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A Reactive Walking Pattern Generator Based on
Nonlinear Model Predictive Control

M. Naveau1, M. Kudruss2, O. Stasse1, C. Kirches2, K. Mombaur2, P. Souères1

Abstract— The contribution of this work is to show that
real-time nonlinear model predictive control (NMPC) can be
implemented on position controlled humanoid robots. Following
the idea of “walking without thinking”, we propose a walking
pattern generator that takes into account simultaneously the
position and orientation of the feet. A requirement for an
application in real-world scenarios is the avoidance of obstacles.
Therefore the paper shows an extension of the pattern generator
that directly considers the avoidance of convex obstacles. The
algorithm uses the whole-body dynamics to correct the center
of mass trajectory of the underlying simplified model. The
pattern generator runs in real-time on the embedded hardware
of the humanoid robot HRP-2 and experiments demonstrate
the increase in performance with the correction.

I. INTRODUCTION

The recent DARPA robotics challenge have shown the
need for humanoid robots with an increased level of func-
tionality enabled by proper control. Such complex robots
must provide a simple interface for humans and handle as
much as possible the motion generation autonomously. A
general scheme is to use a motion planner to find an optimal
path over a discrete set of foot-step transitions between
two quasi-static poses [1], [2]. The foot-steps transition are
given by a statistical exploration of a whole-body controller
together with a walking pattern generator. The planner then
finds a feasible sequence of quasi-static poses and foot-
step transitions which minimizes a cost function and avoids
obstacles. This solution is then improved online while en-
suring feasibility, see for instance [3]. In general it is not
possible to realize real-time motion planning by directly
using the controller itself because it is not possible to run
more than one or two instances of the same controller before
collision. Therefore, when the planner fails it is necessary
to solve a continuous local problem which will provide a
feasible solution different from the precomputed one [1].
The statistical exploration can be advantageously used to
cast an optimization problem to find an initial guess [1].
Recently, Deits proposed to define the area of convergence
for a local convex problem with linear constraints [4] for
a template model. With template models the inertia related
to the whole-body motion is ignored, regulated to zero
or corrected. In this paper it is corrected by means of a
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Fig. 1: HRP-2 avoiding reactively on an obstacle, even if the
reference velocity vrefk drives it into it. The upper body geometry
is taken into account by setting a constraint (in green) such that
the robot is sufficiently away from the obstacle (in red).

dynamic filter. It is shown in the experimental section that
it is drastically improving the performances over [5] on the
same robot. The use of template model is a practical solution
on platforms with limited computation capabilities. Even if
advanced whole-body motion controllers are now closer to
real-time feasibility, e.g. the one proposed by Todorov which
was recently applied to HRP-2 [6], they still need powerful
multi-core CPUs which limit their integration on humanoid
robots due to heat and power consumption.

Another improvement of this paper over the method
developed in [5] is the nonlinear formulation which here
allows to deal with obstacle. More precisely [5] integrates
the information provided by statistical exploration of the
controller feasibility between two foot-step transitions. It
makes possible to correct foot-steps while having a guar-
antee over their feasibility. It is realized by reformulating
the optimization problem to generate balanced Center-of-
Pressure (CoP) and Center-of-Mass (CoM) trajectories where
the free variables are the jerk of the CoM as well as foot-
step positions and orientations. The feasible foot-steps, i.e.
free of self-collision and singularities, are specified through
linear constraints. This works well for level ground walking,
unfortunately integrating obstacles with linear constraints
implies a pre-processing of the environment or to use a
different solver.

The present paper shows that obstacles can be dealt



with in real-time using a nonlinear scheme. Although not
demonstrated in this paper, it can be coupled with a real-
time planner. The proposed method would provide a local
feasible solution while the planner is looking for a global
feasible solution [3].

