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Using magnetic levitation to produce

cryogenic targets for inertial fusion energy:

experiment and theory

D. Chatain and V. S. Nikolayev 1

CEA/DSM/SBT/ESEME, CEA Grenoble, 17, rue des Martyrs, 38054, Grenoble
Cedex 9, France

Abstract

We present experimental and theoretical studies of magnetic levitation of hydrogen
gas bubble surrounded by liquid hydrogen confined in a semi-transparent spherical
shell of 3 mm internal diameter. Such shells are used as targets for the Inertial Con-
finement Fusion (ICF), for which a homogeneous (within a few per-cent) layer of a
hydrogen isotope should be deposited on the internal walls of the shells. The grav-
ity does not allow the hydrogen layer thickness to be homogeneous. To compensate
this gravity effect, we have used a non-homogeneous magnetic field created by a
10 T superconductive solenoid. Our experiments show that the magnetic levitation
homogenizes the thickness of liquid hydrogen layer. However, the variation of the
layer thickness is very difficult to measure experimentally. Our theoretical model
allows the exact shape of the layer to be predicted. The model takes into account
the surface tension, gravity, van der Waals, and magnetic forces. The numerical
calculation shows that the homogeneity of the layer thickness is satisfactory for the
ICF purposes.

Key words: ICF, IFE target, magnetic levitation

1 Introduction

Several concepts have been proposed for the design of a commercial power plant based on
Inertial Fusion Energy production [1,2]. Targets are direct or indirect drive targets but must
be at cryogenic temperature [3]. They must be injected in the vacuum chamber of the reactor
at a rate of about 5 Hz and a speed depending on the temperature and the residual pressure of
the vacuum vessel [4]. The targets are then tracked and hit on-the-fly with laser or heavy ion
beams [5].
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Avenue du Dr. Schweitzer, 33608 Pessac Cedex, France; e-mail: vnikolayev@cea.fr
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The targets are hollow spherical shells made of beryllium or polystyrene. Their diameter ranges
from 2 to 5 mm. Their internal wall must be covered with a solid layer of deuterium or a
mixture of deuterium and tritium of several hundred microns in thickness. The thickness of
the layer must be uniform within a few percent. If tritium is present in the mixture, the beta
energy produced by tritium naturally drives the solid to a uniform thickness layer covering the
internal walls of the shell [6,7]. If tritium is not present in the liquid layer, it stays at the bottom
because of gravity. In this paper, we describe how, by using the diamagnetic properties of the
hydrogen, we can compensate this gravity effect and obtain a homogenous thickness of liquid
layer inside the sphere before freezing it.

2 Forces that act on hydrogen molecules

In order to obtain the homogeneous thickness of the liquid layer on the inner walls of a hollow
spherical shell, one needs to satisfy simultaneously two conditions:

• the shape of the gas bubble inside the liquid should be spherical,
• the gas bubble should levitate in the middle of the shell.

We show now how the various forces influence the satisfaction of these conditions.

2.1 Surface tension

The force of the surface tension tends to minimize the interface area. Therefore, the surface
tension helps to maintain the spherical shape of the gas bubble. Obviously, we need to look for
the conditions where the value σ of the surface tension is large. As a matter of fact, σ is the
decreasing function of the temperature T and goes to zero at the critical temperature Tc, which
is about 33 K for hydrogen. The working temperature should thus be at least several degrees
smaller than Tc.

The contribution of the surface tension (i.e. the Laplace pressure) is inversely proportional to
the radius of curvature of the interface. For the thicker liquid layer the radius of the gas bubble
is smaller and the Laplace pressure is thus larger. Therefore, the thickness of the thicker liquid
layer is a priori more homogeneous (provided that the gas bubble is levitated in the middle of
the shell) than the thickness of the thinner liquid layer. As a consequence, we need to analyze
the homogeneity only for the thinnest layer under consideration, which is 200 µm. If for this
case the homogeneity 1% criterion is satisfied, it will be satisfied for all larger thicknesses.

2.2 Van der Waals forces

Since the hydrogen completely wets the solid shell (zero contact angle), the van der Waals
force manifests itself as an attraction between the hydrogen molecules and the solid wall [12].
It thus tends to create the layer of the densest (liquid) phase at the shell wall, leaving the less
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dense phase (gas) in the middle of the shell. However, the value of this force is very small in
comparison with the surface tension. While the van der Waals force influences strongly [12] the
shape of the layers of microscopic (of the order of 1 µm) thickness, we do not expect a strong
effect for the case of the thick liquid layers (average thickness larger than 200 µm), which we
analyze in this report.

