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AbstractThe paper deals with tracking of optimal trajectories for large scale non linear systems
like power plants. It is assumed that an accurate nonlinear model of the plant is available,
but because of its size and complexity, it cannot be used directly for long term dynamic
optimization. For this reason, reference input and output trajectories are obtained from a
simplified optimization model. Then a tracking Model Predictive Control (MPC) algorithm based
on tangent linear approximations of the nonlinear model along a nominal trajectory is used to
correct the trajectories. It includes input and output constraints, state estimation and disturbances
rejection. The concept is shown on the tracking of optimal trajectories by a Combined Heat and
Power plant with heat storage and time varying electricity price.

1. INTRODUCTION

Dynamic optimization of power plants has gained in-
creased interest in the context of time varying prices, multi-
energy production and use of energy storage. There is a
trend to build detailed physical models of power plants
based on first laws as they are very useful tools to simulate
the dynamic behavior and predict quantities such as pres-
sure, temperature and flow rate. Modelling languages such
as Modelica (see Modelica (2014)) are particularly suited
since they remove the burden of assigning causality to the
variables and solving algebraic loops by hand. However,
these complex models are generally not suited for dynamic
optimization as they tend to have a very large number of
variables, equations and hybrid parts. Therefore, simpli-
fied optimization models, commonly Mixed Integer Linear
Programs (MILP) are used for long term optimization. A
drawback is that physical quantities are no longer modelled
with this approach, and simplification may also lead to im-
portant drift between the predicted optimal trajectories and
the real system. An on-line correction of the plant inputs to
follow the optimal reference trajectories is here proposed
by a specific Model Predictive Control (MPC). MPC is a
control method based on optimizing the input trajectories
of a system using an internal model of it. It can handle
constraints on both inputs and outputs. In conventional lin-
ear MPC, see Maciejowski (2000) or Camacho (2004), the
goal is generally to reach a fixed output set-point with an
optimal transient. The purpose of the MPC proposed in this
paper is to follow a non-stationary reference on outputs, but
also on inputs. The compromise between input and output
tracking is found by the MPC. The MPC employs directly
the complex nonlinear model to generate tangent linear
approximations of the plant around a nominal trajectory.
Tangent linear MPC was reported in Borrelli et al. (2005) or
Falcone et al. (2007) but equations were derived manually
on small size models (7 and 9 states). In this paper, the
tangent linear models are derived automatically on large
differential-algebraic models (at least 30 states), using the

Figure 1. Nonlinear Modelicar model of a CHP plant

potential of Modelica for index reduction and automatic
differentiation.

2. COMBINED HEAT AND POWER PLANT

The Combined Heat and Power plant to control is used
for hot water production in a district heating network. The
CHP uses a 1.4 MWe/1.7MWth engine to generate electric-
ity. Heat is recovered by two heat exchangers: the first one
on the engine cooling water, the second one on hot exhaust
gas. The engine thermal and electric efficiencies depend
on the engine load. Beside of that, two parallel boilers of
1.6 MWth may be used to produce additional heat. Two
water tanks of 135 cubic meters each are also available
for heat storage. Hot water is injected and withdrawn from
the top, while cold water flows to and from the bottom.
This results in temperature stratification within the storage.
Fuel, water and air flowrates to the engine and boilers are
internally regulated in order to produce 90oC hot water. A
model of the power plant was developped with Modelica
and the library ThermoSysPro, see Deneux et al. (2013).
Figure 1 shows the nonlinear Modelicar model of the
plant which is used in the MPC. It has 31 states and 726
algebraic variables. Nonlinearities include among others
computation of fluid properties, temperature stratification
in the storage and efficiency curves of the engine. The plant
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Figure 2. Price curve for April

has three controlled inputs: the electric load of the engine
and the thermal loads of the two boilers. Heat demand from
the network is modeled as an exogenous input. On the other
hand, a simplified MILP optimization model developed is
used for economic optimization of the plant on one day
horizon. The cost function for the long term optimization
depends upon the heat demand forecast, the electric power
produced that can be sold at a time varying price, the fuel
consumption and some maintenance costs for the engine.
An example of the price curve for April is depicted in
Figure 2. Constraints on the operating range of the engine
and boilers as well as on the maximum number of start-
ups are also included. However, the MILP model is an
energy based description of the plant, and do not model
the aforementioned nonlinearities, nor important quantities
like temperatures or flow-rates. It does not either consider
that the actual process is subject to some unmeasured or
measured disturbances, such as the uncertainty in the ther-
mal demand from the district heating network. This justi-
fies the need for the trajectory correction presented below.

