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This study deals with a simple pure fluid whose temperature is slightly below its critical temper-
ature and its density is nearly critical, so that the gas and liquid phases co-exist. Under equilibrium
conditions, such a liquid completely wets the container wall and the gas phase is always separated
from the solid by a wetting film. We report a striking change in the shape of the gas-liquid interface
influenced by heating under weightlessness where the gas phase spreads over a hot solid surface
showing an apparent contact angle larger than 90◦. We show that the two-phase fluid is very sen-
sitive to the differential vapor recoil force and give an explanation that uses this non-equilibrium
effect. We also show how these experiments help to understand the boiling crisis, an important
technological problem in high-power boiling heat exchange.

I. INTRODUCTION

Singular properties of a simple fluid [1, 2] appear when
it is near its critical temperature, Tc, and its critical den-
sity, ρc. When the fluid’s temperature, T , is slightly lower
than Tc and the average fluid density ρ is close to ρc the
fluid exhibits perfect wetting (i.e., zero contact angle) of
practically any solid by the liquid phase in equilibrium.
In this article we study a system that is slightly out of
equilibrium. Our experiments, performed in weightless-
ness [3–7] showed that when the system’s temperature
T is being increased to Tc, the apparent contact angle
(see Fig. 7 below for definition) becomes very large (up
to 110◦), and the gas appears to spread over the solid
surface. In section II we describe our experimental setup
that allows the spreading gas to be observed. The gas-
liquid interface shape at equilibrium, which is considered
in section III, plays a crucial role as an initial condition
for the gas spreading phenomenon. The sections IV and
V deal with the observations of the spreading gas. A the-
oretical model that allows this unusual phenomenon to be
explained is proposed in section VI. In the section VII,
we discuss the boiling crisis, a phenomenon that plays
an important role in industrial applications, and how it
is relevant to the spreading gas.
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II. EXPERIMENTAL SETUP

We report results that were obtained and repeated
using several samples of SF6 (Tc = 318.717 K, ρc =
742 kg/m3). These samples were heated at various rates
in cylindrical cells of various aspect ratios on several
French/Russian and French/American missions on the
Mir space station using the Alice-II instrument [8]. This
instrument is specially designed to obtain high precision
temperature control (stability of ≈ 15µK over 50 hours,
repeatability of ≈ 50µK over 7 days). To place the sam-
ples near the critical point, constant mass cells are pre-
pared with a high precision density, to 0.02%, by observ-
ing the volume fraction change of the cells as a function
of temperature on the ground [9].
A fluid layer was sandwiched between two parallel sap-

phire windows and surrounded by a copper alloy housing
in the cylindrical optical cell, the axial section of which
is shown in Figure 1. We consider here three cells of
the same diameter D = 12 mm, the other parameters of
which are shown in Table I. The liquid-gas interface was
visualized through light transmission normal to the win-
dows. Since the windows were glued to the copper alloy
wall, some of the glue is squeezed inside the cell as shown
in Fig. 1. This glue forms a ring that blocks the light
transmission in a thin layer of the fluid adjacent to the
copper wall making it inaccessible for observations. Be-
cause of this glue layer, the windows may also be slightly
tilted with respect to each other as discussed in sec. III.
A 10 mm diameter ring was engraved on one of the

windows of each cell in order to calibrate the size of the
visible area of the cell images as can be seen in each im-
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FIG. 1: Sketch of a cross-section of the cylindrical sample
cell (with parallel windows). The fluid volume is contained
between two sapphire windows that are glued to a CuBeCo
alloy ring. The dimensions H (see Table I) and D(=12 mm)
of the cell are indicated. Some glue is squeezed into the cell.
The thickness of the glue layer is exaggerated for illustration
purposes. In weightlessness, the gas bubble should be located
in the middle of such an ’ideal’ cell, see sec. III for the discus-
sion.

Cell number Cell thickness H (mm) (ρ− ρc)/ρc (%)

8 3.016 0.85

10 1.664 0.25

11 4.340 0.87

TABLE I: Physical parameters of the experimental cells. Cell
11 has a movable piston to change the cell volume. However,
the volume was kept constant during these experiments.

age. An out-of-focus wire grid, designed to visualize [10]
fluid inhomogeneities and/or a fluid flow through light re-
fraction, was also used. The grid was occasionally moved
out of the light path, so that it is not always present in
all images.
The sample cell is placed inside of a copper Sample Cell

Unit (SCU) that, in turn, is placed inside of a thermostat.
Heat is pumped into and out of the SCU using Peltier
elements and heaters. The temperature is sampled every
second and is resolved to 1µK.
Similar ground based experiments were done before

these experiments using a copy of the same instrument.
The gravity forces push the denser liquid phase to the
bottom of the cell and completely different behavior is
seen, see [11].

