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G V n + m V m

A Clifford algebra gauge invariant Lagrangian for gravity. Part1: higher dimensions and reduction to four-dimensional space-time.

!

. As said above, chapter 3 presents the construction of the basic Lagrangian. Chapter 4 studies the reduction of the Dirac equation in ! in order to obtain the « macroscopic » Dirac equation with gauge fields and gravitational field in !

. Chapter 5 calculates the different components of the curvature tensor and show how the gauge field Lagrangian of chapter 3 is reduced. At last, chapter 6 look at the mass term of the Dirac equation. A few more hypotheses will be made along the the following chapters. Appendix A shows how to build a possible set of Dirac matrices in ! .

1. Hypotheses and first consequences.

1.1 Definitions and hypotheses.

As in Kaluza-Klein type theories , we shall assume that the space-time is an ! dimensional manifold ! , locally of the form : ! .

The space-time coordinates of a point ! are labelled with Greek letters ! : ! , !

. If it is necessary to distinguish the coordinates, the letters : ! are used if : ! , and : ! if : ! . Likewise, when tensor components are expressed with respect to local orthonormal frames, we use Latin letters ! , and the indices : ! if : ! , and : ! if : ! . The symbols used in this note are defined in Appendix B, which provides also a very brief summary of the basic geometrical equations and definitions.

As in Kaluza-Klein theories, ! is assumed to be invariant under the action of a transformation group ! whose parameters are called ! : ! . The group has no action on ! : ! .

We set : ! (1.1) therefore, from the hypothesis :

! (1.2)
For an infinitésimal transformation :

! (1.3) !
, the transformation of the orthonormal local frame basis vectors is given by:

! (1.4)
This formula is valid for any vector field, not only for the ! .

! can be considered as an hyper-surface embedded in ! , and one can chose orthonormal local frames such that ! , ! , are tangent to this hyper-surface, by setting :

! (1.5)
With the condition (1.2) we then have : ! , which shows that the vectors ! remain tangent to ! in a transformation (1.3).

V = V n + m V n + m V n V = V n + m n + m V = V n + m V n ⊗ V m x α , β ,γ ... x α { } 0 ≤ α ,β ,γ , ... < n + m µ, ν, η, ρ 0 ≤ α < n ϕ, τ, χ, ψ n ≤ α < n + m a, b, c, ... i, j, k, l, m 0 ≤ a < n r, s, t, u n ≤ a < n + m V m G a x { } x ' ϕ = f ϕ (a, x) V n x ' µ = f µ (a, x) = x µ X x α = ∂f α (a, x) ∂a x | a x = 0 X x µ = 0 x ' α = x α + η x X x α η x ≪ 1 h ' a α (x ') = h a α (x ') -η x X x , h a ⎡ ⎣ ⎤ ⎦ α h a !" ! { } V m V = V n + m h r !" ! { } n ≤ r < n + m h r µ = 0 h' r µ (x ') = h r µ (x ') h r !" ! { } V m
We write :

! , ! (1.6)
The differential forms describing the neighborhood of the point where the local frame is defined, are therefore : In all what follows, the coefficients ! of the transformations (1.3) are constants, except if explicitly mentioned.

We define :

! (1.9a) and :

! (1.9b) h a α = h i µ 0 h i ϕ h r ϕ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ h α a = h µ i 0 h µ r h ϕ r ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ω i = h µ i dx µ ω r = h µ r dx µ + h ϕ r dx ϕ h a α h α b = δ a b h i µ h µ j = δ i j h r ϕ h ϕ s = δ r s h i µ h µ r = -h i ϕ h ϕ r h µ r = -h µ i h i ϕ h ϕ r h i ϕ = -h i µ h µ r h r ϕ h α a h a β = δ α β h µ i h i ν = δ µ ν h ϕ r h r τ = δ ϕ τ dx µ = h i µ ω i dx ϕ = h i ϕ ω i + h r ϕ ω r dV = det(h α a ) dx α 0 ∧ ... ∧ dx α n+m-1 = (det(h µ i ) dx µ 0 ∧ ... ∧ dx µ n-1 ) ∧ (det(h ϕ r ) dx ϕ 0 ∧ ... ∧ dx ϕ m-1 ) = dV n ∧ dV m W ν x (x ν ) h ν r = h ϕ r W ν x (x ν ) X x ϕ G h ' i ϕ (x) = h i ϕ (x) -η x X x , h i ⎡ ⎣ ⎤ ⎦ ϕ h i µ W ' µ x X x ϕ = h i µ W µ x X x ϕ -η x ( X x τ ∂ τ (h i ν W ν y X y ϕ ) -h i α ∂ α X x ϕ ) + X x ϕ h i α ∂ α η x X x ϕ V m G x µ { } ∂ τ h i µ = 0 h i µ W ' µ x X x ϕ = h i µ W µ x X x ϕ -η x h i ν W ν y X x , X y ⎡ ⎣ ⎤ ⎦ -η x X x τ h i ν X y ϕ ∂ τ (W ν y ) + X x ϕ h i α ∂ α η x V n η x = η x (x ν ) W ' µ x = W µ x + η z W µ y C . y z x -η y X y τ ∂ τ (W µ x ) + ∂ µ η x ∂ τ (W µ x ) = 0 ∂ τ h i µ = 0 W µ x G η x X x ! " ! , h a !" ! ⎡ ⎣ ⎤ ⎦ = q x a . b h b !" ! h ' a α (x) = h a α (x) -η x q x a . b (x) h b α (x) ! (1.9c)
where the coefficients ! are the structure constants of ! .

Using the Jacobi identities, one can get a relation between the ! : ! then : ! (1.10)

If ! was a rigid group of motion, one would have at first order : ! and setting : ! , this gives the constraint :

! (1.11)
Using the above hypotheses, we now look at the consequences for the coefficients ! .

With (1.2) and (1.6) :

! (1.12a)
which is a relation on ! only.

In the same way :

! (1.12b) ! (1.12c)
which shows that, with (1.4), ! remains tangent to ! , in agreement with the hypotheses.

At last, since ! does not depend on ! :

! (1.12d)
If the torsion is not zero, an infinitesimal parallelogram does not close itself. From that property, and from (1.4), the action of a group of rigid motions would give the constraint : ! (1.13) 1.3 Commutators and connexion .

The relations (1.5) et (1.6) are constraints on the local orthonormal frame basis vectors. These vectors are related to the connexion coefficients through the structure equations:

! (1.14)
In this section we examine the consequences of these constraints on the connexion coefficients. To do that, the connexion coefficients are written using the basis vector commutators. We define :

! (1.15a) then : ! (1.15b)
(Although the same notation has been used for the commutator of the vectors ! , there will be no ambiguity thanks to the index letters). One has also :

! (1.15c) ! (1.15d) where : ! X x , X y ⎡ ⎣ ⎤ ⎦ = C . x y z X z C . y x z G q x a . b X y , X x , h a [ ] ⎡ ⎣ ⎤ ⎦ + h a , X y , X x ⎡ ⎣ ⎤ ⎦ ⎡ ⎣ ⎤ ⎦ + X x , h a , X y ⎡ ⎣ ⎤ ⎦ ⎡ ⎣ ⎤ ⎦ = 0 q yc. b q x a. c -q x c. b q ya. c = C . y x z q z a. b + X x (q ya. b ) -X y (q x a. b ) G h' a ! " ! . h' b ! " ! = h a !" ! . h b !" ! -η x (q x a. c η cb + q x b. c η c a ) q x a b = q x a . c η c b q x a b + q x b a = 0 q x a . b q x r . s = (X x τ ∂ τ h r ϕ -h r τ ∂ τ X x ϕ ) h ϕ s V m q x i. j = X x τ ∂ τ h i µ h µ j q x r . i = 0 h ' r ! " ! V m X x ϕ x µ q x i . r = (X x τ ∂ τ h i ϕ -h i τ ∂ τ X x ϕ ) h ϕ r + X x τ ∂ τ h i µ h µ r X x (S . b c a ) -S . b e a (x) q x c . e -S . e c a (x) q x b . e + S . b c e (x) q x e . a = 0 dω a + ω . b a ∧ ω b = -S . b c a ω b ∧ ω c = Σ a h a ,h b ⎡ ⎣ ⎤ ⎦ = C .a b c h c C .a b
is the contorsion tensor. As it was done for the: ! in (1.12) , one can now look at the commutation coefficients :

! and with (1.5) :

! (1.16a) Likewise : ! (1.16b) then : ! if ! (1.16c) ! is computed on ! only (1.16d) at last: ! is computed on ! only if : ! (1.16e)
From (1.15e) , (1.16c) et (1.16a) , one immediately gets the following symmetry relations :

! if : ! and : ! (1.16f) moreover : ! is calculated on ! only (1.16g) and : ! is calculated on ! only , if : ! (1.16h)
The other components are :

! (1.16i) ! (1.16j) ! if : ! (1.16k)
Let us go back to the definition of the commutator of the local frame basis vectors: ! or equivalently : ! and set : 

! (1.17) One obtains ! (1.18a) ! (1.18b) ! (1.18c) Γ ba c = -Γ a bc Γ a cb -Γ bc a = η c d C . a b d -2 S c
q x a . b C .r s l = h r , h s ⎡ ⎣ ⎤ ⎦ α h α l = (h r β ∂ β h s µ -h s β ∂ β h r µ ) h µ l C .r s l = 0 C .r j l = h r ϕ ∂ ϕ h j µ h µ l C .r j l = 0 ∂ ϕ h i µ = 0 C .r s t V m C .i j k V n ∂ ϕ h i µ = 0 Γi j r = Γr j i ∂ ϕ h i µ = 0 Γs j r = Γr j s Γrst V m Γi j k V n ∂ ϕ h i µ = 0 2 Γr s i = η r t C .i s t -η s t C .i r t 2 Γir s = η s t C .i r t + η r t C .i s t 2 Γi j r = η r s C .i j s ∂ ϕ h i µ = 0 (h a α ∂ α h b β -h b α ∂ α h a β ) = C . a b c h c β h a α h b β (-∂ α h β d + ∂ β h α d ) = C . a b d F α β d ≡ (∂ α h β d -∂ β h α d ) = -C . a b d h α a h β b ∂ τ h ϕ r -∂ ϕ h τ r + h ϕ s h τ t C . t s r = 0 ∂ ν h ϕ r -∂ ϕ h ν r + h ν s h ϕ u C . s u r + h ν i h ϕ u C . i u r = 0 
C . i u r = h i ν h u ϕ F ϕ ν r + h i ϕ h u τ F τ ϕ r ! (1.18d)
In order to get some simplifications we have used several times the condition :

! (1.19a)
It will be assumed in all what follows. It implies :

! (1.19b)
One will need the following results :

! (1.20)
whatever the torsion is, and

! (1.21)
where : ! is the determinant of the ! metric tensor.

