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Abstract

Choosing an ancestral state reconstruction method among the alternatives available for quan-
titative characters may be puzzling. We present here a comparison of seven of them, namely
the maximum likelihood, restricted maximum likelihood, generalized least squares under Brown-
ian, Brownian-with-trend and Ornstein-Uhlenbeck models, phylogenetic independent contrasts and
squared parsimony methods.

A review of the relations between these methods shows that the maximum likelihood, the re-
stricted maximum likelihood and the generalized least squares under Brownian model infer the same
ancestral states and can only be distinguished by the distributions accounting for the reconstruction
uncertainty which they provide.

The respective accuracy of the methods is assessed over character evolution simulated under a
Brownian motion with (and without) directional or stabilizing selection. We give the general form
of ancestral state distributions conditioned on leaf states under the simulation models.

Ancestral distributions are used first, to give a theoretical lower bound of the expected recon-
struction error, and second, to develop an original evaluation scheme which is more efficient than
comparing the reconstructed and the simulated states.

Our simulations show that: (i) the distributions of the reconstruction uncertainty provided by
the methods generally make sense (some more than others); (ii) it is essential to detect the presence
of an evolutionary trend and to choose a reconstruction method accordingly (iii) all the methods
show good performances on characters under stabilizing selection; (iv) without trend or stabilizing
selection, the maximum likelihood method is generally the most accurate.

Keywords:
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Introduction

Besides being essential to understand the process of character evolution, ancestral state reconstruction
plays an important role in the study of ecological diversification and comparative analysis. We focus
here on quantitative characters, i.e. measured as continuous variables such as weight, size etc.

From a methodological point of view, ancestral state reconstruction is a challenging problem which
has been addressed by several approaches. The general question can be stated as follows. Taking as
inputs the phylogeny of a set of organisms (given as a tree with branch lengths) and their character states,
a reconstruction method has to infer - as accurately as possible - the character states of the ancestral
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organisms. The reconstruction approaches fall into two major classes: methods based on the parsimony
principle (Fitch 1971; Swofford and Maddison 1987; Maddison 1991; Collins et al. 1994), whose general
idea is to impute the missing values of the tree by minimizing the sum of distances between ancestors and
their direct descendant characters, and methods based on stochastic models of character evolution, mainly
Brownian motion for continuous traits (Schluter et al. 1997; Pagel 1999b; Huelsenbeck and Ronquist 2001;
Nielsen 2002). Several authors discuss the advantages of stochastic approaches over parsimonious ones
(Schluter et al. 1997; Mooers and Schluter 1999; Pagel 1999b; Nielsen 2002; Huelsenbeck et al. 2003). An
important point is that stochastic approaches take into account divergence times (branch lengths) while
parsimonious methods do not. Moreover, stochastic approaches may provide probability distributions
of the reconstructed ancestral states, accounting for their uncertainty and which can be used to develop
hypothesis testing and confidence intervals.

In our study, we focus on seven reconstruction methods, namely the maximum likelihood, restricted
maximum likelihood, generalized least squares under Brownian, Brownian-with-trend and Ornstein-
Uhlenbeck models, phylogenetic independent contrasts and squared parsimony methods. Before com-
paring their accuracy, we review the methods and their relationship to each other. It turns out that the
first three ones reconstruct the same ancestral states. These three methods may still be distinguished,
and to some extent compared, since they provide different probability distributions of their uncertainty.
There are a few model-based approaches which do not rely on the Brownian assumption. For instance,
in Hansen (1997); Martins and Hansen (1997); Pagel (1998, 1999a), authors consider ancestral states
reconstructions under the assumption that the character follows either a Brownian motion with trend
or an Ornstein-Uhlenbeck model, corresponding to a directional or a stabilizing selection respectively
(Hansen and Martins 1996). To our knowledge, the only available reconstruction approaches based on di-
rectional or stabilizing model are provided by the java program COMPARE which performs general least
squares reconstructions according several models (Martins 1995), by the computer package BayesTraits
(Pagel et al. 2004; Pagel and Meade 2013), which uses Markov chain Monte Carlo (MCMC) methods to
infer ancestral states, and by the R-package phytools, which performs, through numerical optimization,
maximum likelihood reconstructions under a Brownian motion with trend (Revell 2012).

Evaluating the respective performances of these methods is a natural and important question. Works
aiming at answering this question proceed by comparing the reconstructed states with reference “trusted”
ones. Such reference values for ancestral states may be obtained either by considering fossil character
states or by simulating, via a stochastic model, artificial evolution of the character and by keeping track
of the ancestral states observed during simulations (Martins 1999). Webster and Purvis (2002) and
Oakley and Cunningham (2000) assess several reconstruction methods with regard to measurements on
fossils. They both observe that the methods are confounded by an evolutionary trend toward increasing
size.

Our comparison of the seven methods is based on artificial evolution simulated under Brownian
motions with and without directional or stabilizing selection. The artificial evolution runs on the phy-
logenetic tree of Pleistocene planktic Foraminifera (Webster and Purvis 2002). Besides the fact that we
consider evolution models with directional or stabilizing selection, a noticeable difference with previous
works is that the reconstructed states are compared with regard to the ancestral state distributions
conditioned on the simulated leaves, rather than with the simulated ancestral states as it is done usu-
ally. Intuitively, in this way, we compare the reconstructed state with all the possible realizations of the
evolution process with the given simulated leaf states. Moreover the ancestral distribution conditioned
on the leaves does reflect the uncertainty inherent to the stochastic character of evolution as modeled in
simulations. In particular, it allows us to determine a lower bound of the expected reconstruction error
as well as the reconstructed state achieving this lower bound. This can be seen as a transposition of
ideas of (Steel and Szekely 1999) and (Royer-Carenzi et al. 2013).

Another motivation of this work is to assess the relevance of the distributions provided by the methods
for the reconstruction uncertainty. These distributions are expected to provide a greater amount of
information than single values for ancestral states (Schluter et al. 1997; Polly 2001). Altogether with
our new comparison scheme, we compare the conditional ancestral distributions given the leaves with
the distributions provided by the methods. A distance between distributions, called the Energy distance
offers us a consistent framework to compare both reconstructed states and reconstructed probability
distributions, with ancestral state distributions conditioned on leaves (Szekely and Rizzo 2013). The
Energy distance is strongly related to the absolute bias.

Finally, we provide exact, matrix-based, implementations of Brownian-based methods which were
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formerly based on numerical optimization algorithms. Some of our R-scripts have been incorporated
into the reconstruct function of the ape R-package since version 3.2 (Paradis et al. 2004, https:

//cran.r-project.org/web/packages/ape/index.html). We also provide matrix-based implementa-
tions of generalized least square (and equivalently maximum likelihood) reconstructions under Brownian
motion with trend and Ornstein-Uhlenbeck models. Our R-scripts are available at https://github.

com/gilles-didier/Reconstruction.git.
The rest of the paper is organized as follows. In Section 1, we present three standard models of

quantitative character evolution. Section 2 briefly describes the reconstruction methods and shows how
they are related. Section 3 is devoted to our assessment protocol. We provide the form of the ancestral
distributions conditioned on the leaf states under the simulation. These ancestral distributions are next
used to define our evaluation protocol and to give a lower bound of the expected reconstruction error.
In its final version, the protocol is based on the Energy distance between probability distributions, both
for assessing the reconstructed states and the distribution provided by the methods. The results of our
simulations are finally presented and discussed in Section 4.

1 Models of evolution for quantitative characters

1.1 Phylogenetic trees - Notations

In the standard ancestral character reconstruction problem, one assumes that the evolutionary history
of the species is known and given as a rooted phylogenetic tree with branch lengths. Our typical tree
contains n + 1 nodes (including leaves), among which r are internal nodes (excluding the root). By
convention, the nodes are indexed in the following way:

• index 0 for the root,

• indices 1 to r for the other internal nodes,

• indices r + 1 to n for the leaves.

The nodes are numbered in such a way that if a node j descends from a node i then j > i. We put
p(j) for the index of the direct ancestor of the node j, τj for the length of the branch leading to j and
Tj for the the sum of the branch lengths between the root and j. Being given two nodes i and j, we put
m(i, j) for the index of their most recent common ancestor (mrca).

Let X be a random variable. We write fX for its density function and IE(X) for its expectation.

1.2 Models of evolution

We make the standard assumptions that character evolves independently along the branches of the
phylogenetic tree and that its evolution is homogeneous both through time and lineages. In order to
actually model the evolution of a character, we first need to define an initial probability density fZ0

for
the state of the root. In the simulation models, fZ0

is the degenerate density at a given value z0, i.e. our
simulations all start from a given root state z0 which is a parameter of the model. The reconstruction
methods assume an improper flat density as initial probability density fZ0 (i.e. fZ0(x) = 1 for all x).

