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Sparse EEG Source Localization Using Bernoulli
Laplacian Priors

Facundo Costa∗, Student Member, IEEE, Hadj Batatia, Member, IEEE, Lotfi Chaari, Member, IEEE,
and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—Source localization in electroencephalography has re-
ceived an increasing amount of interest in the last decade. Solving
the underlying ill-posed inverse problem usually requires choosing
an appropriate regularization. The usual �2 norm has been con-
sidered and provides solutions with low computational complexity.
However, in several situations, realistic brain activity is believed
to be focused in a few focal areas. In these cases, the �2 norm is
known to overestimate the activated spatial areas. One solution to
this problem is to promote sparse solutions for instance based on
the �1 norm that are easy to handle with optimization techniques.
In this paper, we consider the use of an �0 + �1 norm to enforce
sparse source activity (by ensuring the solution has few nonzero
elements) while regularizing the nonzero amplitudes of the solu-
tion. More precisely, the �0 pseudonorm handles the position of the
nonzero elements while the �1 norm constrains the values of their
amplitudes. We use a Bernoulli–Laplace prior to introduce this
combined �0 + �1 norm in a Bayesian framework. The proposed
Bayesian model is shown to favor sparsity while jointly estimating
the model hyperparameters using a Markov chain Monte Carlo
sampling technique. We apply the model to both simulated and
real EEG data, showing that the proposed method provides better
results than the �2 and �1 norms regularizations in the presence
of pointwise sources. A comparison with a recent method based on
multiple sparse priors is also conducted.

Index Terms—Electroencephalography (EEG), inverse problem,
�0 + �1 norm regularization, Markov chain monte carlo (MCMC),
source localization, sparse Bayesian restoration.

I. INTRODUCTION

E LECTROENCEPHALOGRAPHY (EEG) source local-
ization is an ill-posed inverse problem that has been re-

ceiving an intensive attention in the literature and has been
solved using several interesting methods. These methods can
be classified into two main groups based on different models:
1) the dipole-fitting models that try to estimate the localization
of a small number of dipoles and 2) the distributed-source mod-
els that assume that there is a large number of dipoles and try
to estimate their amplitudes and orientations. The dipole-fitting
models [1], [2] assume that the brain activity is concentrated
in a small number of point-like sources and estimate the lo-
calization, amplitude, and orientation of a few dipoles (usually
no more than ten) to explain the measured data. A particular-
ity of these models is that they lead to solutions that can vary
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extremely with the initial guess about the number of dipoles,
their locations and their orientations because of the existence
of many local minima in the optimized cost function [3]. To
solve this problem, the MUSIC algorithm [4] and its variants
R-MUSIC [5], RAP-MUSIC [6], and FINES [7] were devel-
oped. Another recent dipole-fitting model whose parameters are
estimated using sequential Monte Carlo [8] formulates the EEG
source localization as a semilinear problem due to the measure-
ments having a linear dependence with respect to the dipole
amplitudes and a nonlinear one with respect to the positions. If
few and clustered sources are present in the underlying brain ac-
tivity, the dipole-fitting algorithms generally yield good results
[9], [10]. However, the performance of these algorithms can be
altered in the case of multiple spatially extended sources [3].
On the other hand, the distributed source models represent the
brain activity as a big number of dipoles (usually between 1.000
and 50.000) with fixed positions (that occupy either the entire
volume or just the cortical surface of the brain), and estimate
their amplitudes and orientations. Since the amount of dipoles
is much larger than the number of electrodes, the problem to be
solved is underdetermined and has an infinite number of pos-
sible brain activity distributions associated with the measured
data. The EEG source localization problem is, therefore, known
to be ill posed [3].

In order to choose from the possible solutions of the EEG
source localization problem, a regularization trying to enforce
desirable properties is usually applied. The minimum-norm es-
timation algorithm [11] tries to minimize the �2 norm of the
solution favoring low power activity estimations. However, the
resulting model also prefers weak surface power over strong
depth power [3]. Several algorithms have tried to correct this
problem including the weighted minimum norm, Loreta [12]
and sLoreta [13]. Among these solutions, sLoreta can estimate
the maximum excitation point with zero localization error in
noiseless conditions [3]. A drawback of these algorithms is that
they require to adjust a regularization parameter, which is usu-
ally performed with empirical methods such as cross validation,
Bayesian estimation [14] or the L-curve method [15]. Another
problem is that they overestimate the active spatial area in the
cortex when the actual source activity is focal [3]. Motivated by
the fact that realistic source activity is likely to be associated
with few active brain regions at the same time, some algo-
rithms that encourage sparse solutions have been developed. An
�0 pseudonorm can be used to provide sparse solutions [16].
However, since the minimization of this norm requires a very
expensive combinatory search, it is usually approximated by
an �1 norm [17], [18] that is easier to handle with classical



optimization techniques due to its convexity. These two types of
regularizations have been shown to be equivalent under certain
conditions [16].