A. State of the Art
Previous works have proposed to apply Model Predictive

Control (MPC) to humanoid robots walking by considering
either the whole body or a template model. When a model
is available for a robot, MPC has several advantages. It can
be very fast when using analytical solutions [7], [8], [9].
However such formulation makes generally some specific
assumptions to find the derivation. This makes difficult the
extension to other walking functionalities. On the other hand
MPC schemes formulated as an optimization problem with
a finer discretization grid can be more easily modified to
include various walking modes inside a single formulation
[10]. In addition MPC as an optimization problem is be-
coming increasingly popular [11], because for a given class
of problems it allows using efficient off-the-shelf solvers.
Moreover several methods exist to increase the efficiency
of solvers for NMPC problems. For instance, it is possible
to use warm-starts or use a sub-optimal solution while
maintaining feasibility [12]. The goal in humanoid robotics
is to find a problem formulation which realizes all the needed
functionalities and copes with the robot capabilities. The
locomotion problems described in [13], that include multi-
contacts and consider the whole robot model over a time
horizon, are not yet solvable in real-time and strongly depend
on the models used to represent the physics.

Despite numerous efforts to address this large scale nonlin-
ear problem with roughly ten thousand variables [6], [14], no
solution yet exists to generate physically consistent controls
in real-time using humanoid robot embedded computers.
On the other hand template models projecting the overall
robot dynamics to its CoM are used in research works
[15], [16], [17], and already showing promising performance.
Motion generation with template models can sometimes be
solved analytically, and in such cases provide fast solutions
that are particularly well suited for platforms with limited
computational power. However, when increased CPU power
is available, MPC-based solutions with the whole model are
much more complete and reliable. Furthermore, as they can
be easily modified, they provide more adaptive functionali-
ties. In this paper, with a bottom-up approach, we are trying
to increase the functional level of a control architecture that
already works on an existing humanoid robot, HRP-2 [5].
The point of this paper is to present extensions of the linear
MPC scheme presented in [5], that allows automatic foot
placement in real-time. For instance, the problem depicted
in Fig. 1 shows the humanoid robot HRP-2 driven by a
desired velocity provided by the user. The former scheme
was specifically formulated as a cascade of two quadratic
programs (QPs). Foot-step orientations are solution of the
first problem, while the second solution of the second QP
provides the CoM trajectory and foot-step positions. This
separation is efficient because the constraints are linear. If
an obstacle has to be taken into account then the constraints

have the shape depicted in Fig. 2, which is not convex
anymore. To maintain the convexity, the solution would be
to pre-process the obstacle and the feasibility area of the
foot-steps. However a linearization at the a point of the
obstacle boundary is equivalent to adding a linear constraint
as depicted in Fig. 2. The algorithm proposed in this paper
is doing a similar operation and therefore no pre-processing
is necessary. This is one of the major contribution of this
paper in comparison to [5]. The proposed nonlinear extension

additional linear constraint

Fig. 2: Walkable zone distorted by a convex obstacle

takes into account the exact expression of constraints such as,
for instance, locally avoiding a convex obstacle. Other for-
mulations for walking motion generation have already been
proposed. [4] is using mixed-integer convex optimization for
planning foot-steps with Atlas. [18] is using a mixed-integer
convex optimization for MPC control and foot steps timing,
but this approach is not real-time feasible. In this work we
introduce three nonlinear inequalities to handle balance, foot
step orientation and obstacle avoidance. This new real time
walking pattern generator has been successfully tested on the
humanoid robot HRP-2 as depicted in Fig. 1. A key ingre-
dient for achieving real-time performance was the following
observation: one real-time iteration of the nonlinear scheme
is enough to find a reasonable solution.

B. Contribution of the article

• It proposes a nonlinear reformulation of classical walk-
ing pattern generator able to find simultaneously foot-
step positions and orientations.

• It introduces nonlinear constraints able to cope with
obstacles in the environment.

• It shows experimentally that one iteration of the nonlin-
ear iterative scheme provides a suboptimal but sufficient
solution for practical cases.

• Thanks to the use of a dynamical filter that corrects
the CoM trajectory to compensate the limitation of the
template model as in [19] the whole body dynamics can
be taken into account. This technical implementation
has a strong impact on the robot performances.

• The whole algorithm runs in real time on the embedded
hardware of the human-size humanoid robot HRP-2.