1.2.1 Brownian motion model

The Brownian motion (BM) model is the simplest stochastic process able to model the evolution of
a quantitative character (Felsenstein 1985; Schluter et al. 1997). Under this model, evolution is neutral
and governed by a rate parameter σ which accounts for its diffusion. Formally, along a branch of the
tree, the stochastic process (Xt) accounting for the character state has the form:

dXt = σdBt, X0 = x0,

where (Bt) denotes the standard Brownian motion, defined as a centered Gaussian process with stationary
and independent increments, and Bt ∼ N (0, t), where N (µ, σ2) is the Gaussian distribution of mean µ
and variance σ2. Thus increments Xt+s −Xt (s > 0) are independent with law N

(
0, σ2s

)
.
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1.2.2 Arithmetic Brownian motion model

Biological evolution is not always assumed to be neutral. For instance, Cope’s rule states that species
tend to increase in body size over time (Kingsolver and Pfennig 2004; Van Valkenburgh et al. 2004; Hone
and Benton 2005). In Webster and Purvis (2002), fossil evidence suggests that a neutral process cannot
model the evolution of Pleistocene planktic Foraminifera size since it tends to increase with time. A
similar observation is made by Oakley and Cunningham (2000).

The Arithmetic Brownian motion (ABM), sometimes called Brownian motion with trend, yields to
model a linear deterministic trend µ, which can be either positive or negative. Along a branch of the
tree, the stochastic process (Xt) of the character state now has the form:

dXt = µdt+ σdBt, X0 = x0.

Then increments Xt+s −Xt (s > 0) are independent with law N
(
µs, σ2s

)
.

Remark 1. A BM model is nothing but an ABM model with trend-parameter µ = 0.

1.2.3 Ornstein-Uhlenbeck model

The Ornstein-Uhlenbeck process (OU) was introduced by Vasicek (1977) and models the evolution of
a character attracted toward an optimum trait value θ with selection strength α ≥ 0. It is appropriate for
modeling traits that evolve under certain constraints such as stabilizing selection (Lande 1976; Felsenstein
1988; Martins 1994; Hansen and Martins 1996; Hansen 1997; Butler et al. 2000; Harmon et al. 2010).
Along a branch of the tree, the stochastic process (Xt) of the character state now has the form:

dXt = α(θ −Xt)dt+ σdBt, X0 = x0.

When α > 0, the corrected increments of an OU process Xt+s − e−αsXt (s > 0) are independent
with law

N
(
θ(1− e−αs), σ2 1− e−2αs

2α

)
.

As illustrated in Figure 1, an Ornstein-Uhlenbeck process models evolution with two different stages.
Indeed, while the optimum θ is not reached, the phenotype has a directional evolution to this optimum
(not in a linear way). And as soon as θ is reached, the phenotype is constrained to remain close to the
optimum. The larger α, or the smaller |x0 − θ|, the faster the optimum is reached (Göing-Jaeschke and
Yor 2003). Note that, since the Ornstein-Uhlenbeck process is memoryless, if all the observed values
are sampled from the constrained regime, the part of the evolution before the constrained or the (quasi-
)stationary regime, including the initial value x0, cannot be inferred. Thus we will rather consider the
particular case where the process directly starts in the constrained regime by assuming the optimum
value θ to be equal to the initial value x0. Such a model will be referred to as an OU* model, which is
referred to as the single stationary peak model in (Harmon et al. 2010).

Remark 2. When the time goes to ∞, the character state converges to a stationary distribution, that

is N
(
θ, σ

2

2α

)
.

Remark 3. A BM model is nothing but an OU* or an OU model with strength of the restraining force
α = 0.

1.3 Likelihood of a character evolution

Let us consider a particular realization of the evolution process, which is known only through the
vector (z0, z1, · · · , zn) of the character states at the nodes of the tree (i.e. entry zi is the character state
at node i). The increments of the character state between nodes and their children give us a natural
expression of the likelihood of such a vector. Let us put φ(., γ2) for the density of a centered normal law
with variance γ2:

φ(x, γ2) =
1√

2πγ2
e
−x2

2γ2 .
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Figure 1: Simulation of an Ornstein-Uhlenbeck process, illustrating the directional and the constrained
evolution. Green dashed line shows the expected mean of the Ornstein-Uhlenbeck process, whereas red
dashed lines indicate its 95%-fluctuation interval.

Under the BM model with parameter σ2 and root probability density fZ0
, the likelihood of a real-

ization (z0, z1, · · · , zn) is

Vσ2(z0, z1, · · · , zn) = fZ0
(z0)

n∏
j=1

φ(zj − zp(j), σ2τj).

The corresponding log-likelihood is

(1)log (Vσ2(z0, z1, · · · , zn)) = log (fZ0
(z0))− n

2
log(2π)− n log(σ)− 1

2

n∑
j=1

log(τj)−
n∑
j=1

(
zj − zp(j)

)2
2σ2τj

.

The same log-likelihood under an ABM model with parameters σ2 and µ is:

log
(
Vσ2,µ(z0, z1, · · · , zn)

)
= log (fZ0

(z0))− n
2

log(2π)−n log(σ)− 1

2

n∑
j=1

log(τj)−
n∑
j=1

(
zj − zp(j) − µτj

)2
2σ2τj

.

(2)

Under an OU model with parameters σ2, α and θ, this log-likelihood becomes:

(3)

log
(
Vσ2,α,θ(z0, z1, · · · , zn)

)
= log (fZ0

(z0))− n

2
log(2π)− n log(σ) +

n

2
log(2α)

− 1

2

n∑
j=1

log(1− e−ατj )−
n∑
j=1

α
(
zj − zp(j) − θ(1− e−ατj )

)2
σ2(1− e−2ατj )

.

2 Reconstruction methods

2.1 Presentation

2.1.1 Model-based methods

We present here four methods all relying on the assumption that the character evolves following
a BM model with an improper flat distribution for the root state. Their current implementations
return not only a reconstructed state for each internal node j but also a probability distribution of this
quantity. Therefore, the reconstructed state may be seen as a random variable Y Rj , which accounts for
the reconstruction uncertainty. Hereafter, we give a brief description of these four methods:
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• The Maximum Likelihood method (ML) infers the ancestral states which maximize their joint
likelihood under a BM model with an improper flat distribution for the root state (Schluter et al.
1997). This maximum likelihood estimation is simultaneously performed on the ancestral states
and on the variance of the BM model. For any internal node j, ML returns the reconstructed state
yRj which is also the mean of Y Rj and its standard deviation σRj . Schluter et al. (1997) showed that
Y Rj −y

R
j

σRj
follows a t-distribution with r + 1 degrees of freedom. Namely, its density is:

fY Rj (x) =
1

σRj
tr+1

(
x− yRj
σRj

)
,

where tr+1 denotes the density of a t-distribution with r + 1 degrees of freedom:

tr+1(x) =
1√

(r + 1)π

Γ
(
r+2

2

)
Γ
(
r+1

2

) (1 +
x2

r + 1

)− r+2
2

,

and Γ is the gamma function.

• As it is implemented in the ape R-package (Paradis et al. 2004), the Restricted Maximum Likelihood
method (REML) reconstructs the ancestral states in a very similar way as ML. It first estimates
the variance of the BM model. Next, the reconstructed ancestral states are those maximizing the
likelihood under the BM model with the estimated variance. The relationship between ML and

REML reconstructions is discussed in more details below. As for ML,
Y Rj −y

R
j

σRj
follows a t-distribution

with r + 1 degrees of freedom.

• PIC is based on the Felsenstein’s Phylogenetic Independent Contrasts method (Felsenstein 1985).
It recursively reconstructs the states of the ancestral nodes by averaging those of their children with
weights depending on branch lengths. With PIC , the reconstructed state of a node only depends
on those of its descendants. The confidence intervals are computed by using the expected variances
under the model. They only rely on the tree (not on the leaf states). For any internal node j,
PIC provides a reconstructed state yRj , which also stands for the mean of Y Rj , and the standard

deviation σRj of Y Rj . The random variable
Y Rj −y

R
j

σRj
follows a standard Gaussian distribution.

• Generalized least squares approaches reconstruct the ancestral states minimizing the residual sum
of squares with regard to the variance-covariance of the states, under a given evolution model
(Grafen 1989; Martins and Hansen 1997; Cunningham et al. 1998; Martins 1999). We consider four
types of generalized least squares estimation: GLS BM , GLS ABM , GLS OU and GLS OU* ,
which correspond to the BM, ABM, OU and OU* models, respectively. Since for all these
models, the variance-covariance matrix may be written as a product of the diffusion parameter σ2

and a matrix which does not depend on σ2 (see Remark 4 below), σ2 has no effect on ancestral
states inference. Nevertheless, the expected variance of the ancestral states does depend on it
(Martins and Hansen 1997). The variance σ2 is thus needed. It can be explicitly estimated by
maximum likelihood (Searle et al. 1992; Hansen 1997, or Equations 1, 2 and 3). For ABM mod-
els, minimizing the residual sum of squares provides ancestral states as well as the trend µ of
the model (Appendix B). In the case of OU and OU* models, the strength selection α is also
involved in the variance-covariance matrix and influences ancestral states inference. Since its max-
imum likelihood estimation is not straightforward (Hansen 1997), it has to be estimated through
numerical optimization. Then, in OU and OU* models, the residual sum of squares is minimized
conditionally to parameter α, for inferring ancestral states. In all the cases and following Martins
and Hansen (1997), the confidence intervals of the reconstructed ancestral states are computed
from the expected variances under the considered model (see Equation 8 below). For any internal

node j, the random quantity
Y Rj −y

R
j

σRj
follows a standard Gaussian distribution and Y R0 is assumed

to have the degenerate distribution at the reconstructed state of the root.
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2.1.2 Parsimony-based methods

There are two main kinds of parsimonious approaches dealing with quantitative characters: linear
parsimony (Swofford and Maddison 1987; Maddison and Maddison 1992) and squared parsimony (SP)
(Maddison 1991). The first one reconstructs the unknown states of the character by minimizing the sum
of the absolute differences between the state of a node and that of its direct ancestor. The second one
proceeds in the same way but it considers squared differences in place of absolute ones. Since, according
to Butler and Losos (1997), linear parsimony often results in many equally parsimonious reconstructions
and squared parsimony gives more relevant results, we keep only SP for our study. Unlike the methods
of Section 2.1.1, SP does not provide any probability distribution for the reconstructed states.