In addition to the optimization techniques mentioned previ-
ously, it is also possible to estimate the brain activity by mod-
eling its time evolution and applying Kalman filtering [19],
[20] or particle filters [21]–[23]. Another way of looking for
a solution with sparse properties is to consider Bayesian tech-
niques with appropriate priors assigned to the model parameters.
These Bayesian techniques have the advantage of estimating the
model hyperparameters directly from the data using hierarchi-
cal algorithms. Note that Bayesian methods have been used
both for dipole-fitting [24]–[27] and distributed source models
[28]–[30]. In [29], Friston et al. developed the multiple sparse
priors (MSP) framework in which they parcel the brain in dif-
ferent preselected regions and promote a sparse subset of these
regions to be active. This is performed by using a Gaussian prior
distribution for the brain activity and estimating its correlation
matrix as a linear combination of predefined base matrices with
finite support defined over each brain parcel. This method is
designed to estimate brain activities that have multiple spatially
extended sources and requires choosing a criterion for the prior
parcellation of the brain in different regions and the selection of
the base matrices. Even though the results of the MSP frame-
work proved to be good in several scenarios, since our focus is to
estimate point-like focal source activity, we propose to consider
separate dipoles instead of grouping them together in different
preselected regions. This avoids the need to select a criterion for
brain parcellation and constructing the base matrices required
by the MSP framework.

For these reasons, we propose to introduce a new algorithm re-
lying on the �1 norm and �0-pseudonorm regularizations. Since
the �0 pseudonorm is too costly for direct implementation and
the �1 norm does not always yield the same solution, we propose
to combine them into a Bayesian framework to pursue sparse
solutions. It can be easily shown that using a Laplace prior is
the Bayesian equivalent of �1 norm regularization, whereas a
Bernoulli prior can be associated with the �0 pseudonorm. As a
consequence, we propose the use of a Bernoulli–Laplace prior
in a distributed source model for the estimation of the activity
of focal point-like sources. The combination of the two norms
allows the nonzero elements to be localized (via the Bernoulli
part of the prior) and their amplitudes to be estimated (with the
Laplace distribution). Note that the Laplace distribution prior is
able to estimate both small and high amplitudes due to its large
value around zero and its fat tails. In addition one could intro-
duce a spatial-regularizing prior to yield a region-based sparse
solution equivalent to the MSP model without the preprocessing
and associated hypotheses.

In order to compute estimators associated with the pro-
posed Bayesian model, we derive a Markov chain Monte Carlo
(MCMC) method allowing samples to be generated according
to the posterior of interest. These samples are then used to es-
timate the unknown model parameters. The resulting algorithm
has several attractive properties, including the fact that it is
able to estimate the model hyperparameters in an unsupervised
framework and provides better estimations of the source activity
than the traditional �2 or �1 norms.

This paper is organized as follows: The observation model
is introduced in Section II. The Bayesian model proposed to
estimate the unknown parameters is defined in Section III.
Section IV studies a hybrid Gibbs sampler that will be used
to generate samples asymptotically distributed according to the
posterior of interest. Simulation results obtained with synthetic
and real EEG data are reported in Section V. Section VI con-
cludes the paper.

II. PROBLEM STATEMENT

The main objective of the EEG source localization problem is
to estimate the brain activity of the patient from EEG measure-
ments. It is well known that the activity can be represented as a
continuous current distribution [31] that can be approximated by
a discrete number of dipoles located in the brain [3], [31]. There-
fore, we propose to model the brain activity by using a finite
number of active dipoles located in the cortex. More precisely,
we consider a distributed-source model with a fixed amount of
dipoles with given locations. Since the electric potential at any
point of the scalp can be calculated as a linear combination of
the dipole amplitudes, the relationship between the potential
at the scalp and the dipole amplitudes can be represented as
follows [3], [31]:

y = Hx + e (1)

where x ∈ R3M contains the amplitudes of the M dipoles along
the three spatial dimensions, y ∈ RN is the measurement vec-
tor acquired by the N electrodes, the N × 3M lead field matrix
H models the propagation of the electromagnetic field from
the sources to the sensors [24], [32] and e is an additive white
Gaussian noise. Since the activity measured by an EEG is mainly
generated by groups of neurons that are oriented orthogonal to
the brain surface [31], [33], we assume the source orientations
to be normal to the cortex. Moreover, as in many works [3], [28],
[34], we limit the position of the dipoles to the cortex surface.
As a consequence, the moment of each dipole can be deter-
mined using only one value, such that x ∈ RM andH ∈ RN ×M .
Note that even though the orientations of the dipoles are con-
strained, the directions of their currents are not known and have
to be estimated by the algorithm (via the signs of the elements
of x) [3], [34].