III. BUBBLE POSITION AT EQUILIBRIUM

UNDER WEIGHTLESSNESS

The gas volume fraction φ (volume of the gas divided
by the total cell volume) is defined by ρ and the densities
of gas and liquid for the given temperature. In our exper-
iments, φ ≈ 0.5 and the gas bubble is flattened between

the windows (Fig. 1) due to the large aspect ratio D/H
of the cell.
Let us first consider an ideally cylindrical cell as op-

posed to the real cell. At equilibrium, the windows and
the copper wall are wetted by the liquid phase. Because
the van der Waals forces from the walls act to make the
wetting film as thick as possible, the weightless bubble
should be located in the cell’s center. Because the bubble
is flattened and occupies one-half of the available volume,
the distance of such a centered bubble to the copper wall
is large (Fig. 1). The lateral centering forces are then
much weaker than the centering forces in the direction
of the cell axis. Any small external influences in the real
cell can displace the bubble laterally from the cell’s cen-
ter. This displacement is illustrated in Fig. 2 that shows
cell 10 at room temperature. We note that there are
two kinds of external influences that are easily identified:
residual accelerations in the spacecraft and cell asymme-
try.
Bubble images for cells 8 and 10 were recorded in four

Mir missions between 1996 and 2000. Several images are
reported in [3] (Cassiopeia mission, 1996) and in Fig. 6
below (GMSF2 mission, 1999) for cell 10. It is extremely
likely that the space station changed its position with re-
spect to the residual gravity vector between these runs.
The bubble position with respect to the cell, however, al-
ways remained the same. The bubble location also varies
from cell to cell without any dependence on the station’s
orientation. Therefore, we have no reason to attribute
the off-center position of the bubble to the residual grav-
ity.
Although the cells were manufactured with high pre-

cision, the cell windows could not be exactly parallel be-
cause of the glue layer as shown in Fig. 3. In the rest of
this section we will discuss the influence of the windows’
tilt on the position and on the shape of the bubble.
When the bubble’s surface is curved, there is a con-

stant excess pressure ∆p inside the bubble defined by
the Laplace formula

∆p = σK, (1)

where σ is a surface tension and K is the surface curva-
ture. This excess pressure acts on all parts of the bubble
interface. In particular, it acts on the partAsg (where the
index s stands for “sapphire” and g for “gas”) of the flat
window surface that contacts the gas directly (or, more
accurately, through a wetting film that we assume to be
of homogeneous thickness). This pressure creates reac-

tions forces ~F
(1)
s and ~F

(2)
s at each window, that act on

the bubble. Each of these forces is perpendicular to the

corresponding window. The absolute values of ~F
(1)
s and

~F
(2)
s are equal to Asg∆p. When the windows are exactly

parallel, ~F
(1)
s + ~F

(2)
s = 0 and the bubble remains at the

cell’s center. When the windows are tilted with respect

to each other, the non-zero force ~F
(1)
s + ~F

(2)
s pushes the

bubble in the direction of the increasing cell thickness.
This motion continues until the bubble touches (through
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FIG. 2: The experimental image of cell 10 at room temperature (a) and the equilibrium bubble shape simulated for the tilt
angle of 0.46◦ (b). When superposed, the images (a) and (b) give almost perfect match. The outer white circle in (a) (black
in (b)) shows the actual location of the cell wall. The inner black circles in (a) and (b) correspond to the engraved ring that
allows the superposition to be made. The dark space between two these circles in the image (a) is made by the ring of glue as
shown in Fig. 1. The image (b) is a frontal projection of the bubble shown in Fig. 4.

tilt angle gas bubble
Asg

Acg

Fs
(1)→

Fs
(2)→
Fc
→

glue

FIG. 3: Sketch of a cross-section of the sample cell with the
tilted windows at equilibrium in weightlessness. The wetting
film is not shown. The window tilt is possible due to the ex-
istence of a space between the window’s edge and the copper
wall, which is filled by glue. This space and the tilt are exag-
gerated for illustration purposes. Based on the manufacturing
process a maximum tilt angle of ≈ 1◦ is possible. The glue
squeezed into the cell is not shown. The reaction forces that
act on the gas bubble are shown with arrows. The contact
areas of the gas bubble with the solid are indicated.

