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ON THE RITT PROPERTY AND WEAK TYPE MAXIMAL
INEQUALITIES FOR CONVOLUTION POWERS ON `1(Z)

CHRISTOPHE CUNY

Abstract. In this paper we study the behaviour of convolution powers of probability
measures µ on Z, such that (µ(n))n∈N is completely monotone or such that ν is centered
with a second moment. In particular we exhibit many new examples of probability
measures on Z having the so called Ritt property and whose convolution powers satisfy
weak type maximal inequalities in `1(Z).

MSC 2010 subject classification: 47A35, 37A99; Secondary: 60B15

1. Introduction

Let µ be a probability on Z. Given an invertible bi-measurable transformation τ on a
measure space (S,S, λ) we define a positive contraction of every Lp(λ), 1 ≤ p ≤ ∞, by
setting

Pµ(τ)(f) :=
∑
k∈Z

µ(k)f ◦ τ k ∀f ∈ Lp(m) .

Several authors, see for instance [4], [5], [22], [6], [16], [3], [20], [26], [24], [23] or [7],
studied the almost everywhere behaviour of the iterates of µ(τ), i.e. of (µ∗n(τ))n≥1, acting
on Lp(λ), 1 ≤ p <∞.

When p > 1, the almost everywhere behaviour has been characterized thanks to the so
called bounded angular ratio property, introduced in [6] and which is equivalent to the so
called Ritt property on `p(Z), p > 1. Let us recall the definition of those properties.

Definition 1.1. Let µ be a probability measure on Z. We say that µ is strictly aperiodic
if |µ̂(θ)| < 1 for every θ ∈ (0, 2π). We say that µ has bounded angular ratio (BAR) if
moreover

(1) sup
θ∈(0,2π)

|1− µ̂(θ)|
1− |µ̂(θ)|

<∞ .

The strict aperiodicity is equivalent to the fact that the support of µ is not contained
in a coset of a proper subgroup of Z. In particular, it holds whenever the support of µ
contains two consecutive integers.

I am very grateful to Alexander Gomilko and, more particularly, to Yuri Tomilov who both noticed
several inaccuracies in a previous version. The paper substantially benefited from our discussions.
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2 CHRISTOPHE CUNY

Definition 1.2. We say that a probability measure µ on Z is Ritt on `p(Z), for some
p ≥ 1, if

sup
n≥1

n‖µ∗n − µ∗(n+1)‖`p(Z) <∞ .

When p = 1 we say simply that µ is Ritt, because then, it is Ritt on all `r(Z), r ≥ 1.
Denote by R the set of Ritt probability measures on Z.

A version of the next Theorem may be found for instance in Cohen, Cuny and Lin [7,
Theorem 4.3]. Their Theorem 4.3 is not formulated exactly as below but the proof of
Theorem 1.1 may be done similarly. The equivalence the item (vi) with the other items
follow from their Proposition 6.4. In all the paper we use the notation N := {0, 1, 2 . . .}.

Theorem 1.1. Let µ be a strictly aperiodic probability on Z. The following are equivalent:

i) µ has BAR;
ii) There exist p > 1 and Cp > 0 such that for every invertible bi-measurable trans-

formation τ on a measure space (S,S, λ),

(2) ‖ sup
n≥1
|(Pµ(τ))nf | ‖p,λ ≤ Cp‖f‖p,λ ∀f ∈ Lp(λ) ;

(iii) There exists p > 1 such that for every invertible bi-measurable transformation τ on
a probability space (S,S, λ) and every f ∈ Lp(λ), ((Pµ(τ))nf)n∈N converges λ-a.e.

(iv) There exist p > 1 and Cp > 0 such that

(3) ‖ sup
n≥1
|(Pµ(R))nf | ‖`p(Z) ≤ Cp‖f‖`p(Z) f ∈ `p(Z) ,

where R is the right shift on Z;
v) There exists p > 1 such that µ is Ritt on `p(Z).

(vi) There exists p > 1 such that for every m ∈ N, there exists Cm,p > 0 such that

‖ sup
n≥1

nm|(I − Pµ)m(Pµ(R))nf | ‖`p(Z) ≤ Cm,p‖f‖`p(Z) f ∈ `p(Z) ,

Actually, if any of the above properties holds, then the conclusion of (ii), (iii), (iv) or
(v) holds for all p > 1.