The EEG source localization problem based on the observa-
tion model (1) mainly consists of estimating the vector x from
the observed data y. The next section introduces a hierarchical
Bayesian model appropriate to solve this inverse problem. The
likelihood of this model and the priors assigned to its unknown
parameters and hyperparameters are defined in the next sections.

III. BAYESIAN MODEL

A. Likelihood

It is very classical in EEG analysis to consider an additive
white Gaussian noise with a variance σ2

n [3]. When this as-
sumption does not hold, it is classical to estimate the noise
covariance matrix from the data and to whiten the data before
applying the algorithm [35]. This strategy will be considered in
our experiments related to real data presented in Section V-C.



The Gaussian noise assumption for the noise samples leads to
the following probability density function (pdf)

f(y|x, σ2
n ) =

(
1

2πσ2
n

)N
2

exp
(
− ||y −Hx||2

2σ2
n

)
(2)

where ||.|| denotes the Euclidean norm.

B. Prior Distributions

The unknown parameter vector associated with the proposed
model (1) is θ = {x, σ2

n}. In order to perform Bayesian infer-
ence, we assign priors to these parameters as follows.

1) Prior for the Dipole Amplitudes: In order to encourage
sparse solutions whose nonzero elements have small amplitudes,
we introduce the Bayesian analogous of an �0 + �1 regulariza-
tion by using a Bernoulli–Laplace prior distribution for each
element of the vector x. The corresponding pdf for the ith
element of x is

f(xi |ω, λ) = (1 − ω)δ(xi) +
ω

2λ
exp

(
−|xi |

λ

)
(3)

where δ(.) is the Dirac delta function, λ is the parameter of the
Laplace distribution, and ω the weight balancing the effects of
the Dirac delta function and the Laplace distribution. Assum-
ing the random variables xi are a priori independent, the prior
distribution of x can be written as

f(x|ω, λ) =
M∏
i=1

f(xi |ω, λ). (4)

2) Prior for the Noise Variance: A noninformative Jeffrey’s
prior is assigned to the noise variance

f(σ2
n ) ∝ 1

σ2
n

1R+ (σ2
n ) (5)

where 1R+ (ξ) = 1 if ξ ∈ R+ and 0 otherwise. This prior is a
very classical choice for a noninformative prior (see, e.g., [36]
for motivations). Note that a more informative prior distribution
related to the signal to noise ratio could also be investigated.
However, we have chosen here to design an algorithm requiring
as little prior information as possible.

C. Hyperparameter Priors

The hyperparameter vector associated with the previous pri-
ors is Φ = {ω, λ} as displayed in the direct acyclic graph of
Fig. 1. This paper considers a hierarchical Bayesian model that
allows the hyperparameters to be estimated from the data. This
strategy requires to assign priors to the hyperparameters (re-
ferred to as hyperpriors) that are defined in this section.

1) Hyperprior for ω: An independent uniform distribution
on [0, ωmax] is assigned to the weight ω

ω ∼ U[0,ωmax] (6)

where ωmax ∈ [0, 1] is an upper bound on ω that is fixed in order
to ensure a minimum level of sparsity.1

1We have observed that setting ωmax = 0.5 (instead of ωmax = 1) yields
faster convergence of the sampler studied in Section IV.

Fig. 1. Directed acyclic graph of the hierarchy used for the Bayesian model.

2) Hyperprior for λ: Using similar arguments as for the
noise variance σ2

n , a Jeffrey’s prior is assigned to λ in order
to define the following noninformative prior

f(λ) ∝ 1
λ

1R+ (λ). (7)

D. Posterior Distribution

Taking into account the likelihood and priors introduced pre-
viously, the joint posterior distribution of the model used for
EEG source localization can be expressed using the following
hierarchical structure:

f(θ,Φ|y) ∝ f(y|θ)f(θ|Φ)f(Φ) (8)

where {θ,Φ} is the vector containing the model parameters
and hyperparameters. Because of the complexity of this pos-
terior distribution, the Bayesian estimators of {θ,Φ} cannot
be computed with simple closed-form expressions. Section IV
studies an MCMC method that can be used to sample the joint
posterior distribution (8) and build Bayesian estimators of the
unknown model parameters using the generated samples.