2.2 Relations between methods

All these reconstruction methods are strongly related to the Maximum Likelihood reconstruction, thus
one with another. These relations were already stated here and there, sometimes without justification.
We recall them and give references or elements of proofs.

2.2.1 SP

Minimizing the squared parsimony cost is equivalent to maximizing the log-likelihood under a BM
model with a flat initial distribution for the root state and with all the branch lengths set to any constant
value, see (Schluter et al. 1997; Maddison 1991) or Equation 1. It follows that any function computing
ML may be used to compute SP . One just needs to make all the branch lengths equal before calling it.

2.2.2 REML

Methods ML and REML only differ in the fact that the variance of the BM model and the ancestor
states are simultaneously estimated by maximum likelihood with ML, while REML first estimates the
variance of the BM model and next the ancestral states. If the root state follows an improper flat distri-
bution then the term “log (fZ0

(z0))” vanishes from Equation 1. Finding the ancestral states maximizing

the log-likelihood just relies on finding the unknown values of the vector z minimizing
∑n
j=1

(zj−zp(j))
2

2σ2τj
.

This does not depend on σ. Consequently, ML and REML do provide the same reconstructed states.

2.2.3 GLS BM

Martins and Hansen (1997) state that GLS BM with the Brownian variance-covariance structure
reconstructs the same ancestral states as ML. We provide a detailed proof of this fact in Appendix A.

2.2.4 PIC

Maddison (1991) proved that PIC and ML reconstruct the same state for the root. Note that this
only holds for the root.

2.2.5 Totally equivalent ?

Since ML, REML and GLS BM all reconstruct the same ancestral states, those methods will be
referred to as ML/REML/GLS BM when studying reconstructed states. Nevertheless, these methods
still have to be distinguished since they differ in terms of reconstructed distributions. Both ML and REML
return t-distributions with r + 1 degrees of freedom and the same mean but with different variances,
while GLS BM provides a Gaussian distribution with the same mean as ML and REML but with another
variance.

2.2.6 GLS ABM , GLS OU and GLS OU*

Like in the BM-model case, the ancestral states reconstructed by the generalized least squares ap-
proaches under an ABM, an OU and an OU* model are the same as those maximizing the likelihood
under the corresponding model (Equations 2 and 3 and Appendices B and C).
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2.3 Implementation

Since former implementations of ML, REML and GLS BM were based on numerical optimization
algorithms, they did not always converge to global optima. We used Equations A5 of Appendix A to
reconstruct ancestral states following these methods with exact matrix computations. The resulting R-
function reconstruct is part of the ape R-package since version 3.2.We also implemented the GLS ABM ,
GLS OU and GLS OU* approaches following the equations of Appendices B and C. Our R-routines are
available at https://github.com/gilles-didier/Reconstruction.git.

3 Assessing the performances of the reconstruction methods

We shall study the performances of the methods when the character is under directional or stabilizing
evolution. To this aim, we assume that it evolves following either an ABM model with variance σ2 and
trend µ, or an OU model with variance σ2, optimum θ and selection strength α. We consider the
degenerate probability density at a given value z0 for the root state. We start this section by giving the
conditional law of an internal state given those of the leaves under such a model. Next we propose an
evaluation protocol using this conditional law. The Energy distance is strongly related to this protocol
and allows us to compare between distributions and/or single values in a consistent way. Finally, we
show that the conditional expectation of an ancestral state given the leaves is, in a sense, the best
reconstruction possible and we study its relation with the state inferred by ML/REML/GLS BM .

3.1 Ancestral distributions conditioned on the leaf states

Let us assume here that the character evolution follows an ABM model (z0, σ
2, µ) or an OU model

(z0, σ
2, α, θ), including the particular case of an OU* model (z0, σ

2, α, θ = z0). We put Zi for the
random variable of the state i and Z, Z |a and Z |l for the random vectors t(Z1, · · · , Zn), t(Z1, . . . , Zr) and
t(Zr+1, . . . , Zn), corresponding to all the nodes except the root, the internal nodes excluding root, and
the leaves, respectively. A set of node states z0, . . . , zn is organized as vectors z, z|a and z|l accordingly.

Let U = t(U1, U2, · · · , Un) be the random vector of increments, corrected for OU. Namely under the
ABM model (z0, σ

2, µ), we have Ui = Zi − Zp(i), whereas, under the OU model (z0, σ
2, α, θ), we set

Ui = Zi − e−ατiZp(i).
Then the vector U is Gaussian with density:

fU (u) =
1

(2π)n/2(detΣU )1/2
e−

1
2
t(u−mU )Σ−1

U (u−mU ) ,

where mU is the expectation vector of U and ΣU its variance-covariance matrix which is diagonal since
the coordinates of U are independent. For all i ∈ {1, . . . , n}, we have IE(Ui) = µτi and var(Ui) = σ2τi
under an ABM model, whereas IE(Ui) = θ(1− e−ατi) and var(Ui) = σ2 1−e−2ατi

2α under an OU model.
In order to compute the joint law of the nodes, i.e. the law of the random vector Z = t(Z1, · · · , Zn),

we remark that the vector Z is obtained from a linear transformation of U :

Z = CU + z0w,

where C is a non-singular matrix and, for all non-root nodes i, wi = 1 under an ABM model and
wi = e−αTi under an OU model. Since all its coordinates are affine combinations of the increments Uj ,
which are independent Gaussian variables, the vector Z is still a Gaussian vector with density:

fZ(z) =
1

(2π)n/2(detΣZ)1/2
e−

1
2
t(z−mZ)Σ−1

Z (z−mZ),

where mZ is the expectation vector of Z and ΣZ its variance-covariance matrix, namely

mZ = CmU + z0w and

ΣZ = CΣU
tC.

The matrix C is lower triangular (thanks to the nodes numbering) with diagonal entries all equal to
1 and other entries Ci,j with i > j either equal to γi,j 6= 0 if nodes i and j belong to a same lineage or
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equal to 0 otherwise, where γi,j = 1 under an ABM model, and γi,j = e−α(Ti+Tj−2Tm(i,j)) under an OU
model.

Thus, for an ABM model we have

IE(Zi) = µTi + z0 and

(ΣZ)i,j = cov(Zi, Zj) = σ2Tm(i,j).
(4)

In particular, for a BM model, we have

IE(Zi) = z0 and

(ΣZ)i,j = cov(Zi, Zj) = σ2Tm(i,j).
(5)

For an OU model, we have

IE(Zi) = θ(1− e−αTi) + z0e
−αTi and

(ΣZ)i,j = cov(Zi, Zj) = σ2 1− e−2αTm(i,j)

2α
e−α(Ti+Tj−2Tm(i,j)).

(6)

In particular, for an OU* model, we have

IE(Zi) = z0 = θ and

(ΣZ)i,j = cov(Zi, Zj) = σ2 1− e−2αTm(i,j)

2α
e−α(Ti+Tj−2Tm(i,j)).

(7)

Since ABM, and OU models lead to Gaussian processes, the state distributions of all the nodes are
multivariate normal. Let us compute the conditional joint law of the internal nodes given the leaf states
z|l , namely the law of Y = t(Y1, · · · , Yr) = (Z |a |Z |l = z|l ). Let ma be the expectation vector of Z |a and
ml that of Z |l . Since the vector Z is a linear combination of the independent Gaussian increments Ui,
then any density fZ , fZ|l or f(Z|a |Z|l=z|l ) is multivariate Gaussian.

The variance-covariance matrix ΣZ of Z can be split according to Z |a and Z |l :

ΣZ =

(
Σa,a Σa,l
Σl,a Σl,l

)
where Σa,a is the variance-covariance matrix of Z |a , Σa,l is the covariance matrix between Z |a and Z |l

and so on.
With the decomposition of matrix ΣZ , the random vector Y is Gaussian with density N (mY ,ΣY ),

where

mY = ma + Σa,lΣ
−1
l,l (zl −ml),

ΣY = Σa,a − Σa,lΣ
−1
l,l Σl,a (Schur complement).

(8)

Remark 4. There exist two matrices MZ and MY such that

ΣZ = σ2MZ and ΣY = σ2MY

where MZ and MY depend only

• on the tree in the BM and ABM cases,

• on the tree and on the parameter α in the OU and OU* cases.

Proof. From its definition, the remark holds for the matrix ΣU . It straightforwardly follows that it holds
for ΣZ , thus for both Σa,a, Σa,l, Σl,l ,Σl,a and finally for ΣY .
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The expression of the conditional joint law of the internal nodes given the leaf states can be computed
for various models such as the “Hansen model”, which is an Ornstein-Uhlenbeck process with multiple
evolutionary optima (Hansen 1997; Butler and King 2004). Models where parameter σ can depend on
time can be handled as well (early-burst processes in Harmon et al. (2010)). The computation of the
conditional joint law of the nodes only requires the state vector Z to be Gaussian, its expectation vector
mZ and its variance-covariance matrix ΣZ . We restrict here the analysis to ABM and OU models
homogeneous both in time and in lineage.