The theoretical contribution is the formulation of the prob-
lem as a sequence of locally linearized quadratic problems
and the real-time feasible solution by applying the idea
of the so called ”real-time” iteration. Details are described
in Sec. III. Our practical contribution, showing that the
algorithm can be implemented in real-time on the humanoid
robot HRP-2, is detailed in Sec. V. A particular treatment of
the dynamical filter is given in Sec. IV.
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Fig. 3: The control scheme: V el ref is the input velocity. cref and fref are respectively the CoM and the feet 3D trajectories c̃ ref is
the CoM trajectory filtered. qref , q̇ref denote respectively the generalized coordinate vector and its derivation.

II. DERIVATION OF THE DYNAMICS

In this work the well known Linear Inverted Pendulum
Model (LIPM) from [17] is used as the template model of the
robot’s dynamics and the following assumptions are made:
1) the angular momentum produced by the rotations of all
the robot parts is supposed to be zero, 2) the robot CoM
evolves on a horizontal plane, 3) the normals of the contact
forces have to be collinear. As a consequence, each quantity
can be expressed as a function of three degrees of freedom
(DoFs), which are the projection of the robot CoM (x, y)-
position on the ground plane and its free-flyer orientation θ
around the vertical axis z. The reader is kindly referred to
[5] for a detailed description of the several terms omitted
due to the lack of space in the following section.

A. Discretization of CoM dynamics

In order to obtain a smooth trajectory, one controls the
robot CoM through its jerk

...
c ν on a preview horizon, where

c denotes the position of the CoM in the world frame
and ν ∈ {x, y} is used to simplify the notation. This is
done by applying a constant sampling period T and by
assuming a piecewise constant jerk on each interval, i.e....
c νk(t) ≡ constant, t ∈ [kT, (k + 1)T ], k ∈ {0, 1, ..., N},
where N is the length of the preview horizon.

The following time-stepping scheme maps the current state
of the frame cνk to the future states by

ĉνk+j = Aj ĉνk +

j−1∑
i=0

AiB
...
c νk+i , j ∈ [0, N ], (1)

ĉνk =

cνkċνk
c̈νk

 , A =

1 T T 2

/2

0 1 T
0 0 1

 , B =

T 3

/6
T 2

/2

T

 . (2)

To express the CoM over the preview horizon the vector
Cνk+1 of size RN and its derivatives are defined as

Cνk+1 =
[
cνk+1 . . . cνk+N

]T
,

Ċνk+1 =
[
ċνk+1 . . . ċνk+N

]T
,

C̈νk+1 =
[
c̈νk+1 . . . c̈νk+N

]T
,

...
C
ν

k+1 =
[...
c νk+1 . . .

...
c νk+N

]T
.

Using eq. (1), the above vectors can be expressed as a
function of the initial state ĉνk and the CoM jerk

...
C
ν

k+1. The
latter belongs to the free-variable vector of the optimization
problem described in section III.

B. Linear inverted pendulum dynamics

In this paper the balance criteria used is to have the center
of pressure (CoP) in the convex hull of the robot’s support
polygon, which is defined by the contacts with the ground
[17] (see Sec. III-C). Hence, the CoP has to be expressed
in terms of the system’s free variables, i.e. the CoM jerk.
Using the assumptions made in the introduction of Sec. II,
the robot CoP can be expressed as a linear function of the
CoM, i.e.

zνk+n =
[
1 0 −h/g

]
ĉνk+n , ν ∈ {x, y} , n ∈ [0, N − 1],

with h = cz − zz being the height of the CoM with respect
to the ground and g the norm of the gravity vector. Using
eq. (1), a recursive expression for the future evolution of the
CoP for a fixed horizon of N sampling steps is given by

zνk+n =
[
1 0 −h/g

] [
An ĉνk +

n−1∑
i=0

AiB
...
c νk+i

]
. (3)

As in Sec. II-A, the vector Zνk+1 =
[
zνk+1 . . . zνk+n

]T
, of

size RN , is used to describe the CoP on the preview horizon.
This vector can then be expressed in terms of ĉνk and

...
C
ν

k+1.