3. TANGENT LINEAR MPC

3.1 Notations

In this paper, continuous and discrete trajectories are used.
For a variable v, vk refers to the value of v at sample time
tk, v(t) to the value of v at any time t, and v refers to the
whole trajectory of v. Superscript i is used when a quantity
is computed at time ti: for example vi(ti+1) is the value of v
at ti+1 computed at ti.
In the MPC procedure, vectors representing the value of
variables at the next sample times are computed, with
a receding horizon. Capital letters with superscript i are
used to define these sequences from the sample time ti,
over the corresponding MPC horizon. Hence V i contains
the values of vi+k with k in a range defined by the MPC
parameters.The notation ∆ is finally introduced to define
the time variation of a variable v between two sample times:
∆vk = vk− vk−1.

3.2 General architecture

The MILP model of the plant, which models slow dy-
namics of the system, is used for long term economic
scheduling (typically on one day horizon with half an hour
sampling time) and provides optimal reference trajectories
(ure f and yre f ) for the plant. Both inputs and outputs are
used as reference since they are often related to various
costs, profits, or engagements towards customers (e.g. fuel
cost for inputs, sales of energy for outputs). Then a track-
ing MPC based on a tangent linear approximation of the
accurate nonlinear model is introduced in order to correct

Figure 3. Architecture of the tangent linear MPC

the deviation due to the mismatch between the optimization
model and the plant, as well as disturbance acting on the
system. The purpose of the MPC is to find the optimal ad-
justment δu to the reference input ure f on a short horizon,
and to guarantee that input and output constraints are re-
spected. In particular, some inputs and outputs are not truly
continuous as they may be either within a fixed operating
range, or set to zero.
Modelicar which was used to build the complex model is
very interesting because it can provide analytical expres-
sions for jacobian matrices using e.g. algorithmic differen-
tiation, see Andersson et al. (2012). This will be used to de-
rive the tangent linear model from the nonlinear one along
a nominal trajectory. The nominal trajectories of states
and outputs (xnom and ynom) correspond to the predicted
open loop response of the plant, obtained by simulating
the nonlinear model with the reference input trajectory ure f
(therefore one also have ure f = unom). To sum it up, the
following architecture illustrated in Figure 3 is employed
and will be detailed subsequently:

• Step 0: The simplified optimization model computes
reference trajectories for inputs (ure f = unom) and
outputs (yre f ) on a large horizon H (one day for the
CHP).

• Step 1: Based on plant measurements, a state esti-
mator is used to ensure that the current state of the
nonlinear model represents the state of the plant.

• Step 2: The nonlinear model is simulated over the
MPC horizon P with the reference inputs ure f . It gives
the predicted nominal trajectory of states xnom and
outputs ynom. Matrices of the tangent linear approx-
imation along this nominal trajectory are also com-
puted meanwhile. A long prediction horizon provides
good MPC performance. However it also increases
the computation time. Therefore, a compromise needs
to be found for the prediction horizon (a couple of
hours for the CHP).

• Step 3: The MPC adapts the reference input ure f to
make the plant track the reference trajectories yre f ,
with a compromise between input and output track-
ing. Input and output constraints are considered at this
step and will be detailed in section 3.4. A peculiar
set of constraints that are specific to power plants
concerns devices that may be switched on or off. Such
devices may be either set to 0 or be operated in a
given operating range. As the proposed MPC is a
local trajectory correction, it is emphasized that it may
adapt the values of inputs but does not modify the unit
commitment (which is a logic decision). Therefore the
MPC cannot act on a device which is switched off.
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Disturbance are also considered by the MPC and may
be seen as uncontrolled inputs of the system. Fore-
casts are used as nominal trajectories for disturbance,
a typical example being outdoor temperature or heat
demand for the CHP plant.
• Step 4: Only the first control value is applied to

the plant and the nonlinear model, and the MPC
procedure (1-4) is restarted.