Summary of this section.

As in Kaluza-Klein theories, the space-time is assumed to be an ! dimensional manifold !

, locally of the form : ! . ! is supposed to be invariant under the action of a group of motion ! . The basis vectors of the local orthonormal frames are supposed to satisfy (1.5) , (1.6) : !

.The consequences are given by the relations (1.16). We also impose the condition (1.19) : ! .

Spinors in !

, action of the ! invariance group.

In this chapter we study the action of the invariance group ! on the spinors of ! . In the following, the ! matrices are supposed to satisfy the constraints : ! and :

! A construction of the ! matrices in ! is presented in appendix A.
2.1 Spinor transformations.

Let : ! be a spinor field defined with respect to a family of orthonormal frames !

. If one performs an infinitesimal transformation (1.3) ! , ! remains the same in the transformed frames ! which we call adapted frames. In order to know how the spinors are transformed we have to expressed the adapted frames with respect to the local frame ! .

We name : ! the spinors defined with respect to the family ! and we set : 

! and ! (2.1) C . i j s = h i ν h j ρ Fρν s + (h i ν h j ϕ -h i ϕ h j ν ) Fϕν s + h i ω h j ϕ Fϕω s ∂ ϕ h i µ = 0 ∂ ϕ h ρ j = 0 ∂ α h a α = - h a β ∂ β g g -C . a e e ∂ ϕ h r ϕ = - h r ϕ ∂ ϕ g V m g V m -C . r s s g V m V m n + m V = V n + m V n ⊗ V m V m G h r µ = 0 ↔ h ϕ i = 0 ∂ ϕ h i µ = 0 V n + m V m G V n + m γ a γ 0 + = γ 0 γ 0 γ a+ γ 0 = γ a γ a V n + m ψ (x) h a !" ! (x) { } f : x → x ' ψ (x) h ' a ! " ! (x ') { } h a !" ! (x ') { } ψ ' h a !" ! (x ') { } ψ ' = Λ -1 ψ h ' a ! " ! (x ') = A -1 a b h b !" ! (x ')
! (2.9) h' a ! " ! (x ') = A -1 a b h b !" ! (x ') = h a !" ! (x ') -η x q x a. b (x) h b !" ! (x ') A -1 a b = δ a b -η x q x a . b A a b = δ a b + η x q x a . b G V m V n + m ψ ' ψ ' = ψ ψ ψ ' γ a ψ ' = A -1 b a ψ γ b ψ ψ + Λ -1+ γ 0 Λ -1 ψ = ψ + γ 0 ψ Λ + γ 0 Λ =γ 0 Λ -1 γ b Λ = A a b γ a Λ = I + η x M x Λ -1 = I -η x M x ψ '(x ') = ψ '(x) + η x X x α ∂ α ψ ' = Λ -1 ψ (x) ψ '(x) = ψ (x) -η x (X x + M x ) ψ = ψ (x) -η x T x ψ M x + γ 0 = -γ 0 M x γ a , M x ⎡ ⎣ ⎤ ⎦ = q xb. a γ b M x M x = α h γ h γ h = γ α 1 ... γ α h h h = 0 γ h h h ± 1 h = 0 h = 2 M x = S + α c d γ c γ d c ≠ d 2 (α a b -α b a ) = q x b a q x a b = -q x b a G V n + m T x ! = X x - 1 4 q x c d γ c γ d = X x + M x " G T x ! , T y ! ⎡ ⎣ ⎤ ⎦ T x ! , T y ! ⎡ ⎣ ⎤ ⎦ = C . x y z T z ! T x ! G M x ! γ a , M x ! ⎡ ⎣ ⎤ ⎦ = 1 2 (q xb. a -q x.b a ) γ b c, d V m T x ! = X x - 1 4 q x r s γ r γ s = X x + M x "
We can now reconsider the preceding calculations. Using : 2.2 Hermitic conjugate of ! .

Let us consider the scalar product : ! and let us look at the action of ! :

! (! )

!

For a group of rigid motion which preserves the volume elements, one obtains :

! (2.11)
and therefore : ! is anti-hermitic.

2.3 Transformation of the covariant derivative and of the connexion.

We shall first check that the Dirac operator: ! q x r s + q x s r = 0 In order to justify this expression we recall that expressions of the type : ! , where all the indices are différents, are rank ! tensors with respect to local orthonormal frame rotations, and then : ! transforms like a scalar for these transformations.

M x ! , M y ! ⎡ ⎣ ⎤ ⎦ = 1 4 (q x t r q y s . t -q y t r q x s . t ) γ r γ s G V m γ a , M x ! ⎡ ⎣ ⎤ ⎦ = γ a , - 1 4 q x r s γ r γ s ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = ? q xb. a γ b a = i q xb. i γ b = q xt . i γ t + q x j. i γ j q xt . i = 0 q x j. i = 0 ∂ ϕ h i µ = 0 a = i a = t γ t , 1 4 q x r s γ r γ s ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = 1 2 (q x . s t -q x s. t ) γ s q x r s = -q x s r G V m T x ! = X x - 1 4 q x r s γ r γ s = X x + M x " G G V m ∂ ϕ h i µ = 0 h i µ G q x j. i = 0 h i ϕ q xi. r ≠ 0 T ! x S = ϕ ψ dV V m ∫ T x ! ϕ T x ! ψ g = ϕ (X x ϕ ∂ ϕ - 1 4 q x r s γ r γ s ) ψ g r ≠ s = -(X x ϕ ∂ ϕ - 1 4 q x r s γ r γ s ) ϕ ψ g + ∂ ϕ (ϕ X x ϕ ψ g ) -ϕ ∂ ϕ (X x ϕ g )ψ ϕ T x ! ψ g = -T x ! ϕ ψ g + ∂ ϕ (ϕ X x ϕ ψ g ) T x ! γ a h a α (∂ α + Γ α -S α )
We have : ! ! the third term on the right is ( with ! ) :

! ! Using the relation : ! ψ Λψ ' γ a h a α (∂ α + Γ α -S α ) Λψ ' = γ a h a α Λ (∂ α + Λ -1 Γ α Λ + Λ -1 ∂ α Λ -S α ) ψ ' = Λ A b a γ b h a α (∂ α + Γ ' α -S α ) ψ ' Γ ' α = Λ -1 Γ α Λ + Λ -1 ∂ α Λ f b !" ! = A b a h a !" ! γ a h a α (∂ α + Γ α -S α )ψ = Λ γ b f b α (∂ α + Γ ' α -S α ) ψ ' Γ ' α = Γ α + η x Γ α , M x [ ] + ∂ α (η x M x ) Γ α = Γ i j α γ i γ j 4 + Γ i r α γ i γ r 2 + Γ r s α γ r γ s 4 Γ ' α = Γ α -η x q x r s Γ i j α γ i γ j 4 , γ r γ s 4 ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ -η x q x r s Γ i t α γ i γ t 2 , γ r γ s 4 ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ -η x q x r s Γ u v α γ u γ v 4 , γ r γ s 4 ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ -∂ α ( η x q x r s γ r γ s 4 ) Γ ' i j α = Γ i j α S -1 Γ α S + S -1 dS SO(m) γ r γ s 2 V m Γ ' i s α γ i γ s = Γ i s α γ i γ s - 1 2 η x q x t s Γ i . α t γ i γ s D = γ a h a α (∂ α + Γ α -S α )ψ S = ϕ ψ dV V n+m ∫ = ϕ + γ 0 ψ dV V n+m ∫ ϕ γ α 1 ... γ α h ψ h ϕ ψ ϕ Dψ g = ∂ α (h a α ϕ γ a ψ g ) -h a α ∂ α ϕ + γ a+ γ 0 ψ g + h a α ϕ + γ a+ γ 0 (Γ cdα γ c γ d 4 -S α )ψ g -∂ α (h a α g ) ϕ γ a ψ c ≠ d h a α ϕ + γ a+ (Γ cdα γ c+ γ d + 4 -S α ) γ 0 ψ g = h a α (Γ cdα γ d γ c 4 -S α )γ a ϕ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + γ 0 ψ g = -h a α γ a (Γ cdα γ c γ d 4 + S α )ϕ + Γ . d a a γ d ϕ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + γ 0 ψ g Γ .a b b = 1 g ∂ α (h a α g ) + 2 S .β γ γ h a β
we finally obtain :

! (2.17)
2.5 The Dirac operator and the commutators.

We shall now write the Dirac operator (2.15) using the local orthonormal frame basis vector commutators. From (1.15d) one has : ! which, we recall, is true for rigid frames .

The torsion dependent terms are equal to: !

In this expression !

but ! is free. Separating the various cases, one gets :

! (2.18)
where all the indices in the first term are different.

One can do the same thing with the commutation coefficients and finally obtain :

! (2.19)
where all the indices in the first two terms on the right are different.

Note that , from (1.16a) , ! , which means that commutators ! belong to the ! tangent space, and that, from (1.16d) , these commutators are calculated on ! only. Then (2.19) is true also on ! only :

! (2.20)
where : ! , and where : ! in the two first right member terms .

Summary.

Under the action of the group of rigid motions ! , the spinors are transformed according to :

! where : ! satisfies the ! Lie algebra relations and the conditions (

2.6a) et (2.6b), if the constraint (1.19a) is satisfied. ! is anti-hermitic .
The covariant derivative of a spinor transforms like a spinor, the Dirac operator (2.15) is anti-hermitic ( ! is hermitic).

3. The gravitational field as a gauge field.

Let us consider the Dirac matrices ! which represent the basis elements ! of the Clifford algebra : !