The proof of the above theorem follows from recent works of Le Merdy and Xu, [17]
and [18], who studied positive Ritt contractions T of Lp(S,S,m) (p being fixed). Recall
that a contraction T on a Banach space X is Ritt if supn∈N n‖T n − T n+1‖X <∞, which
is compatible with our definition 1.2 which just says that the operator of convolution by
µ is Ritt on X = `p(Z).

Le Merdy and Xu proved that any positive Ritt contraction satisfies maximal inequali-
ties in spirit of (2). They also obtained square function estimates, oscillation inequalities
and variation inequalities. See also [7] for related results.

In this paper we are concerned with the case when p = 1, and we address the following
two questions.
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- Question 1: For what probability measures µ on Z does one have a weak type
(1, 1)-maximal inequality:

(4) #{k ∈ Z : sup
n≥1
|µ∗n ∗ f | > λ} ≤ C

λ
‖f‖`1(Z) ∀λ ≥ 0 .

More generally, given m ∈ N, does there exist Cm > 0 such that (with the convention
(δ0 − µ)∗0 = δ0)

(5) sup
λ>0

λ#{k ∈ Z : sup
n≥1

nm|µ∗n ∗ (δ0 − µ)∗m ∗ f(k)| ≥ λ} ≤ Cm‖f‖`1(Z) ∀f ∈ `1(Z) .

- Question 2: For what probability measures µ on Z does one have the Ritt property
in `1(Z):

(6) sup
n≥1

n‖µ∗n − µ∗(n+1)‖`1(Z) <∞ .

Notice that if µ satisfies (4) then, by the Marcinkiewicz interpolation theorem (between
weak L1 and L∞), it does satisfy (2), hence µ has BAR. Notice also that if µ satisfies (6)
then, by Theorem 1.1 has also BAR. Hence, the questions we intend to answer are: what
extra conditions, in addition to the BAR property, are sufficient to have (4), (5) or (6) ?

Let us discuss the known results concerning those questions, before presenting our
results. As far as we know, when m ≥ 1, (5) has not been investigated before.

The simplest examples of probability measures having BAR are the symmetric ones.
Bellow, Jones and Rosenblatt [6] proved that if µ is symmetric such that (µ(n))n≥0 is non
increasing then (4) holds. We do not know whether (6) holds as well, in this case, but we
provide sufficient conditions in Section 5.

Another case where (4) holds is when
∑

k∈Z k
2µ(k) < ∞ (µ has a second moment)

and
∑

k∈Z kµ(k) = 0. This has been proved by Bellow and Calderón [3]. Again the
Ritt property is not known in that case. The proof of Bellow and Calderón is based
on general intermediary results that have been extended recently by Wedrychowicz [26].
Wedrychowicz proved that (4) holds for centered probability measures (hence with a first
moment) having BAR and satisfying some extra conditions. Examples without second
moment are presented in [26].

Several examples of probabilities having the Ritt property in `1(Z) may be found in
Dungey [10], see sections 4 and 5 there.

Let us now present our results. As mentionned above, the method of Bellow and
Calderón is fairly general. Actually, if one follows carefully their paper, one realizes that
the following definition comes somewhat naturally into play.

Definition 1.3. We say that a probability measure µ on Z satisfies the hypothesis (H) if µ̂
is twice continuously differentiable on [−π, π]−{0} and if there exists an even and contin-
uous function ψ on [−π, π], vanishing at 0 and continuously differentiable on [−π, π]−{0},
and some constants c, C > 0 such that for every θ ∈ (0, π]

(i) |µ̂(θ)| ≤ 1− cψ(θ);
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(ii) |θµ̂′(θ)| ≤ Cψ(θ);
(iii) |µ̂′(θ)| ≤ Cψ′(θ);
(iv) |θµ̂′′(θ)| ≤ Cψ′(θ).

Let us denote by H the set of probability measures satisfying hypothesis (H).

The relevance of the hypothesis (H) lies in the following, where we also give stability
properties of H as well as of R. We say that a set of probability measures on Z is stable
by symmetrization if whenever µ = (µ(n))n∈Z belongs to that set so does µ̌ = (µ(−n))n∈Z.

Theorem 1.2.

