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Abstract

We report a 2D BEM modeling of the thermal diffusion-controlled growth of a

vapor bubble attached to a heating surface during saturated pool boiling. The tran-

sient heat conduction problem is solved in a liquid that surrounds a bubble with

a free boundary and in a semi-infinite solid heater. The heat generated homoge-

neously in the heater causes evaporation, i. e. the bubble growth. A singularity

exists at the point of the triple (liquid-vapor-solid) contact. At high system pres-

sure the bubble is assumed to grow slowly, its shape being defined by the surface

tension and the vapor recoil force, a force coming from the liquid evaporating into

the bubble. It is shown that at some typical time the dry spot under the bubble

begins to grow rapidly under the action of the vapor recoil. Such a bubble can

eventually spread into a vapor film that can separate the liquid from the heater,

thus triggering the boiling crisis (Critical Heat Flux phenomenon).

1 Introduction

Boiling is widely used to transfer heat from a solid heater to a liquid. The bub-

ble growth in boiling attracted much of attention from many scientists and engi-

neers. In spite of these efforts, some important aspects of growth of a vapor bubble

attached to a solid heater remain misunderstood even on a phenomenological level.

The most important aspect is the boiling crisis, a transition from nucleate boiling

(where vapor bubbles nucleate on the heater) to film boiling (where the heater is
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covered by a continuous vapor film). The boiling crisis is observed when the heat

flux qS from the solid heater exceeds a threshold value which is called the ”Criti-

cal Heat Flux” (CHF). The rapid formation of the vapor film on the heater surface

decreases steeply the heat transfer efficiency and leads to a local heater overheat-

ing. In the industrial heat exchangers, the boiling crisis can lead to melting of the

heater thus provoking a dangerous accident. Therefore, the knowledge of the CHF

is extremely important. However, the CHF depends on many parameters. At this

time, there are several semi-empirical correlations that predict the CHF more or

less reliably for several particular regimes of boiling and heater configurations, see

[1] for a recent review. However, a clear understanding of the triggering mecha-

nism of the boiling crisis is still lacking.

The knowledge about what happens at the foot of the bubble which grows

attached to the heater is crucial for the correct modeling of the boiling crisis. Unfor-

tunately, the experimental observations at large heat fluxes close to the CHF are

complicated by the violence of boiling and optical distortions caused by the strong

temperature gradients. We proposed recently [2] to carry out boiling experiments

in the proximity of the critical point where the CHF is very small and the bub-

ble evolution is very slow. However, microgravity conditions are necessary in this

case to obtain a convex bubble shape in order to observe a behavior similar to the

terrestrial boiling.

The bubble foot contains the contact line of the bubble with the heater. This

triple solid-liquid-gas contact line is a line of singularity points both for the hydro-

dynamic (see [3] and refs. therein) and for the heat conduction problems. In the

present article we consider only the heat conduction part by assuming the slow

growth and the quasi-static bubble shape which is common for the high pres-

sure boiling. The results of such a calculation have already been described in [5].

The present article deals with the problem framework and some calculation details

related to BEM.

2 Boundary conditions for the contact line problem

The choice of the boundary conditions adopted in the contact line is very impor-

tant. Since the contact line is triple, boundary conditions should be specified at

three surfaces that intersect there (Fig. 1). For the gas-liquid interface, we adopt the

constant-temperature boundary condition with the temperature that corresponds to

the saturation temperature Tsat for the given (constant) system pressure. The gas

phase is assumed to be non-conductive, the heat flux through the solid-gas inter-

face being zero. The boundary condition on the solid-liquid interface remains to

be defined. It is the subject of the rest of this section.

There are three kinds of boundary conditions. Let us consider them on an exam-

ple of the 2D wedge geometry as illustrated in Fig. 1 for which some important

solutions can be obtained in analytical form.