The commutators : ! represent the generators of the rotation group. They satisfy :

! (3.1a) ϕ D ψ g = -Dϕ ψ g + ∂ α (h a α ϕ γ a ψ g ) γ a h a α Γ α = Γ cd a γ a γ c γ d 4 = 1 8 (C a cd -C d a c -C cd a ) γ a γ c γ d + 1 4 (-S a cd + S d a c + S cd a ) γ a γ c γ d 1 4 S a cd (γ a γ c γ d + 6η a d γ c ) c ≠ d a 1 4 S a cd γ a γ c γ d + S . cd d γ c Γ cd a γ a γ c γ d 4 -S a γ a = - 1 8 C a cd γ a γ c γ d + 1 4 S a cd γ a γ c γ d - 1 2 C . cd d γ c C .r s l = 0 h r , h s [ ] V m V m V m Γ st r γ r γ s γ t 4 -Sr γ r = - 1 8 C r st γ r γ s γ t + 1 4 S r st γ r γ s γ t - 1 2 C . r s s γ r Sr = S . r s s ≠ S . r c c r ≠ s ≠ t ≠ r G ψ '(x) = ψ (x) -η x T ! x ψ T x ! = X x - 1 4 q x r s γ r γ s = X x + M x " G T ! x i D γ a {e a } e a .e b + e b .e a = 2η ab R ab = 1 4 γ a , γ b ⎡ ⎣ ⎤ ⎦ [R ab , R cd ] = -η a d R cb -η a c R b d -η b d R a c -η b c R d a
and :

! (3.1b) ! (3.1c)
This set of relations is a graded Lie algebra which satisfies Jacobi's identities. The ! and ! matrices are the elements of a representation ! of an algebra defined by the relations (3.1) andnamed ! , where ! are the basis elements of this algebra. To this algebra we associate a gauge field:

! (3.2)
where : ! and ! are differential forms of degree 1 : The standard minimum gauge field Lagrangian is :

! ! (3.
! (3.8)
where : ! is the Hodge's star operator. Taking into account the ! matrices properties :

! , ! , ! (3.9)
where : ! is the spinor dimension, one has :

[γ a ,γ b ] = 4 R ab [γ a , R cd ] = η a c γ d -η a d γ c γ a R ab Γ Γ(X x ) X x W = α ω ab R ab + β ω a γ a ω ab = -ω b a ω a ω ab = ω abα dx α ω a = η ab ω b = η ab h α b dx α α β ω ab ω a (x) = η ab ω b (x) x G = dW + W ∧ W G = (α dω ab R ab + β dω a γ a ) + (α ω cd R cd + β ω c γ c ) ∧ (α ω e f R e f + β ω e γ e ) G = α dω ab R ab + α 2 2 (ω cd ∧ ω e f R cd R e f + ω e f ∧ ω cd R e f R cd ) + β dω a γ a + α β (ω cd ∧ω e R cd γ e +ω e ∧ ω cd ∧γ e R cd ) + β 2 ω c ∧ω e γ c γ e G = α dω ab R ab + α 2 2 ω cd ∧ ω e f [R cd , R e f ] + β dω a γ a + α β ω cd ∧ω e [R cd ,γ e ] + 2β 2 ω a ∧ω b R ab G = [α dω ab + 2α 2 ω a f ∧ ω .b f + 2β 2 ω a ∧ω b ] R ab + β [dω a + 2α ω a . e ∧ω e ] γ a α = 1 2 G = 1 2 [dω ab + ω a f ∧ ω .b f + 4β 2 ω a ∧ω b ] R ab + β [dω a + ω a . e ∧ω e ] γ a Ω . b a = dω . b a + ω . c a ∧ ω . b c dω a + ω . b a ∧ω b = Σ a Σ a G = 1 2 [Ω ab + 4β 2 ω a ∧ω b ] R ab + β Σ a γ a L = Tr(G ∧ * G) * γ a Tr(R ab R cd ) = N 4 (η a d η b c -η a c η b d ) Tr(R ab γ c ) = 0 Tr(γ a γ b ) = N η ab N ! (3.10a) !
The first term correspond to the Einstein-Hilbert Lagrangian of General Relativity. The third term represents the contribution of a cosmological constant, since this term is proportional to the volume element. The second term is quadratic and has the form of standard gauge field Lagrangian. The equation (3.10a) can also be re-written : In the above description ! et ! are independent gauge fields. How does that modifies the Lagrangian of matter fields ? We shall suppose that ordinary matter fields are spinor fields, and therefore we shall consider the covariant derivative of such fields.

! (3.
Let ! be a spinor field. The covariant derivative of a spinor field with gauge field is :

! L / N = -β 2 Ω ab ∧ * (ω a ∧ω b ) - 1 8 Ω ab ∧ * Ω ab -2 β 4 (ω a ∧ω b ) ∧ * (ω a ∧ω b ) +β 2 η a b (dω a + ω . c a ∧ω c ) ∧ * (dω b + ω . d b ∧ω d ) L / N = -β 2 Ω ab ∧ * (ω a ∧ω b ) - 1 8 Ω ab ∧ * Ω ab -2 β 4 (ω a ∧ω b ) ∧ * (ω a ∧ω b ) +β 2 Σ a ∧ * Σ a + µ (dω a + ω . b a ∧ω b -Σ a ) µ ω a ω ab S = I + iε a γ a + ε ab R ab ε ab = -ε b a ε a , ε ab ≪ 1 W ' = S -1 W S + S -1 dS G ' = S -1 G S S -1 = I -iε a γ a -ε ab R ab W ' = W + iα ω ab ε e R ab , γ e ⎡ ⎣ ⎤ ⎦ + α ω ab ε ef R ab , R e f ⎡ ⎣ ⎤ ⎦ + i β ω a ε e γ a ,γ e ⎡ ⎣ ⎤ ⎦ + β ω a ε ef γ a , R e f ⎡ ⎣ ⎤ ⎦ + i dε e γ e + dε ef R e f ω ' a = ω a + ε ea ω e -ε a e ω e + i β (dε a + α ω a. e ε e -α ω . a e ε e ) α = 1 / 2 ω ' a = ω a + ε ea ω e -ε a e ω e + i β Dε a Dε a = 0 ω a ε e f ε a = 0 ω ab ω a ω a = h α a dx α ω a ω ab ψ Dψ = dψ + 1 4 ω cd γ c γ d ψ + β ω a γ a ψ → D α ψ = ∂ α ψ + 1 4 ω cdα γ c γ d ψ + β h α b η b c γ c ψ
The last term is not present in the usual covariant derivative of a spinor field. Summary.

The gauge field (3.2) associated to the algebra (3.1) leads to a gravitational Lagrangian which is more general than the Einstein-Hilbert one, introducing naturally a quadratic term and a cosmological constant. The 1-form fields ! and ! are independent of each other, and as a consequence, torsion may exist as an independent field.

4. The Dirac operator in ! .

4.1 The classical Dirac equation with gauge fields : from ! to ! .

The evolution of a spinor field in ! will be assumed to be governed by the standard « minimum » Lagrangian :

! (4.1)
where : ! means : hermitic conjugate.

The construction of a possible representation of the Dirac matrices ! is detailed in appendix A . In all what follows ! is assumed to be even.

After integration of the Action on ! , one would like to recover the « macroscopic » Dirac equation with gauge fields and gravitational field. In other words, one would like to write :

! (4.2)
Note that, when we write this equation in this way, we assume that the spinor ! is a « multiplet » of : ! spinors ! of ! of the form :

L = ψ h a α γ a i D α ψ + h.c. h.c. β i βψ h a α γ a h α b η b c γ c ψ + h.c. = i βψ γ a η a c γ c ψ + h.c. ∼i βψ ψ + h.c. = 0 D α ψ = ∂ α ψ + 1 4 ω cdα γ c γ d ψ γ a R ab L = D a ψ R ab D b ψ + h.c. R ab = 1 2 γ a γ b a ≠ b L = Dψ . Dψ -D a ψ η ab D b ψ ω a ω a b V n + m V n + m V n V n + m L = ψ γ a h a α i D α ψ + (h.c.) + mass terms h.c. γ a m V m γ i h i µ (∂ µ + Γ j k µ γ j γ k 4 -S µ + W µ ) ψ = mψ ψ q m = 2 m 2 ψ i V n ! (4.3)
In the Dirac equation (4.2), the gauge fields acts on the multiplets and not on the components of each ! . In other words, in equation (4.2) , the ! are supposed to be of the form : ! , where we have written : ! to mean it is the Dirac matrice number ! defined in a space-time of dimension ! .

The appendix A shows that is is possible to « diagonalise » the Dirac matrices of type ! is Dirac operator on ! without torsion, but it is not the Dirac equation on ! because it does not include the time coordinate . This operator will be studied in chapter 6 when the mass term will be discussed .

The first term of the second line and the first term of the third line give, using (1.16f) :

ψ = ψ 1 ψ 2 ! ψ q m ⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ψ i γ i I q m ⊗ γ n i γ p a a p γ n + m i 0 ≤ i < n I q m ⊗ γ n i γ i , γ r γ s ⎡ ⎣ ⎤ ⎦ = 0 γ i γ j , γ r γ s ⎡ ⎣ ⎤ ⎦ = 0 γ r γ s 2 SO(m) Γ a bc = Γ a bc + S a bc + S bc a + S c ba D = γ a h a α D α ψ = γ i h i µ (∂ µ + Γ j k µ γ j γ k 4 + Γ j r µ γ j γ r 2 + Γrsµ γ r γ s 4 ) ψ + γ i h i ϕ (∂ ϕ + Γ j kϕ γ j γ k 4 + Γ j rϕ γ j γ r 2 + Γrsϕ γ r γ s 4 ) ψ + γ r h r ϕ (∂ ϕ + Γstϕ γ s γ t 4 + Γ j kϕ γ j γ k 4 + Γ j sϕ γ j γ s 2 ) ψ + S ab c γ a γ b γ c 4 a ≠ b ≠ c ≠ a D = γ i h i µ (∂ µ + Γ j k µ γ j γ k 4 + Γrsµ γ r γ s 4 ) ψ + D m ψ + Γ j r i γ i γ j γ r 2 ψ + γ i h i ϕ (∂ ϕ + Γ j kϕ γ j γ k 4 + Γrsϕ γ r γ s 4 ) ψ + ( Γ j k r γ r γ j γ k 4 + Γ j s r γ r γ j γ s 2 ) ψ + S ab c γ a γ b γ c 4 D m = γ r h r ϕ (∂ ϕ + Γstϕ γ s γ t 4 ) D m V m V m ! !
where : ! in the first term on the right . Finally , using (1.16f) again :

!

for orthonormal frames, one has with (1.16f) : ! . Then :

! (4.7)
The term before the last in (4.5) is :

! then , by permutation of the Dirac matrices in the second term, and with (1.16f) :

! (4.8)
The equation (4.5) becomes :

! (4.9) ! !
where : ! .