We carry out all our calculations for the non-retarded van der Waals interactions instead of the
more suitable (because of the large layer thickness) retarded expression. The reason is that the
retarded interactions are weaker [12] and would result in even smaller contribution.

2.3 Gravity and magnetic forces: magnetic levitation

The gravitational force per unit volume fg = ρg is proportional to the mass density ρ of
hydrogen, g being the gravitational acceleration. Since the liquid mass density ρL is larger than
the gas mass density ρG, the resulting Archimedes force ∆~fg = (ρG − ρL)~g that acts on the gas
bubble tends to increase the thickness of the liquid layer on the bottom of the shell by lifting
the bubble upwards. Gravitation thus needs to be compensated.

The gravity compensation by means of the static magnetic field is based on the expression for
the magnetic force per unit volume ~fm = χ∇(B2)/2µ0 that acts on a body with the magnetic
susceptibility χ, where B is the magnetic induction that would be created by the same solenoid
in the free space and µ0 is the magnetic permeability of free space. The magnetic susceptibility
is proportional to the mass density ρ, χ/ρ = α (see Table 1). The magnetic force that acts on

Table 1
Parameters of hydrogen at T = 20 K [11].

Description Notation Value Units

Magnetic susceptibility/mass density α −2.51 · 10−8 m3/kg

Surface tension σ 0.002 N/m

Mass density of liquid phase ρL 71.41 kg/m3

Mass density of gas phase ρG 1.19 kg/m3

the bubble is thus (see Appendix)

∆~fm = (ρG − ρL)α∇(B2)/2µ0 (1)

and the condition of the bubble levitation is ∆~f = ∆~fm +∆~fg = 0.

Note that ∇(B2)/2 = Bz dBzdz along the solenoid axis (axis z) and the curve ∆~f(z) exhibits
a maximum (see Fig. 1) at some value of z = zm(I) that is almost independent of the solenoid
current I.

All magnetic field calculations reported in this article were performed with the code BOBOZ
translated to the C programming language. As an additional input to this code, the solenoid
current in amperes multiplied by the number of coils is required.
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Fig. 1. The effective force per unit mass that acts on a small gas bubble in presence of the magnetic
field of the solenoid versus z-coordinate along the solenoid axis calculated for tree values of the solenoid
current: Imin, Imin · 1.01, and Imin · 0.99.

Exact gravity compensation

g =
|α|

µ0

Bz

dBz

dz
(2)

can be achieved when I ≥ Imin, where Imin is a minimum current at which the exact com-
pensation is possible at all. In the experiments (see sec. 3), the current Imin is 60 A. In our
calculations we choose the point zm(Imin) as a zero reference point. Its position is 8.502 cm
above the solenoid center. According to our calculations, Imin corresponds to 1.8300·10

6 ampere-
coils. The unknown (the solenoid documentation is not available) number of coils is obtained
by division of this number by Imin.

Fig. 1 shows that when I < Imin, no compensation is possible at all, the force is non-zero
everywhere. When I > Imin, there are two points of compensation z1 and z2 such as z1 < zm <
z2. However, it can be shown that levitation in z2 is not stable, so that the compensation can be
achieved in only one point z1 < zm. Everywhere else, the hydrogen molecules are exposed to the
residual acceleration ~γ = |α|/(2µ0) ∇B2−~g the vertical (z) and radial (r) components of which
are shown in Fig. 2. As we can see on these graphs, the radial component of the acceleration
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Fig. 2. The iso-acceleration curves for (a) γz and (b) γr. The position of the sphere is indicated by the
dotted lines. The acceleration values are given in m s−2.

in the vicinity of the center of the sphere is more important than the axial component. Inside
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a 3 mm diameter sphere, the maximum radial acceleration is about 0.125 m s−2, while the
vertical acceleration is ten times lower. The radial acceleration is directed toward the vertical
axis. This means that the interface can deviate from the spherical shape because it follows the
variation of ~γ. It is thus important to know if the homogeneous thickness of the liquid layer
can in principle be achieved with the magnetic field created by the superconductive solenoid.