Since the heater is a far better heat conductor than the liquid, the constant tem-

perature boundary condition (T = TS =const along the solid-liquid interface)

seems natural. In order to maintain boiling, TS > Tsat should be satisfied. The



T/

solid heater

vapor
liquid

θ

[

\

TSO
 �

Figure 1: Geometry for the calculation of the heat conduction in the wedge geom-

etry. The BEM discretization of the wedge is also illustrated.

resulting problem is ill posed because the temperature is discontinuous along the

boundary of the liquid domain at the contact point O in Fig. 1. This discontinuity

leads to a singular behavior of the heat flux qL through the gas-liquid boundary,

qL(y) ∝ y−1 [4] and is not integrable. Note that the integral
∫

qLdy is very impor-

tant because it defines the amount of liquid evaporated into the bubble and thus the

bubble growth rate, see Eq. (11) below. Since the result is infinite, the first kind

boundary condition cannot be used.

Another choice is the constant heat flux qS along the solid-liquid interface,

which can be reasonable for a thin heater. The resulting transient problem can

be solved analytically in the liquid domain by the reflections method [4]. Its solu-

tion can be obtained in the closed form for several contact angles θ, see Fig. 1. The

solutions obtained in [5] for θ = π/4 and θ = π/8 result in a constant value for

ql(y → 0). Although the solution for θ = π/2 diverges qL(y) ∝ log(−y) [6], it

is integrable. In spite of these advantages, the constant heat flux boundary condi-

tion is not suitable for the bubble growth problem because it cannot be used in the

dry spot (i. e. solid-gas contact) area where the heat flux should be zero. However,

these analytical solutions can be used to test the BEM solver code (see Fig. 2).

A remaining option is the boundary conditions of a third kind, i.e. the coupling

of the temperatures and the fluxes at the solid surface. The heat conduction prob-

lem is required to be solved in the solid domain in addition to the liquid domain.

Unfortunately, we cannot solve the problem analytically in this case. Qualitatively,

one can expect an integrable divergence of qL(y) which should appear because of

the influence of the solid-gas contact area adjacent to the contact line. Since the

heat flux that comes from the bulk of the solid heater is not able to pass through

this area, it should be necessarily deviated towards the neighboring solid-liquid

contact area thus increasing qS at small x. Since qS ≈ qL near the contact line,
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Figure 2: The qL(y) curves calculated for the π/2, π/4 and π/8 wedges for the

values of the parameters q0 = 1, αL = 1, t = 0.01 and dmin = 0.001
and two values of the time step ∆t. The results of the numerical solu-

tion by BEM (data points) should be compared with the exact analytical

solutions (lines).

qL(y) should vary steeper near the contact line than in the constant qS case and is

likely to diverge.

One can argue that the necessity of the calculation of the temperature field in

the heater is a heavy complication that justifies the approximation of the simulta-

neous application of the boundary conditions of constant heat flux outside the dry

spot and zero heat flux inside. However, the above considerations show that the

behavior of qL(y) can deviate from its real behavior even qualitatively. Since such

a large error cannot be admitted in the calculation of qL that strongly influences the

bubble dynamics, we need to calculate rigorously the conjugate heat conduction

problem.

3 Mathematical problem statement

The 2D heat conduction problem in the domain ΩL ∪ ΩS (see Fig. 3) reads

∂TL
∂t

= αL∇2TL, ~r ∈ ΩL (1)

∂TS
∂t

= αS∇2TS +
αS

kS
j(t), ~r ∈ ΩS (2)

where α and k is the thermal diffusivity and conductivity respectively, the indices

L and S identify the liquid and the solid heater, and ~r = (x, y) denotes a point. The

heat is assumed to be generated homogeneously in the heater with the power j(t)
per unit volume. We choose j(t) = C/

√
t, where C is constant. This condition
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Figure 3: Vapor bubble on the heater (domain ΩS) surrounded by the liquid

(domain ΩL). The chosen direction of the unit normal vector ~n is shown

for each of the subcontours ∂Ωw, ∂Ωd and ∂Ωi. The discretization is

illustrated for the right half of the subcontours. (From [5] with permis-

sion from Elsevier Science)

results in a constant in time value of qS far from the bubble, see (14) below. Initially