In order to assess the relative importance of the terms in (4.9), we shall write them as functions of the fields : ! . In the same way (1.18c) is : ! (4.12)

and (1.16i) :

! (4.13) Γ j r i γ i γ j γ r 2 + Γ j k r γ r γ j γ k 4 = Γ j r i γ i γ j γ r 2 + Γrk j γ r γ j γ k 4 = Γkr j + 1 2 Γrk j ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ γ r γ j γ k 2 + Γ . r k k γ r 2 j ≠ k Γ j r i γ i γ j γ r 2 + Γ j k r γ r γ j γ k 4 = -Γ j k r γ r γ j γ k 4 + Γ . r k k γ r 2 Γkrk = -Γrkk = -Γkkr = 0 Γ j r i γ i γ j γ r 2 + Γ j k r γ r γ j γ k 4 = -Γ j k r γ r γ j γ k 4 Γ j s r γ r γ j γ s 2 = -Γs j r γ r γ j γ s 2 = - 1 2 Γs j r γ r γ j γ s 2 + Γr j s γ s γ j γ r 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ Γ j s r γ r γ j γ s 2 = Γ . j r r γ j 2 D = γ i h i µ (∂ µ + Γ j k µ γ j γ k 4 + Γrsµ γ r γ s 4 ) ψ + D m ψ + γ i h i ϕ (∂ ϕ + Γ j kϕ γ j γ k 4 + Γrsϕ γ r γ s 4 ) ψ -(Γ j k r γ r γ j γ k 4 -Γ . j r r γ j 2 ) ψ + S ab c γ a γ b γ c 4 Γ j k r = h r ϕ Γ j kϕ h µ r 2 Γi j r = η r s C . i j s C . i j s = h i ν h j ρ Fρν s + h ν t h t ϕ Fϕ ρ s -h ρ t h t ϕ Fϕν s + h ν r h r ω h ρ t h t ϕ ) Fϕω s { } C .r s t = h r ϕ h s τ Fτϕ t C . i j s = h i ν h j ρ Fρν s + h ν r h ρ t C .r t s + h ν t h t ϕ Fϕ ρ s -h ρ t h t ϕ Fϕν s { } C . i u r = h i ν h u ϕ F ϕ ν r -h i ν h ν t h t ϕ h u τ F τ ϕ r = h i ν (h u ϕ F ϕ ν r -h ν t C .t u r ) 2 Γr s i = η r t C .i s t -η s t C .i r t = h i ν (η r t h s ϕ -η s t h r ϕ ) F ϕ ν t -h ν u (C r u s -C s u r ) ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ! (4.14)
With (1.15g) one obtains :

! (4.15)
The basic hypothesis was that the space-time manifold was locally of the form ! where : ! is a compact space invariant by the action of a group of motion ! . We shall set :

! (4.16)
where the fields : ! are the components of the differential forms associated to the orthonormal local frames for a manifold ! of unit curvature radius , and where : ! represents the curvature radius of ! at the point ! of ! . With (1.7) one then has :

! (4.17a)
or , like in (1.7) :

! (4.17b)
We now gather a few results useful for the coming calculations :

! (4.18) ! (4.19) ! (4.20)
this term, which is the ninth of (4.9) contributes, as well as the second of (4.9) to terms of the form : ! . The seventh term of (4.9) is ! , with :

!

! then : ! 2 Γir s = η r t C .i s t + η s t C .i r t = h i ν (η r t h s ϕ + η s t h r ϕ ) F ϕ ν t -h ν u (C r u s + C s u r ) ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 2 Γr s µ = 2 Γr s i h µ i + 2 Γr s t h µ t = (η r t h s ϕ -η s t h r ϕ ) F ϕ µ t + h µ t C t r s V = V n ⊗ V m V m G h ϕ r = q(x µ ) hϕ r (x τ ) hϕ r V m q(x µ ) V m x µ { } V n h ϕ r h s ϕ = q(x µ ) hϕ r h s ϕ = δ s r → h s ϕ = 1 q hs ϕ (x τ ) hϕ r hs ϕ = δ s r , hϕ r hr τ = δ ϕ τ C . t u s = 1 q (ht ϕ ∂ ϕ hu τ -hu ϕ ∂ ϕ ht τ )h τ s ≡ 1 q C . t u s 2 Γr s µ = 1 q (η r t hs ϕ -η s t hr ϕ ) ∂ ϕ h µ t + h µ t Ct r s ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ h i ϕ Γ j kϕ = h i ϕ h ϕ r Γ j k r = -(h i µ h µ t h t ϕ )h ϕ r Γ j k r = -h i µ h µ r Γ j k r γ i γ j γ k 2 Γ j k r = η r s h j ν h k ρ Fρν s + h ν t h ρ u C .t u s + 1 q ht ϕ (h ν t ∂ ϕ h ρ s -h ρ t ∂ ϕ h ν s ) + 1 q (q ν h ρ s -q ρ h ν s ) ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ h ν r ∼ O(q) Γr s µ ∼ O(1) Γ j k r ∼ O(q) h i ϕ Γ j kϕ ∼ O(q 2 ) h k ϕ = -h k µ h µ r h r ϕ → h k ϕ ∼ O(1) C r i s ∼ O(1) Γi r s ∼ O(1) ∼ h i ϕ Γrsϕ Γrsϕ = h ϕ a Γrsa = h ϕ t Γrst = q hϕ t Γrst h i ϕ Γrsϕ = -h i µ h µ t h t ϕ q hϕ u Γrsu = -h i µ h µ t Γrst with : ! (4.24)
therefore: ! , and this term can be grouped with the third of (4.9) to give :

! . With (4.13) :

! (4.25)
The « macroscopic" Dirac operator (4.9) is therefore :

! ! (4.26)
where : ! in the first line, and ! in the last term. Taking into account (1.7) , one can put together the last term of the first line and the first of the second line : ! We define, using , (4.18) : ! (4.27)

The operator ! has the same properties as ! , and satisfies the relations (2.8) , if the ! are associated to rigid motions. With (1.11) this condition is : ! (4.28)

In order to consider the operators ! as the operators of the Lie algebra of a group ! , ! must be the equivalent of the parameter space of this group. ! is an invariance group of ! , it is sufficient that ! is the quotient group of ! by the (invariant) stability group of ! . Note : if the Lie algebra of ! is semi simple and compact, the Killing form of the real Lie algebra is negative definite by definition, and the structure constants are totally antisymmetric. In the following we shall assume that ! is a simple group. From (4.22) we define : ! (4.29a) then , using (4.23d) :

! (4.29b)
This hypothesis is more constraining than (4.22), it means that ! does not depend on the internal coordinates of ! .

Then : ! represents the field ! contribution. This field transforms like ! in section 1.1. Now we consider the second term of (4.26) : where : ! in the last term. In order to obtain the Dirac equation (4.2) from (4.31) , one must « diagonalise » the first term of (4.31). This can be done by multiplying (4.31) by the operator (A24).

! 2 Γrst = C t r s -C st r -C r st = 1 q Ctrs -Cstr -Crst ( ) h i ϕ Γrsϕ ∼ O(1) Γrsi γ i γ r γ s 4 2 Γr s i γ i γ r γ s = γ i h i ν (η r t h s ϕ -η s t h r ϕ ) F ϕ ν t -h ν u (C r u s -C s u r ) ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ γ r γ s D = γ i h i µ ∂ µ + Γ j k µ γ j γ k 4 + 1 2 (η r t h s ϕ -η s t h r ϕ ) F ϕ µ t -h µ t C r t s ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ γ r γ s 4 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ψ + γ i h i ϕ ∂ ϕ ψ + Γ . j r r γ j 2 ψ + D m ψ + S ab c γ a γ b γ c 4 r ≠ s a ≠ b ≠ c ≠ a γ i h i ϕ ∂ ϕ -γ i h i µ h µ t C r t s γ r γ s 4 = -γ i h i µ h µ t ( h t ϕ ∂ ϕ + C r t s γ r γ s 4 ) T ! t = ht ϕ ∂ ϕ + Cr t s γ r γ s 4 T ! t T ! x ht ϕ ∂ ϕ C r t s + C s t r = 0 T ! t Q V m G V m Q G V m G G h ν r = -q(x µ ) A ν r (x ρ ) h k ϕ = h k µ A µ r hr ϕ = A k r hr ϕ h ν r V m γ i h i ϕ ∂ ϕ -γ i h i µ h µ t C r t s γ r γ s 4 = γ i h i µ A µ t T ! t A ν r (x ρ ) W µ x Γ j k µ = h µ i Γ j k i + h µ r Γ j k r = h µ i Γ j k i + O(q 2 )

Summary.

In order to put the Dirac operator ! in the form (4.2) we have done 2 hypothesis :

the hypothesis (4.29) : ! , and that ! is equivalent to the parameter space of ! , with the contraints (4.28) . With this condition on ! , the operators ! can be considered as belonging to a representation of the Lie algebra of ! , moreover they commute with the « spatial » part of the Dirac operator (4.31).

5 . Gauge field Lagrangian. In the following we shall calculate the part of the curvature tensor corresponding to the first line of (5.4), or equivalently, we shall suppose for a while, that the the torsion is null. We now write separately the curvature tensor components. ! !

Γ j k i h i µ x ν { } γ i h i µ (∂ µ + Γ j k µ γ j γ k 4 ) , T ! t ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = 0 D = γ i h i µ ∂ µ + Γ j k µ γ j γ k 4 + A µ t T ! t ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ψ + Γ . j r r γ j 2 ψ + D m ψ + S ab c γ a γ b γ c 4 Γ . j r r = -C . j r r = 0 D = γ i h i µ ∂ µ + Γ j k µ γ j γ k 4 + A µ t T ! t ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ψ + D m ψ + S ab c γ a γ b γ c 4 a ≠ b ≠ c ≠ a D h ν r = -q(x µ ) A ν r (x ρ ) V m G V m T ! t G Ω a b = d(Γ a b g ω g ) + Γ a e f ω f ∧ Γ . b g e ω g = dΓ a b g ∧ω g + Γ a b g (Σ . c d g -Γ . d c g ) ω c ∧ω d + Γ a e f Γ . b g e ω f ∧ ω g 2 Ω a b = h f α ∂ α Γ a b g -h g α ∂ α Γ a b f + Γ a e f Γ . b g e -Γ a e g Γ . b f e -Γ a b e C . f g e ( ) ω f ∧ω g Γ a b c = Γa b c + S a b c S a bc Γa b c 2 Ω a b = h f α ∂ α Γab g -h g α ∂ α Γab f + Γa e f Γ . b g e -Γa e g Γ . b f e -Γab e C . f g e ( ) ω f ∧ω g + h f α ∂ α Sab g -h g α ∂ α Sab f + Γa e f S .
(5.5)

! ! ! (5.6) ! ! ! (5.7) !