3 Experimental

3.1 Test facility

The test facility (Figs. 3) consists of a superconductive solenoid immersed into a helium bath.
The vacuum vessel containing the sphere is introduced into the core of the solenoid. The sphere

Light guide

Camera endoscope

Vacuum vessel

Helium bath
(T=2.2K)

Sphere

Coil
Thermal resistance
Thermal valve
Hydrogen capillary

Light Camera
Hydrogen

(a)

Vacuum vessel

Hollow sphere

Heater
Thermometer

Thermal valve
with its heater

Hydrogen
capillary

Indium seal

(b)

Fig. 3. (a) A scheme of the cryostat. (b) A photograph of the bottom of the cryostat showing the
sphere.

is illuminated from the top of the cryostat with a light guide. Observation is performed with an
endoscope and a CCD camera. The bottom of the cryostat with the sphere is shown in Fig. 3b.
The sphere center is placed at 15 mm from the top of the solenoid i.e. into the calculated point
zm(Imin). The hydrogen is introduced into the sphere by capillary. The characteristics of the
solenoid are listed in Table 2.

The following operations are performed in order to condense and levitate the hydrogen in the
sphere:

• The vacuum vessel is pumped out to about 10−6 mb and the capillary is pumped out to
about 0.1 mb.

• The solenoid and the vacuum vessel are cooled down to 2.2 K.
• The thermal valve is heated (a power of 300 mW is necessary)
• The sphere is heated to about 20 K.
• Hydrogen is slowly introduced into the capillary.

5



Table 2
Parameters of the superconductive solenoid.

Description Value Units

Inner radius 48 mm

Outer radius 93 mm

Total height 20 cm

B at 4.2 K and I = 53 A 8 T

B at 2.17 K and I = 67 A 10 T

Critical current at 2.17 K 72 A

D=3.5mm

D=3 mm

Glue

D=0.6 mm
D=0.2mm

D=1.5 mm

D=2.3 mm

3 mm

5 mm

(a) (b)

Fig. 4. (a) Design of the transparent hollow sphere. (b) A photograph of the sphere.

• When a sufficient quantity is condensed inside the sphere, the heater of the valve is cut so
that an ice plug clogs up the capillary.

• The current in the solenoid is increased to about 60 A to compensate the gravity.
• The temperature of the sphere can be decreased below the triple point (13 K) to freeze the
liquid.

3.2 Sphere

The sphere was made of Plexiglas (PMMA) machined in two hemispheres according to the
design shown in Figs. 4. The two hemispheres were glued with Epoxy 501 stick.

3.3 Effect of the magnetic field

As one can see in Figs. 5, it was possible to condense the hydrogen in the sphere. The optical
imperfections of the sphere did not allow a high image quality to be obtained. Consequently, a
precise measurement of the homogeneity of the layer thickness was not possible. Nevertheless,
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we can see in Fig. 5d that the gas-liquid interface deformation due to the residual gravity force
does not seem to be large.

The figures below show the effect of the magnetic field on the shape of the vapor bubble.

Liquid

Vapor
(a) (b) (c) (d)

Fig. 5. The sphere half filled with liquid hydrogen at a temperature close to the triple point (14 K)for
the different values of the current I in the solenoid that correspond to the different amplitudes of
the magnetic field: (a) I = 0, (b) I = 30 A, (c) I = 50 A, (d) I = 60 A. The gravity is completely
compensated by the magnetic force. The gas bubble is stable and well centered.

3.4 Effect of the liquid/vapor volume ratio

The images in Figs. 6 show the effect of the liquid/gas volume ratio for a gravity completely
compensated by the magnetic field. This ratio controls the thickness of the liquid layer.

(a) (b) (c) (d)

Fig. 6. Same as in Fig. 5d for the gravity compensation field and for the different liquid layer thickness:
(a) 520 µm, (b) 350 µm, (c) 200 µm, (d) It becomes difficult to measure the liquid layer thickness.

4 Numerical modeling

4.1 Mathematical formulation

The equilibrium shape of the interface can be found by two different approaches. One of them
consists in direct numerical minimization of the free energy of the system. In this work we
adopt another, variational approach, in which the minimization itself is performed analytically.
It results in a variational equation that should be solved numerically to obtain the interface
shape. The general form of this variational equation is the Laplace equation

Kσ = ∆p, (3)
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where K is the local curvature of the interface, and ∆p is the difference between the forces per
unit area that act on the interface from the liquid and gas sides. There are several contributions
to ∆p:

∆p = ∆pg +∆pm +∆pw + λ (4)

that correspond to gravitation (∆pg), magnetic field (∆pm), and the van der Waals force (∆pw).
The constant λ is a Lagrange multiplier that appears as a result of the constrained gas volume
VG. λ can be viewed otherwise as an unknown a priori difference of pressures inside the liquid
and gas phases.