(t = 0) the temperature is homogeneous TL = TS = Tsat. The vapor bubble is

assumed to be already nucleated. Since we assume the zero contact angle θ = 0,

the bubble shape is spherical with the radius R0. The boundary conditions are

formulated on the moving gas-liquid interface ∂Ωi (TL|∂Ωi
= Tsat), on the solid-

liquid interface ∂Ωd (∂TL/∂y|∂Ωd
= 0) and on the solid-liquid interface ∂Ωw:

qS = −kS
∂TS
∂y

∣

∣

∣

∣

∂Ωw

= −kL
∂TL
∂y

∣

∣

∣

∣

y=0

,

TS|∂Ωw
= TL|y=0 .

(3)

Because of the axial symmetry, this problem needs to be solved only for x > 0.

The shape of the gas bubble is calculated from the quasi-static equation [6]

K(~ri)σ = λ+ Pr(~ri), (4)

where K is the curvature of the bubble at the point on the surface ~ri = (xi, yi),
σ is the vapor-liquid interface tension and λ is a constant difference of pressures

between the vapor and the liquid. The vapor recoil pressure

Pr(~ri) = [qL(~ri)/H ]2(ρ−1
V − ρ−1

L ), (5)

where qL = −kL(~n · ∇) TL|∂Ωi
appears due to the uncompensated momentum of

vapor molecules that leave the interface. The latent heat of vaporization is denoted



byH , ρV and ρL being the vapor and liquid densities. Eq. (4) is convenient to solve

when the bubble contour is described in parametric form ~ri = ~ri(ξ) where ξ is the

distance from the topmost point of the bubble to the point ~ri measured along the

bubble contour. When ξ is non-dimensionalized by the half-length of the bubble

contour L, ξ = 1 corresponds to the contact point and (4) becomes equivalent to

the following set of ODEs [5]:

dxi/dξ = L cosu, (6)

dyi/dξ = −L sinu, (7)

du/dξ = L(λ+ Pr(ξ))/σ (8)

were u = u(ξ) is an auxiliary function. The boundary conditions for this set read

xi(0) = 0, u(0) = 0, yi(1) = 0. By fixing the contact angle u(1) = π− θ one can

determine the unknown L from (8),

L = (π − θ)σ





1
∫

0

Pr(ξ)dξ + λ





−1

, (9)

θ = 0 is assumed in the rest of this article. The constant λ should be determined

using the known volume V of the 2D bubble,

V = −1

2

∫

(∂Ωi)

(xinx + yiny) d ∂Ω, (10)

where nx and ny are the components of ~n, Fig. 3. The bubble volume increases in

time due to evaporation at ∂Ωi

HρV
dV

dt
=

∫

(∂Ωi)

qL(~ri) d ∂Ω, (11)

This equation is used widely to describe the thermally controlled bubble growth.

The initial condition is V (t = 0) = 4/3 πR3
0.

The problem (1-11) is now complete. It can be solved by BEM. However, it is

not convenient to solve by BEM because the temperature and its gradient are both

non-zero at infinity (more precisely, at x→ ∞), where the closing subcontours for

the domains ΩL and ΩS are located. We solve this problem easily by subtracting

the solutions at x→ ∞. These solutions for the both domains read [5]

T inf
L = Tsat +

q0
kL

[

√

4αLt

π
exp

(

− y2

4αLt

)

− y erfc

(

y

2
√
αLt

)

]

, (12)

T inf
S = Tsat +

2αS

kS
C
√
t−



q0
kS

[

√

4αSt

π
exp

(

− y2

4αSt

)

+ y erfc

(

− y

2
√
αSt

)

]

, (13)

where erfc(·) is the complementary error function [7]. As one can easily find, the

flux from the heater q0 far from the bubble

q0 ≡ qS(x→ ±∞) = C
√
παSkL/(kS

√
αL + kL

√
αS), (14)

is constant in time. We use its value as a control parameter instead of C.