The tangent linear model is used instead of the nonlinear
model for various reasons. First, it reduces the nonlinear
model to a Linear Time Varying one, which is an accu-
rate first order approximation of the plant behavior around
all the nominal trajectory. Moreover LTV models may be
used in the framework of linear MPC, and one can there-
fore benefit from its guaranteed optimization convergence.
However, some modification to the standard linear MPC
are required with this formulation and will be detailed in
the next parts.

3.3 Non linear model

The plant is modeled with nonlinear differential-algebraic
equations. With x ∈ Rnx the differential states, y ∈ Rny the
outputs, u,v,w ∈ Rnu × Rnv × Rnw respectively the con-
trolled, measured/uncontrolled and unmeasured/uncontrolled
inputs (i.e. perturbations), the nonlinear model is given by{ xNL(t0) = x0

ẋNL(t) = f (xNL(t),u(t),v(t),w(t))
yNL(t) = h(xNL(t))

(1)

The operator δ is introduced to define the deviation of
a variable from its nominal value (e.g. δx(t) = x(t)−
xnom(t),δy(t) = y(t)− ynom(t) δu(t) = u(t)− unom(t),...).
The tangent linear model in a neighborhood of Pnom =
(xnom,ynom,unom,vnom,wnom) is given by

δ ẋ = ẋ− ẋnom ≈
∂ f
∂x

δx+
∂ f
∂u

δu+
∂ f
∂v

δv+
∂ f
∂w

δw (2)

Using this linearization formula at each sample time and a
zero order hold approximation for the inputs on one sample
interval, (2) may be rewritten in a sampled framework as
the following Linear Time Varying system : δxk+1 = φkδxk + γk

(
δuk
δvk

)
+ γw,kδwk

δyk = ckδxk

(3)

The matrices φk, γk =
[
γu,k,γv,k

]
,γw,k and ck are obtained

by discretizing the linearization matrices around Pnom over
one sampling period.

3.4 MPC formulation

The vectors used in the MPC are

U i =

 ui
...

ui+M−1

 ,∆U i =

 ∆ui
...

∆ui+M−1

 , Y i =

yi+1
...

yi+P


‖A‖X defines the norm AT XA, with X a square positive
semi definite matrix. The following expression is chosen
as a cost function for the MPC:

Ji = ‖U−U i
re f ‖Qu +‖Y −Y i

re f ‖Qy +‖∆U i‖R (4)
The first two terms are related to the quality of tracking
for the input and output reference trajectories. The compro-
mise between good input tracking and good output tracking

Figure 4. Definition of input and output trajectories

is expressed by the weighting matrices Qu and Qy. Finally,
in order to avoid too quick variations of the input, a penal-
ization on the term ∆U i may also added with a weighting
matrix R.
Several constraints are finally added to the problem :

• Bounds on inputs umin(ti)≤ ui ≤ umax(ti)
• Bounds on outputs ymin(ti)≤ yi ≤ ymax(ti)
• Bounds on the deviation from the nominal trajectory

δumin ≤ δu≤ δumax and δymin ≤ δy≤ δymax

As one may notice, bounds on inputs and outputs are
allowed to be time varying for the specific case of variables
that can be either zero (OFF) or between a minimum and a
maximum level (ON). The state of a device is defined from
the reference trajectory given by the MILP.
Figure 4 shows the different variables used in the MPC, in
the case where the output y and the state x are the same.
The actual output xNL of the plant up to current time ti is
in solid blue line. The reference trajectories given by the
MILP are shown in solid line: ure f = unom (orange) for
the input and yre f (green) for the output. Then the nominal
output trajectory (dash-dotted blue line) computed at time
ti is obtained by simulating the nonlinear model with the
nominal input unom, starting from the current state xNL,i.
As may be seen, the nominal trajectory of the output is
different from the reference trajectory, justifying the need
for a MPC correction. Inputs u are therefore adapted (red
stairs) over the MPC horizon P so that the predicted system
behavior (blue crosses) improves the trajectory tracking
over P. The figure also depicts operator δ , the gap between
the nominal and predicted value of the variable, as well as
operator ∆, the variation of a variable between two sample
times. One may notice that at every step tk, the nominal
trajectory is re-initialized with the estimated state of the
plant, therefore: xk

nom,k = xNL,k.