The mathematical expression for the curvature K depends on the choice of the reference system
and the independent variable. It is convenient to use the cylindrical (r, z) coordinate system
because the solenoid (z) axis is vertical and ∆p = ∆p (r, z) is thus cylindrically symmetric. In
this reference system, the interface is fully defined by its half-contour for which r > 0.

None of the variables r, z can be chosen as independent because for the closed interface contour
(at least) two values of z exists for each value of r and vise-versa. We choose as an independent
variable the curvilinear coordinate l that varies along the interface contour counter-clockwise
with l = 0 at the point on the symmetry axis where r = 0. Using this parameterization, z = z(l)
and r = r(l). Since l measures the running length along the interface contour, the following
equation is valid

z′2 + r′2 = 1, (5)

where prime means the derivative d/dl. The expression for the local curvature then takes the
form

K = r′z′′ − r′′z′ + z′/r. (6)

By introducing an auxiliary function u(l), one can reduce (3) (with K given by (6)) to the set
of the first-order ordinary differential equations:



























u′ = ∆p (r, z)/σ − sin u/r

r′ = cosu

z′ = sin u

(7)

The physical meaning of the variable u can be found out by dividing two last equations: u is
the angle between the r axis and the tangent to the interface contour.

The gas bubble volume VG is fixed. This condition allows λ to be determined from the equation

VG = π

L
∫

0

r2 sin u dl, (8)

8



where r = r(l) and u = u(l) are the solutions of the set (7) and L is the unknown a priori
half-length of the interface contour.

Four boundary conditions for the set (7) should be specified at the points l = 0 and l = L. Three
of them serve to determine the integration constants in (7) and the fourth serves to determine
L. There are two possible types of the boundary conditions. The first type corresponds to the
case of the continuous liquid layer [12] and reflects the symmetry of the contour:







































u(0) = 0,

r(0) = 0,

u(L) = π,

r(L) = 0.

(9)

The boundary conditions of the second type should be specified when the liquid layer is discon-
tinuous when the van der Waals forces are neglected in the calculation and the point l = L is the
triple (gas-liquid-wall) contact point. Since the contact angle is zero, the boundary conditions
take the form







































u(0) = 0,

r(0) = 0,

r(L) = R sin u(L),

z(L) = −R cosu(L),

(10)

where R is the internal radius of the shell.

The mathematical problem is now complete. However, it is difficult to solve because of the
moving boundary conditions specified at the unknown upper boundary L. This problem can be
reduced to the simpler problem with the fixed boundary conditions by the following mathemat-
ical trick. We introduce new independent variable ξ = l/L and two more dependent variables
L and λ. The set (7) then reduces to























































u′ = L∆p (r, z)− sin u/r

r′ = L cosu

z′ = L sin u

L′ = 0

λ′ = 0

(11)

where u,r,z,L,λ are supposed to be the functions of ξ, prime means now the derivatives d/dξ,
and from now on we express r, z, and L in the units of R and ∆p in the units σ/R. Five
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unknown integration constants for these five equations should be found from the condition

VG = πL

1
∫

0

r2 sin u dξ, (12)

and from the four fixed boundary conditions (specified at ξ = 0, 1) for the problem of the first
type (continuous liquid layer)







































u(0) = 0,

r(0) = 0,

u(1) = π,

r(1) = 0,

(13)

or of the second type (discontinuous liquid layer, i.e. direct wall-gas contact)







































u(0) = 0,

r(0) = 0,

r(1) = sin u(1),

z(1) = − cosu(1).

(14)

The set of equations (4,11,12) with the boundary conditions (13) or (14) provide two fully
defined fixed boundary mathematical problems if the functional forms of ∆pm (r, z), ∆pg (r, z),
and ∆pw (r, z) are known. The magnetic induction B that enters the first of them (A.5) is
calculated using the code BOBOZ. The second is given by ∆pg (r, z) = Bo · z, where Bo is the
non-dimensional Bond number

Bo = (ρL − ρV )gR
2/σ. (15)

The expression for the van der Waals contribution was calculated in [12]. For the non-retarded
interaction

∆pw (r, z) = Cw[R
3

e(R
2

e − d)−3 − (1− d)−3],

where d = r2 + z2, Re is the external shell radius (1.75 mm) expressed in the units R and

Cw =
4π

3
(ρL − ρV )

bHSN
2

AρS
σR2mSmH

(16)

is the non-dimensional number that reflects the strength of the van der Waals forces relative to
the surface tension, bHS ≈ 4 · 10−78 Jm6 is the London constant for the interaction of the shell
and hydrogen molecules, NA is the Avogadro number, ρS and mS is the mass density and the
molecular weight of the shell material, and mH is the molecular weight of hydrogen.
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4.2 Calculation details