IV. MARKOV CHAIN MONTE CARLO METHOD

This section considers a Gibbs sampler [36] that generates
samples iteratively from the conditional distributions of (8), i.e.,
from f(σ2

n |y,x), f(λ|x), f(ω|x) and f(xi |y,x−i , ω, λ, σ2
n ).

Note that this strategy showed interesting results for many im-
age processing problems including image denoising [37], sparse
image reconstruction [38], hyperspectral image unmixing [39],
and fusion of hyperspectral and panchromatic images [40]. The
next sections explain how to sample from the conditional distri-
butions of the unknown parameters and hyperparameters asso-
ciated with the posterior of interest (8). The resulting algorithm
is also summarized in Algorithm 1.

A. Sampling According to f(σ2
n |y,x)

Using (8), it is straightforward to derive the conditional pos-
terior distribution of σ2

n which is the following inverse gamma
distribution

σ2
n |x,y ∼ IG

(
σ2

n

∣∣∣N
2

,
||y −Hx||2

2

)
(9)

where ||.|| is the Euclidean norm.



Algorithm 1 Gibbs sampler.
Initialize x with the sLoreta solution
repeat

Sample σ2
n according to (9).

Sample λ according to (10).
Sample ω according to (11).
for i = 1 to M do

Sample xi according to (12).
end for

until convergence

B. Sampling According to f(λ|x)

By using f(x|ω, λ) and the prior distribution of λ, it is easy to
derive the conditional distribution of λ, which is also an inverse
gamma distribution

λ|x ∼ IG
(
λ | ||x||0 , ||x||1

)
(10)

where ||.||0 and ||.||1 are the �0 and �1 norms, respectively.

C. Sampling According to f(ω|x)

Using f(x|ω, λ) and the prior of ω it can be shown that the
conditional distribution of ω is a truncated Beta distribution
defined on the interval [0, ωmax]

ω|x ∼ B[0,ωmax](1 + ||x||0 , 1 + M − ||x||0). (11)

D. Sampling According to f(xi |y,x−i , ω, λ, σ2
n )

Using the likelihood and the prior distribution of x, the con-
ditional distribution of each signal element xi can be expressed
as follows:

f(xi |y,x−i , ω, λ, σ2
n ) = ω1,iδ(xi) + ω2,iN+(μi,+ , σ2

i )

+ ω3,iN−(μi,−, σ2
i ) (12)

where N+ and N− denote the truncated Gaussian distributions
on R+ and R−, respectively. The vector x can be decom-
posed on the orthonormal basis B = {e1 , . . . ,eM } such that
x = x̃−i + xiei where x̃−i is obtained by setting the ith ele-
ment of x to 0. Defining vi = y −Hx̃−i and hi = Hei , the
weights (ωl,i)1≤l≤3 are defined as

ωl,i =
ul,i∑3
l=1 ul,i

(13)

where

u1,i = 1 − ω

u2,i =
ω

2λ
exp

(
(μ+

i )2

2σ2
i

)√
2πσ2

i C(μ+
i , σ2

i )

u3,i =
ω

2λ
exp

(
(μ−

i )2

2σ2
i

)√
2πσ2

i C(−μ−
i , σ2

i ) (14)

and

σ2
i =

σ2
n

||hi ||2

μ+
i = σ2

i

(
hT

i vi

σ2
n

− 1
λ

)

μ−
i = σ2

i

(
hT

i vi

σ2
n

+
1
λ

)

C(μ, σ2) =
1
2

[
1 + erf

(
μ√
2σ2

)]
. (15)

Finally, it is interesting to mention how to sample efficiently
from (12), which will also be useful to define appropriate es-
timators (see Section IV-E). Since (12) is a mixture of three
distributions, we introduce a discrete random variable bi taking
the value 0 with probability ω1,i (corresponding to xi = 0), the
value 1 with probability ω2,i (corresponding to xi > 0), and the
value −1 with probability ω3,i (corresponding to xi < 0). To
sample from (12), we can draw the discrete random variable
bi , and generate xi conditionally upon bi . The role of the dis-
crete random variable bi is to detect whether xi is zero, positive,
or negative.