(i) The set H is convex and stable by convolution and by symmetrization.
(ii) The set R is convex and stable by convolution and by symmetrization.

(iii) Let µ ∈ H. Then, µ satisfies (4).
(iv) Let µ ∈ H ∩R. Then, for every m ∈ N, there exists Cm > 0 such that µ satisfies

(5).

Theorem 1.2 follows from several results: item (i) follows from Proposition 2.4, item
(ii) may be proved as Proposition 3.10, items (iii) and (iv) follow from Proposition 2.3.

Then, our goal is to provide many examples of elements of H ∩R.
Our first examples are the ones already considered by Bellow and Calderón, in particular

the fact that µ as in the next theorem satisfies (4) is not new, while the Ritt property is
new. The proof of Theorem 1.3 is done in Section 2.3.

Theorem 1.3. Let µ be a centered and strictly aperiodic probability measure on Z with
finite second moment. Then µ ∈ H ∩R.

Then, we shall consider probability measures µ, such that (µ(n))n≥0 is completely mono-
tone (see the next section for the definition). In this context we are able to characterize
the BAR property. The idea of considering completely monotone sequences was motivated
by Gomilko-Haase-Tomilov [12] and Cohen-Cuny-Lin [7].

Theorem 1.4. Let µ be a probability measure on Z supported on N, such that (µ(n))n∈N
is completely monotone. Then

(i) µ has BAR if and only if there exists C > 0 such that

(7)
n∑
k=1

kµ(k) ≤ Cn
∑
k≥n

µ(k) ∀n ≥ 1 .

(ii) Assume that µ has BAR. Let σ be a probability measure on Z such that
∑

n∈Z n
2σ(n) <

∞. Then, µ ∗ σ ∈ H ∩ R and for every α ∈ (0, 1] αµ + (1 − α)σ ∈ H ∩ R. In
particular (take σ = δ0), µ ∈ H ∩R.

Remarks. Notice that we do not assume σ to be centered. The conclusion of item (ii)
actually holds for σ such that σ̂ is twice continuously differentiable on [−π, π]−{0} with
σ̂′ and θ 7→ θσ̂′′(θ) bounded. Moreover, see Proposition 3.10, it is possible to relax the



CONVOLUTION POWERS 5

conditions on σ̂ if one is only concerned with the Ritt Property. We were not able to
provide a perturbation result in the spirit of Theorem 1.5.

Item (i) follows from Propositions 3.3 and 3.5. Item (ii) is proved in sections 3.2 and
3.3.

The proof of the Ritt property in Theorem 1.4 is based on a recent of Gomilko and
Tomilov [14]. The fact that when µ has BAR δ1 ∗ µ is Ritt has been proven by Gomilko
and Tomilov [15], see their Theorem 7.1. Their proof is also based on [14].

Theorem 1.5. Let µ be a centered probability measure on Z supported on {−1}∪Z, such
that (µ(n))n∈N is completely monotone. Then

(i) µ has BAR if and only if there exists C > 0 such that

(8) n
∑
k≥n

kµ(k) ≤ C
n∑
k=1

k2µ(k) ∀n ≥ 1 .

(ii) Assume that µ has BAR. Let σ be a centered probability measure on Z, such that
there exists c > 0 such that

∑
n∈Z n

2|σ(n) − cµ(n)| < ∞. Then, σ ∈ H ∩ R. In
particular (take c = 1 and σ = µ), µ ∈ H ∩R.

Moreover (see section 5), we also study symmetric probability measures with completely
monotone coefficients.

In the above theorems, we obtain weak type maximal inequalities in `1(Z). Of course,
by mean of transference principles (see e.g. [2] or [25, page 164], one may derive similar
results for the operator Pµ(τ) in the spirit of (2) as well as some almost everywhere
convergence results. We leave that ”standard” task to the reader.

The paper is organized as follows. In Section 2, we prove Theorem 1.2 and prove the
Ritt property under a slightly stronger assumption than hypothesis (H). In section 3, we
consider probability measures as in Theorem 1.4 and prove Theorem 1.4 In section 4, we
consider probability measures as in Theorem 1.5 and prove Theorem 1.5. In section 5 we
consider symmetric probability measures. Finally, in section 6 we discuss several open
questions on the topic.

Before going to the proofs, we would like to mention that the above theorems provide
new situations to which the results of Cuny and Lin [9] apply, see examples 1 and 2 there.