3.5 Internal augmented model

As suggested by Camacho (2004), an augmented model
using the variation of δu between two sample times and the
current state is used as internal model for the MPC: xa,k =(

δxk
δuk−1

)
. The unmeasured disturbance w is assumed to

have its nominal value wnom. Therefore δw = 0 in the
internal model and may be removed. From equation (3)
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xa,k+1︷ ︸︸ ︷(
δxk+1
δuk

)
=

Φk︷ ︸︸ ︷[
φk γu,k
0 I

]
xa,k +

Γu,k︷ ︸︸ ︷[
γu,k
Inu

]
∆δuk +

Γv,k︷ ︸︸ ︷[
γv,k
0nv

]
δvk

δyk =
[
ck 0

]︸ ︷︷ ︸
Ck

xa,k

(5)

At each MPC step, the nominal trajectory is recomputed
by simulation starting from xi = xnom,i and the measured
disturbance vi = vmes,i. Therefore, at step i, δxi = 0 in the
augmented model. The same reasoning applies for v: the
nominal trajectory V i

nom is updated as soon as new measure-
ment becomes available. One may therefore assume that
δvi+k = vi+k−vnom,i+k = 0 and remove it from the internal
model.

3.6 MPC reformulation with the augmented model

Objective and constraints on both inputs and outputs can
be reformulated explicitly according to the optimization
variable ∆δu of the internal model. Inputs: Noticing that

∆δuk = ∆uk−∆unom,k

k

∑
n=1

∆unom,n = unom,k−unom,0

ui+k = ui−1 +
k

∑
n=0

∆ui+k = ui−1 +
k

∑
n=0

(∆δui+n +∆unom,i+n)

One may rewrite inputs on the MPC horizons as

U i =

δui−1
...

δui−1

+U i
nom +L∆δU i (6)

∆U i = ∆δU i +∆unom,i (7)

δU i =

δui−1
...

δui−1

+L∆δU i (8)

where L is the nu ∗M square lower triangular matrix of
ones.

Outputs: Outputs may also be expressed as a function of
the optimization vector ∆δU i. As mentioned earlier, the
uncontrolled inputs v and w are assumed to be at their
nominal values. Therefore δwi+k = δvi+k = 0,k ∈ 1..P.
Using these assumptions, the sequence of outputs may be
written as:

δYi = Si
xxa,i +Si

u∆δUi (9)

Constraints and cost function: Constraints and the cost
function may then be reformulated using (6)-(9) into the
following quadratic program :

min
∆δU i

‖U i
f +L∆δU i‖2

Qu
+‖Y i

f +Si
u∆δU i‖2

Qy
+‖∆δU i +∆U i

nom‖2
R

s.t.
(U i

min−δui−1)⊗1 ≤ L∆δU i +U i
nom ≤ (U i

max−δui−1)⊗1
(δui−1−δumax)⊗1 ≤ L∆δU i ≤ (δU i

max−δui−1)⊗1
Y i

min−Y i
nom ≤ Si

u∆δU i ≤ Ymax−Y i
nom

−δYmax ≤ Si
u∆δU i ≤ δY i

max

With U f =

δui−1
...

δui−1

 , With Yf = Ynom−Yre f ,U f = δui−1,

⊗ the Kronecker product, 1 a vector of all ones of appro-
priate length. In the software implementation, these con-
straints can be softened (excursion out of the constraint is

penalized rather than forbidden) in order to avoid infeasi-
bility issues.

3.7 State Estimator

Using the available measurments, the model state is re-
adjusted at each step to match the true state of the plant.
Indeed, mismatch between the plant and the non linear
model can be caused by several factors:

• Prediction error δw of the unmeasured disturbance
assumed to be white noise of covariance W

• measurement noise υ assumed to be additive white
noise of covariance V

• modeling error modeled by an additive white noise
wm of covariance Wm in the state equation (3).