By introducing the characteristic scales for time (∆t, the time step), length (R0,

the initial bubble radius), heat flux (q̄), and thermal conductivity (k̄), all other vari-

ables can be made non-dimensional. In particular, the characteristic temperature

scale in the system is q̄R0/k̄. The following four non-dimensional groups define

completely the behavior of the system

FoL,S = αL,S∆t/R
2
0 — Fourier numbers,

Ja =
kLq̄R0

ρVHk̄αL
— Jakob number,

Hi =
R0 q̄

2

σH2
(ρ−1

V − ρ−1
L ) — Hickman number,

together with the non-dimensionalized values of q0 and kL,S . The non-dimensional

heat transfer problem can now be formulated in terms of temperatures ψL,S =

(TL,S − T inf
L,S )/(q̄R0/k̄) and fluxes ζL,S = kL,S ∂ψL,S/∂~n.

4 Numerical implementation

4.1 BEM formulation

Since ψL,S = ζL,S = 0 at infinity, the heat conduction problem is equivalent to a

set of two BEM equations [8] for the open integration contours ∂ΩL = ∂Ωi∪∂Ωw

and ∂ΩS = ∂Ωd ∪ ∂Ωw. Using t = 0 as the initial time moment and taking

into account that ψL,S(t = 0) = 0 so that the volume integral disappears, these

equations read

tF
∫

0

dt

∫

(∂ΩL,S)

[

GL,S(~r′, tF ;~r, t)

(

FoL,S
ζL,S(~r, t)

kL,S
+ ψL,S(~r, t)v

n(~r, t)

)

−

FoL,S ψL,S(~r, t)
∂rG

L,S(~r′, tF ;~r, t)

∂~nr

]

dr∂Ω =
1

2
ψL,S(~r′, tF ), (15)

where the point ~r′ belongs to ∂ΩL,S respectively, vn is the normal component of

the contour velocity (nonzero only on ∂Ωi) and

GL,S(~r′, tF ;~r, t) =
1

4πFoL,S(tF − t)
exp

[

− |~r′ − ~r|2
4 FoL,S(tF − t)

]

. (16)



In the following, the indices L and S for all variables in the equations will be

dropped for the sake of clarity.

The constant element BEM [9] was used, i. e. both ζ and ψ were assumed to

be constant during any time step and on any element ∂Ωj , their values on the ele-

ment being associated with the values at the node Bj in the middle of the element

approximated by a straight segment that joins its ends Mj−1 and Mj . The time

steps are equal, i.e. tf = f . The values of ζ and ψ on the element j at time f are

denoted by ζfj and ψfj . Each of the integral equations (15) reduces to the system

of linear equations

F
∑

f=1

2Nf
∑

j=1

[(ζfj/k + ψfjv
n
fj/Fo)G

Ff
ij − ψfjH

Ff
ij ] = ψFi/2, (17)

where Nf is the number of elements on one half of the integration contour at

time step f , Fmax is the maximum calculation time; i = 1 . . . 2NF and F =
1 . . . Fmax; Hij and Gij are the BEM coefficients:

GFf
ij = Fo

f
∫

f−1

dt

∫

(∂Ωj)

G(~ri, F ;~r, f)dr∂Ω,

HFf
ij = Fo

f
∫

f−1

dt

∫

(∂Ωj)

∂G(~ri, F ;~r, f)

∂~nr
dr∂Ω.

(18)

Since the calculation of these coefficients takes the most of computation time, it

should be made fast.

4.2 Algorithm for the BEM coefficients

The value of each particular BEM coefficient for the element ∂Ωj = (Mj−1,Mj)
of the length l is calculated using the coordinate transformation [11] to the Carte-

sian system where Bj is the reference point and the x axis is directed toward

Mj−1. The direction of the normal vector ~n coincides with the y axis. The time

integration [9] results in

GFf
ij =

l/2
∫

−l/2

1

4π

[

E1

(

(x+ u)2 + y2

4 Fo(F − f + 1)

)

− E1

(

(x+ u)2 + y2

4 Fo(F − f)

)]

du,(19)

HFf
ij =

l/2
∫

−l/2

y

2π





exp
(

− (x+u)2+y2

4 Fo(F−f+1)

)

(x+ u)2 + y2
−

exp
(

− (x+u)2+y2

4Fo(F−f)

)

(x + u)2 + y2



 du, (20)

where (x, y) denote the coordinates of the point ~ri in the new reference system and

E1(·) is the exponential integral [7]. The situation i = j (i.e. where x = y = 0) is

particular, which is a quite general feature of BEM.