C. Automatic foot step placement

The adaptive placement of the feet, with the aim to ensure
balance of the robot even under external perturbations, is a
key-feature of the algorithm. To this end, consider a frame
F attached to the support foot, with its current position and
orientation on the ground given by fηk , with η ∈ {x, y, θ}.
The future steps, also free variable of the optimization
problem, are denoted by

F ηk+1 =
[
fηk+1 fηk+2 . . . fηk+N

]T
F ηk+1 = vk+1f

η
k + Vk+1F̃

η
k+1 (4)

with F ηk+1 of size RN representing the foot support position
at each time step and F̃ ηk+1 of size Rnf the actual free
variables of the problem. The vector vk+1 ∈ RN and matrix
Vk+1 ∈ RN×nf indicate which step falls in the sampling
interval (see [5] for more details). Sampling times correspond
to rows, steps to columns, and nf is the maximum number
of double support phases in the preview.

In theory, the usage of a single point mass as model
prevents the definition of an orientation. In [5] a frame
attached to the center mass is defined and the orientation
of this frame and the feet directions are optimized. In this
work only the foot step orientations are optimized, and the
orientation of the robot free-flyer is computed from this
solution. Let ffθ(t), fθ,L(t) and fθ,R(t) be respectively the



orientation of the free-flyer, the left foot and the right foot
at any time t. Hence ffθ(t) is by convention :ffθ(t)

ḟf
θ
(t)

f̈f
θ
(t)

 =

 1
2 (fθ,L(t) + fθ,R(t))
1
2 (ḟθ,L(t) + ḟθ,R(t))
1
2 (f̈θ,L(t) + f̈θ,R(t))

 .
III. NONLINEAR MODEL PREDICTIVE CONTROL

Solving the orientation problem separately from the posi-
tion problem is a workaround to linearize the CoP (eq. (13))
and foot position (eq. (15)) constraints derived below. How-
ever, computing separately the orientation and then injecting
the solution into the position QP amounts to solve a different
problem than the nonlinear combination of both. In the
following the nonlinear problem will be derived, analyzed
and an appropriate approach is proposed, allowing the real-
time execution of the algorithm on the robot.

A. The controller

A scheme of the controller is shown in Fig. 3.
This open-loop controller is used for tracking respec-
tively a referenced linear and angular velocity. In the
first step, the walking pattern generator (WPG) computes
the foot steps and CoM jerk from the given velocity
V el refk+1 =

[
V elx,refk+1 V ely,refk+1 V elθ,refk+1

]
. Then it uses

an Euler integration scheme to compute the CoM trajectory
from its jerk and polynomials of fifth order to retrieve 3D
trajectories for the feet from the foot step planning. The CoM
computed by the WPG is then filtered (see Sec. IV) and sent
altogether with the feet trajectory to a generalized inverse
kinematics algorithm. The output is a whole-body walking
trajectory that can be applied directly on the robot. The WPG
is then reinitialized with the current reference velocity input
and with the corrected initial states of the dynamic filter.

B. The cost function

The cost function used in the NMPC is given by

min
Uk

α

2
J1(Uk) +

α

2
J2(Uk) +

β

2
J3(Uk) +

γ

2
J4(Uk) (5)

with α, β and γ being the weights of the cost function and
Uk the free variables of the problem defined as

Ux,yk =


...
C
x
k

F̃ xk...
C
y
k

F̃ yk

 , Uθk = F̃ θk , Uk =

[
Ux,yk

Uθk

]
. (6)

J1(Uk) is the cost function related to the linear velocity
tracking

J1(Uk) = ‖Ċxk+1 − V elx,refk+1 ‖22 + ‖Ċyk+1 − V el
y,ref
k+1 ‖22.

J2(Uk) is the cost function related to the angular velocity
tracking

J2(Uk) = ‖F θk+1 −
∫
V elθ,refk+1 dt ‖22.

Experiments have shown that a different weight between
linear and angular velocities was not necessary at this stage.