In order to compute the conditional law of an ancestral state i given the leaves, we have to sum over
all the other internal states. Since the marginals of a Gaussian vector are still Gaussian, we eventually
get that Yi = (Zi|Zr+1 = zr+1, · · · , Zn = zn) follows an univariate Gaussian distribution N (yTi , σ

2
i ),

where yTi is the ith coordinate of vector mY and σ2
i is the ith diagonal entry of the variance-covariance

matrix ΣY .
Below, we use the ancestral distribution of the ancestral state i given the leaves as reference when

comparing with its reconstructions. This conditional distribution is referred to as the theoretical distri-
bution of state i. We put Y Ti for the corresponding random variable.

3.2 Evaluation protocol

3.2.1 For reconstructed states – Absolute bias

In a simulation context, the relevance of a reconstructed state is generally assessed by measuring its
distance from the corresponding simulated ancestral state (Butler and Losos 1997; Martins 1999; Oakley
and Cunningham 2000; Webster and Purvis 2002). This distance accounts for the reconstruction error.
Remark that, in order to make sense, the distances between the reconstructed and simulated states have
to be averaged over a large number of simulations.

The theoretical distributions derived in the previous section may be used to improve the assessment
of reconstructed states. Let us consider an evolution z simulated under a given model. A reconstruction
method only takes into account the leaf states zr+1, · · · , zn. On the other hand, Section 3.1 gives us the
conditional distribution of an ancestral state i given zr+1, · · · , zn under the simulation model. Intuitively,
this distribution would be asymptotically observed by running an infinite number of simulations and
by keeping only those with leaf states zr+1, · · · , zn. The distance expectation between Y Ti and the
reconstructed state is exactly the conditional expectation of the reconstruction error on state i given the
leaf states.

This suggests to replace the standard evaluation procedure by the following protocol. Being given an
evolution model and a distance d,

1. simulate an evolution z under the model;

2. retain only the leaf states zr+1, · · · , zn;

3. for all nodes i, compute from zr+1, · · · , zn:

• the reconstructed state yRi ,

• the conditional distribution of state i given zr+1, · · · , zn under the simulation model (i.e. the
distribution of Y Ti );

4. for all nodes i, compute IE
(
d(yRi , Y

T
i )
)
.

This protocol ensures that the leaf states are well sampled from their probability distribution under
the simulation model. It follows that averaging IE

(
d(yRi , Y

T
i )
)
, which is conditioned on the leaf states,

over all the simulations do converge to the expected reconstruction error on state i under the simulation
model.

In the standard evaluation scheme, the distance d between a reconstructed state yRi and the corre-
sponding simulated state ySi is generally measured in terms of bias (ySi − yRi ), absolute bias |ySi − yRi |
or squared bias (ySi − yRi )2. Let us compute the expectations of these distances between a reconstructed
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state and the random variable Y Ti following the theoretical distribution N (yTi , σ
2
i ). They are

IE
(
Y Ti − yRi

)
= yTi − yRi ,

IE
(
|Y Ti − yRi |

)
= σi

√
2

π
e
− (yTi −y

R
i )2

2σ2
i + |yTi − yRi |IP

(
|W |≤ |y

T
i − yRi |
σi

)
and

IE
(
(Y Ti − yRi )2

)
= (yTi − yRi )2 + σ2

i .

(9)

where W stands for the standard Gaussian variable. Although all these measures are suitable to compare
the random variable Y Ti with the reconstructed state yRi , they do not take into account the same amount
of information from the distribution of Y Ti . The bias is only based on its mean, the squared bias uses its
mean and variance while the absolute bias takes into account both its mean, variance and the normality
of the distribution. This point somehow supports the choice of this last distance.

3.2.2 For reconstructed distributions – Energy distance

Assessing the relevance of the uncertainty distributions provided by the reconstruction methods could
also be done by considering the simulated ancestral states. But one expects more efficiency by considering
the theoretical distributions. Adapting the above protocol to this case could be done by considering, for
all nodes i, the expectation IE

(
d(Y Ri , Y

T
i )
)
, where Y Ri follows the distribution provided by the method

for i, which is also conditioned on the leaf states. A major drawback here is that the above expectation
is not a good measure of the similarity between two probability distributions. In particular, it is not
equal to zero when Y Ri and Y Ti are identically distributed (and not degenerate).

On the other hand, there exist various distances for comparing two probability distributions. Among
them, the so-called Energy distance is strongly related to the evaluation protocol when d is the absolute
bias. We will see that it offers us a consistent framework to compare states versus states, states versus
distributions and distributions versus distributions.

Let A and B be two random variables and FA and FB their respective cumulative distribution
functions. For convenience reasons, we write the distance between two distributions as the distance
between two random variables following them. There are two equivalent ways to define the Energy
distance (E-distance) between A and B (Szekely and Rizzo 2013):

dNRG(A,B) = 2‖FA − FB‖2L2= 2

∫ ∞
−∞
|FA(x)− FB(x)|2dx (10)

and
dNRG(A,B) = 2IE(|A−B|)− IE(|A−A′|)− IE(|B −B′|), (11)

where A′ and B′ are independent and identically distributed copies of A and B respectively.
A distance between distributions can be used for comparing a single value against a distribution (or

even two single values), just by considering the degenerate distribution(s) at the single value(s).
Let us start by checking the behavior of the E-distance when comparing two single values. Assuming

that A and B follow degenerate distributions at a and b respectively, we have that

dNRG(A,B) = 2|a− b|.

In plain English, the E-distance between two degenerate distributions is twice the absolute bias between
the corresponding values.

Now if A follows the degenerate distribution at a and B follows a Gaussian distribution with variance
σ2
B , we have to compute the expected absolute value of Gaussian variables, whose formula is recalled in

Appendix D, Equation D1. Thus the E-distance becomes:

dNRG(A,B) = 2IE (|a−B|)− IE (|B −B′|)

= 2IE (|a−B|)− 2σB√
π
. (12)

The E-distance between a reconstructed state and the corresponding theoretical distribution is twice
the expectation of the absolute bias between the state and a random variable following the theoretical
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distribution, minus a correcting term. Up to this term, averaging the E-distances between the recon-
structed states and the theoretical distributions is the same as applying the evolution protocol with the
absolute bias.

Finally, Equation 11 shows that the Energy distance between two random variables following general
distributions is twice the expectation of the absolute bias between them, minus two terms which somehow
accounts for their respective dispersion.

In conclusion, the E-distance is strongly related to the protocol of Section 3.2.1 when evaluating
reconstructed states or reconstructed distributions with the absolute bias.

The protocol eventually used in our comparisons is that of Section 3.2.1 with the 4th step replaced by

4. for all nodes i, compute dNRG(X,Y Ti ).

where X is either the degenerate random variable of the reconstructed state at i or a random variable
following the uncertainty distribution provided by the method under evaluation.

We show how to compute the E-distance of pairs of distributions involved in a theoretical vs re-
constructed distributions comparison, i.e. Gaussian versus degenerate, Gaussian versus Gaussian and
Gaussian versus Student, in Appendix D (R-scripts available on request).

The more usual Kolmogorov-Smirnov distance is actually harder to interpret when degenerate dis-
tributions are involved. In particular the Kolmogorov-Smirnov distance between two degenerate distri-
butions is always 1 except if they are equal (Suppementary material). Supplementary Figures S5, S6,
S7 and S8 display the Kolmogorov-Smirnov distances. Their general behavior is the same as with the
Energy distance (Figures S1, S2, S3 and S4).

3.3 Optimal reconstruction

Let us assume that the character follows an ABM model (z0, σ
2, µ) or an OU model (z0, σ

2, α, θ),
including the OU* model when z0 = θ. Being given a set of leaf states and under the model, recon-
structing the state of i with the mean yTi of its theoretical distribution leads to the smallest expectation
error in terms of any standard distance (Equation 9) and of E-distance (Equation 12). The argument is
similar as that of (Steel and Szekely 1999). Namely, reconstructing with yTi leads to expectations of bias,

absolute bias and squared bias equal to 0, σi

√
2
π and σ2

i respectively, and to E-distance 2σi
√

2−1√
π

. The

mean yTi will be referred to as the optimal reconstruction of the state i. Remark that computing yTi re-
quires to know the parameters of the model of evolution. The optimal reconstruction can be determined
in a simulation context but unfortunately not in a practical situation.

In the particular case of a BM model, the optimal reconstruction is strongly related to the state
reconstructed by ML/REML/GLS BM . Indeed, let us consider a BM starting at the grand mean ẑ0,
given by the first formula of Equation A5 in Appendix A. By considering Equation 4 with µ = 0, the
partial mean vectors ma and ml are equal to ẑ01

|a and ẑ01
|l respectively. It follows that the second

equation of A5, which gives the ancestral reconstructed states, and the first equation of 8, which gives
the conditional means, are identical. In short, if ML/REML/GLS BM infers the “real” state of the root,
it reconstructs the whole tree in an optimal way.