A time varying Extended Kalman Filter is used for state
estimation based on the tangent linear model (3). First the
predicted state x̃i and output ỹi at stage i are computed, then
the current internal state xNL,i is adjusted according to the
new measurement:{

x̃i = F (xNL,i−1,ui−1,vi−1,wnom,i−1,Tsamp)
ỹi = h(x̃i)

(10)

xNL,i = x̃i +Ki(ymes,i− ỹi) (11)
The gain Ki of the filter and update of the covariance matrix
P at step i are given by:

Ki = PicT
i
(

cT
i PT

i ci +V
)−1

(12)

Pi+1 = φi(I−Kici)φ
T
i + γw,iWγ

T
w,i +Wm (13)

3.8 Reference trajectories

Reference trajectories given by the MILP model contain
only one point per optimization sample time. This rises the
question of a suitable interpolation. In the presented work,
piecewise constant signals are used for flow quantities
such as electric power or flow-rates. However, differential
variables such as the state of charge of the storage require a
higher order modeling (e.g. linear interpolation or splines).
Linear interpolation was used for its simplicity. Moreover,
it cannot lead to reference trajectories that violate bounds
constraints between the interpolation points (which can
occur with splines).

4. TANGENT MPC IMPROVEMENT FOR POWER
PLANTS

4.1 MPC speed-up

In order to significantly reduce the computation time of
Su and Sx given in equation (10), one can assume that
the linearization matrices Φk, Γk and Ck at a given point
in time will change little between iteration i and i + 1
of the MPC algorithm. Using this assumption, only one
new linearization at time ti+P+1 is needed instead of P
linearization. Nonetheless, the simulation of the nominal
trajectory on P steps ahead has to be done at each step in
order to start from the current estimated state of the plant.

4.2 Direct feedthrough

Systems with direct feed-through from the inputs to the
outputs have a non-zero D = ∂g

∂u matrix and complicates



Si
u =



Ci+1γu,i 0 . . . 0
Ci+2Φi+1γu,i Ci+2γu,i+1 . . . 0

...
...

. . .
...

Ci+P−1
P−2
∏

n=1
Φi+P−1−nγu,i Ci+P−1

P−3
∏

n=1
Φi+P−1−nγu,i+1 . . . Ci+P−1γu,i+M−2

Ci+P
P−1
∏

n=1
Φi+P−nγu,i Ci+P

P−2
∏

n=1
Φi+P−nγu,i+1 . . . Ci+Pγu,i+M−1


Si

x =


Ci+1Φi

Ci+2Φi+1Φi
...

Ci+PΦi+P−1 . . .Φi+1Φi

 (10)

the expression of the quadratic program. D is therefore
eliminated from the internal model by changing δy by
δ ȳk = δyk− dkδuk. The matrices Si

d and L1 are defined as
:

Si
d =


di+1 . . . 0

...
. . .

...
0 . . . di+P−1

 L1 =


1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . . 0
1 1 1 . . . 1
1 1 1 . . . 1


The output may then be expressed as
Y i = Y i

nom +
(
Si

dL1 +Si
u
)

∆δU i +Si
d (δui−1⊗1)+Si

xxa,i

4.3 Scaling

Variables in power plants are physical quantities with de-
fined units and large variations in their order of magnitude.
As an example, the storage size expressed in Joule is in
the range 1010 while the flow-rates range from 10−1 to 101

kg/s. This aspect may lead to very ill conditioned matrices
when solving the quadratic program. Therefore, scaling of
the variables is performed by considering their maximum
value (either given within the model or taken from the
optimization bounds for inputs and outputs). Defining Nv
as diagonal matrices with diagonal term on row i : Nv,i =
vmax,i− vmin,i the scaled system in x̄, ū, ȳ is given by:

xk = Nxx̄k u = Nuūk y = Nyȳk (14){
δ x̄k+1 = Nx

−1φkNxδ x̄k +Nx
−1γNuδ ūk

δ̄yk = Ny
−1CNxδ x̄k +Ny

−1DNuδ ūk
(15)

5. RESULTS

The MPC based on the nonlinear model is simulated in
Figure 5 with the actual demand for a typical spring day.
Heat demand forecast was obtained with a Generalized Ad-
ditive Model (GAM) like the one described in Bissuel et al.
(2013). It takes into account weather conditions, mostly
temperature, but also other components such as calendar
events and different seasonality. The heat demand profile
is shown in the last chart (forecast in blue crosses, actual
demand in solid black line). The MILP was run with the
heat demand forecast using half an hour steps. Then, the
nonlinear model of the plant was used as a virtual plant to
simulate the system with and without MPC correction on
one day, using the actual demand. The prediction horizon
of the MPC was chosen P = 10 with a sampling time of
10 min which corresponds to a receding horizon about one
and a half hour. Thanks to the assumption described in part
4.1, only one new linearization, and one simulation starting
from the current point are needed at each MPC step.
Two outputs depicted in the two upper rows have been cho-
sen for tracking: the amount of energy in the storage and
the temperature provided to the network. In the three rows
below, one can see the inputs of the system: the electric load