a wetting film) the copper wall of the cell, thus forming
a contact spot of the area Acg, where the index c stands
for “copper”. This direct contact with the solid results in

another reaction force ~Fc with the absolute value Acg∆p,
such that

~F (1)
s + ~F (2)

s + ~Fc = 0 (2)

in equilibrium, see Fig. 3.
There are two equivalent ways to find the bubble shape

at equilibrium. One can solve Eq. (1) that reduces to
K =const, where the constant is obtained from the con-
dition of the given bubble volume. The bubble volume is

defined by the known gas volume fraction and the cell vol-
ume. One can also minimize the gas-liquid interface area
with a bubble volume constraint. In both cases bound-
ary conditions must be satisfied (zero contact angle in our
case). The resulting bubble shape obviously depends on
the cell geometry. It is also nearly independent of tem-
perature as can be seen from Eq. (2), because all three
terms of this equation are proportional to the surface
tension σ, so that this force balance remains valid even
near Tc, where σ disappears. There are, however, several
sources of weak temperature dependence of the bubble
shape. First, there is weak dependence of the gas volume
fraction φ on temperature at constant average density ρ.
This small deviation is smallest at the critical density ρc
and slightly greater in these experiments due to the very
small deviation (see Table I) of ρ from ρc. Second, the
curvature K depends on the thickness of the wetting film
that increases near Tc. The wetting film remains small,
however, in comparison with the cell thickness. Both of
these effects are very weak.

The force ~Fc, which is directed horizontally in Fig. 3,
causes a distortion of the bubble. This distortion results
in an oval image in Fig. 2 instead of a circle. The degree
of distortion increases with the tilt angle because so does
~Fc. This distortion can thus be used to estimate the tilt
angle.

For these constant volume gas bubbles, the degree of
distortion should decrease with increasing cell thickness
H for the same window tilt. A larger value ofH results in
a less compressed (more sphere-like) bubble shape with
less area in contact with the wall. This smaller bubble
curvature results in a smaller value for ∆p according to

Eq. (1). Consequently, the force ~Fc, the area Acg of the
contact with the copper wall, and the bubble distortion
are smaller. This window tilt hypothesis is consistent
with observations: we were not able to detect any distor-
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tion of the gas bubble in cell 8 (see Fig. 10a below that
corresponds to the nearly equilibrium shape) that is ap-
proximately twice as thick (Table I) as cell 10 shown in
Fig. 2. There is, however, some tilt in cell 8 because the
bubble touches the wall. We expect that the tilt angles in
all of the cells are of the same order of magnitude because
they were all manufactured using the same method.
To verify the window tilt hypothesis, we performed

a 3D numerical simulation of the bubble surface by us-
ing the Surface Evolver finite element software [12]. The
result of this calculation is shown in Fig. 4 for cell
10. The experimentally observed bubble deformation

FIG. 4: The result of a 3D finite element calculation of the
equilibrium gas-liquid interface for cell 10 with a window tilt
angle of 0.46◦. The vertices of the polygonal lines indicate the
location of the cylindrical copper wall and they are shown to
guide the eye. A shape of the circular cylinder was input
to the simulation. The contact angle is zero. A part of the
image marked by the square is enlarged to show the contact
area Acg of the gas with the copper wall (a small white rect-
angle crossed by two symmetry lines). The contact areas Asg

with the windows have the oval shape. The projection of this
bubble shape to the cell window is shown in Fig. 2b.

matches the calculation performed for a tilt angle of
0.46◦, see Fig. 2. The simulation resulted in the interface
curvature K = 1.389 mm−1 and in Acg = 0.150 mm2

calculated for the bubble volume V φ = 26.675 mm3.
From this data, it is easy to calculate the effective ac-
celeration geff that would create the equivalent buoy-
ancy force Fc = (ρL − ρV )V φ geff = KσAcg. It turns
out that geff = 1.55 · 10−3 g for T = 290 K, where g is
the gravity acceleration on Earth. This geff acceleration
is much larger than the residual steady accelerations in
the Mir space station (∼ 10−6g) and this shows that the
observed bubble deformation is not caused by residual
accelerations. We conclude that the window tilt hypoth-
esis about the origin of the bubble deformation and its
off-center position is correct.
A similar off-center bubble position was observed un-

der weightlessness in a cell similar to ours by Ikier et.

al. [13] and was attributed to a residual acceleration.
However, they report only one run in a single cell mak-
ing the actual cause of the bubble off-centered position

impossible to verify.