4 Results and discussion

4.1 Simulation protocol

In order to assess reconstruction methods performance, we simulate the evolution of a quantitative
character along the Pleistocene planktic Foraminifera phylogenetic tree (Webster and Purvis 2002),
given in Figure 2. Though we implemented GLS OU reconstruction method, we do not present its
performances here. In Cooper et al. (2016), the authors caution against the estimation of the root value
under OU. Indeed, as shown in Figure 1, under an OU model, the root state can be estimated only
if the observed states are not all sampled from the constrained regime, which occurs in very peculiar
conditions, unlikely to arise in practice. We did observe that the method GLS OU may lead to very
inaccurate reconstructions of the ancestral states, notably for deep nodes (Tables S1 and S2 of the
Supplementary Material). Under an OU model, a small error in estimating the parameter α has a non
linear effect, and huge consequences, on the reconstruction. We do not consider neither the OU model,
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Figure 2: Pleistocene planktic Foraminifera phylogeny (Webster and Purvis 2002) on which the simula-
tions runs.
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nor GLS OU in our evaluation. Thus we assess the methods PIC , SP , ML, REML, GLS BM , GLS ABM
and GLS OU* , on data simulated under ABM and OU* models, including BM.

Although the simulation models of evolution depend on the root state z0, we keep z0 fixed since,
in ABM and OU* models, it just translates the whole process and does not influence the methods
performance. In order to assess their accuracy, we simulate the evolution of a quantitative character
along the Pleistocene planktic Foraminifera phylogenetic tree (Webster and Purvis 2002), given in Figure
2, which starts from z0 = 100 at the root and evolves either under ABM models with various trends
and variances (21 values for parameter µ, ranging from −10 to 10 and 15 values for parameter σ, ranging
from 0.01 to 20), or under OU* models with an optimum θ set to z0 and various selection strengths α
and variances (20 values for parameter α, ranging from 0 to 0.5 and 2 values for parameter σ equal to 3
and 10.

For each parameter set, we run 500 simulations from which we retain only the leaf states. We apply
the evaluation protocol of Section 3.2 on the reconstructed states and on the reconstructed distributions
provided by PIC from the function ace, and by ML, REML and SP from our function reconstruct of the
ape R-package. We use our own R-script to compute GLS BM , GLS ABM and GLS OU* ancestral state
reconstructions and their distributions. The theoretical distribution of each ancestral state under the
simulation model is then compared first, with the reconstructed states and second, with the corresponding
reconstructed distributions, in both cases in terms of E-distance. These distances are finally averaged
over all the simulations in order to compare the performances of the methods.

4.2 Single reconstructed states
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Figure 3: Mean Energy distance between the state reconstructed by PIC , ML/REML/GLS BM , SP ,
GLS ABM , GLS OU* and the corresponding theoretical distribution from BM models versus the pa-
rameter σ for the nodes B and N.

We first evaluate the methods accuracy with regard to the ancestral states they provide. Since ML,
REML and GLS BM return the same inferred states, they have the same accuracy which is compared with
that of PIC , SP , GLS ABM , GLS OU* and with the optimal one. We recall that, due to its inaccurate
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reconstructions for deep nodes (Tables S1 and S2), GLS OU reconstruction method is discarded.

4.2.1 Lower bounds of reconstruction errors

Since – except in degenerate cases – there is no unique ancestral states configuration leading to the
leaf states from which we infer, reconstructing an ancestral state with a single value always comes with
a certain probability of error. A counterpart of this fact is that the E-distance between a reconstructed
state and its theoretical distribution is positive. From Section 3.3, the smallest E-distance which can
be obtained with a reconstructed state yRi comes by setting yRi equal to the mean of the theoretical

distribution Y Ti . It leads to a E-distance 2σi
√

2−1√
π

with σi = σMi,i, where Mi,i only depends on the tree

for ABM models, whatever the trend µ and the root state z0; whereas for OU* models, Mi,i depends
on the tree and on the selective strength α, but not on the root state z0 (Remark 4). To sum up, being
given the parameters of the model, the optimal reconstruction provides a lower bound for the E-distances
which does not depend on the initial value z0. For ABM simulations, the optimal reconstruction depends
linearly on the variance of the model but not on its trend, whereas for OU* simulations, it depends both
on the variance and on the selective strength of the model, in a non linear way. It is represented by red
lines in Figures 3, 4 and 5.

Supplementary Figures S1 and S3 display the plots of Figures 4 and 5 for all the nodes of the tree.
Asking whether a method achieves the optimal reconstruction, at least when the character follows a

BM model, is a natural question. ML/REML/GLS BM sounds like a good candidate for that, since it
reconstructs the optimal state for any node as soon as the inferred root state matches z0 under a BM
model (Section 3.3). Thus in Figures 5 or S3 (it is less obvious on Figures 4 or S1), we clearly observe
that, under a BM model, the states inferred by ML/REML/GLS BM are almost indistinguishable from
the optimal ones for any node except for the deepest nodes (N, P, Q, R and S). The two situations are
shown in Figure 3, which displays the results of nodes K and N. The fact that ML/REML/GLS BM are
not optimal for some nodes always comes from an inaccurate estimation of the root state. Remark that
despite this inaccurate root estimation, ML/REML/GLS BM may still be almost optimal for the nodes
close to the tips.

4.2.2 Influence of the simulation parameters

The smaller the parameter σ of a BM model, the more accurate the reconstructions of all the methods
(Figure 3). Basically, as σ decreases, all the states of the tree (both ancestral and tips) get closer to one
another, which makes the reconstruction easier. Still in Figure 3, we observe that GLS ABM is more
sensitive to the variance of the data than the other model-based approaches, in particular for the deepest
nodes.

Another general observation is that, under an ABM model, all the Brownian-based methods perform
better as the trend µ is close to 0 (Figures 4). This was expected since this situation is close to a BM
model which is the assumption underlying all the methods but SP , GLS ABM and GLS OU* . Only
GLS ABM , which is based on the ABM model, deals well when the µ is far from 0.

As shown in Figure 5, reconstruction methods behavior is much less intuitive for simulations under
an OU* model. Above a certain level, the greater the strength selection α, the more accurate the
reconstructions of all the methods, including the optimal reconstruction. This is not actually surprising
with regard to the properties of the OU* model (Equation 7). Thus, for large α, evolving far from
the optimum (here z0) becomes unlikely. All the states stand in a very small range, which makes the
ancestral reconstruction easy. When the strength selection is large, GLS OU overcomes the methods
which are not based on the Ornstein-Uhlenbeck process but to a lesser extent with regard to what is
observed betwwen GLS ABM and the non directional methods under ABM models with large trends.

4.2.3 Methods comparison

The methods performances are very close to one another for some of the nodes. This is basically
the case for the root for which ML/REML/GLS BM and PIC infer the same reconstructed state. But
Figures 4 and S1 show that under ABM simulations, all the methods, except GLS ABM , have nearly
the same E-distance for several nodes. For this reason, we add error bars representing 95%-confidence
intervals for the mean E-distance in Figures 4 and 5. Whenever the error bars do not overlap, the
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Figure 4: Mean Energy distance between the state reconstructed by PIC , ML/REML/GLS BM ,
GLS ABM , GLS OU* , SP and the corresponding theoretical distribution from ABM models with
σ equal to 3 and 10 versus the parameter µ for nodes I, K and N.
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Figure 5: Mean Energy distance between the state reconstructed by PIC , ML/REML/GLS BM ,
GLS ABM , GLS OU* , SP and the corresponding theoretical distribution from OU models with θ = 200,
σ equal to 3 and 10 versus the parameter α for nodes I, K and N.
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method corresponding to the lower curve has a significantly better performance than that of the upper
one, according to the Student’s t-test for paired samples with α = 5%. Such intervals permit to compare
the methods accuracy.

Under a BM model, corresponding to data simulated with µ = 0 or with α = 0, ML/REML/GLS BM
provides the most accurate reconstruction for the nodes displayed in Figures 3, 4 and 5. This is actually
observed for all the nodes of the tree (Figures S1 and S3). Still under a BM model, it is surprising to
observe that GLS OU* is very accurate, quite close to ML/REML/GLS BM and always better than
PIC and SP . This certainly comes from the fact that when α tends to 0, the variance-covariance under
the OU* model (Equation 7) converges to that of the BM model (Equation 5). Since the reconstructed
states are given by the system A5 (Appendix A) for both GLS BM and GLS OU* , if the variance-
covariance structure of the two models are close then so are the corresponding reconstructions. We did
check that GLS OU* did estimate small selection strengths α on data simulated under a BM model.

In Figure 4 or S1, we compare the methods on data simulated under “real” ABM models (i.e. with a
significant trend). As soon as the trend is large enough, GLS ABM outperforms all the other methods.
It even reaches the optimal bound for nodes G, J, K, L and M. A common feature of these nodes is that
they all have descendants at unequal distances from them (Figure 2), which are known to be essential
for estimating the trend. When the trend is weak with regard to the variance of the model used for
simulating the data, GLS ABM is overcome by the other methods. We observe that its performance
does depend on the variance of the ABM model used for simulating the data but not on its trend.

Under an OU* model, Figures 5 and S3 show that, as expected, GLS OU* tends to be the best
reconstruction method, when the selective strength is large enough, except for nodes L and M, where it
is overcome by ML/REML/GLS BM and GLS ABM .