E. Parameter Estimation

In order to estimate the different parameters associated with
the posterior (8) using the samples generated by the MCMC
method described previously, we first detect the nonzero val-
ues of xi corresponding to the nonzero dipole amplitudes. This
detection can be easily achieved by using the generated dis-
crete random variables bi used to sample according to xi . More
precisely, we estimate bi following the maximum a posteriori
principle as the most likely value generated by the sampler.2

Once we have detected whether xi is zero, positive, or negative
(i.e., once we have estimated bi), we keep the vectors generated
by the MCMC method satisfying these conditions for the dif-
ferent variables bi and we estimate the dipole amplitudes, the
noise variance and the hyperparameters using the mean of these
vectors. In other words, we estimate the indicators bi by the
maximum a posteriori principle and the amplitudes xi by the
minimum mean square error (MMSE) principle, which corre-
sponds to the mean of the posterior.

V. EXPERIMENTAL RESULTS

This section reports different experiments conducted to eval-
uate the performance of the proposed EEG source localization
algorithm for synthetic and real data. In these experiments, our
algorithm was initialized with the sLoreta solution obtained
after estimating the regularization parameter by minimizing
the cross-validation error as recommended by Pascual-Marqui
et al. in [13]. The upper bound of the sparsity level was set to
ωmax = 0.5, which is much larger than the expected value of ω.

2We have noted that when the number of zeros is close to the number of
nonzeros, it can be interesting to promote the nonzero value, which will result
in estimating a small dipole amplitude.



The results obtained with synthetic and real data are reported in
two separate sections.

A. Synthetic Data

1) Simulation Scenario: Synthetic data with few pointwise
source activations were generated using a realistic BEM head
model with 19 electrodes placed according to the 10 − 20 inter-
national system of electrode placement. Three different kinds
of activations were investigated: 1) single dipole activations,
2) multiple distant dipole activations, and 3) multiple close
dipole activations. The default subject anatomy of the Brain-
storm software [41] was considered. This model corresponds
to MRI measurements of a 27-year old male using the bound-
ary element model implemented by the OpenMEEG package
[42]. The default brain cortex of this subject was downsampled
to generate a 1003-dipole head model. These dipoles are dis-
tributed along the cortex surface and have an orientation normal
to it, as discussed in the previous sections. The resulting head
model is such that H ∈ R19×1003 .

For each of the activations that are described in what follows,
three independent white Gaussian noise realizations were added
to the observed signal Hx, resulting in three sets of measure-
ments y with an SNR of 20 dB. For each of these three noisy
signals y, four MCMC independent chains were run, resulting
in 12 total simulations for each of the considered activations
x. The �1 and sLoreta methods were applied to the same three
different sets of measurements y resulting in three simulations
for each activation.

2) Performance Evaluation: To assess the quality of the lo-
calization results, the following indicators were used.

i) Localization error [3]: The Euclidean distance between
the maximum of the estimated activity and the real source
location is used to determine whether the algorithm is able
to find the point of highest activity correctly or not.

ii) Center-mass localization error [43]: The Euclidean dis-
tance between the barycenter of the estimated activity
and the real source location allows us to appreciate if the
activity estimated by the algorithm is centered around the
correct point or if it is biased.

iii) Excitation extension: The spatial extension of the spatial
area of the brain cortex that is estimated to be active was
considered in [43]. Since the synthetic data only contain
pointwise sources, this criterion should ideally be equal
to zero.

iv) Transportation cost: This indicator evaluates the perfor-
mance in a multiple dipole situation where the activity es-
timates from different dipoles may overlap. It is computed
as the solution of an optimal mass transport optimization
problem [44] considering the known ground truth to be
the initial mass distribution and the activity estimated by
the algorithm to be the target mass distribution. The activ-
ities associated with the ground truth and the estimated
data are first normalized. The total cost of moving the
activity from the nonzero elements of the ground truth
to the nonzero elements of the estimated activity is then
computed. It is obtained by finding the weights wj→k

that minimize
∑

j

∑
k

wj→k |rxnz
j
− rx̂nz

k
| (16)

where xnz
j denotes a nonzero element of the ground truth,

x̂nz
k is a nonzero element of the estimated activity and rd

represents the spatial position of dipole d in Euclidean co-
ordinates, with the following constraints for the weights
(in order to avoid the trivial zero solution)

∑
j

wj→k = x̂nz
k ,

∑
k

wj→k = xnz
j . (17)

Note that (16) defines a similarity measure between the
amount of activity in the nonzero elements of the ground
truth and the estimated solution. The minimum cost of
(16) can be obtained using the simplex method of linear
programming. The transportation cost of an estimated
solution is finally defined as the minimum transportation
cost calculated between the estimated solution and the
ground truth. Since the activity has been normalized in
the first step, this parameter is measured in millimeters.