Computation of the components.

In order to compute the components of the curvature tensor we shall need the following elements : ! 

C . k l r = h k , h l [ ] β h β r = h k , h l [ ] ν h ν r + h k , h l [ ] ϕ h ϕ r C . k l r = (h k µ ∂ µ h l ν -h l µ ∂ µ h k ν )h ν r + (h k µ ∂ µ h l ϕ -h l µ ∂ µ h k ϕ )h ϕ r + (h k τ ∂ τ h l ϕ -h l τ ∂ τ h k ϕ )h ϕ r C . k l j = h k , h l [ ] β h β j = h k , h l [ ] ν h ν j C . k l r = -q C . k l j h j ν A ν r + q (h k µ ∂ µ A l r -h l µ ∂ µ A k r ) + q (A l t h k τ ∂ τ ht ϕ -A k t h l τ ∂ τ ht ϕ )hϕ r C . k l r = -q C . k l j h j ν A ν r + q (h k µ ∂ µ A l r -h l µ ∂ µ A k r )+ A l t A k s (hs τ ∂ τ ht ϕ -ht τ ∂ τ hs ϕ ) hϕ r ( ) C . k l r = -q C . k l j h j ν A ν r + q h k µ ∂ µ (h l ν A ν r ) -h l µ ∂ µ (h k ν A ν r )+ A l t A k s C . s t r ( ) C . k l r = q G l k r = q h k µ h l ν G µ ν r G µ ν t = ∂ µ A ν t -∂ ν A µ t + A µ r A ν s C .r s t 2 Γi j r = q η r s h i µ h j ν G µν s = q G r i j ∂ ϕ Γ j k r = 0
To 

! (5.15) ! ! !
The second line of this equation is a covariant derivative .

In the same way, using the relation (1.15h) for the first line of (5.6) and the relation (4.28) for the second and third lines , one obtains : In order to calculate (5.7) we use the Jacobi's identities , then :

Γir s 2 Γir s = -h i ν 1 q (η r t hs ϕ + η s t hr ϕ ) ∂ ν (q hϕ t ) Γir s = -h i ν q ν q η r s 2 Γrst = - 1 q Crst Γrsi = h i µ A µ t Cr t s C . k r s = h k , h r [ ] β h β s = (h k α ∂ α h r β -h r α ∂ α h k β )h β s = (h k µ ∂ µ h r τ + h k ϕ ∂ ϕ h r τ -h r ϕ ∂ ϕ h k τ )h τ s -h r ϕ ∂ ϕ h k ν h ν s h k τ = -h k µ h µ u h u τ = h k µ A µ u hu τ C . k r s = - h k µ q µ q δ r s + h k µ A µ u C .u r s 2 Ω n , i j = h k α ∂ α Γ i j l + Γ i m k Γ . j l m -(k ↔ l ) -Γ i j m C . k l m ( ) ω k ∧ω l V n 2 Ω i j = 2 Ω n , i j - q 2 2 G k i r G r l j + G i j r G r k l ( ) ω k ∧ ω l + q ∂ k G r i j + Γ i m k G r . j m + Γ j m k G r i . m -A k t C .t r s G s i j ( ) ω k ∧ω r -(2 q k G r i j + q i G r k j -q j G r k i ) ω k ∧ω r + q 2 2 G r i m G s . j m ω r ∧ ω s - 1 2 G i j t Ct r s ω r ∧ ω s 2 Ω i t = q 2 D k G t i l -D l G t i k ( ) + q i G t k l ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ω k ∧ ω l -2 η r t q D k q i + 1 4 G . i k s Cst r ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ω k ∧ω r + q 2 2 G r i m G t k . m ( ) ω k ∧ω r + q m 2 G s i m η t r -G r i m η t s ( ) ω r ∧ ω s D k q i = h k µ ∂ µ q i -Γ . i k m q m D k G r i j = ∂ k G r i j + Γ i m k G r . j m + Γ j m k G r i . m -A k t C .t r s G s i j ! !
(5.17)

!

where : ! 5.3 The Lagrangian.

In this section we calculate the first two terms of the Langrangian (3.10) . We shall need the following identity : ! where : ! if the index set ! is equal to the set ! up to a permutation, and ! otherwise, and where : ! . The first term of (3.10) becomes :

! (5.18)
which is, up to a factor ! , the scalar curvature of ! . Neglecting the terms of order ! and above in equations (5.15) , (5.16) , (5.17) , one gets :

! (5.19)
which contains the scalar curvature of the ! dimensional « macroscopic » space .

The second term of (3.10) is : ! where : ! (5.20)

! !

The gauge field quadratic terms are , using condition (4.28) :

! where : ! is the Killing form of the Lie algebra of the group whose ! is the parameter space.

Conclusion.

The usual gauge field Lagrangian is a direct consequence of the Lagrangian (3.10). The Eintein-Hilbert Lagrangian is modified by the first term of (5.20). The evolution of ! , in the model considered here, depends on the evolution of the function ! whose Lagrangian is quartic. At the « macroscopic » level, the couplings in (4.31), (5.19), (5.20) do not depend on the function ! and, therefore, do not depend on time.

2 Ω t u = 1 2 G k l z Ct z u + q 2 4 (G t l m G u k . m -G t k m G u l . m ) ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ω k ∧ ω l + q m (G t m k η u r -G u m k η t r ) ω k ∧ ω r + q m q m q 2 (η r u η t s -η r t η u s ) ω r ∧ ω s + 2 Ωm,t u r s ω r ∧ ω s 2 Ωm,turs = h r ϕ ∂ ϕ Γtus + Γtqr Γ . u s q -(r ↔ s ) -Γtuq C . r s q 2 Ωm,turs = 1 4 q 2 Ctuq C . r s q (ω d 1 ∧...∧ ω d p ) ∧ * (ω a 1 ∧...∧ ω a p ) = ε η d i 1 a 1 ... η d i p a p dV ε = ±1 d i { } a i { } ε = 0 dV = dV n . dV m -β 2 Ω ab ∧ * (ω a ∧ω b ) = -2 β 2 Ω . . a b a b dV -2 β 2 V n + m q Ω . . a b a b = Ω n , . . i j i j - m q D k q k + 2 m (m -1) q m q m q 2 + Ωm, . . r s r s n - 1 8 Ω ab ∧ * Ω ab = - 1 4 Ω ab c d Ω ab c d Ω ab c d Ω ab c d = Ω n, i j k l Ω n,i j k l + 1 16 G i j t G u i j Ctrs Cu . r s +2 η i j η t u η k l η r s η r t q D k q i + 1 4 G . i k p C p t r ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ η s u q D l q j + 1 4 G . j l q Cqu s ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + 1 16 G k l r G s k l C p r q Ct s u η p t η q u + m (m -1) 2 q k q k q 2
q l q l q 2 + Ωm,t u r s Ωm,

t u r s 1 4 G i j t G u i j Ct r s Cu . r s Ct r s Cu . r s = -C . t s r C . u r s V m
V m q q 6. Mass terms, torsion constraints. We define : ! (6.5)

we would like to have: ! (6.6) To obtain this equation, the mass term of the Lagrangian (6.4) can be replaced by : ! since, from (A26) : ! , and, with (A26) et (A27) :

!

In conclusion, the usual Dirac equation can be obtain from the following Lagrangian :

D m D m = 1 q γ r hr ϕ ∂ ϕ -Cstr γ s γ t 8 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ D V m = D m + S r st γ r γ s γ t 4 = γ r h r ϕ (∂ ϕ + Γstϕ γ s γ t 4 ) + S r st γ r γ s γ t 4 V m S = ϕ ψ dV V m ∫ = ϕ + γ 0 ψ dV V m ∫ D V m i D V m V m S = ϕ D V m ψ dV V m ∫ V m d -δ T ! x , D V m ⎡ ⎣ ⎤ ⎦ = 0 D V m D γ i h i µ ∂ µ , γ r h r ϕ ∂ ϕ ⎡ ⎣ ⎤ ⎦ = (γ i γ r -γ r γ i ) h i µ h r ϕ ∂ µ ϕ -γ i γ r h i µ q µ q h r ϕ L = 1 2 ψ i Dψ + h.c. ( ) ± mψ ψ D i Dψ = ± mψ γ D iγ D Dψ = ± mγ D ψ D D = γ D D i D D ψ = mψ mψ γ D ψ γ D ( ) 2 = I q n+m ψ γ D ψ ( ) + = ψ + γ D + γ 0+ ψ = ψ + γ D γ 0 ψ = ψ + γ 0 γ D ψ = ψ γ D ψ ! (6.7)
With (6.7) and (4.31), the « macroscopic » Dirac equation, in which the terms of order ! or less have been neglected, is ! (6.8)

6.3 The operator ! in the « macroscopic » Dirac equation .

The term ! in the equation (6.8) is not negligible (see (6.1a)). The resolution of (6.8) would be greatly simplified if this term would commute with the others. One has :

!

The next term to calculate is : ! , but : ! depends only on the ! coordinates at the considered order, then, using (A27) and (A1) :

!

Now, with (4.27) , (4.29) and ( 6.3) : !

Finally, if ! or if ! : ! (6.9)
If the torsion is null, the term ! commutes with the other terms of (6.8), and one can find a common set of eigenvectors to ! and to : ! .

The eigenvalues of : ! are real and that those of : ! are imaginary. Consider the product : ! where : ! ! From (1.15g) and (4.28) : ! , and using (1.21) , one gets :

!