2. General criteria for maximal inequalities and for the Ritt property

In this section we give general conditions ensuring weak type maximal inequalities
associated with sequences of probabilities on Z and conditions ensuring the Ritt property.

In the case of weak type maximal inequalities, the obtained conditions are derived from
slight modifications of known results, see e.g. [3] and [26].
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2.1. Sufficient conditions for weak type maximal inequalities. We start with the
following result of Bellow and Calderón [3], see also Zo [28] for a related result. Actually,
Bellow and Calderón considered only the case of probability measures, but their proof
extends to the situation below.

Theorem 2.1 (Bellow-Calderón). Let (σn)n∈N be a sequence of finite signed measures on
Z such that supn∈N ‖σn‖`1 < ∞. Assume that there exists C > 0 such that k, ` ∈ Z with
0 < 2|k| ≤ `,

(9) |σn(k + `)− σn(`)| ≤ C
k

`2
∀n ∈ N .

Then, there exists C ′ > 0 such that for every f ∈ `1(Z),

sup
λ>0

#{k ∈ Z : sup
n∈N
|σn ∗ f(k)| ≥ λ} ≤ C ′

λ
‖f‖`1 .

In order to apply Theorem 2.1 we shall need the following version of Corollary 3.4 of
[3].

Lemma 2.2. Let (σn)n∈N be a sequence of finite signed measures, such that for every
n ∈ N, σ̂n is twice continuously differentiable on R− 2πZ. If moreover

(10) sup
n∈N

∫ π

−π
|θσ̂′′n(θ)|dθ <∞ ,

and

(11) lim
θ→0,θ 6=0

θσ̂′n(θ) = 0 ∀n ∈ N ,

then (9) holds.

Remark. It follows from (10) (and the continuity of σ̂n at 0) that the limit in (11) exists,
hence condition (11) is just that the limit is 0.
Proof. For every k ∈ Z−{0}, we have σn(k) =

∫ π
−π σ̂n(θ)e−ikθdθ. Let π > ε > 0. Perform-

ing two integration by parts as in [3] to evaluate
∫ π
ε
σ̂n(θ)e−ikθdθ and

∫ −ε
−π σ̂n(θ)e−ikθdθ,

using our assumptions and letting ε→ 0, we see that

σn(k) =

∫ π

−π
σ̂′′n(θ)

1− e−ikθ

k2
dθ .

Then, we conclude as in [3]. �

Proposition 2.3. Let µ be a probability measure on Z satisfying hypothesis (H). Then,
for every m ∈ N,

(12) sup
n≥1

nm
∫ π

−π
|θ||(µ̂n(1− µ̂)m)′′(θ)|dθ <∞ ,

and
lim

θ→0,θ 6=0
θ(µ̂n(1− µ̂)m)′(θ) = 0 ∀n ∈ N ,
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In particular, there exists C > 0 such that for every f ∈ `1(Z),

(13) sup
λ>0

λ#{k ∈ Z : sup
n≥1
|µ∗n ∗ f(k)| ≥ λ} ≤ C‖f‖`1 .

If moreover µ is Ritt then, for every m ≥ 1, there exists Cm > 0 such that for every
f ∈ `1(Z),

(14) sup
λ>0

λ#{k ∈ Z : sup
n≥1

nm|µ∗n ∗ (δ0 − µ)∗m ∗ f(k)| ≥ λ} ≤ Cm‖f‖`1 .

Remarks. The proposition is related to Theorem 2.10 of Wedrychowicz [26]. Notice that,
by (ii), ψ is non-negative and by (iii) it is non-decreasing. We shall see in proposition
2.5 that if there exists C > 0 such that for every θ ∈ (0, π], ψ(θ) ≤ Cθψ′(θ), then µ is
automatically Ritt.
Proof. If µ = δ0 the result is trivial. Hence we assume that µ 6= δ0. In particular, by
(ii), ψ cannot vanish in a neighbourghood of 0, hence is positive on (0, π]. Then |µ̂| < 1
on (0, π] (hence µ is strictly aperiodic).