4.2.1 G coefficient

Note that the case f = F for (19) is not singular, the second term of the integrand

in (19) being zero. Therefore, we will deal only with this case. The integration of

the second term that exists when f < F is similar to the first.

The divergence of E1(z) at z → 0 is logarithmic and thus integrable. Usually

this means that the integration can be performed by the Gauss method. However,

since our problem is singular due to the contact line effects, many Gauss points

are needed to attain the required accuracy in the contact line region and a more

sophisticated algorithm is necessary to get both accuracy and speed. The analytical

integration [10] is used when y = 0 i.e. when the singularity occurs. Although

there is no singularity when y 6= 0, the integrand varies sharply near the point

u = −x when y ≪ l. For the case |x| < l/2, the integration interval can be split

by the point u = −x and changes of variables can be done in both integrals to

produce

GFF
ij =

√
Fo

4π











[(x+l/2)2+y2]/4Fo
∫

y2/4Fo

E1(z)
√

z − y2/4Fo
dz+

[(x+l/2)2+y2]/4Fo
∫

y2/4Fo

E1(z)
√

z − y2/4Fo
dz











. (21)

At first glance, no advantage is obtained because of the divergence. However, the

approximation [7] of E1(z) for z < 1 allows the analytical integration to be per-

formed term by term and results in

∫ a

b

E1(z)√
z − b

dz = −4
√
b arctan

√

a− b

b
+ 2

√
a− b [1.422784− log(a) +

0.333331 (a+ 2b)− 0.0166607 (3a2 + 4ab+ 8b2) +

1.577134 · 10−3 (5a3 + 6a2b+ 8ab2 + 16b3)−
3.09843 · 10−5(35a4 + 40a3b+ 48a2b2 + 64ab3 + 128b4) +

1.55638 · 10−6(63a5 + 70a4b+ 80a3b2 + 96a2b3 + 128ab4 + 256b5)],(22)

where b ≤ a < 1 are assumed. For the remaining part of the integration interval,

the 8-point Gauss integration is performed and gives a sufficient accuracy.

The case |x| > l/2 should be solved similarly when the argument of E1 in (19)

can be less than unity somewhere in the integration interval.



4.2.2 H coefficient

The value of the coefficient (19) at y = 0 is zero. While no singularity exists when

f < F (this case can be integrated by Gauss method), the function

HFF
ij =

y

2π
exp

(

− y2

4 Fo

)

x+l/2
∫

x−l/2

exp
(

− u2

4Fo

)

u2 + y2
du (23)

is discontinuous at y = 0. The integration interval in (23) contains the point u = 0
when |x| < l/2. Since the integrand is an even function of u, this integral can be

presented as
x+l/2
∫

x−l/2

. . . =

x+l/2
∫

0

. . .+

l/2−x
∫

0

. . .

and the interval (0, ε), where 0 < ε ≪ l/2, can be separated out of the both

integrals. The contribution of this interval to (23) turns out to be

HFF
ij =

1

π
exp

(

−y
2 + ε2/4

4 Fo

)

arctan
ε

y
+ . . .

The discontinuity is evident now: while y → +0 limit is 1/2, the value at y = 0 is

zero and y → −0 limit is −1/2.

After the integration over the interval (−ε, ε) analytically, the Gauss method

can be employed to integrate over the remaining parts of the interval in (23).