J3(Uk) is the cost function minimizing the distance between
the CoP and the projection of the ankle on the sole

J3(Uk) = ‖F xk+1 − CoP xk+1‖22 + ‖F yk+1 − CoP
y
k+1‖22. (7)

J4(Uk) is the cost function minimizing the norm of the
control

J4(Uk) = ‖...Cxk+1‖22 + ‖...Cyk+1‖22.
The above minimization function can then be express in a
canonical form

min
Uk

1

2
Uk

T Qk Uk + pk
T Uk , (8)

with Qk =

[
Qx,yk 0

0 Qθk

]
, pk =

[
px,yk
pθk

]
, Qθk = α Inf ,

pθk = α

[1 . . . nf
]
Tstep V el

θ,ref
k+1 +

1
...
1

 fθk
 .

The reader is kindly referred to [5] for the defintion of Qx,y

and px,y . The matrix Qθk and pθk are derived because we use a
slightly different method than [5] to deal with the orientation.

C. The constraints
First of all the balance of the robot has to be ensured, then

the feasibility of the foot step needs to be verified. Finally, the
nonlinear constraint which implements the obstacle avoid-
ance is described. It is one of the contribution introduced by
this paper. The following exposition is based on [5].

−→x

−→y
pz1pz2

pz3 pz4

Acop,Bcop
θ

Fig. 4: Shape of the foot with the position vector pzi describing
the support polygon and θ representing its orientation. The 4 × 2
matrix Acop and the 4 × 1 vector Bcop are the linear algebra
representation of the edges.

1) Balance constraint: The CoP has to remain inside the
support polygon [20]. This polygon is depicted in Fig. 4. The
set of linear inequalities representing the convex polygon is
denoted as Acop and Bcop. Only one foot is modeled as a
support polygon for two reasons: 1) HRP-2 feet are symmet-
rical, 2) the sampling period of the problem is designed in a
way that no iteration of the optimization problem falls into a
double support phase. The CoP at instant k, (zk = [zxk zyk ]T ),
see Sec. II-B) lies inside the support polygon if and only if

AcopR(fθk ) (zk − fk) ≤ Bcop (9)[
Ax,θcop,k Ay,θcop,k

]
(zk − fk) ≤ Bcop (10)

R(fθk ) =

[
cos(fθk ) sin(fθk )
− sin(fθk ) cos(fθk )

]
, (11)

where fk = [fxk fyk ]T , Ax,θcop,k is the left column of
AcopR(fθk ) and Ay,θcop,k is the right one. Using eq. (4) the



constraint for each time step of the preview horizon is defined
by

Dk+1(Uθk )

[
Zxk+1 − vk+1f

x
k − Vk+1F̃

x
k+1

Zyk+1 − vk+1f
y
k − Vk+1F̃

y
k+1

]
≤ bcop k+1

(12)
With bcop k+1 = [Bcop . . . Bcop]

T and Dk+1(Uθk ) =A
x,θ
cop,k+1 0 Ay,θcop,k+1 0

. . . . . .
0 Ax,θcop,k+N 0 Ay,θcop,k+N

 .
From eq. (12), the canonical form of the constraint is

Acop,k(Uθk ) Ux,yk ≤ Ucop,k, (13)

where Acop,k(Uθk ) is a matrix depending on Uθk which makes
this constraint nonlinear. And Ucop,k is the upper bound
vector. The last steps of the derivation are detailed in [5].
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Al,Bl

Support Foot

θ

pl1

pl2

pl3

pl4

pl5

Fig. 5: Shape of the selected convex polygon boundary of the foot
placement. The 5× 2 matrix Ar,l and the 5× 1 vector Br,l, define
the convex hull as a set of linear inequalities.

2) Foot step feasibility constraint: This constraint uses
the same convex hull as in [5] to ensure the feasibility of the
steps. For HRP-2 this convex hull is shown in Fig. 5. The
set of linear inequalities representing this convex polygon
is defined by Afoot and Bfoot. Instead of r or l the lower
index foot is used because the problem is symmetrical. The
constraint, representing the fact that the swing foot has to
land inside the convex hull, is given as

AfootR(θ)(fk+1 − fk) ≤ Br,l. (14)

In the exact manner as in eq. (13), the vector and matrices
depicted in Sec. II are used to express this constraint for each
previewed foot step. More details are presented in [5]. The
canonical form of the constraint is

Afoot,k(Uθk ) Ux,yk ≤ Ufoot,k, (15)

where Afoot,k(Uθk ) depends on Uθk like Acop,k(Uθk ), which
makes this constraint nonlinear. And Ufoot,k is the upper
bound vector.

