    T* = A(
10

2

0 2
1








 ) .    (8)

Here A,  and 1 are the adjustable parameters. This notation highlights the maximum = 1) 

Let us now discuss the results obtained with the data obtained between 25 November 1999 and 

27 March 2000. The results are shown in Fig.6, which also contains the case where the lower 

part of the foil was not isolated. In spite of an important scatter of data, unavoidable when 

dealing with such atmospheric data, the following conclusions can be drawn: 

(i) The isolated and non-isolated foils exhibit the same general trend but the non-isolated foil 

shows a gain T* <1 and the isolated foil a gain T*>1. 

(ii) A least-squared fit of the isolated case data to Eqs.(12) gives A = 1.08  0.5,  = (87.5 

 300)°,  = (19  20)° (three standard errors when weighing the data with their 

corresponding errors). As A=1 within the uncertainty, another fit with A=1 imposed 

gives (Fig.6)  = (57.54  36)°,  = (21.23  6)° (three standard errors). The maximum 

gain corresponds then to this last value for 1 and the gain at this angle is T* (1) = 

1.19  0.12. Note that the gain extrapolated at 30° is T* (30°) = 1.15  0.12 (three 

standard errors), which compares well with the average value for the data for  = 30
°
 

(Fig.5): T* = 1.19  0.05 (three standard errors). 

(iii) The data from the non-isolated case are more scattered. The same radiative and air flow 

behavior are thus assumed, i.e. the parameters  and 1 from the isolated case are 

imposed in the fit. The parameter A<1, which corresponds to a lowering of the radiative 

cooling heat flux by heat losses by conduction, is thus the only adjustable parameter. 

One finds A = (0.63  0.09) (three standard errors when weighing the data with their 

corresponding errors). This value means that the absence of isolation beneath the foil 

lowers the gain by a factor as large as  40 %. 

 

The “best” tilt angle 
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From the above study, the angle that provides the best result with respect to the temperature 

gain was about 21°. However, the efficiency of drop recovery by gravity is a key factor that 

must also be considered. Gravity leads to a pulling force acting on the drops that varies as sin. 

Accordingly, the best angle should be 90°, an angle where the water yield should be nearly 

zeroed because of ground irradiation. A compromise thus has to be found. Note that going from 

21° to 30 ° increases the force by 40 % for a decrease in cooling gain of only 3.5 %. It can be 

thus considered that a good compromise between temperature gain and drop recovery by gravity 

is found for an angle of order  = 30°. At this angle, the gravity force acting on the drops is still 

50% of the maximum available force, obtained at  = 90°, and the cooling gain remains in the 

order of 120 %. 

 

CONCLUSIONS 

 

Experiments performed with a working condenser model, coupled with numerical studies of the 

air flow near the condenser, show that an angle around = 30° should give the optimal result 

for dew production. At this angle a gain in cooling in the order of 20% was found with respect 

to a horizontal reference condenser. In addition, such an angle favors the sliding of  water drops 

and thus facilitates simple recovery of water by gravity. A large prototype condenser (10 x 3 m
2
) 

based on these principles is presently working at Ajaccio (Corsica island, France). Preliminary 

data (Muselli et al., 2002) show indeed that dew can be obtained with high yield for nocturnal 

winds till 4.5 m/s (at 10 m off the ground) and that dew drops naturally slide on the foil.  
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FIGURE CAPTIONS 

 

Fig.1. 2-D simulation of air flow near a plate 1.2 m long, 10 mm thick, with windspeed V10 = 

10 m/s at 10 m elevationwith an angle = 30°. (a) Streamlines. The height H = OM is counted 

from point O. K is the plate center. (b) Air velocity versus height. The height H0 is determined 

from the intersection of the tangents to the curve H(V), as shown. In the region H>H0, the 

variation V(H) exhibits a classical power law variation. 

 

Fig.2. Angle variation of (i) air flow velocity V0.1 at 0.1 m above the foil rescaled by the air 

velocity V10 at 10 m off the ground ( = 10 m/s) and (ii) the maximum layer H1 = H0 – OK  of 

quiescent air rescaled by the foil height OK. Here sin
2

AB
OK   = 0.6 sin (m) is the 

elevation of the foil center. The wind velocity is set to be 10 m/s at 10 m above the foil. (From 

the 2D numerical simulation). 
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Fig.3. (a) The model condenser (schematic). F : foil (0.3 x 1 m
2
); PS : 20 mm thick polystyrene 

foam; G: supporting grid (13 mm mesh); V: dominant wind direction (N-NE); Tc: bulb of the 

thermocouple taped (TP) on the surface, measuring the surface temperature. The plane of the 

condenser makes an angle  with horizontal. (b). Condenser study in Grenoble. P : Plexiglas 

plate on an electronic Mettler Toledo balance. A: anemometer. C: condenser model (1 x 0.3 

m
2
). 

 

Fig. 4. Dew recording (night of Jan. 3-4, 2000) for the tilt angle 45°. (a): air temperature Ta, 

dew temperature Td, condenser temperature Tc and reference PMMA temperature Tref. (b): 

temperature gain 
aref

ac

TT

TT
T




 * . The negative part corresponds to different temperature 

evolution under sun illumination between the plate and the tilted condenser (see (a)). (c): wind 

velocity. (d) dew volume (in mm) recorded on the reference plate PMMA.  

 

Fig. 5. Reduced temperature gain T* (see Eq.1) versus wind speed at constant angle  = 30° 

(period Nov. 25, 1999 to Jan 23, 2001) in a semi-log plot. The upper axis corresponds to the 

wind speed at 10 m as deduced from Eq.6 (H = 1 m and n = 0.3). The data corresponding to 

wind speed lower than the stalling speed have been removed. The line is the best fit to a 

constant.  

 

Fig. 6. Effects of foil thermal isolation and angle  with horizontal on the temperature gain T* 

(defined in Eq.1). The curve 1 (isolated foil, data: squares) corresponds to the best fit by Eq.8 

with the amplitude A=1 imposed. The curve 2 (non-isolated foil, data: triangles) is the same as 

curve 1 with the amplitude as the only free parameter (A = 0.63  0.09).  

 