4.3 Calculation scheme

The system (17) can be simplified due to axial symmetry of the problem ζ, ψfj =
ζψf(2Nf−j):

F
∑

f=1

Nf
∑

j=1

[(ζfj/k + ψfjv
n
fj/Fo)G̃

Ff
ij − ψfjH̃

Ff
ij ] = ψFi/2, (24)

where i = 1 . . .NF , F = 1 . . . Fmax, G̃Ff
ij = GFf

ij + GFf
i(2Nf−j) and H̃Ff

ij =

HFf
ij +HFf

i(2Nf−j). Unfortunately, no effective time marching scheme [9] can be

applied because of the free boundaries. The position of each node depends on time.

Therefore, it is very important that G̃Ff
ij be calculated using the coordinates of the

i-th point at time moment F and those of j-th point at time moment f .

Our 2D BEM algorithm was tested for the fixed boundary wedge problem (for

the ΩL domain only) with the constant heat flux boundary condition described

in section 2. Since ζ decreases to zero far from the contact point, integration

contour can be closed at the distance xmax ∼ 10
√
Fo t from the contact point

O(0, 0) where ζ(x, y, t) is sufficiently small. The element lengths grow exponen-

tially (dmin, dmine
b, dmine

2b, . . .) from the contact point into each of the sides of



the wedge (see Fig. 1), where b is fixed at 0.2. Since xmax increases with time,

the total number of the elements also increases during the evolution of the bubble.

Being an input parameter, dmin is adjusted slightly on each time step to provide

the exponential growth law for the elements on the interval with the fixed bound-

aries (0, xmax). Remeshing on each time step was performed to comply with the

free boundary nature of the main problem where the remeshing is mandatory.

The results for θ = π/8, π/4 and π/2 are shown in Fig. 2 to be compared with

the analytical solutions [5, 6]. It is easy to see that the method produces excellent

results except for the element closest to the contact point. The algorithm overes-

timates the value of qL at this element. The error is larger for the π/2 wedge, for

which qL → ∞ at the contact point. We verified that the influence of the increase

of the time and space steps on the numerical error is very weak.

The discretization of the integration subcontours of the bubble growth problem

∂Ωw, ∂Ωd and ∂Ωi follows the same exponential scheme (see Fig. 3) that was

used for the discretization of the wedge sides in the test example above. Since the

free boundary introduces a nonlinearity into the problem, the following iteration

algorithm is needed to determine the bubble shape on each time step [8]:

1. Shape of the bubble is guessed to be the same as on the previous time step;

2. The variations of vn and Pr along the bubble interface are guessed to be the

same as on the previous time step;

3. Discretization of the contours ∂Ωw, ∂Ωd and ∂Ωi is performed;

4. Temperatures and fluxes on the contours ∂Ωw, ∂Ωd and ∂Ωi are found by

solving (24) for ψ, ζL,S at the time moment F ;

5. Volume V and vapor recoil Pr are calculated using (11) and (5);

6. Bubble shape is determined for the calculated values of V and Pr ;

7. If the calculated shape differs too much from that on the previous iteration,

the velocity of interface vn is calculated, and steps 3 – 7 are repeated until

the required accuracy is attained.

As a rule, three iterations give the 0.1% accuracy which is sufficient for our pur-

poses.

The normal velocity of interface vnFi at the time F and at node i is calculated

using the expression

vnFi = (xFi − x(F−1)j)n
x
(F−1)j + (yFi − y(F−1)j)n

y
(F−1)j , (25)

where xFi is the coordinate of the node i at time F , and j is the number of the

node (at time F − 1) geometrically closest to (xFi, yFi).
The system of Eqs. 6 – 8 is solved by direct integration. The integration of

the right-hand side of (8) is performed using the simple mid-point rule, because

the values of Pr are calculated at the mid-points (nodes) only. The subsequent

integration of the right-hand sides of Eqs. 6 – 7 is performed using the Simpson

rule (to gain accuracy) for the non-equal intervals. The trapezoidal rule turns out

to be accurate enough for the calculation of volume in (10). For the simulation we

used the parameters for water at 10 MPa pressure on the heater made of stainless

steel listed in [5].