The proposed method is compared to the more traditional
weighted �1 norm [45] and sLoreta. The regularization pa-
rameter of sLoreta was computed by cross validation using
the method recommended by Pascual-Marqui et al. in [13].
The weighted �1 norm was implemented using the alternat-
ing direction method of multipliers with the technique used by
Boyd et al. in [46]. The regularization parameter was chosen
so that ||y −Hx̂|| ≈ ||y −Hx|| according to the discrepancy
principle [47].

3) Single Dipole: The first kind of experiment consisted of
activating only one dipole. Ten dipoles were randomly chosen
from the 1003 dipoles of the head model. For each of these ten
positions, a measurement vector x was formed that had only the
corresponding dipole activated (referred as single dipole acti-
vations #1 through #10). After generating the different sets of
measurements y, the localization error was found to be 0.00 mm
for all the dipoles with the three methods. The other perfor-
mance parameters are displayed in Fig. 2 showing the good
performance of the proposed method (indicated by PM).

The brain activities detected by the proposed method and the
weighted �1 norm solution are illustrated in Fig. 3 for a represen-
tative simulation. Our algorithm managed to perfectly recover
the activity for 9 out of the 10 activations (with center-mass
localization error, extension and transportation cost equal to
0.00 mm) for all simulations. The dipole corresponding to acti-
vation #7 was located precisely for some simulations and with
very reduced error in the others. The mean transportation cost
of the proposed method for activation #7 is 0.7 mm. In com-
parison, sLoreta has an excitation extension that is significantly
larger (between 41 and 51 mm for the different dipole positions)
(as expected for an �2 norm regularization) and a larger trans-
portation cost (bigger than 55 mm in all cases). The weighted
�1 norm regularization provides better estimations than sLoreta
with a mean extension of up to 10 mm and transportation cost of
up to 13 mm but is still outperformed by the proposed method.



Fig. 2. Simulation results for single dipole experiments. The horizontal axis indicates the activation number. The error bars show the standard deviation over 12
Monte Carlo runs.

Fig. 3. Brain activity for one single dipole experiment (activation #5).

In addition, Fig. 4 shows the histograms of the samples of
σ2

n , ω, λ, and the amplitude of the active dipole xi for one of the
simulations corresponding to activation #3 as a representative
case. It is shown that the ground truth values of ω (the proportion
of nonzeros 1/1003), σ2

n and xi are inside the support of their
histograms and are close to their estimated mean values, i.e.,
close to their MMSE estimates.

4) Multiple Distant Dipoles: The second kind of experi-
ments evaluates the performance of the proposed algorithm
when several dipoles are activated at the same time and when
these activated dipoles have distant space positions. More pre-
cisely, we chose randomly the following sets of dipoles from
the 1003 dipoles present in the head model.

Fig. 4. Histogram of samples generated by the MCMC method for one of
the single dipole simulations. The estimated mean values and ground truth are
indicated in the figures.

i) Two pairs of N = 2 simultaneous dipoles spaced more
than 100 mm (activations #1 and #2).

ii) Two sets of N = 3 simultaneous dipoles spaced more
than 100 mm (activations #3 and #4).

For each of these four sets of dipoles, a vector x having only
the corresponding active dipoles was formed and the measure-
ments y were calculated as described previously.

The brain activities associated with two representative sim-
ulations corresponding to two and three dipoles are illustrated
in Figs. 5 and 6. The activation #2 associated with two distant
dipoles displayed in Fig. 5 is an interesting case for which the
weighted �1 norm regularization fails completely to recover one
of the dipoles. The activation #4 displayed in Fig. 6 shows that
the proposed method detects an activity more concentrated in



Fig. 5. Brain activity for a multiple distant dipole experiment (activation # 2
that has two active dipoles).

the activated dipoles while the �1 norm regularization provides
less-sparse solutions.

Quantitative results in terms of transportation costs are dis-
played in Fig. 7 for the different experiments. The transportation
costs obtained with the proposed method are below 3.6 mm in
all cases and are clearly smaller than those obtained with the
other methods. Indeed, the sLoreta transportation costs are be-
tween 50 and 62 mm, and the transportation costs associated
with the weighted �1 norm regularization are between 3.9 and
13 mm, except for the activation #2, where it fails to recover
one of the dipoles as previously stated.