IV. CONTINUOUS HEATING EXPERIMENTS

In the continuous heating experiments, the cells 8, 10
and 11 were heated nearly linearly in time t. The evo-
lution of the non-dimensional temperature τ for each of
these experiments is shown in Fig. 5. The parameter τ is
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FIG. 5: Reduced temperature evolution for the image se-
quences shown in Fig. 6 (solid line), Fig. 8 (dotted line), and
Fig. 9 (dashed line). The temperature values that correspond
to each of the images (a-h) shown in these figures are indi-
cated by arrows and the corresponding letters. The definition
of τ is discussed in the text. The temperature is measured
in the body of the SCU. The vicinity of the critical point is
enlarged in the insert.

defined as (T −Tcoex)/Tc, where Tcoex is the temperature
of the coexistence curve that corresponds to the fluid’s
average density shown in Table I. Note that Tcoex differs
from Tc only by 1 − 50µK because the density is very
close to ρc for all cells. A 40 min temperature equili-
bration at τ ≈ −0.033 preceded the heating. The mean
value of dT/dt at Tc was ≈ 7.2 mK/s.
Figure 6 shows the time sequence of the images of

the cell 10. The interface appears dark because the
liquid-gas meniscus refracts the normally incident light
away from the cell axis. After the temperature ramp was
started but still far from the critical temperature, the
bubble shape changed. The contact area Acg of the gas
with the copper wall appears to increase. In other sys-
tems the wetting film under a growing vapor bubble is
observed to evaporate [14]. In near-critical fluids, how-
ever, the heat transfer processes are more complex [15].
In this system we believe that there may be a similar
drying process, i.e., at some time the thin wetting film
that separates the gas from the copper wall evaporates.
In fact, we have observed low contrast lines that appear
within the Asg area when the heating begins. An exam-
ple of such a line is indicated in Figure 6a by the white
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FIG. 6: Time sequence of images of the cell 10 during the continuous heating through the critical point. The temperature values
that correspond to each of the images (a-h) shown in these Figures are indicated in Fig. 5 by arrows and the corresponding
letters. This run is a repeat of the run shown in Fig. 2 of [3]. The gradual increase of the apparent contact angle as the gas
spreads with increasing temperature is clearly seen. The time corresponding to each image is shown to the left of the cell in
the middle. The magnified upper regions close to the contact line from the images (e-g) are shown in Fig. 7.

6e

8h8g

6g

8f8e

6f glue
boundary
liquid-gas
meniscus

FIG. 7: The magnified upper regions close to the contact line from the images Fig. 6(e-g) and from the images Fig. 8(e-h). The
apparent contact angle can be “measured” as the angle between the tangents to the black glue boundary and the liquid-gas
meniscus. The latter corresponds to the boundary between the wide dark and narrow bright stripes on the images. The liquid
domain is to the left from the meniscus. One can see that this apparent contact angle exceeds 90◦ in the images 6g and 8f.

arrows. The out-of-focus grid shows that these lines cor-
respond to a sharp change in the wetting film thickness.
These lines are most likely triple contact lines and we
have actually seen them pinned by an imperfection on
the windows as they advance and retreat in other exper-
iments. Since the heat conductivity of copper is larger
than that of sapphire, the heat is supplied to the cell
mainly through the hotter copper wall. Therefore the
film should evaporate on the copper wall even earlier than
on the sapphire. A more refined analysis of the contact
line motion will be discussed elsewhere.

The increase of the Acg area is accompanied by an evi-
dent increase in the apparent contact angle, see Fig. 6d–f
and the corresponding magnified images in Fig. 7. Near
the critical temperature the apparent contact angle be-
comes larger than 90◦! We will analyze these effects the-
oretically in section VI.

While crossing the critical point, the vapor bubble is

rapidly evolving. At T ≈ Tc, the surface tension vanishes,
the bubble’s relaxation from surface tension is negligible,
so that the interface shape is defined by the variation of
the local evaporation rate along the interface. The evap-
oration is stronger at the parts of the interface closest to
the copper heating wall. This effect leads to the waved
interface shape shown in Fig. 6g. Diffusion causes the
disappearance of the interface at T > Tc as shown in
Fig. 6h.

Figure 8 shows the time sequence of the images of the
cell 8, which is approximately twice as thick as cell 10.
The images in Fig. 8 were taken exactly for the same
values of the non-dimensional temperature τ (shown in
Fig. 5) as the corresponding images in Fig. 6. The force
~Fc pushes the bubble against the cell wall as in the case
of cell 10. As discussed above, this force is weaker than
for the cell 10 because the bubble appears almost circular
at equilibrium (see Fig. 6a and Fig. 8a). By comparing
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FIG. 8: Time sequence of the images from cell 8 during continuous heating through the critical point. Images (a-h) were taken
exactly for the same values of temperature (shown in Fig. 5) as corresponding images in Fig. 6. The magnified upper regions
close to the contact line from the images (e-h) are shown in Fig. 7.

images (e) of both sequences, we can also see that the va-
por spreads slower in cell 8. The increase of the apparent
contact angle is also slower. The waved shape interface
appears earlier in Fig. 8f, i.e. farther from Tc than for
the cell 10. The interface is still quite sharp in Fig. 8h,
while it has already diffused in the case of the thinner cell
(Fig. 6h). This difference can be explained by the differ-
ence in the liquid-gas interface area, which is roughly
proportional to the cell thickness. The surface tension
force that tends to maintain the convex shape is not as
strong for the thicker cell where a larger fluid volume has
to be moved during the same time. The diffusion time
is larger for cell 8 because the size of the inhomogeneity
(i.e. interface) is larger.