of the engine and the thermal loads of the two boilers. For
both inputs and outputs, blue crosses show the reference
trajectories given by the MILP optimization, and dashed
red lines show constraints.
Definition of the objective function and constraints: When
a device is OFF according to the result of the MILP, the
corresponding input is set to 0 by the MPC. Conversely,
when the device is ON, hard constraints are used by the
MPC to keep the inputs their operating range ([0.5;1] for
the engine load, [60;100%] for the boiler loads). Boilers
are very reactive, so no weighting is put on their deviation
from the reference. On the other hand, the reference for
the engine load should be followed as much as possible
and not exhibit too sharp variations : therefore one uses
Qu = diag(1,0,0) and R= diag(0.01,0,0). For the outputs,
it is chosen that the most important thing for the power
plant is to follow the charging profile of the storage. The
temperature to the network on the other hand should not
follow strictly the reference temperature, but only be main-
tained in the band 90+2oC. Therefore the weighting matrix
Qy = 10,0 is chosen, and constraints are added to keep
the storage energy and temperature within their allowed
bounds. As shall be explained below, soft constraints are
used for the outputs to avoid infeasibility issues, meaning
that the excursion out of the bounds is strongly penalized
in the objective function but not forbidden.
Simulation: The behavior of the plant with MPC is dis-
played with solid black lines. For the outputs, the magenta
dash-dotted curve represents the behavior of the plant if the
reference inputs (blue crosses) were applied in an open-
loop way. Finally, at the end of the horizon (future), one
can see the predictions done by the MPC for the future
inputs in green dashed lines. A first thing to notice is that
the temperature goes out of the bounds during the first
hours. The reason is that all devices are switched off by
the MILP at that time (and so all inputs are set to 0 by
the MPC), meaning that only the storage is used to satisfy
the heat demand. This kind of behavior may occur as the
MILP is an energy-only model which does not consider
the temperature profile in the storage, and especially the
temperature of the top layer of water that feeds the network.
Therefore, in order to ensure the safety of the power plant,
boiler 1 has an emergency regulation that can bypass the
MPC when the energy in the storage goes below a threshold
: as can be seen on the third plot, this safety is triggered at
5 a.m.
The results show that the MPC is able to track the storage
profile by adjusting the three inputs. A slightly better be-
havior is also observed for the temperature to the district
heating network compared with the solution without MPC
Another point to notice is that without MPC correction
(dashed magenta line), the energy in the storage deviates
significantly from its reference. Therefore it may lead to
some constraint violation that were unexpected from the
MILP solution, for example if the optimization tells to
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Figure 5. MPC on the CHP plant with the actual demand

produce additional heat at a time when the storage is al-
ready filled-up (but was suppose to have still some capacity
according to the MILP).

6. FUTURE WORK

Some issues still need to be addressed. An essential point
is to decide when to re-compute a new optimal scheduling
with the current state of the plant. It was explained that
in some cases, the MPC has not enough control action on
the plant to satisfy output constraints, especially because
the MPC do not question the unit commitment done by
the MILP (as it is a local correction around a nominal
trajectory). However, the MPC is able to predict the future
outputs of the plant with and without MPC on P steps

ahead, and therefore to detect if a constraint is likely to
become violated. This information may be used to trigger a
new evaluation of the MILP. The MILP should be updated
with the current storage state and more recent heat load
forecast if available. Finally, another opportunity is to
provide MILP reference trajectories that are more robust to
demand uncertainty. The progress of this work is detailed
in Faille et al. (2015).

7. CONCLUSION

The optimal control problem of a CHP plant is addressed
by the use of two models of different complexities. At first a
simplified optimization model is used for long term trajec-
tory planning. It provides the reference optimal trajectories
for the system. Then an accurate non linear model is used to
predict the behavior of the plant and to follow the optimal
trajectories on a shorter horizon in a Tangent Linear Model
predictive control framework. The proposed MPC has spe-
cific features tailored for physical models (respect of oper-
ating ranges, variable scaling). The proposed architecture
can cope with measured and unmeasured disturbances, and
is able to handle several types of constraints.
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