The mathematical problem (4), (11), (12), (14) with the boundary conditions of the second
type was solved using the Shooting Method [15] for the two-point boundary value problems.
This algorithm was modified slightly to include the condition (12) into the function score of
[15]. The integral in (12) was calculated using the Simpson method. The set of the ordinary
differential equations (11) was solved using the rkdumb function of [15] with 100 steps, which
was sufficient to achieve the accuracy of 10−6. The mathematical problem (4), (11), (12), (13)
with the boundary conditions of the first type should be solved using the Shooting to the Fitting
Point Method [15] because of the singularity r = 0 at the boundary point ξ = 1.

The calculations were performed for the values of the parameters shown in Table 2. The gas
bubble volume VG is defined by the average value for the liquid layer thickness of 200 µm.

4.3 Levitation at minimum compensation current

The bubble shape calculated for the minimum compensation current Imin is presented in Figs. 7.
Only right half of the interface Fig. 7a is calculated. The symmetric left half is added for illus-
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Fig. 7. (a)The shape of the gas-liquid interface at minimum compensation current Imin. All lengths are
scaled by the cell inner radius R = 1.5 mm. (b) Deviation of the shape in Fig. 7a from the spherical
shape versus polar angle in the r − z plane. Zero polar angle corresponds to the horizontal direction.
The error bars show the numerical accuracy of the calculations.

tration purposes only to this and all other figures that show the interface shape. The interface
resembles sphere very much, which explains the experimental result in Fig. 5d. However, there
is a minor deviation from the sphericity, which is shown in Fig. 7b. In the case when the centers
of the shell and of the interface coincide (it is easy to adjust experimentally by moving the
shell with respect to the solenoid), this diagram gives the angular variation of the liquid layer
thickness. Fig. 7b demonstrates that the liquid layer smoothness is at least one order better
than 1% required for the ICF targets.

Because of the very small value of the van der Waals contribution (indeed, Cw ∼ 10−12), our
code did not show any effect of the van der Waals forces within the numerical accuracy. The van
der Waals forces should manifest themselves only when the gas bubble is pressed against the
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shell. Due to them, a thin wetting layer (layer of liquid phase that separates the gas phase from
the shell) forms even in this situation because of the complete wetting conditions. However,
as the thickness of this layer is 100 to 1000 times less than the average thickness in our case,
the chosen algorithm does not detect it and becomes unstable. Therefore, in the following we
neglect the presence of the wetting layer, assuming that its thickness is zero, i.e. the liquid layer
is assumed to be discontinuous, the boundary conditions of the second type (see section 4.1)
being used for this case. We equally neglect the presence of the van der Waals forces for the
case of the continuous liquid layer. The boundary conditions of the first type are applied in this
case.

4.4 Levitated bubble: effect of the surface tension

In this subsection we consider the interface change under the influence of the decrease of
the surface tension. Our experiments carried out for the temperatures close to the critical
temperature of the hydrogen Tc ≈ 33 K showed a wavy deformation of the gas-liquid interface.
In this subsection we model the hydrogen bubble shape by neglecting the presence of the shell,
i.e. by assuming the levitation of the gas bubble in the large volume of liquid. The results of
the calculations are shown in Fig. 8. One can see that the bubble deformation increases when
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0

0.4

0.8

1.2

0 0.4 0.8 1.2

2·10-3

3·10-6
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2·10-5

z/
R

r/R

Fig. 8. The dependence of the shape of the gas bubble levitated in the infinite liquid on the surface
tension σ, which is the parameter of the curves expressed in N/m. All shapes are calculated at minimum
compensation current Imin. The bubble volume is fixed and corresponds to that of Fig. 7a.

the surface tension decreases to zero, the smallest value of the surface tension corresponding to
the temperature of 30 mK below Tc. This deformation appears as a consequence of the residual
acceleration ~γ inside the solenoid. Qualitatively, the deformation of the interface corresponds
to the observations.