Figure 9 shows the time sequence of the images from
cell 11, which is thicker than both the cells 8 and 10. The

a d

if

FIG. 9: Time sequence of images of the cell 11 during the con-
tinuous heating through the critical point. No bubble spread-
ing is seen. The bubble does not touch the copper wall. The
images (a, d, f) were taken exactly for the same values of tem-
perature (shown in Fig. 5) as corresponding images in Fig. 6
and Fig. 8. The cell 11 contains three thermistors shown in
image (i) by arrows. This image was taken after the temper-
ature equilibration above Tc.

images (a), (d) and (f) were taken for the same values of
non-dimensional temperature as corresponding images in
Figs. 6 and 8. This cell contained three wetted thermis-
tors (Fig. 9i) that constrain the bubble surface (Fig. 9a).
The bubble is only slightly squeezed by the windows so
that the reaction forces that act on the bubble at equi-
librium are weak. As a result, the bubble does not touch
the copper heating wall at all. Although this is not clear
in the image (a), because of the glue near the copper wall,
it is clear in image (f) where small newly formed bubbles
separate the initial bubble from the wall. These bubbles
form from the local overheating of the fluid between the
large bubble and the copper wall. There is enough fluid
between the large bubble and the wall so that a small
bubble may grow in it. These small bubbles push the
large bubble away from the wall before any coalescence
can take place.
The comparison of these three experiments clearly

shows that in order to obtain the bubble spreading, the
bubble needs to have a direct contact with the heating
wall, i.e. to be pushed to the heating wall by some force.
Note that none of the images show any evidence of steady
fluid motion that would be necessary to maintain the dis-
torted bubble shapes in Figs. 6 and 8. We conclude that
this distortion of the bubble equilibrium shape cannot be
caused by fluid motion.
Similar continuous heating experiments are reported

by Ikier et. al. in [13]. However, a smaller heating rate
(1.7 mK/s) and erratic accelerations of the cell did not
allow gas spreading to be observed.

V. QUENCHING EXPERIMENTS

Figure 10 shows the time sequence of the images of cell
8 when it was heated by 100 mK quenches as shown in
Fig. 11. While the heating rate is quite large during each
quench, the time average of the heating rate 1.4 mK/s
is smaller than that during the continuous heating due
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FIG. 10: Time sequence of images of cell 8 during two 100 mK quenches. The gas spreads during each quench that lasts about
12 s. The equilibrium position of the vapor bubble with respect to the cell is shown by the white circle in each image for
comparison.
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FIG. 11: Temperature evolution during the series of quenches.
The points that correspond to each of the images in Fig. 10(a-
h) are indicated by arrows and corresponding letters. The
temperature is measured in the body of the SCU.

to the waiting time of ≈ 60 s after each quench. Dur-
ing this waiting time a partial equilibration takes place.
The images (a–c) show a slight bubble spreading that
appears during a quench that is farther from the criti-
cal point than the quench shown in images (d-h). After
each quench as soon as the heating stops, the bubble in-
terface begins to return to its initial form (Fig. 10c,d).
This shows that the spreading vapor is caused by a non-
equilibrium effect. The second quench that precedes the
crossing of the critical point (Fig. 10d–h) shows very
rapid interface motion accompanied by fluid flows.

While the interface returns to its initial state during
the waiting time of the first quench (Fig. 10c), it does
not return in the second quench (Fig. 10h). This occurs
because the characteristic equilibration time grows dra-
matically near Tc.

The same phenomenon of spreading gas was also ob-

served during the heating of CO2 cells in other experi-
ments (Pegasus BV4705, Post-Perseus F14) carried out
by our group in the Mir station. However, these experi-
ments were not designed to study the spreading gas and
we do not discuss them here.

VI. INTERFACE EVOLUTION DURING THE

HEATING

The above experimental data showed that the spread-
ing gas and the associated interface deformation are
caused by an out-of-equilibrium phenomenon. This is
especially demonstrated by the analysis of the interface
shape at equilibrium (sec. III) and by the return to the
equilibrium shape after each quench in sec. V. In this
section we analyze possible causes of the spreading gas.
Two causes are considered: Marangoni convection due to
the temperature change δTi along the gas-liquid interface
and the differential vapor recoil.