This calculation can be directly applied to ! , and since in (6.1b) the indices ! of the torsion term are all different, one has : ! (6.10) Now let us assume that ! is an eigenvector of ! :

! L = 1 2 ψ i Dψ + h.c. ( ) ± mψ γ D ψ O(q) γ D D = γ D γ i h i µ ∂ µ + Γ j k µ γ j γ k 4 + A µ t T ! t ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ψ + γ D D m ψ + γ D S ab c γ a γ b γ c 4 = ± i mψ D m γ D D m ψ γ D γ i h i µ ∂ µ , γ D D V m ⎡ ⎣ ⎤ ⎦ = γ i h i µ ∂ µ D V m -D V m ∂ µ ( ) = -γ i h i µ q µ q D V m γ D γ i h i µ Γ j k µ γ j γ k 4 , γ D D V m ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ Γ j k µ = h µ i Γ j k i + O(q 2 ) V n γ D γ i h i µ Γ j k µ γ j γ k 4 , γ D D V m ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ ≈ h i µ Γ j k µ γ D γ i γ j γ k 4 , γ D D V m ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = 0 γ D γ i h i µ A µ t T ! t , γ D D V m ⎡ ⎣ ⎤ ⎦ = γ i A i t T ! t D V m + D V m γ i A i t T ! t = γ i A i t T ! t , D V m ⎡ ⎣ ⎤ ⎦ = 0 q µ = 0 q µ ≪ O(q) γ D γ i h i µ ∂ µ + Γ j k µ γ j γ k 4 + A µ t T ! t ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ , γ D D V m ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ ≈ 0 γ D D V m γ D D V m γ D γ i h i µ ∂ µ + Γ j k µ γ j γ k 4 + A µ t T ! t ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ D V m γ D D V m (D m ψ ) + (D m ψ ) = (λ + λ) (ψ + ψ ) (D m ψ ) + (D m ψ ) = -∂ ϕ (ψ + γ r h r ϕ (D m ψ ))+ ψ + γ r ∂ ϕ (h r ϕ )(D m ψ ) + ψ + γ r h r ϕ ∂ ϕ (D m ψ ) + ψ + (γ r h r ϕ Γstϕ γ s γ t 4 -Γ . s r r γ s )(D m ψ ) Γ . r s s = -C . r s s (D m ψ ) + (D m ψ ) g V m = -∂ ϕ (ψ + γ r h r ϕ (D m ψ ) g V m )+ ψ + D m (D m ψ ) g V m D V m r, s, t (D V m ψ ) + (D V m ψ ) g V m = -∂ ϕ (ψ + γ r h r ϕ (D V m ψ ) g V m )+ ψ + D V m (D V m ψ ) g V m ψ D V m D V m ψ = λψ If !
is compact, after integrating on ! , one has : ! and then : ! is real. That same calculations can be done for ! , and in that case, its eigenvalues are imaginary.

When the torsion is null the term : ! commutes with the other terms of (6.8), and one can find a common set of eigenvectors to these operators. The operator ! contributes to the mass term at the order ! , which is very large, except, of course, in the case of the zero eigenvalue. If the torsion is not zero, what are the conditions for keeping the commutator (6.9) null ? Can the torsion terms be considered as a perturbation?

6.4 What can be said about torsion ?

The torsion has been introduced in chapter 3 but it can be considered as an external field whose dynamics is not completely defined by (3.10b). In the Dirac equation it is not necessary to require that the operator ! commutes with the torsion terms. They can be treated as a perturbation if its intensity allows this. In this section we look at which conditions the term ! commutes with the torsion terms of (6.8) :

! ! (6.11)

where : ! and : ! for : ! and where : ! , according to : ! .

This section has been added for completeness, the result is that the torsion must be negligible, its reading can be skipped.

In equation (6.11), the first term on the right is constrained by (1.13). At chapter 4 , ! has been assumed to be be the parameter space of ! . From the Maurer-Cartan equations, one can chose : ! (6.12) and the last term of (6.11) is zero.

In order to compute the constraint (1.13) we go back to the definitions of chapter 1. We can take local frames such that : ! (6.13) Then : ! , and for : ! , using (1.16a) :

! therefore (see also chapter 4) :

! (6.14a)
The other components of : ! are , using (1.12b) and (1.12c) :

! (6.14b)
At last, using (4.29) in (1.12d) : ! (6.14c) With these relations, the constraint (1.13) is :

V m V m λ 2 = λ + λ = λ 2 > 0 λ γ D D V m γ D D V m γ D D V m 1 / q D m γ D D V m γ D D V m , γ D S ab c γ a γ b γ c 4 ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = -γ r ∂ r S ab c γ ab c 4 - 1 4 S ab c (D m γ ab c + ε γ ab c D m ) - 1 16 S ab c S r st (γ r s t γ ab c + ε γ ab c γ r s t ) ∂ r = h r ϕ ∂ ϕ γ a b c = γ a γ b γ c a ≠ b ≠ c ≠ a ε = ±1 γ D γ a b c γ D = ε γ a b c V m G S r s t = 0 ↔ S χτ ϕ = 0 hr ϕ = X r ϕ q r a . b h b = hr , h a ⎡ ⎣ ⎤ ⎦ a = s q r s . b h b = hr , h s ⎡ ⎣ ⎤ ⎦ = hr , 1 q hs ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = 1 q C .r s t ht q r s . t = C .r s t q x a . b q r i . j = q r s . j = 0 q r i . t = q A i s C .r s t ! (6.15)
We have now all the ingredients to compute the commutator (6.11 The case ! is treated in the same way, one has :

q ∂ r S ab c = q h r ϕ ∂ ϕ S ab c = hr ϕ ∂ ϕ S ab c = -S sb c q r . a s -S ib c q r . a i + S a s c q r b . s + S ab s q r c .

s a, b, c i, j, k ε = 1 -γ r ∂ r S i j k γ i j k 4 i ≠ j ≠ k ≠ i ∂ r S i j k = (S i j s A k t -S i k s A j t ) C .r t s S i j s γ i j = 0 S i j s S i j s = 0 S i j s ≤ O(q) a, b, c i, j, p ε = -1 S p i j γ D D V m , γ D S pi j γ p i j 4 ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = -γ r ∂ r S pi j γ p i j 4 + 1 4 S pi j γ i j γ p , D m ⎡ ⎣ ⎤ ⎦ = - γ r γ i j 4 ∂ r S pi j γ p + S pi j Γs.r p γ s { } + S pi j γ i j 4 γ p , γ r ⎡ ⎣ ⎤ ⎦ D r D r = (∂ r + Γ s t r γ s t 4 )
q ∂ r S pi j = -S si j q r . p s -S mi j q r . p m + S p s j q r i . s + S pi s q r j . s = -S si j C p r . s -S . i j m q A m s C p r s + S p s j q A i q C . r q s + S pi s q A j q C . r q s = γ r γ i j 8 q γ p S si j C p r . s + γ r γ i j 4 S . i j m A m s C p r s -S p s j A i q C . r q s -S pi s A j q C . r q s ( ) + S pi j γ i j

4 γ p , γ r ⎡ ⎣ ⎤ ⎦ D r S pi j ≪ O(q) S mi j ≪ 1 S p s j ≪ 1 a, b, c i, p, q ε = 1 γ D D V m , γ D S i p q γ i p q ⎡ ⎣ ⎤ ⎦ = -γ r ∂ r S i p q γ i p q + S i p q γ i D m , γ p q ⎡ ⎣ ⎤ ⎦ = -γ r ∂ r S i p q γ i p q + γ i S i p q γ r γ s t , γ p q ⎡ ⎣ ⎤ ⎦ Γst r 4 + S i p q γ i γ r , γ p q ⎡ ⎣ ⎤ ⎦ D r γ D D V m , γ D S p q i γ p q i ⎡ ⎣ ⎤ ⎦ = = -γ r ∂ r S p q i γ p q i + γ i S p q i γ r γ s t , γ p q ⎡ ⎣ ⎤ ⎦ Γst r 4 + S p q i γ i γ r , γ p q ⎡ ⎣ ⎤ ⎦ D r q ∂ r S i p q = S i s q C . r p s + S i p s C . r q s -γ r ∂ r S i p q γ i p q = - 2 q S i s q γ r C . r p s γ i p q S i p q S i p q ≪ O(q)
a,b, c = p, q,i ! and, like in the former case, one must have : ! (6.20b) Annex : calculation of (6.3).

Here we calculate the commutator (6.3) and we begin with the case of zero torsion. Using

(2.9) : !

where we have written : ! , and where : ! . In order to insist on the fact that the indices in a product of ! matrices are all différent, we write, for instance : ! . Developing :

! !

The term : ! is obtained from : ! , using Jacobi's identities : If the torsion is zero or if it can be considered as a perturbation, the commutation relation (6.9) help to solve the Dirac equation by looking for a system of common eigenvectors for q ∂ r S p q i = -S s q i C p r . sq S . q i m A m t C p r t + S p s i C . r q s S p q i ≪ O(q)

S ν µ ϕ = S µν ϕ S µν ϕ ≪ O(q) S ντ ϕ = S τ ν ϕ S µτ ϕ ≪ O(q) S ϕ τ µ = 0 S µ ϕ τ = 0 S ϕ µ ν = 0 S µ ν ρ ≪ 1 T ! x , D m ⎡ ⎣ ⎤ ⎦ = X x - 1 4 q x st γ s γ t , γ r h r - 1 8 C r u v γ r γ u γ v - 1 2 C . r s s γ r ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ h r = h r ϕ ∂ ϕ r ≠ u ≠ v ≠ r γ γ r u v T ! x , D m ⎡ ⎣ ⎤ ⎦ = q x r. t h t γ r - 1 8 X x (C r u v ) γ r u v - 1 2 X x (C . r s s ) γ r + 1 4 h r (q x st ) γ r s t + 1 4 q x st γ r , γ s t ⎡ ⎣ ⎤ ⎦ h r + 1 32 q x st C r u v γ s t , γ r u v ⎡ ⎣ ⎤ ⎦ + 1 8 q x st C . r u u γ s t , γ r ⎡ ⎣ ⎤ ⎦ X x (C r u v ) X x , h u , h v [ ] ⎡ ⎣ ⎤ ⎦ X x , h u , h v [ ] ⎡ ⎣ ⎤ ⎦ = X x , C .u v r h r ⎡ ⎣ ⎤ ⎦ = q x r . t C .u v r h t + X x (C .u v r )h r = -h v , X x , h u [ ] ⎡ ⎣ ⎤ ⎦ + h u , X x , h v [ ] ⎡ ⎣ ⎤ ⎦ = -h v , q x u . t h t ⎡ ⎣ ⎤ ⎦ + h u , q x v . t h t ⎡ ⎣ ⎤ ⎦ = -q x u . t C .v t s h s + q x v . t C .u t s h s -h v (q x u . t ) h t + h u (q x v . t ) h t X x (C .r s s ) + h s (q x r . s ) = q x r . t C .t s s T ! x , D m ⎡ ⎣ ⎤ ⎦ = 1 8 q x s r C .u v s + 2 q xu . t C r v t ( ) γ r u v + 1 8 q x s t C r u v γ st , γ r u v ⎡ ⎣ ⎤ ⎦ T ! x , D m ⎡ ⎣ ⎤ ⎦ = 0 T ! x , D V m ⎡ ⎣ ⎤ ⎦ = T ! x , γ r h r - 1 8 C r st γ r s t + 1 4 S r st γ r s t - 1 2 C . r s s γ r ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ T ! x , S r st γ r s t ⎡ ⎣ ⎤ ⎦ = X x (S r st ) γ r s t - 1 4 q x st S r u v γ st , γ r u v ⎡ ⎣ ⎤ ⎦ T ! x , S r st γ r s t ⎡ ⎣ ⎤ ⎦ = X x (S r st ) + q xu r S . st u -q x t . u S r su -q x s . u S r u t ( ) γ r s t T ! x , D V m ⎡ ⎣ ⎤ ⎦ = 0 !
and the « macroscopic » Dirac operator. The eigenvalues of ! contribute to the mass term.