4.3 Reconstructed distributions

Let us evaluate the relevance of the distributions provided by the methods for the reconstruction
uncertainty still under ABM and OU* simulations. Due to its inaccurate estimations (Tables S1 and
S2), GLS OU reconstruction method is still discarded. The methods are now assessed with the E-distance
between the theoretical distribution and the reconstructed one which is either Gaussian (PIC , GLS BM ,
GLS ABM and GLS OU* ), Student (ML and REML), or degenerate (SP , GLS BM , GLS ABM and
GLS OU* at the root). As some of the methods could possibly provide a reconstructed distribution
matching exactly the theoretical one, we no longer have a lower positive bound of these E-distances (the
counterparts of the “optimal” red lines of Figures 4, 5, S1 and S3 are the abscissa axis in Figures 6, 7,
S2 and S4). Since they are Student instead of Gaussian, the distributions provided by ML and REML
can not perfectly match the theoretical ones.

Considering reconstructed distributions rather than single values is expected to change the E-distances.
The most notable difference is that ML, REML and GLS BM are no longer equivalent and can now be
compared one another as well as with PIC , SP , GLS ABM and GLS OU* . Note that the E-distances
are the very same in the case of SP , since this method only provides a reconstructed state.

In ABM simulations, the distributions provided by ML, REML and GLS BM do lead to lower E-
distances than those obtained from the single reconstructed states. By contrast, there is no observable
change for PIC and GLS OU* performances between Figures S1 and S2. The same holds for GLS ABM
except for the nodes G, J, K, L and M, where it is improved, being optimal in the two cases (i.e. it
is close to the abscissa axis in Figure S2 and to the plot of the optimal reconstruction in Figure S1).
For the other nodes, GLS ABM remains the best reconstruction method as soon as the trend µ is large
enough, whereas under a weak trend, GLS BM and ML become the most accurate (Figure 6 or S2).

For simulations under OU* models, all the reconstruction methods but SP are significantly improved
between Figures S3 and S4. GLS OU* , without being optimal, still has the best performances for all
the nodes, as soon as the selective strength is large enough. On the contrary, it is generally overcome by
GLS BM when the selection strength is weak.

4.4 Discussion

As expected, we observed that Brownian-based methods perform better when the character evolution
follows a BM model. In the same way, under an ABM model with a significant trend (µ large enough),
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Figure 6: Mean Energy distance between the reconstructed distribution from PIC , ML, REML, GLS BM ,
GLS ABM , GLS OU* , SP and the corresponding theoretical distribution from ABM models with σ
equal to 3 and 10 versus the parameter µ for the nodes I, K and N.
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Figure 7: Mean Energy distance between the reconstructed distribution from PIC , ML, REML, GLS BM ,
GLS ABM , GLS OU* , SP and the corresponding theoretical distribution from OU models with θ = 200,
σ equal to 3 and 10 versus the parameter α for nodes I, K and N.
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GLS ABM provides the best reconstruction, whereas under an OU* model with a significant selection
strength (α large enough), GLS OU* is generally the most accurate.

Under a BM model, the E-distance of all the methods increases linearly with the diffusion σ.Under an
ABM model, the reconstruction accuracy decreases linearly with the trend, for all the methods except
for GLS ABM . Our simulations show that it is essential to use GLS ABM , or at least a method adapted
to directional evolution, as it was observed with fossil data in (Webster and Purvis 2002) where standard
reconstruction methods led to spurious results. On the contrary, in the absence of trend, GLS ABM
may show poor performance. For characters evolving under stabilizing selection, our observations do not
allow to draw such categorical conclusions. Though GLS OU* is the most accurate for large selective
strengths, all the reconstruction methods show very good performances in this situation.

By construction, the theoretical distributions obtained from the simulation model reflect the real
uncertainty of the character reconstruction. Thus one expects from the distributions provided by a re-
construction method to approach the theoretical ones or, at least, to be more informative than single
reconstructed states. This is actually observed for most of the methods. This indicates that the re-
constructed distributions provided by the reconstruction methods, SP excluded, may be relevant with
regard to the inherent reconstruction uncertainty.

To summarize the results of our comparison, we first observed that GLS BM and/or ML are the
most accurate – or at least among the most accurate – any time the character evolution is close to the
Brownian motion. As expected, we observed that GLS ABM is the most accurate reconstruction method
when the character follows an evolution with a trend. In the same way, GLS OU* is the most accurate
reconstruction method if the character is under stabilizing selection. Overall, all the methods do deal
well with stabilizing selection, but not with trend.

An important point is that an essential stage, prior to ancestral reconstruction, is to test the presence
or the absence of a trend in the character evolution. This can be performed by model selection approaches
such as likelihood ratio test, information criteria or Bayesian methods (Pagel 1998; Harmon et al. 2010).
In contrast, detecting if the character is under stabilizing selection (i.e. better fit an OU* model than
a BM model) appears to be less crucial since it rather eases the ancestral reconstruction for all the
methods. Cooper et al. (2016) recently highlighted several issues in distinguishing between OU* and
BM models.

Dealing with general OU models is more problematic since, from a short amount of data, it is difficult
to distinguish between the linear trend of an ABM model and the transient “directional evolution” phase
arising when an OU starts with an initial value far from its optimum. We do recommend to use the
OU model with caution, notably for ancestral state reconstruction, since it may lead to infer aberrant
values.
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Göing-Jaeschke, A. and Yor, M. (2003). A clarification note about hitting times densities for ornstein-
uhlenbeck processes. Finance Stoch., 8:413–415.

Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society of
London. Series B, Biological Sciences, 326(1233):119–157.

Hansen, T. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51:1341–
1351.

Hansen, T. and Martins, E. (1996). Translating between microevolutionary process and macroevolution-
ary patterns: The correlation structure of interspecific data. Evolution, 50:1404–1417.

Harmon, L., Losos, J., Davies, T., Gillepsie, R., Gittleman, J., Jennings, W., Kozak, K., McPeek, M.,
Moreno-Raork, F., Near, T., Purvis, A., Ricklefs, R., Schluter, D., Schulte II, J., Seehausen, O.,
Sidlauskas, B., Torres-Carvajal, O., Weir, J., and Mooers, A. (2010). Early bursts of body size and
shape evolution are rare in comparative data. Evolution, 64(8):2385–2396.

Hone, D. and Benton, M. (2005). The evolution of large size: how does Cope’s Rule work? Trends Ecol.
Evol., 20(1):4–6.

Huelsenbeck, J., Nielsen, R., and Bollback, J. (2003). Stochastic mapping of morphological characters.
Syst. Biol., 52:131–158.

Huelsenbeck, J. and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics,
8:754–755.

Kingsolver, J. and Pfennig, D. (2004). Individual-level selection as a cause of Cope’s Rule of phylogenetic
size increase. Evolution, 58:1608–1612.

Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30:314–
334.

Maddison, W. (1991). Squared-change parsimony reconstructions of ancestral states for continuous-
valued characters on a phylogenetic tree. Syst. Zool., 40:304–314.

Maddison, W. and Maddison, D. (1992). MacClade Analysis of Phylogeny and Character Evolution.
version 3. Technical report, Sinauer Associates, Inc., New York.

Martins, E. (1994). Estimating rates of character change from comparative data. Am. Nat., 144:193–209.

Martins, E. (1995). COMPARE: statistical analysis for comparative data, version 1.0.

22



Martins, E. (1999). Estimation of Ancestral States of Continuous Characters: A Computer Simulation
Study. Syst. Biol., 48(3):642–650.

Martins, E. and Hansen, T. (1997). Phylogenies and the comparative method: a general approach to
incorporating phylogenetic information into the analysis of interspecific data. American Naturalist,
149:646–667.

Mooers, A. and Schluter, D. (1999). Reconstructing Ancestor States with Maximum Likelihood: Support
for One- and Two-Rate Models. Syst. Biol., 48(3):623–633.

Nielsen, R. (2002). Mapping mutations on phylogenies. Syst. Biol., 51:729–739.

Oakley, T. H. and Cunningham, C. W. (2000). Independent contrasts succeed where ancestor recon-
struction fails in a known bacteriophage phylogeny. Evolution, 54(2):397–405.

Pagel, M. (1998). Inferring evolutionary processes from phylogenies. Zool. scr., 26:331–348.

Pagel, M. (1999a). Inferring the historical pattern of biological evolution. Nature, 401:877–884.

Pagel, M. (1999b). The maximum likelihood approach to reconstructing ancestral character states of
discrete characters on phylogenies. Syst. Biol., 48:612–622.

Pagel, M. and Meade, A. (2013). Bayestraits v. 2.0. Reading : University of Reading.

Pagel, M., Meade, A., and Barker, D. (2004). Bayesian estimation of character states on phylogenies.
Syst. Biol., 57:673–684.

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R
language. Bioinformatics, 20:289–290.

Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K. (1983). Quadpack :
A Subroutine Package for Automatic Integration. Springer Series in Computational Mathematics.
Springer Verlag, Berlin.

Polly, P. (2001). Paleontology and the Comparative Method: Ancestral Node Reconstructions versus
Observed Node Values. Am. Nat., 157(6):596–609.

Revell, L. (2012). phytools: an R package for phylogenetic comparative biology (and other things).
Methods in Ecol. and Evol., 3:217–223.

Royer-Carenzi, M., Pontarotti, P., and Didier, G. (2013). Choosing the best ancestral character state
reconstruction method. Mathematical Biosciences, 242:95–109.

Schluter, D., Price, T., Mooers, A., and Ludwig, D. (1997). Likelihood of ancestor states in adaptative
radiation. Evolution, 51(6):1699–1711.