5) Multiple Close Dipoles: The third kind of experiments
evaluates the performance of the proposed algorithm for active
dipoles that have close spatial positions. More precisely, we
randomly chose the following sets of dipoles.

i) Two pairs of dipoles spaced between 49 and 51 mm
(activations #1 and #2).

ii) Two pairs of dipoles spaced between 29 and 31 mm
(activations #3 and #4).

iii) Two pairs of dipoles spaced between 9 and 11 mm (acti-
vations #5 and #6).

For each of these six sets of dipoles, a vector x having only the
corresponding active dipoles was formed and the measurements
y were simulated as described previously.

Fig. 10 compares the transportation costs obtained with the
different methods. Since it is much harder to distinguish the
activity produced by two close dipoles, the transportation costs
associated with the proposed method and the weighted �1 norm
regularization are considerably higher than those obtained pre-
viously. However, the transportation costs obtained with the
proposed algorithm are still below those obtained with the
two other estimation strategies. Some interesting cases can be

Fig. 6. Brain activity for a multiple distant dipole experiment (activation # 3
that has three active dipoles).

Fig. 7. Transportation cost for multiple distant dipoles experiments, the hori-
zontal axis indicates the activation number (1 and 2: two active dipoles, 3 and 4:
three active dipoles). The error bars show the standard deviation over 12 Monte
Carlo runs.

observed in Figs. 8 and 9. Fig. 8 corresponds to one case where
both algorithms fail to identify two dipoles and fuse them into a
single dipole located in the middle of the two actual locations.
In this particular activation, our algorithm adds considerably
less extra activity than the weighted �1 norm regularization. In
the case illustrated in Fig. 9, the proposed method correctly
identifies two dipoles (but moves one of them from its original
positions) while the weighted �1 norm regularization estimates
a single dipole located very far from the two excited dipoles.

B. Computational Cost

This section compares the computational cost of the differ-
ent algorithms (weighted �1 norm, sLoreta, and the proposed
method) that were run on a modern Xeon CPU E3-1240 at



Fig. 8. Brain activity for multiple close dipoles (activation # 4 that has a
30-mm separation between dipoles).

3.4-GHz processor using a MATLAB implementation. In the
case of the weighted �1 norm, we used the stopping criterion
recommended by Boyd et al. in [46]. The proposed method was
run with four parallel chains (as stated in Section V-A1) until
the potential scale reduction factor of all the generated samples
was below 1.2 as recommended in [48]. The average running
times of each of the methods are presented in Table I. As we can
see, the weighted �1 norm is three orders of magnitude slower
than sLoreta (taking seconds instead of milliseconds), while the
proposed method is three orders of magnitude slower than the
weighted �1 norm. Note that the first two algorithms seem to
have a running time that does not depend on the kind of simula-
tions while the proposed method is faster for simpler cases and
slower for more complex dipole distributions. Having a higher
computational cost is a typical disadvantage of MCMC sam-
pling techniques when compared to optimization approaches.
However, it is important to note that our algorithm is able to
estimate its hyperparameters in one run while the other two re-
quire to be run several times in order to set their regularization
parameters by cross validation for instance.

C. Real Data

Two different sets of real data were considered. The first
one consists of an auditory evoked response while the second
one is the evoked response to facial stimulus. In addition to the
weighted �1 norm regularization, we also compared our results
with the MSP algorithm [29] using the default parameters in the
SPM software.3

3The SPM software is freely avaiable at http://www.fil.ion.ucl.ac.uk/spm.

Fig. 9. Brain activity for multiple close dipoles (activation # 6 that has a
10-mm separation between dipoles).

Fig. 10. Transportation cost for multiple close dipoles experiments. The hor-
izontal axis indicates the activation number (1 and 2: 50-mm separation, 3 and
4: 30-mm separation, 5 and 6: 10-mm separation). The error bars show the
standard deviation over 12 Monte Carlo runs.

TABLE I
COMPUTATION COSTS OF THE DIFFERENT ALGORITHMS (IN SECONDS)

Experiment Type sLoreta �1 Norm Proposed Method

Single dipole 3.65 × 10−3 1.09 651.9
Multiple distant dipole 3.64 × 10−3 0.84 886.6
Multiple close dipole 3.61 × 10−3 0.91 1128.0

1) Auditory Evoked Responses: The used dataset was ex-
tracted from the MNE software [49], [50]. It corresponds to an
evoked response to left-ear auditory pure-tone stimulus using a
realistic BEM head model sampled with 60 EEG electrodes at
600 samples/s. The samples were low-pass filtered at 40 Hz and



Fig. 11. EEG measurements for the real data application.

downsampled to 150 samples/s. The noise covariance matrix
was estimated from 200 ms of data preceding each stimulus and
was used to whiten the data. Fifty one epochs were averaged to
generate the measurements y.