3) Foot orientation constraint: One additional feasibility
constraint considers the maximum and minimum angle be-
tween both feet

− θthresh ≤ F θk+1 − F θk ≤ θthresh, (16)

with the canonical form

Uθ,k ≤ AθUθk ≤ Uθ,k (17)

with : Aθ =


1 0 0 0

−1 1
. . .

...

0
. . . . . . 0

. . . 0 −1 1

 ,
Uθ,k =

[
θthresh + fθk θthresh . . . θthresh

]T
,

Uθ,k =
[
−θthresh + fθk −θthresh . . . −θthresh

]T
.

In practice the bound θthresh = 0.05rad takes into account
the hardware limits. At this stage, the optimization problem
allows the robot to place its feet anywhere inside the convex
hull at any moment. In [5], the velocity of the foot is limited
by bounding the feasible foot step area that corresponds to a
maximum velocity. We chose to use the same idea extended
to all the foot steps degrees of freedom. This significantly
decreases the variation of accelerations before foot landing.

D. Additional constraint : local obstacle avoidance

Here, only the convex obstacles are considered.
For simplification the obstacle is defined as a circle
C = {(px, py) ∈ R2, (px−x0)2 + (py− y0)2 = R2} Where
x0 and y0 are its center coordinates in the world frame and
R its radius. The previewed foot steps are feasible if they
are outside the circle. This constraint does not depend on
the orientation of the foot steps. For the jth previewed step,
at iteration k + j the constraint is expressed by(

fxk+j − x0

)2
+
(
fyk+j − y0

)2

≥ R2 +m2 (18)

⇐⇒ UTk Hobs,jUk +Aobs,jUk ≥ Uobs,j , (19)

with Hobs,j a selection matrix, Aobs,j a vector depending on
x0 and y0, and m a security margin taking into account the
swept volume of the robot.

E. The solver

This paragraph presents the method used to solve the
problem detailed in the previous sections. The non-linearity
of the constraint and the still quadratic objective classifies the
former LQR scheme as a nonlinear least squares optimization
problem, which has the general form

min
Uk

1

2
‖l(Uk)‖22 (20a)

s.t. h ≤ h(Uk) ≤ h. (20b)

In general, derivative-based methods in the form of sequen-
tial quadratic programming SQP can be used for nonlin-
ear optimization problems. These methods are called SQP
because at each iteration a second order approximation of
the nonlinear problem is calculated. Here, the least squares



structure can be exploited to solve eq. (20) more efficiently
using a generalized Gauß-Newton method. Starting with an
initial guess Uk−1 the method iterates Uk = Uk−1 + ∆Uk,
where the increment ∆Uk is obtained from the solution of
the following QP approximation under the following form

min
∆Uk

1

2
‖lk−1 + (∇Uk lk|Uk−1

)T∆Uk‖22 (21a)

s.t. h− hk−1 ≤ (∇Ukhk|Uk−1
)T∆Uk ≤ h− hk−1

(21b)

with
lk := l(Uk), hk := h(Uk) .

Reformulating eq. (21) as a QP in canonical form, we get

min
∆Uk

1

2
∆Uk

T Q̃k∆Uk + p̃k
T∆Uk (22a)

s.t. Ũk ≤ Ãk∆Uk ≤ Ũk (22b)

with

Q̃k = Qk, p̃k =

[
1
2 (Ux,yk−1)TQx,yk + px,yk

1
2 (Uθk−1)TQθk + pθk

]

Ãk =


Acop,k(Uθk−1) ∇T

Uθk
Acop,k|Uθk−1

Ux,yk−1)

Afoot,k(Uθk−1) ∇T
Uθk
Afoot,k|Uθk−1

Ux,yk−1)

0 Aθ
Hobs,jUk−1 +Aobs,j 0

 ,

Ũk =


−∞
−∞
Uθ,k
Uobs,j

− hk−1 , Ũk =


Ucop,k
Ufoot,k
Uθ,k
+∞

− hk−1 ,

hk−1 =


Acop,k(Uθk−1) Ux,yk−1

Afoot,k(Uθk−1) Ux,yk−1

Aθ U
θ
k−1

UTk−1Hobs,jUk−1 +Aobs,jUk−1

 ,

∀j ∈ 1, . . . , nf.