Appendix A. Representation of the Dirac matrices.

In this appendix the space-time possesses orthonormal Cartesian coordinates and the metric ! is diagonal with : ! .

A.1 The Dirac matrices.

The dimension of a spinor in ! is : ! where the brackets mean : integer part of ! . The Dirac matrices are defined by the constraints :

! (A1)
where ! is the unit matrix of dimension : ! .

Recall that the Pauli matrices are :

! , ! , ! (A2) 
which satisfy the relations :

! si ! , ! , ! , !
We assume that we already know a representation of the Dirac matrices in the 4-dimensional Minkowski space ! and we shall build a set of satisfying (A1) by iteration.

Let : ! be matrices of dimension ! . We set : ! , ! (A3) for instance :

! ! ! ( A4)
In the following, since we consider only square matrices, we shall simply say that their dimension is : ! . By direct calculation one has :

! (A5) ! si : ! ! si : !
where : ! .

The (anti)-commutators are then :

D V m D V m η ab η a a = ±1 ! n q n = 2 [ n 2 ] n / 2 γ a γ b + γ b γ a = 2 η a b I q n I q n q n × q n = 2 [ n 2 ] × 2 [ n 2 ] σ 1 = 0 1 1 0 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ σ 2 = 0 -i i 0 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ σ 3 = 1 0 0 -1 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ σ i σ j + σ j σ i = 0 i ≠ j (σ i ) 2 = I σ i σ j = i ε i j k σ k (σ i ) + = σ i M 4 A, B, C 2 [ n 2 ] × 2 [ n 2 ] A + = σ i ⊗ A B + = σ j ⊗ B A + = σ 1 ⊗ A = 0 A A 0 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ B + = σ 2 ⊗ B = 0 -i B i B 0 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ C + = σ 3 ⊗ C = C 0 0 -C ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 2 [ n 2 ] (σ i ⊗ A) (σ j ⊗ B) = (σ i σ j ) ⊗ (A B) = i ε i j k σ k ⊗ (A B) i ≠ j = I 2 ⊗ (A B) i = j I 2 = 1 0 0 1 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ! si : ! (A6) ! si : !
and, by direct calculation : ! (A7)

We can now use these results to build the Dirac matrices in ! . We name : ! one of the Pauli matrices. For instance ! . We call : ! The conditions are the same for : ! . A possible solution is :

! et : ! (A9)
It remains to check that : ! which is a direct consequence of (A6) and (A9) . Finally, (A8) et (A9) are solutions of : ! for : ! (A10)

A.2 Dirac matrices Hermiticity and other properties , first case.

In this section we consider metrics of the type : ! where : ! si : ! . One wants to check that the Dirac matrices satisfy the Hermiticity properties : ! , !

With these constraint the hamiltonian of a free particle is Hermitic, and the probabilities are conserved (next section).

With (A7) one has directly : !

For ! , one has : !

and for the other Dirac matrices : ! and with (A6) : !

The calculation is the same for : ! , then : ! whatever : ! (A12)

Given the Dirac matrices for ! dimensional space-time we have build a set of matrices satisfying the conditions (A1) , (A11) and (A12) for the dimension ! . The next step is to get explicit Dirac matrices expressions for the dimension ! (! even) . For any matrix ! we have : ! (A13)

A + B + ± B + A + == i ε i j k σ k ⊗ (A B ∓ BA) i ≠ j A + B + ± B + A + == I 2 ⊗ (A B ± BA) i = j (σ i ⊗ A) + = σ i ⊗ A + M n+2 τ 1 τ 1 = σ 2 γ a 0 ≤ a < n M n γ + a = τ 1 ⊗ γ a γ + n = τ 2 ⊗ b γ + n +1 = τ 3 ⊗ c b c γ + a γ + b + γ + b γ + a = 2 η a b I q n+2 (γ + n ) 2 = η n n I q n+2 γ + a γ + n + γ + n γ + a = 0 (γ + n ) 2 = I 2 ⊗ b 2 = η n n I q n+2 b 2 = η n n I q n γ + a γ + n + γ + n γ + a = ± i τ 3 ⊗(γ a b -bγ a ) = 0 γ + n +1 b = ± η n n I q n c = ± η n n I q n γ + n γ + n +1 + γ + n +1 γ + n = 0 γ + a γ + b + γ + b γ + a = 2 η a b I q n+2 0 ≤ a < n + 2 (+ --... -) η a a = -1 a > 0 (γ 0 ) + = γ 0 γ 0 (γ a ) + γ 0 = γ a (γ + 0 ) + = γ + 0 0 < i < n γ + 0 (γ + i ) + -(γ + i )γ + 0 = I 2 ⊗ (γ 0 γ i + -γ i γ 0 ) = 0 γ + 0 (γ + n ) + -(γ + n )γ + 0 = (τ 1 ⊗ γ 0 )(τ 2 ⊗ (∓iI q n )) -(τ 2 ⊗ (±iI q n ))(τ 1 ⊗ γ 0 ) γ + 0 (γ + n ) + -(γ + n )γ + 0 = 0 γ + n +1 γ + 0 (γ + a ) + = (γ + a )γ + 0 0 ≤ a < n + 2 n n + 2 n + m m A σ i ⊗ (σ j ⊗ A) = (σ i ⊗ σ j ) ⊗ A
The Dirac matrices of ! will be written ! and let : ! .

We have : !

Likewise, let us define : ! Using (A13) oe can write :

! (A14)
With (A5) the following commutator :

! ! is : ! (A15)
which can be used by iteration .

Let us consider the matrix :

! (A16) which is equivalent , in ! , to the matrix ! of ! . ! satisfies : ! if ! is odd , ! if ! is even (A17) then : ! (A18)
and (see (2.9)) :

! (A19)
With the metric used in this section : ! The sign depends on the choices in (A9) . We define : ! when ! is even , then : 

M k γ k a p = m / 2 γ n + m a ∼ A n + m = σ i 1 ⊗ (σ i 2 ⊗ ( ... ⊗ (σ i p ⊗ A n ) ... )) B n + m = σ j 1 ⊗ (σ j 2 ⊗ ( ... ⊗ (σ j p ⊗ B n ) ... )) A n + m B n + m = (σ i 1 σ j 1 ) ⊗ (σ i 2 σ j 2 ) ⊗ ... ⊗ (σ i p σ j p ) ⊗ (A n B n ) σ i ⊗ A , σ j ⊗ B ⎡ ⎣ ⎤ ⎦ = (σ i σ j ) ⊗ (AB) -(σ j σ i ) ⊗ (BA) = (σ i σ j -σ j σ i ) ⊗ (AB) + (σ j σ i ) ⊗ (A B -BA) σ i ⊗ A , σ j ⊗ B ⎡ ⎣ ⎤ ⎦ = σ i ,σ j ⎡ ⎣ ⎤ ⎦ ⊗ (AB) + (σ j σ i ) ⊗ A, B [ ] γ ! = γ r 1 γ r 2 ... γ r m V m γ 5 = γ 0 γ 1 γ 2 γ 3 M 4 γ ! γ ! , γ s ⎡ ⎣ ⎤ ⎦ = 0 m γ ! γ s + γ s γ ! = 0 m γ ! , γ r γ s ⎡ ⎣ ⎤ ⎦ = 0 γ ! , M " x ⎡ ⎣ ⎤ ⎦ = 0 (γ ! ) 2 = (-1) m +1 I q n+m (γ ! ) + = (-1) m (m +1) 2 γ ! m = 2 γ n + 2 a = τ 1 ⊗ γ a 0 ≤ a < n γ n + 2 n ∼ τ 2 ⊗ I q n γ n + 2 n +1 ∼ τ 3 ⊗ I q n m = 4 γ r ± i γ n + 4 n ∼ τ 1 ⊗ τ 2 ⊗ I q n γ n + 4 n +1 ∼ τ 1 ⊗ τ 3 ⊗ I q n γ n + 4 n + 2 ∼ τ 2 ⊗ I q n+2 γ n + 4 n + 3 ∼ τ 3 ⊗ I q n+2 γ ! n + 4 ∼ τ 1 ⊗ τ 1 ⊗ I q n+4 n + m γ r n + m + 2 γ n + m + 2 r i = τ 1 ⊗ γ n + m r i 1 ≤ i ≤ m γ n + m + 2 n + m ∼ τ 2 ⊗ I q n+m γ n + m + 2 n + m +1 ∼ τ 3 ⊗ I q n+m m γ n + m + 2
r m = I 2 ⊗ γ ! n + m γ ! n + m + 2 = ±(I 2 ⊗ γ ! n + m ) (τ 2 ⊗ i I q n+m ) (τ 3 ⊗ i I q n+m ) = ± (I 2 τ 2 τ 3 ) ⊗ γ ! n + m γ ! n + m + 2 = ± iτ 1 ⊗ γ ! n + m p = m / 2 m (if ! is even) : ! (A23)
We define :

! (A24)
The important point is that ! « diagonalises » the matrices ! . Using (A5) again :

! ! (A25)
From ( A5) and (A7) we get respectively : ! and : ! (A26)

and from (A25) one gets :

! (A27)
The commutation relations with the matrices of type ! are given by (A17) .