A. Marangoni convection

If a temperature change δTi exists, it will create a sur-
face tension change δσ = (dσ/dT )δTi that will drive a
thermo-capillary (Marangoni) flow in the bulk of both
fluids [16–18]. The images obtained in our experiment are
capable of visualizing convective flows from the shadow-
graph effect. We have not seen any evidence of the steady
convection that is required to create and maintain the ob-
served bubble shape continuously during the heating. We
conclude that the Marangoni convection is absent.
This conclusion is an apparent contradiction with

many works that study the Marangoni effect caused by
evaporation (see e.g. [19]). The main difference between
these works and ours is in the conditions of evaporation.
These works consider the evaporation into an open space
where the vapor pressure is very small. The interface
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temperature thus follows the temperature in the bulk of
the liquid and a very large evaporation rate is possible,
limited only by the average velocity of the fluid molecules.
In our case, the gas phase is almost at saturation pres-
sure. This means that the total evaporation (over the
whole gas liquid interface) is small and limited by the
amount of the supplied heat consumed by the latent heat.
Therefore, any variation δTi is rapidly dampened by the
corresponding change in the evaporation rate, stabilizing
the interface against Marangoni convection, see [15] for
an extended discussion. This conclusion is confirmed by
the experiments [20], in which Marangoni convection was
carefully studied in a closed cell with very clean water in
contact with its vapor. No surface-tension-driven convec-
tion was registered in spite of a large Marangoni number
that was much greater than its critical value obtained in
the classical Marangoni-Benard experiments with non-
volatile liquids [16]. It was argued in [16] that the con-
vection was absent due to a hypothetical interface con-
tamination present in spite of many careful preventive
measures. According to our reasoning, a variation δTi

would have been strongly dampened in [16] because of
the saturation conditions in the sealed cell. We also note
that even in evaporative driven Marangoni convection
far from saturation, the convection cells may also tend
to stabilize the interface resulting in intermittent cellular
formation as was observed in [17]. It was also observed
in [17] that the velocity of convection and frequency of
intermittent cell formation decreases as the external gas
becomes more saturated.

B. Differential vapor recoil

We now analyze another possible source of bubble de-
forming stress that does not require a temperature gradi-
ent along the interface. The bubble may be deformed by
the normal stress exerted on the interface by the recoil
from departing vapor [19]. Let n(~x) be the evaporating
mass per unit time per unit interface area at the point ~x
on the interface. The evaporating gas moves normally to
the interface, and exerts a force per unit area (a “thrust”)
on the liquid of

Pr(~x) = n2(~x)(1/ρG − 1/ρL), (3)

where ρ denotes mass density and the subscripts L and
G refer to liquid and gas respectively.
The interface shape can be obtained from a quasi-static

argument when the experimentally observed interface ve-
locity vi is smaller than the characteristic hydrodynamic
velocity σ/η, where η is the shear viscosity. A numerical
estimate shows that the quasi-static approximation holds
for the images (a-f) in Fig. 6, in which the spreading is
observed. The quasi-static approximation does not ap-
pear to hold for the quench experiments (Fig. 10), where
the interface moves rapidly.

According to the quasi-static argument [23], the inter-
face shape can be determined from the modified Laplace
equation

σK = ∆p+ Pr(~x). (4)

The 3D curvature K is equal to the sum of the 2D cur-
vature c in the image plane and the 2D curvature in the
perpendicular plane shown in Fig. 1. For the small cell
thickness H , this latter curvature can be accurately ap-
proximated by the constant value 2/H . This is possible
because the relatively small heat flow through the less
conductive sapphire windows implies a small Pr near the
contact line on the windows, as compared to the large
value of ∆p at this small H . The interface shape can
thus be obtained from the 2D equation

σc = ∆p′ + Pr(l), (5)

where ∆p′ is a constant to be determined from the known
bubble volume and l is a coordinate that varies along the
bubble contour in the image plane.
In order to find the distribution n(~x) at the interface