In this work the NMPC scheme is based on the idea of the so
called ”real-time iteration” [21], [22]. At each time instant of
the control loop the nonlinear problem resolution requires the
use of a SQP method. However by carefully initializing the
applied SQP method and by preserving the state from the last
iteration, the computational effort can be reduced to solving
a single QP (one iteration of the respective SQP method) at
each time. Furthermore, the computational process can be
separated into three phases, two of which can be completed
in advance without knowledge of the actual process state.
In this way, the feedback delay can be drastically reduced.
Therefore, instead of solving eq. (20) we recalculate its
linearization once at each iteration of the control loop and
solve a single QP eq. (22) in each iteration. This allows
a real-time execution on the robot even for the proposed
nonlinear formulation.

IV. DYNAMIC FILTER

Recall that the algorithm presented in this paper and the
one presented in [5] assume that the inertial effect of the
legs and the arms are neglected. An interesting fact is that
the algorithm in [5] that was successfully implemented on the

HRP-2 in the Japan Robotic Laboratory (JRL), turned out to
be unstable for its first test on another HRP-2 robot located
at LAAS-CNRS. In order to cope with this difficulty, we
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Fig. 6: Result of the dynamic filtering on the CoP. In solid blue,
the reference CoP computed by the solver. In dash-dot-dot red, the
CoP multi-body. In dashed green, the CoP multi-body recomputed
after correction.

used the dynamic filter introduced by Kajita [17]. This filter
aims to correct the difference between the referenced CoP
computed by the pattern generator and the CoP reconstructed
from the joint trajectories finally realized on the robot. In
order to do so, a second model predictive control is used.
This technique is often seen as applying a Newton Raphson
method on the following equation zref (t) = RNEA(q(t)),
where RNEA is the Recursive Newton-Euler Algorithm
applied on the multi-body robot model. It computes the
multi-body CoP from q, the generalized spatial state vector
at time t. In general this method does not guarantee the
convergence, and might suffer from numerical instability.
However, it has proven its efficiency for this specific problem
[23]. Indeed in practice one iteration of the dynamic filter is
sufficient to reduce considerably the error on the CoP (see
Fig. 6).

V. EXPERIMENTS WITH HRP-2
In this section two experiments on the HRP-2 humanoid

robot are presented. As described in the introduction they
correspond to local situations where a foot-step planner using
a discrete set of foot-step transitions may fail. We consider
the case where only a reference velocity is given to drive
the robot. It corresponds to a sensor-based behavior such as
the one presented in [24]. The integration with a reactive
planner such as the one presented [3] is left for future work.
In the first experiment, the reference velocity drives the robot
towards an obstacle which can be avoided thanks to the
WPG. The second experiment shows the robot performing
a circular trajectory and avoiding an obstacle.

A. Experimental setup
The duration of one full step is 0.8 s, including single

support (0.7 s) and double support (T = 0.1s). During the



Fig. 7: Experiment on the HRP-2 robot using the setup B.