Searle, R., Casella, G., and McCulloch, C. (1992). Variance Components. Series in Probability and
Mathematical Statistics. Wiley, New York. Applied Probability and Statistics Section.

Steel, M. and Szekely, L. (1999). Inverting random functions. Annals Combin, 3:103–113.

Swofford, D. and Maddison, W. (1987). Reconstructing ancestral character state under Wagner parsi-
mony. Math. Biosci., 87:199–229.

Szekely, G. and Rizzo, M. (2013). Energy statistics: A class of statistics based on distances. Journal of
Statistical Planning and Inference, 143(8):1249–1272.

Van Valkenburgh, B., Wang, X., and Damuth, J. (2004). Cope’s Rule, Hypercarnivory, and extinction
in North American Canids. 306(5693):101–104.

Vasicek, O. (1977). An equilibrium characterization of the term structure. 5(2):177–188.

Webster, A. and Purvis, A. (2002). Testing the accuracy for reconstructing ancestral states of continuous
characters. Proc. R. Soc. Lond. B, 269:143–149.

23



A Equivalence between GLS BM and ML

Though it can be shown through more general considerations, we provide here a detailed proof
of the equivalence between the methods GLS BM and ML. This proof is useful to show the relation
between the optimal and the GLS BM /ML reconstructions (Section 3.3). Let Zi be the random variable
of the node state i. We put Z, Z |a and Z |l for the random vectors t(Z1, · · · , Zn), t(Z1, . . . , Zr) and
t(Zr+1, . . . , Zn), corresponding to all the nodes except the root, the internal nodes excluding root, and
the leaves, respectively. A set of node states z0, . . . , zn is organized as vectors z, z|a and z|l accordingly.

In order to explain why GLS BM and ML are equivalent, we shall consider two different expressions
of the likelihood under the assumptions of ML. In particular, ML assumes that the character evolution
follows a BM model with variance σ2. The probability density of a vector z0, . . . , zn can be written
either

f(Z0,Z)(z0, z) = fZ0(z0)fZ(z), (A1)

or
f(Z0,Z)(z0, z) = fZ0

(z0)f(Z|a |Z|l=z|l )(z
|a )fZ|l (z

|l ). (A2)

Since the vector Z can be expressed as a linear transformation of the independent Gaussian increments
Zj −Zp(j), both fZ , fZ|l and f(Z|a |Z|l=z|l ) are multivariate Gaussian densities. The variance-covariance

matrix ΣZ of Z can be split according to Z |a and Z |l :

ΣZ =

(
Σa,a Σa,l
Σl,a Σl,l

)
,

where Σa,a is the variance-covariance matrix of Z |a , Σa,l is the covariance matrix between Z |a and Z |l

and so on. The matrix ΣZ has the form σ2MZ where entry MZi,j is the time between the root and the

most recent common ancestor of nodes i and j (Felsenstein 1973). We put 1 (resp. 1|a and 1|l ) for the
n-dimensional (resp. r- and (n− r)-dimensional) vector with all coordinates equal to 1. Since Z follows
the multivariate normal distribution N (z01,ΣZ), the marginal and conditional random vectors Z |l and
(Z |a |Z |l = z|l ) follow the multivariate normal distributions N (z01

|l ,Σl,l) and N (z̃, Σ̃a,a) respectively,
where

z̃ = z01
|a + Σa,lΣ

−1
l,l (z|l − z01

|l ) and

Σ̃a,a = Σa,a − Σa,lΣ
−1
l,l Σl,a (Schur complement).

Under the ML assumptions, fZ0
is the improper flat density, thus its logarithm just vanishes in the

computation of log(f(Z0,Z)(z0, z)) with Equations A1 and A2. On the one hand, from Equation A2, the

vector of partial derivatives of log(f(Z0,Z)(z0, z)) with respect to the internal states z|a is proportional
to the vector

z|a − z01
|a − Σa,lΣ

−1
l,l (z|l − z01

|l ).

On the other hand, from Equation A1, the partial derivative of log(f(Z0,Z)(z0, z)) with respect to the
root state z0 is proportional to

z0
t1Σ−1

Z 1− t1Σ−1
Z z. (A3)

The maximum likelihood estimates ẑ0, ẑ1, . . . , ẑr of internal states with respect to the vector leaf
states z|l may basically be obtained by solving the system of linear equations:

z0
t1Σ−1

Z 1− t1Σ−1
Z

(
z|a

z|l

)
= 0

z|a − z01
|a − Σa,lΣ

−1
l,l (z|l − z01

|l ) = 1|a .

(A4)

Let us get a simpler form for the first equation of A4. The inversion formula for block matrices gives
us that

Σ−1
Z =

(
Σ̃−1
a,a −Σ̃−1

a,aΣa,lΣ
−1
l,l

−Σ−1
l,l Σl,aΣ̃−1

a,a Σ−1
l,l + Σ−1

l,l Σl,aΣ̃−1
a,aΣa,lΣ

−1
l,l

)
.
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It follows that Expression A3 can be rewritten as(
t1|a Σ̃−1

a,a1
|a − t1|a Σ̃−1

a,aΣa,lΣ
−1
l,l 1|l − t1|lΣ−1

l,l Σl,aΣ̃−1
a,a1
|a
)
z0

+
(

t1|l (Σ−1
l,l + Σ−1

l,l Σl,aΣ̃−1
a,aΣa,lΣ

−1
l,l )1|l

)
z0

− (t1|a Σ̃−1
a,a − t1|lΣ−1

l,l Σl,aΣ̃−1
a,a)z|a

−
(

t1|l (Σ−1
l,l + Σ−1

l,l Σl,aΣ̃−1
a,aΣa,lΣ

−1
l,l )− t1|a Σ̃−1

a,aΣa,lΣ
−1
l,l

)
z|l ,

in which, substituting z|a according to the second equation of A4, leads to

z0
t1|lΣ−1

l,l 1|l − t1|lΣ−1
l,l z
|l .

Finally, the estimates ẑ0 and ẑ|a maximizing the log-likelihood with respect to the vector of leaf
states z|l satisfy:

(A5)

ẑ0 = (t1|lΣ−1
l,l 1|l )−1t1|lΣ−1

l,l z
|l ,

ẑ|a = ẑ01
|a + Σa,lΣ

−1
l,l (z|l − ẑ01

|l ).

These formula are the same as those computing the GLS reconstruction (Martins and Hansen 1997;
Cunningham et al. 1998; Martins 1999, or see below) in which ẑ0 is called the grand mean.

B General least squares estimation under the ABM model

Let us recall that T denotes the vector of distances from the root to all the nodes but the root (i.e.
for all nodes i 6= 0, Ti is the total length of the path from 0 to i). We put T |a (resp. T |l ) for the vector
of entries of T corresponding to the internal nodes (resp. to the leaves) of the tree.

Under an ABM model with trend µ, the residual sum of square (RSS) has the form:

RSS = t(z − z01− µT )Σ−1
Z (z − z01− µT ),

where ΣZ is the variance covariance matrix of the states under an BM or an ABM model, given in
Equations 4.

By developing the expression above and by using the block inversion formula, it follows that

RSS = tzΣ−1
Z z − 2z0(t1Σ−1

Z z)− 2µ(tTΣ−1
Z z) + z2

0(t1Σ−1
Z 1) + µ2(tTΣ−1

Z T ) + 2z0µ(t1Σ−1
Z T )

= tz|a Σ̃−1
a,az

|a − 2tz|lΣ−1
l,l Σl,aΣ̃−1

a,az
|a + tz|l (Σ−1

l,l + Σ−1
l,l Σl,aΣ̃−1

a,aΣa,lΣ
−1
l,l )z|l

−2z0

[
(t1|a − t1|lΣ−1

l,l Σl,a)Σ̃−1
a,az

|a + (t1|l + (t1|lΣ−1
l,l Σl,a − t1|a )Σ̃−1

a,aΣa,l)Σ
−1
l,l z
|l
]

−2µ
[
(tT |a − tT |lΣ−1

l,l Σl,a)Σ̃−1
a,az

|a + (tT |l + (tT |lΣ−1
l,l Σl,a − tT |a )Σ̃−1

a,aΣa,l)Σ
−1
l,l )z|l

]
+z2

0(t1Σ−1
Z 1) + µ2(tTΣ−1

Z T ) + 2z0µ(t1Σ−1
Z T ).

Let us set
∆1 = 1|a − Σa,lΣ

−1
l,l 1|l and ∆T = T |a − Σa,lΣ

−1
l,l T

|l .

The partial derivative of RSS with regard to the trend is

∂RSS

∂µ
= 2µ(tTΣ−1

Z T ) + 2z0(t1Σ−1
Z T )− 2(t∆T Σ̃−1

a,az
|a + (tT |l − t∆T Σ̃−1

a,aΣa,l)Σ
−1
l,l z
|l ).

The partial derivative of RSS with regard to the root state is

∂RSS

∂z0
= 2z0(t1Σ−1

Z 1) + 2µ(t1Σ−1
Z T )− 2(t∆1Σ̃−1

a,az
|a + (t1|l − t∆1Σ̃−1

a,aΣa,l)Σ
−1
l,l z
|l ).
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The vector of partial derivatives of RSS with regard to the internal states is

∂RSS

∂z|a
= 2Σ̃−1

a,az
|a − 2Σ̃−1

a,aΣa,lΣ
−1
l,l z
|l − 2z0Σ̃−1

a,a∆1 − 2µΣ̃−1
a,a∆T .