it is necessary to solve the entire heat transfer problem.
This problem is complicated by several important factors.
First, we deal with a problem that contains a free bound-
ary (gas-liquid interface) the position of which should
be determined. Second, this interface contains lines of
singularities (gas-liquid-solid contact lines) where vari-
ous divergences are possible. Third, the adiabatic heat
transfer [15, 21, 22] (“the piston effect”) should be taken
into account for near-critical fluids. The first two com-
plications were addressed in [23–25] for plane geometry,
i.e. for the gas bubble growing on a plane. We have
shown that n(~x) can exhibit a divergence at the contact
line and that it decreases exponentially far away from
it. Because the bulk temperature varies sharply in the
boundary layer adjacent to the walls of the cell [21] and
the interface temperature is constant, the largest portion
of mass transfer across the interface takes place near the
triple contact line. Thus n(~x) is large in the vicinity
of the contact line. In this work, we present first the
scaling arguments and then an approximate calculation
of the bubble shape to illustrate our explanation of the
spreading gas in the cylindrical geometry.
We assume that n(~x) has the following form:

n(~x) = g(~x)(Tc − T )a (6)

as T → Tc, i.e., it has the same local behavior with re-
spect to temperature as the critical temperature is ap-
proached. The integral rate of change of mass M of the
gas bubble is defined as

dM/dt =

∫
n(~x)d~x ∼ (Tc − T )a, (7)

where the integration is performed over the total gas-
liquid interface area. On the other hand,

dM/dt = d/dt(V φρG), (8)
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where V is the cell volume, and φ = 0.5 is assumed. Near
the critical point, the co-existence curve has the form
ρG = ρc−∆ρ/2, where ∆ρ ∼ (Tc−T )β with the universal
exponent β = 0.325, so that dM/dt ∼ (Tc−T )β−1dT/dt
as T → Tc according to Eq. (8). Thus Eq. (7) results
in a = β − 1 and the curvature change due to the vapor
recoil scales as

Pr/σ ∼ (Tc − T )3β−2−2ν , (9)

where Eq. (3) and the scaling relationship σ ∼ (Tc−T )2ν

(ν = 0.63) were employed. Because this critical exponent
(3β − 2 − 2ν ≈ −2.3) is very large, it should manifest
itself even far from the critical point in agreement with
the experiments. In summary, as T → Tc, the vapor
mass growth follows the growth of its density (the vapor
volume remains constant), so that the diverging vapor
production near the critical point drives a diverging recoil
force.
This curvature change has a striking effect on the

bubble shape because it is not homogeneously dis-
tributed along the bubble interface. Since the evapora-
tion is strongest near the copper heating wall where the
strongest temperature gradients form, both Pr and c in-
crease strongly near this wall, i.e. near the triple contact
line. Note that c is proportional to the second derivative
of the bubble shape function, i.e. to the first derivative
of the bubble slope. If c is large, then the slope of the
bubble contour changes sharply when moving along the
bubble contour towards the contact line, see [5, 23, 24]
for more details. Because the interface slope changes so
abruptly near the contact line, the apparent contact an-
gle should be much larger than its actual value.
Because c is proportional to the second derivative of

the bubble shape function, Eq. (5) is a differential equa-
tion with the boundary condition given by the actual
contact angle [23]. This actual contact angle defines the
first derivative (the slope) of the bubble shape function
at the solid wall. It is also specified by the interfacial
tension balance and must be zero near the critical point.
This condition of the zero contact angle gives a boundary
condition for Eq. (5). In order to illustrate a possible so-
lution of Eq. (5), we solved it using the same expression
for Pr(l) as in [23]

Pr(l) ∝ −N log(l/L) exp{(−[l/(0.1L)]2}, (10)

where l ∈ [0, L], L being a length of the bubble half-
contour with l = 0 at the solid wall. We use a non-
dimensional parameter N to measure the influence of the
vapor recoil force relative to the surface tension. It is
defined as

N =
1

σ

L∫

0

Pr(l) dl. (11)

where the integration is performed over the drop contour
in the image plane. The numerical coefficient (see [23]) in

Eq. (10) can be determined from Eq. (11), where the up-
per integration limit can be replaced by infinity without
any loss of accuracy. Although the expression Eq. (10)
for the vapor recoil pressure is not rigorous, it contains
the main physical features of the solution of the heat con-
duction problem: a weak divergence at the contact line
and a rapid decay away from it. It is shown in [25] that
the rigorous numerical solutions obtained far from the
critical point follow this behavior.
The result of this calculation is shown in Fig. 12. Since

N=1.5

N=0.01

¹¹¹` `‰˚ �fiÛ´` ` ` ` ¿L_` ,˜ ` ` ` ` ` ` ,` (` Û+&` ` ` ^•T` z•T` à•T` ¹¹ñ•T` ¹¹¹¹¹¹¹¹` ` ` ` ` ` ` ` ` ` (` »` Û´òj_` ¿L_` ` ` ` ` Wˆ�̃ ` ¿` ` ` ` ` ` ` ` `` ` ` `` ` ` ˚ ` ´ ` ˚ ` ` ` ` ` l•T` ` ` ` ` Ł` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` X` h` Û´òj_` ¿L_` ` ` ` ` ` ` ` ` ` ` ` ` −` L` Û´òj_` ¿L_` ` ` ` ` ` ` ` ` ` ` ` ` Ÿ` –` −` Û+Ł` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

N=0.5

N=1.0

FIG. 12: Calculated bubble shape for different values of
the non-dimensional strength of vapor recoil N that goes to
infinity at the critical point. Note that the actual contact
angle is zero for all the curves.