experiment the preview horizon of the NMPC is two full
steps, while the preview horizon of the dynamic filter is
equal to one full step in order to insure real time feasibility
on HRP-2.
Fig. 8 depicts the two experimental setups. The upper figure
and Fig. 1 show the output of the algorithm in the situation
A. The forward velocity is set to V elrefk+1 = [0.2, 0, 0] and
the obstacle to avoid is the red box. In Fig. 8 the box is
represented by the inner red circle while the security margin
is represented by the outer green circle. The robot is allowed
to step on the green circle but not inside it. This margin
prevents the upper body from colliding with the obstacle. The
setup B, depicted in Fig. 7 and 8 is quite similar. A constant
velocity V elrefk+1 = [0.2, 0, 0.2] including rotation around
the vertical axis is sent to the walking pattern generator.
The robot starts to describe a circle and get stuck in front
of the obstacle. As the constraint is locally linearized, and
because the reference velocity in translation is going towards
the constraint, the robot is blocked in translation. Thus, it
stops moving forward and continues to turn on spot, as the
angular velocity is not conflicting with the constraint. Once
the robot has passed the obstacle, it can freely move forward
and describe a circle again.

B. Robustness to perturbation

A disturbance test case has been performed in simulation.
The disturbance is introduced as a force added to the CoM
acceleration in the walking pattern generator. This force
is applied during 100ms. Two kind of disturbances were
considered: on the sagittal plane (both directions) and on the
coronal plane (both directions). In both cases, we considered
two walking situations: forward and on spot.

On the coronal plane, the maximum lateral force that
can be handled is 90N , equivalent to −0.63 J , and −45N ,
equivalent to 0.675 J . The asymmetry comes from the fact
that the robot might be in a different walking situation during
the push. The push may occur when the robot can perform a
step without collision, or when it cannot. In the latter case,
the magnitude of the force that can be rejected is smaller. We
found roughly the same values for the two walking situations.

When walking on spot, the maximum forward and back-
ward perturbation is ±115N ,equivalent to ±0.86 J , as the
problem is symmetrical. When walking forward, the max-
imum disturbance is smaller in the forward direction. The
interval found is [−160; 70]N , equivalent to [−1.12; 1.54] J .
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Fig. 8: Center-of-mass and center-of-pressure trajectories for obsta-
cle avoidance and foot-step orientation using NMPC. Situation A
(up): Constant forward velocity. Situation B (bottom): Constant
forward and angular velocity.

C. Computation time

This algorithm runs online on the HRP-2 CPU
board (Intel(R)Core2(TM)DuoE7500, one core used,
2.8GHz, 3Mb of cache size, on Ubuntu 10.04 LTS). So
only counts the iteration when the NMPC is computed. Thus
the statistics apply only when the walking pattern generator
is computed. The time measurement has been performed on
the complete control architecture (see Fig. 3).



Time consumption experiment A experiment B
Average (ms) 3.95 4.00

Standard deviation (ms) 0.14 0.18
Minimum (ms) 3.34 3.085
Maximum (ms) 4.34 5.19

The robot is controlled at a period of 5ms. Over all the
experiences, there was only one iteration over 5ms. It is due
to the stabilizer which consumes more CPU time when the
robot is in a configuration leading to a kinematic singularity.
The algorithm is still computed every 100ms to simplify the
double support phase handling.

D. Cost function gains
The cost function gains are : α = 2.5, β = 103 and

γ = 10−5. As specified in Sec. III-B, α is the reference
tracking gain, β is a gain maintaining the CoP close to the
center of the foot, and γ is the regularization gain. They
were chosen according to their experimental performance.
The chosen cost function gives different foot steps compared
to [4]. Where the minimization of a cost-to-go criteria in [4]
was used, here the robot follows a velocity prescribed by
the user and can differ from it locally to avoid an obstacle.
This local method runs in real time at a lower level of control
which copes with potential evolution of the environment after
a first planning.

E. qpOASES solver
The nonlinear problem is linearized analytically (see

Sec. III-E) to form a quadratic problem with linear con-
straints. The off-the-shelf solver qpOases [25] is used to
solve the respective QP. This solver is a primal solver
implementing an online active set strategy.

VI. CONCLUSION

In this paper we presented a real-time embedded nonlinear
walking pattern generator. Nonlinear inequalities make pos-
sible to choose the foot step automatically while considering
orientation and local avoidance of convex obstacles. Its
performance was demonstrated in two different experiments
using the humanoid robot HRP-2. The computational cost
of the walking pattern generator is 2ms on the robot. An
extension to our method would be to use a planner in addition
to the walking pattern generator.
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