The sources associated with this example are composed of
1844 dipoles located on the cortex with orientations that are
normal to the brain surface. One channel that had technical
artifacts was ignored resulting in an operator H ∈ R59×1884 .
We processed the eight time samples corresponding to 80 ms ≤
t ≤ 126 ms, i.e., associated with the highest activity period in
the EEG measurements as displayed in Fig. 11.

The sum of the estimated brain activities over the eight time
samples obtained by the proposed method, the weighted �1 norm
regularization and the MSP algorithm are presented in Fig. 12.
The proposed method consistently detects most of the activity
concentrated in both the ipsilateral and contralateral auditory
cortices. The weighted �1 norm regularization detects the activ-
ity in the right cortex in a similar position, but moves the activity
detected in the left cortex to a lower point of the brain that is fur-
ther away from the auditory cortex. The MSP algorithm finds the
activity correctly in the auditory cortices but spreads it around
a region instead of focusing it on a small number of dipoles.
This is due to the fact that both the proposed method and the
weighted �1 norm promote sparsity over the dipoles while MSP
promotes sparsity over preselected brain regions that depend on
the parcellation scheme used.

2) Face-Evoked Responses: The data used in this section
are one of the sample datasets available in the SPM software.
It were acquired from a face perception study in which the
subject had to judge the symmetry of a mixed set of faces and
scrambled faces. Faces were presented during 600 ms with an
interval of 3600 ms (for more details on the paradigm see [51]).
The acquisition system was a 128-channel ActiveTwo system
with a sampling frequency equal to 2048 Hz. The data were
downsampled to 200 Hz, and after artifact rejection, the 299

Fig. 12. Brain activity for the auditory evoked responses from 80 to 126 ms.

epochs corresponding to nonscrambled faces were averaged and
lowpass filtered at 40 Hz. The head model is based on a T1 MRI
scan of the patient downsampled to have 3004 dipoles, resulting
in an operator H ∈ R128×3004 .

The brain activities detected by the three algorithms for
t = 160 ms (time sample with highest brain activity) are pre-
sented in Fig. 13. The MSP method locates the activity spread
over several brain regions due to its preparcellation of the brain.
In particular, it locates activity in the lateral and posterior re-
gions. In comparison both the weighted �1 norm and the pro-
posed method focus the activity closer to the fusiform regions
of the temporal lobes, areas of the brain that are speculated
to be specialized in facial recognition [52]. Note that the pro-
posed method provides the most focal solution of the three. It
is interesting to note that the MSP algorithm divides the brain
in symmetric parcels in both hemispheres, which very often
causes the solution to have a high degree of symmetry while the
other two methods only rely on the measurements to estimate
the brain activity.

VI. CONCLUSION

This paper proposed a new Bayesian model for EEG source
localization promoting sparsity for the dipole activities via a
Bernoulli–Laplace prior. To compute the Bayesian estimators
of this model, we introduced an MCMC method sampling the
posterior distribution of interest and estimating the model pa-
rameters using the generated samples. The resulting EEG source
localization strategy was compared to �2 norm (sLoreta) and
weighted �1 norm regularizations for synthetic data and with



Fig. 13. Brain activity for the faced evoked responses for 160 ms.

the MSP algorithm for real data, showing promising results in
both cases. More precisely, several experiments with synthetic
data were constructed using single and multiple dipoles, both for
close and distant locations. For the single dipole scenario, the
proposed algorithm showed better performance than the more
traditional �2- and �1 norm regularizations in terms of several
evaluation criteria used in the literature. In multiple dipole sce-
narios, the estimated activities from different dipoles can over-
lap, making the classical evaluation criteria difficult to apply. In
order to assess the performance in these scenarios, we proposed
a new evaluation criterion denoted as transportation cost de-
fined as the solution of an optimal mass transportation problem.
This criterion showed that the proposed localization method per-
formed better than the standard �2 norm and weighted �1 norm
regularizations. We also considered two sets of real data con-
sisting of the evoked responses to a left-ear auditory stimulation
and to facial stimulus, respectively. In both cases, the algorithm
showed better performance than the weighted �1 norm regular-
ization and the MSP method to estimate brain activity generated
by point-like sources.

Future work includes adapting the proposed model for mul-
titemporal EEG signals and generalizing the Bayesian model to
cases where the head model is not known perfectly.
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