It follows that the vector

 µ
z0

z|a

 minimizing RSS satisfies:

(B1)

 tTΣ−1
Z T t1Σ−1

Z T −t∆T Σ̃−1
a,a

t1Σ−1
Z T t1Σ−1

Z 1 −t∆1Σ̃−1
a,a

−Σ̃−1
a,a∆T −Σ̃−1

a,a∆1 Σ̃−1
a,a

 µ
z0

z|a

 =

 (tT |l − t∆T Σ̃−1
a,aΣa,l)Σ

−1
l,l z
|l

(t1|l − t∆1Σ̃−1
a,aΣa,l)Σ

−1
l,l z
|l

Σ̃−1
a,aΣa,lΣ

−1
l,l z
|l

 .

Remark that if one assumes a null trend (i.e. under a BM model), the system B1 becomes(
t1Σ−1

Z 1 −t∆1Σ̃−1
a,a

−Σ̃−1
a,a∆1 Σ̃−1

a,a

)(
z0

z|a

)
=

(
(t1|l − t∆1Σ̃−1

a,aΣa,l)Σ
−1
l,l z
|l

Σ̃−1
a,aΣa,lΣ

−1
l,l z
|l

)
,

which leads to Equations A5.
Let us go back to the system B1. By substituting

Σ̃−1
a,az

|a = µΣ̃−1
a,a∆T + z0Σ̃−1

a,a∆1 + Σ̃−1
a,aΣa,lΣ

−1
l,l z
|l

in the first two equations of B1, we get that

µ(tTΣ−1
Z T − t∆T Σ̃−1

a,a∆T ) + z0(t1Σ−1
Z T − t∆T Σ̃−1

a,a∆1) = tT |lΣ−1
l,l z
|l ,

µ(t1Σ−1
Z T − t∆1Σ̃−1

a,a∆T ) + z0(t1Σ−1
Z 1− t∆1Σ̃−1

a,a∆1) = t1|lΣ−1
l,l z
|l ,

which becomes
µtT |lΣ−1

l,l T
|l + z0

t1|lΣ−1
l,l T

|l = tT |lΣ−1
l,l z
|l ,

µt1|lΣ−1
l,l T

|l + z0
t1|lΣ−1

l,l 1|l = t1|lΣ−1
l,l z
|l .

Let us remark that if there exists a real number λ such that T |l = λ1|l - in plain English, if all the leaves
are at the same distance from the root - then the two equations above are linearly dependent. In this
case, neither the trend nor the root state are identifiable from the leaf states.

If there is no such λ, the system can be explicitly solved to get

(B2)

µ̂ =
t1|lΣ−1

l,l 1|l .tT |lΣ−1
l,l z
|l − t1|lΣ−1

l,l T
|l .t1|lΣ−1

l,l z
|l

t1|lΣ−1
l,l 1|l .tT |lΣ−1

l,l T
|l − (t1|lΣ−1

l,l T
|l )2

,

ẑ0 =
tT |lΣ−1

l,l T
|l .t1|lΣ−1

l,l z
|l − t1|lΣ−1

l,l T
|l .tT |lΣ−1

l,l z
|l

t1|lΣ−1
l,l 1|l .tT |lΣ−1

l,l T
|l − (t1|lΣ−1

l,l T
|l )2

,

ẑ|a = µ̂∆T + ẑ0∆1 + Σa,lΣ
−1
l,l z
|l .

It can be shown that, under the ABM model, the maximum likelihood estimates of the parameters
and of the internal states are the same as those given by Equations B2.

C General least squares estimation under the OU and the OU*
models

Let us put w for the vector such that, for all nodes i 6= 0, wi = e−αTi . We put w|a (resp. w|l ) for
the vector of entries of w corresponding to the internal nodes (resp. to the leaves).

Under an OU model with parameters α and θ, the residual sum of square (RSS) has the form:

RSS = t(z − z0w − θ(1−w))Σ−1
Z (z − z0w − θ(1−w)),
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where ΣZ is here the variance covariance matrix of the states under an OU model, given in Equations
6.

The RSS under an OU model has the same general form as under en ABM model and, assuming
the parameter α known, leads to a linear system which can be explicitly solved to get:

(C1)

θ̂ =
tw|lΣ−1

l,l w|l .t(1|l −w|l )Σ−1
l,l z
|l − tw|lΣ−1

l,l (1|l −w|l ).tw|lΣ−1
l,l z
|l

tw|lΣ−1
l,l w|l .t(1|l −w|l )Σ−1

l,l (1|l −w|l )− (tw|lΣ−1
l,l (1|l −w|l ))2

,

ẑ0 =
t(1|l −w|l )Σ−1

l,l (1|l −w|l ).tw|lΣ−1
l,l z
|l − tw|lΣ−1

l,l (1|l −w|l ).t(1|l −w|l )Σ−1
l,l z
|l

tw|lΣ−1
l,l w|l .t(1|l −w|l )Σ−1

l,l (1|l −w|l )− (tw|lΣ−1
l,l (1|l −w|l ))2

,

ẑ|a = θ̂(1|a −w|a − Σa,lΣ
−1
l,l (1|l −w|l )) + ẑ0(w|a − Σa,lΣ

−1
l,l w|l ) + Σa,lΣ

−1
l,l z
|l .

Remark that we don’t provide an expression of the parameter α, of which both vector w and matrix
ΣZ depend. This parameter is estimated by numerical optimization.

If one assumes that θ = z0 (i.e. under the model OU*), the RSS becomes

RSS = t(z − z01)Σ−1
Z (z − z01),

and leads to the system A5 with the variance-covariance matrix of the OU model.
In both OU and OU* cases and being given the strength selection α, the ancestral states recon-

structed from the general least squares approach are the same as those maximizing the (log-)likelihood
(Equation 3).

D Energy Distance

In this section, we will use the two following properties :

Let W be a standard Gaussian random variable. Then for µ ∈ IR and σ > 0,

IE(|σW + µ|) = σ

√
2

π
exp

(
− µ2

2σ2

)
+ |µ|IP

(
|W |≤ |µ|

σ

)
. (D1)

Let W be a Student random variable with (r + 1) degrees of freedom. Then for µ ∈ IR and σ > 0,

IE(|σW + µ|) =
2σ√
π

√
r + 1

r

Γ( r+2
2 )

Γ( r+1
2 )

(
1 +

µ2

(r + 1)σ2

)− r2
+ |µ|IP

(
|W |≤ |µ|

σ

)
. (D2)

Let A and B be two random variables and FA and FB their respective cumulative distributions.

• If both A and B follow degenerate distributions at a and b respectively, then

dNRG(A,B) = 2|a− b|.

• If A follows a normal law N (µA, σ
2
A) and B a degenerate distribution at b, then, from Equation

D1, we have

dNRG(A,B) = σA
2√
π

(√
2 exp

(
− (µA − b)2

2σ2
A

)
− 1

)
+ 2|µA − b|IP

(
|W |≤ |µA − b|

σA

)
.

If µA = b, the Energy distance is equal to 2σA
√

2−1√
π

thus increases with σA. For any fixed

σA 6= 0, the Energy distance goes to infinity as |µA− b| becomes larger while for any fixed distance
|µA − b|6= 0, it goes from 2|µA − b| to infinity as σA goes from 0 to infinity.

• Let us assume that A and B follow a degenerate distribution at a and a Student law tr+1(µB , σ
2
B)

respectively. From Equation D2, it is possible to compute directly IE(|A − B|) and IE(|A − A′|),
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but not IE(|B − B′|) because the difference between two independent Student variables is not a
Student variable. We thus rely on Expression 10 of the Energy distance:

dNRG(A,B) = 2

∫ ∞
−∞
|FA(x)− FB(x)|2dx.

with FA(x) =

{
1 if a ≤ x,
0 otherwise.

and FB(x) = FWS

(
x− µB
σB

)
, where FWS is the Student cu-

mulative distribution function with r + 1 degrees of freedom. The integral of 10 is approximated

by
∫ β
α
|FA(x) − FB(x)|2dx, where α = µB − qr+1σB , β = max(µB + qr+1σB , a) and qr+1 is the

0, 9999683-quantile for a Student variable with r + 1 degrees of freedom. The numerical computa-
tion of this last integral is performed by the Wynn’s Epsilon algorithm (Piessens et al. 1983).

• If both A and B are Gaussian variables, we get from Equation D1 that

dNRG(A,B) =
2√
π

(√
2(σ2

A + σ2
B) exp

(
− (µA − µB)2

2(σ2
A + σ2

B)

)
− (σ2

A + σ2
B)

)
(D3)

+2|µA − µB |IP

(
|W |≤ |µA − µB |√

σ2
A + σ2

B

)
. (D4)

• Let us finally assume that A and B follow a normal distribution N (µA, σ
2
A) and a Student dis-

tribution tr+1(µB , σ
2
B) respectively. Hence again we have to rely on Expression 10. We ap-

proximate the integral with
∫ β
α
|FA(x) − FB(x)|2dx, where α = min(µA − 4σA, µB − qr+1σB),

β = max(µA + 4σA, µB + qr+1σB) and qr+1 (resp. 4) is the 0, 9999683-quantile for a Student
variable with r + 1 degrees of freedom (resp. for a standard Gaussian variable). The integral is
computed via the Wynn’s Epsilon algorithm.

28