Eq. (9) implies

N ∼ (Tc − T )−2.3 → ∞ (12)

as T → Tc, the N increase mimics the approach to
the critical point and qualitatively explains the observed
shape of the vapor bubble (see Fig. 6). The increase of
the apparent contact angle and of the gas-solid contact
area Acg can be seen in Fig. 12. Note that such a cal-
culation is not able to predict the wavy interface shapes
like those in Fig. 6g or Fig. 8f-h, because these images
correspond either to T > Tc (images g and h of the both
figures) or to the close vicinity of Tc where σ < vi η, see
the discussion of the validity of the quasi-static approxi-
mation earlier in this section.

VII. SPREADING GAS AND THE BOILING

CRISIS

A very similar bubble spreading was observed far from
Tc during boiling at large heat flux [26, 27]. When the
heating to a surface is increased past a Critical Heat
Flux (CHF) there is a sudden transition to “film” boil-
ing, where the heater becomes covered with gas and may
burnout [14]. This “boiling crisis” is an important prac-
tical problem in many industries where large heat fluxes
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are frequently used. We interpret [23, 25] the boiling cri-
sis to be similar to the gas spreading shown here. The
main difference is that the large value of N is made by
a large vapor production that can be achieved during
strong overheating rather than by the critical effects.
It is well-documented from experiments [14] that the

CHF decreases rapidly when the fluid pressure p ap-
proaches the critical pressure pc, i.e., when T → Tc in
our constant volume system. Previously, this tendency
has not been well understood. The divergence of the fac-
tor N , discussed above, helps to understand it. We first
note that the evaporation rate n scales as the applied
heat flux q and N ∼ q2, where Eqs. (3) and (11) are
used. By assuming that the boiling crisis (q = qCHF )
begins when N attains its critical value NCHF ∼ 1 (see
[23]), one finds that

qCHF ∼ (Tc − T )1+ν−3β/2 ∼ (Tc − T )1.1 (13)

from Eq. (12). The same exponent is also valid for the
pressure scaling,

qCHF ∼ (pc − p)1.1. (14)

Eq. (14) explains the observed tendency qCHF → 0 as
p → pc.
Although the strict requirements on temperature sta-

bility and the necessity of weightlessness lead to experi-
mental difficulties to study the boiling crisis in the near-
critical region, they also present some important advan-
tages. Only a very small heating rate (heat flux) is
needed to reach the boiling crisis because qCHF is very
small. At such low heat fluxes, the bubble growth is ex-
tremely slow due to the critical slowing-down. In our ex-
periments we were able to observe the spreading gas (i.e.
the dry-out that leads to the boiling crisis, see Fig. 6)
during 45 min! Such experiments not only permit an ex-
cellent time resolution, but also allow the complicating
effects of rapid fluid motion to be avoided.

VIII. CONCLUSIONS

In our experiments we observed a gas bubble spread-
ing over a solid wall and a large value (> 90◦) of the

apparent contact angle that appeared despite the zero
actual contact angle with the solid. The spreading gas
is a phenomenon that can occur in a sealed heated fluid
cell only when the bubble is pressed against the heating
wall. The 3D numerical calculation of the equilibrium
bubble shape showed that the slightly tilted windows of
the experimental cell pressed the bubble against the cop-
per side-wall. Weightless conditions are needed in the
near-critical region in order to observe this phenomenon
when the surface tension is small and a bubble-like shape
persists. The same phenomenon can be observed far from
the critical point during boiling at high heat fluxes where
it is known as the “boiling crisis”. While the gas spreads
very quickly during the boiling crisis far from the critical
point, the near-critical region allows a very slow spread-
ing gas to be observed in great detail.

We explain this phenomenon as induced by the vapor
recoil force that changes the shape of the vapor-liquid
interface near the triple contact line. Our preliminary
calculations of the gas-liquid interface shape are quali-
tatively consistent with the experimental images. The
scaling analysis gives the critical exponent for the criti-
cal heat flux decrease near the critical point and explains
the increase of the vapor recoil effect near the critical
point. We believe that there is much to be learned about
the boiling crisis in the near-critical region and hope that
these experiments inspire more investigations.
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