A.3 Hermiticity of the Dirac matrices , case 2 .

In this section we consider more general metrics than in section 2, where some of the metric (diagonal) elements are positive, like for the time coordinate : ! pour some ! .

Let us assume that the ! matrices were known for the dimension ! even, and that the metric for ! is the one of section 2, and let us assume that : ! .

From (A7) and (A9) we have :

! (A28)
and, with (A11) and (A12) : ! , ! for : ! (A29) These relations are of course different from the constraints (A11) et (A12) . In the case of the Minkowski space , the constraints (A11) et (A12) are linked to the conservation of the probabilities. Let us consider a spinor scalar product of the type : ! where : ! is an, a priori, unknown matrix not depending on the coordinates . We have : ! ! where : ! for : ! .

!

In the case of the Minkowski space , the second parenthesis does not exist, and the probability conservation is ensured if : ! and if : ! . With the condition (A28) :

! (A30)
and assuming that the relations (A29) are satisfied :

! (A31)
The scalar product ! is conserved if : ! , and if : ! . This is possible if : ! , and in that case :

! (A32)
If ! is compact, then after integration on ! , the second term disappears, and it remains the divergence of the usual probability current.

m γ ! n + m ∼ τ 1 ⊗ τ 1 ⊗ ... ⊗ τ 1 p fois # $ %%%%%%%%%% ⊗ I q n γ D = τ 1 ⊗ τ 1 ⊗ ... ⊗ τ 1 p fois ! " ########## ⊗ I q n γ D γ n + m i γ D γ n + m i = τ 1 ⊗ τ 1 ⊗ ... ⊗ τ 1 ⊗ I q n ( ) τ 1 ⊗ τ 1 ⊗ ... ⊗ τ 1 ⊗ γ n i ( ) = I 2 ⊗ I 2 ⊗ ... ⊗ I 2 ⊗ (I q n γ n i ) = I q m ⊗ γ n i γ D ( ) 2 = I q n+m γ D + = γ D γ ! n + m , γ n + m i ⎡ ⎣ ⎤ ⎦ = 0 γ n + m r η a a = +1 a > 3 γ a n M n η n n = +1 (γ + n ) + = γ + n (γ + 0 γ + n ) + = -γ + 0 γ + n (γ + n γ + i ) + =γ + n γ + i 0 < i < n S = ψ + M ψ M ∂ t S = ∂ t ψ + M ψ + ψ + M ∂ t ψ = (-α + i ∂ i ψ -γ + 0 γ + n ∂ n ψ ) + M ψ + ψ + M (-α + i ∂ i ψ -γ + 0 γ + n ∂ n ψ ) α + i = γ + 0 γ + i i ≠ 0, n ∂ t S = -∂ i ψ + (α + i ) + M ψ -ψ + M α + i ∂ i ψ ( ) + ∂ n ψ + γ + 0 γ + n M ψ -ψ + M γ + 0 γ + n ∂ n ψ ( ) (α + i ) + = α + i M = I ∂ t S = -∂ i ψ + α + i M ψ -ψ + M α + i ∂ i ψ ( ) + ∂ n ψ + γ + 0 γ + n M ψ -ψ + M γ + 0 γ + n ∂ n ψ ( ) ∂ n S = -∂ i ψ + (γ + n γ + i ) M ψ -ψ + M (γ + n γ + i )∂ i ψ ( ) + ∂ t ψ + γ + n γ + 0 M ψ -ψ + M γ + n γ + 0 ∂ t ψ ( ) S α + i M = M α + i γ + 0 γ + n M = -M γ + 0 γ + n M ∼γ + n ∂ t S = -∂ i (ψ + M α + i ψ ) + ∂ n (ψ + γ + 0 ψ ) V m V m
If there are several coordinates such that ! , other than ! , for instance ! and ! , one can chose : ! . In this case , the relations : ! and : ! (A33) are still true , and (A32) keeps its form , and ! is conserved at the « macroscopic » level . 

  fields have not directly the nature of a connexion, however they transform as gauge fields under the action of the group ! , as it is now recalled. At first order, one has, using (1.4) : ! and with (1.8) : ! ! , which represents the internal action in ! of infinitesimal elements of ! , does not depend on ! , and if we assume that : ! , we obtain : ! Then , if the transformation parameters depend only on the point in ! , ! : ! If : ! , and if : ! , the ! transforms like an element of the adjoint representation of the Lie algebra of the group ! .1.2 First consequences of the invariance hypothesis.

2

  Γa b c = η c d C .

  3) and : ! , ! are arbitrary constants. The meaning of these gauge fields is the following : the fields ! are the connexion coefficients defined with respect to a family of local orthonormal frames, an the 1-forms ! are the coordinates, in the neighborhood of a given point ! , with respect to these frames. This can be understood by computing the curvature 2-form (B.8) : ! (3.4) ! and since the gauge fields (3.3) are 1-forms, one has : interpretation of the gauge fields, the first two terms in the first brackets correspond to the usual curvature 2-form ! , and the second brackets contains the structure equations : !

4. 2

 2 Decomposition of the Dirac operator.From (1.15) , one has : ! Using (2.18), the Dirac operator (2.15) is written : the last term : ! (only the totally anti-symmetric part of the torsion tensor is taken into account). Grouping the terms 3 et 7 , (4.4) is :

From ( 1 With

 1 .16k), and with condition (1.19a), we have : !

  with or without torsion. With the definitions (1.15) the connexion is re-written :

b g e +-+-

 e Sa e f Γ . b g e -Γa e g S . b f e Sa e g Γ . b f e ( ) ω f ∧ω g -Sab e C . f g e Sa e f S . b g e Sa e g S .

-

  (k ↔ r ) -Γ t u e C . k r e ( ) ω k ∧ω r + h r α ∂ α Γ t u s + Γ t e r Γ .u s e -(r ↔ s ) -Γ t u e C . r s e ( ) ω r ∧ω s

  when the torsion is null : !To include the torsion one has to calculate : ! with respect to the former calculation one must calculate :

  and ! are matrices to be determined. Using (A6), the basic constraint (

  of the type ! are (up to a factor ! ) :More generally, knowing the Dirac matrices for the dimension ! , the matrices of type ! for the dimension ! are :

  γ n + m + 2

;

  Appendix B. Notations and basic geometrical equations. The space-time coordinates of a point ! are labelled with Greek letters ! : ! , ! . The vectors of the local natural frame are written : ! . When tensors are expressed with respect to local orthonormal frames, they are labelled with Latin letters : ! . The orthonormal local frame basis vectors are called ! , and we set :! . The metric tensor is ! and ! its inverse. In the case of local orthonormal frames, the metric tensor is written : ! .The commutator of the vectors ! is : of a given point, the local coordinates, with respect to the local orthonormal frame attached to this point, are given by the 1-forms : are the sum of two terms :! (B.4)where the first term is the Christoffel symbol and the second is the contorsion tensor. The contorsion is anti symmetric with respect to the two first indices :h a α ∂ α h b γ -h b α ∂ α h a γ = C . ab c h c γ ω a = h α a dx α dω a + ω . b a ∧ ω b = Σ a S β . γ α = g α δ S β δ γ Σ a = Σ . b c a ω b ∧ ω c = -h α a S . β γ

  The relation (1.15d) is true only for rigid local frames, and therefore valid for the local orthonormal frames used. Since in (1.15d) the torsion terms are clearly separated, calculations can be performed in the case of zero torsion, and the terms corresponding to it added later. For rigid local frames one has : !

	then (1.15c) is also :	!	(1.15e)
	At last, with (1.15b) :	!	(1.15f)
	In (1.15d) we set : !		(1.15g)
	which satisfy :	!	(1.15h)

  obtain ! we use (4.13) . In this expression the last term is null because of condition

	(4.28), then :	!	
		!		(5.11)
	with (4.28) , (4.24) becomes :	!	(5.12)
	(4.13) becomes :	!		(5.13)
	!		
	!	
	and with (4.23d) and (4.29) : !	, then :
	!			(5.14)
	We can now come back to the curvature tensor. Using the relations (1.19) , (5.8) et (5.10) ,
	and setting : !		
	which represents the curvature on !	only , one obtains :

  6.1 The operator ! .

		The « macroscopic » Dirac equation (4.31), contains the operator (4.6). Using (5.12) , this
	operator is :				!	(6.1a)
	We define : !			(6.1b)
	where, in the last term, all the indices are different. We consider the scalar product of two
	spinors on !	: !		. The calculations which lead to (2.17)
	can be applied to !	, then :	the operator : !	is hermitic on !	(6.2)
	The product: !	is invariant with respect to re-definitions of the local
	orthonormal frames of !	.
		For an isometry, the associated Lie derivative commutes with the Dirac operator ! . It is
	shown at the end of this chapter that :	!	(6.3)
	However, the operator ! does not commute with !	(4.31), because :
		!			
	where the first term on the right is not zero.
	6.2 Mass term of the Lagrangian.
		The usual Lagrangian of a spinor field is :
					!	(6.4)
	where : !	is defined in (2.15), and the resulting Euler-Lagrange equations are :
	!			. As said in chapter 4, in order to obtain equation (4.2) one must
	« diagonalise » equation (4.31). This can be done by multiplying it by the operator (A24) :
	!	. The equation of motion is therefore : !	.

  ). When the indices !

	are of the type !	, !	and the commutator (6.11) reduces to : !	,
	with : !	, where : !	
	The commutator (6.11) can be zero, for this set of indices, if : !	, that is to say, if :
	!	is symmetric with respect to the two first indices, or if : !	. It can be negligible if :
					!		(6. 16)
	If the indices !	are of the type : !	: !	, and with the relation (6.16), it remains
	to consider the case !	. In that case :
	!						(6.17)
					!	
	where : !			, and :	
		!				
		!				
	Finally the commutator (6.17) is :	
	!					
	it will be negligible if :		
		!			,	!	,	!	(6.18)
	When the indices !	are of the type : !	: !	. The relation (6.11) is in that case :
		!					(6.19a)
		!			
	and likewise : !				
		!					(6.19b)
	The relation (6.15) is :	!	
	and the first term of (6.19a) is : !	
	In equation (6.19a) only the torsion terms of the type : !	contribute, then, (6.19a) is
	macroscopically negligible if :	!	(6.20a)