The above described algorithm should give good results when
∫ 1

0 Pr(ξ)dξ exists

(cf. Eq. 9). In our case Pr(ξ) can be approximated by the power function (1−ξ)−2β

when ξ → 1. The exponent β, which comes from the approximation for qL(ξ),
turns out to be larger than one half (see discussion in the next section). Thus if the

data were extrapolated to the contact point ξ = 1, this integral would diverge. We

note, however, that the evaporation heat flux is limited [12] by a flux qmax which

is about 104 MW/m2 for the chosen parameters.

The qL divergence is originated from the assumption that the temperature remains

constant along the vapor-liquid interface. In reality, this assumption is violated in

the very close vicinity of the contact point where the heat flux qL is comparable to

qmax. Thus we accept the following approximation for the function qL(ξ), ξ < 1.

It is extrapolated using the power law qL(ξ) ∝ (1 − ξ)−β until it reaches the

value of qmax and remains constant while ξ increases to unity. This extrapolation

is used to calculate the integrals in (11) and (9). There is no need to modify the

constant-temperature boundary condition for the heat transfer calculations because

the calculated heat flux qL remains always less than qmax.

5 Results of the numerical calculation

The calculations show that the function qL(ξ) (see Fig. 4) can be described well by
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Figure 4: Variation of the heat flux qL calculated for q0 = 0.05 MW/m2 along the

bubble contour for different moments of time. The curvilinear coordinate

ξ varies along the bubble contour; ξ = 1 at the contact point. (Reprinted

from [5] with permission from Elsevier Science)

the above power law where β ∼ 1 grows slightly with time. As expected, for this

conjugate heat conduction problem the divergence is stronger than for the wedge

model, Fig. 2. The difference between these two cases is caused by the behavior
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sponds to the center of the bubble. (Reprinted from [5] with permission

from Elsevier Science)

of the heat flux qS in the vicinity of the contact point. While it was imposed to

be uniform for the wedge, the function qS(x) increases strongly near the contact

point for the conjugate heat conduction, see Fig. 5. As expected, the value of qS
on the liquid side in the vicinity of the contact line is very close to qL, the heat

flux that produces evaporation on the vapor-liquid interface and that diverges on

the contact line (see Fig. 4). At some distance from the bubble center qS reaches

the value of q0, the flux at infinity. Note that the Fig. 5 corresponds to the quasi-

spherical bubble shape (see Fig. 6a) and the visible bubble radius (see Fig. 3 for

the definition)R ∼ 7R0, so that the heat flux qS is virtually homogeneous outside

the bubble.

The variation of the temperature along the heating surface TS(x) is also shown

in Fig. 5. Far from the bubble, TS = T inf
S has to increase with time independently

of x according to (13). It decreases to Tsat near the contact point because the

temperature should be equal to Tsat on the whole vapor-liquid interface, according

to the imposed boundary condition. Inside the dry spot, TS increases with time

because the heat transfer through the dry spot is blocked. It is smaller than T inf
S

while the dry spot under the bubble remains much smaller than R. Since qL grows

with time, at some time moment the vapor recoil pressure Pr ∝ q2L overcomes

the surface tension (cf. Eq. 4) and the dry spot begins to grow, see Fig. 6b. This

bubble spreading was observed experimentally in several works, e. g. [2]. The

spreading bubble serves as a nucleus for the formation of a continuous vapor film

that separates the solid from the liquid, i. e. triggers the boiling crisis. The heat

transfer becomes blocked at a larger portion of the solid surface (i.e. dry spot)

and its temperature grows faster than T inf
S . This temperature increase leads to the
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burnout of the heater observed during the boiling crisis.

6 Conclusions

Several conclusions can be made. Our analysis of the bubble growth dynamics

shows the strong coupling of the heat conduction in the liquid and in the solid

heater. Therefore, only a conjugate heat transfer calculation of the bubble growth

can properly simulate the boiling crisis. We show that BEM suits well for such a

simulation. We carried out a 2D BEM calculation. It shows that the vapor recoil

can be at the origin of the boiling crisis. We demonstrated how a vapor bubble

spreads over the heating surface thus initiating the boiling crisis.
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