4.5 Levitated bubble: effect of solenoid current

The bubble shape calculated for the current one per cent larger than Imin is presented in
Figs. 9. Comparing these figures with Figs. 7, two main differences become apparent. First, the
equilibrium position of the bubble is displaced strongly to the bottom of the solenoid, its center
corresponding approximately to the point z1 from Fig. 1. In other words, the position of the
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Fig. 9. (a)The shape of the gas bubble at the current value Imin · 1.01. The other values of the
parameters are the same as for Figs. 7. (b) Deviation of the shape in Fig. 9a from the spherical shape
versus polar angle in the r − z plane.

levitation point is very sensitive to the value of the current. Second, the maximum deviation
from the average layer thickness is very sensitive to the current. Fig. 9b shows that the 1%
increase of the current causes the ∼ 50% increase in the maximum deviation.

For the current less than Imin, there is no equilibrium levitation position and the bubble is
squeezed against the upper part of the shell.

4.6 Squeezed bubble

The squeezed bubble shapes calculated for current values smaller than Imin = 60 A are presented
in Figs. 10. One can see that the variation of the current does not influence the shape strongly
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Fig. 10. The shapes of the gas bubble pressed against the shell calculated for: (a) different values of
current and σ = 0.002 N/m; (b) different values of σ and current I = 50 A. The other values of the
parameters are the same as for Figs. 7.

at a large value of the surface tension (Fig. 10a). These data compares well to the experiments.
However, when the surface tension decreases, the inhomogeneity of the magnetic forces deform
the bubble (Fig. 10b) in full analogy to the case of the levitated bubble shown in Fig. 8.
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5 Conclusion and perspectives

The experiments of magnetic levitation of hydrogen, near the triple point, in a hollow semi-
transparent spherical shell have been performed. Due to the fact that the sphere was not
completely transparent, a precise characterization of the liquid layer could not be done. Nev-
ertheless, the obtained images did not show deformation of the gas/liquid interface under the
influence of the residual magnetic forces. Our numerical modeling of the gas-liquid interface
shape shows that the layer of the liquid hydrogen with a very small thickness variation (less
than 0.1%) can be achieved by means of magnetic levitation in a superconductive solenoid.
The thickness homogeneity is the best when levitating at the minimum value of the current
at which the levitation is possible at all. Although the levitation is possible at a higher value
of the current, the thickness variation increases rapidly with the increase of the current. The
higher homogeneity can be achieved for the a larger surface tension (smaller temperature) and
a larger layer thickness provided that the gas bubble is well centered in the shell.

We investigate now the levitation in a coil based on the magnetic multipole concept. This coil
is similar to coils used for the confinement of particles in accelerators. Such multipoles can
levitate hydrogen or deuterium targets by tens or even hundreds at the same time. This could
be a solution to the problem of high production rates required for commercial power plants
based on the inertial fusion energy.
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A Appendix

Although the final expression for the magnetic contribution (A.4) can be found in the literature
[13], we never met either its derivation or a discussion of the validity criterium. We address
these two points in this appendix.

The absolute value for the normal component of the force per unit area pm induced on an
interface by the magnetic field (magnetic pressure) can be calculated in terms of the Cartesian
components of the Maxwell tensor [14]

σik = −
1

2
µµ0H

2δik + µµ0HiHk, (A.1)

where µ = 1+χ is the magnetic permeability of the medium, Hi are the Cartesian components
of the magnetic field, and δik is the Kroneker symbol (δik = 1 if i = k and 0 otherwise). The
magnetic pressure is then

pm =
3
∑

i,k=1

σiknink =
1

2
µµ0(H

2

n −H2

τ ), (A.2)

where ni are the components of the external normal to the interface, Hn and Hτ are the normal
and tangential components of the magnetic field, H2 = H2

n+H2

τ . Using the boundary conditions
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[14] for the magnetic field at the interface











µLHnL = µGHnG,

HτL = HτG,
(A.3)

where the indices L and G refer to the liquid and gas phases, one can obtain the expression

∆pm = pmL − pmG = −
1

2
µ0(µL − µG)

(

H2

τG +
µG

µL

H2

nG

)

≈

−
1

2
µ0(µL − µG)H

2

G ≈ −
1

2µ0

(µL − µG)B
2, (A.4)

where two approximations were used: µL ≈ µG ≈ 1. These approximate equalities verify with
the accuracy 10−6 in our case and thus the final expression (A.4) can be employed.

The volume magnetic force (1) can be obtained from (A.4) using the integral Gauss theorem

[14] as ∆~fm = ∇(∆pm). By converting ∆pm into the a non-dimensional form, one obtains the
final expression

∆pm = MgB(r, z)2, (A.5)

where B is expressed in units of B(0, 0), and

Mg =
(ρL − ρG)|α|R

2σµ0

B2(0, 0) (A.6)

is the non-dimensional number that characterizes the strength of the magnetic force.
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