We have, on (0, π].

nm|(µ̂n(1− µ̂)m)′′| ≤ nm+2|µ̂|n−2|µ̂′|2|1− µ̂|m + 2mnm+1|µ̂|n−1|µ̂′|2|1− µ̂|m−1(15)

+nm+1|µ̂|n−1|µ̂′′||1− µ̂|m−1 +mnm|µ̂|n|µ̂′′| |1− µ̂|m−1 +m(m− 1)nm|µ̂|n|µ̂′|2|1− µ̂|m−2 .
Using (i) and the fact that ψ is continuous with ψ(0) = 0, there exist η > 0 and c > 0,
such that for every θ ∈ [0, η],

(16) |µ̂(θ)| ≤ e−cψ(θ) .

Since, supθ∈[η,π] |µ̂(θ)| < 1, taking c smaller if necessary, we may assume that (16) holds
for every θ ∈ [0, π].

Using (iii) and that ψ is continuous at 0, we see that ψ′ and µ̂′ are in L1, hence that

(17) |1− µ̂(θ)| ≤ ψ(θ) ∀θ ∈ (0, π] .

Combining (16) and (26) with (ii), (iii) and (iv) (taking care with the cases m = 0 and
m = 1), we see that there exists Cm > 0 such that for every θ ∈ (0, π] and every n ∈ N,

|θ(µ̂n)′′(θ)| ≤ Cm
(
n2ψm+1(θ) + nψm(θ) + (m− 1)ψm−1(θ)

)
e−c(n−2)ψ(θ) nmψ′(θ) .

Using that the integrand below is even and the change of variable u = (n− 2)ψ(θ), we
see that

sup
n∈N

∫ π

−π
|θ||(µ̂n(1− µ̂)m)′′(θ)|dθ

≤ C̃m

∫ +∞

0

(um+1 + um + (m− 1)um−1)e−cu du <∞,

and (12) holds.

The fact that (11) holds follows from item (ii), using that ψ is continuous at 0, with
ψ(0) = 0, and that µ̂ is bounded.
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Let m ∈ N and set σn = σn,m := nmµ∗n(δ0 − µ)∗m for every n ∈ N.

It follows from Theorem 2.1 and Lemma 2.2, that (13) holds.
When m ≥ 1, it follows from Theorem 2.1 and Lemma 2.2, that (14) holds provided

that

(18) sup
n∈N
‖σn,m‖`1(Z) <∞ .

When m = 1, (18) is just the definition of the Ritt property.
Let m ≥ 2, write n = m`+ k, with ` ∈ N and 0 ≤ k ≤ m− 1. We have

‖nmµ∗n ∗ (δ0 − µ)∗m‖`1(Z) ≤ mm‖(`+ 1)µ∗` ∗ (δ0 − µ)‖m`1(Z) ,

and the latter is bounded uniformly with respect to ` ∈ N, since µ is Ritt. �

To conclude this subsection we shall study stability properties of set of probabilities
satisfying the weak type maximal inequalities.

It is well-known, see e.g. Proposition 3.2 of [10], that the set of Ritt probability measures
on Z is convex and stable by convolution. Actually, [10] deals with probability measures
supported by N, but the proof is the same.

Let p > 1. It is not difficult to see that the set of probability measures µ on Z, such
that there exists Cp > 0 such that (3) holds is also convex and stable by convolution.

However it is unclear (and probably not true) whether the set of probability measures
µ on Z satisfying (14) for every m ∈ N (or for some m ∈ N) is also convex and stable by
convolution. Nevertheless, we have the following.

Proposition 2.4. Let µ1 and µ2 be probability measures satisfying hypothesis (H). Let
α ∈ (0, 1). Then, µ̌1, µ1 ∗ µ2 and αµ1 + (1− α)µ2 satisfy hypothesis (H).

Remark. Recall that µ̌1 is the probability measure defined by µ̌1(n) = µ1(−n) for every
n ∈ Z.
Proof. The fact that µ̌1 satisfies hypothesis (H) is obvious.

Let ψi, ci, Ci be the terms associated with µi (i ∈ {0, 1}) such that the items (i)− (iv)
of hypothesis (H) be satisfied.

Define µ := µ1 ∗ µ2 and ψ := c1ψ1 + c2ψ2. Let θ ∈ (0, π]. We have

|µ̂(θ)| = |µ̂1(θ)| |µ̂2(θ)| ≤ 1− ψ(θ) + c1c2ψ1(θ)ψ2(θ).

Since ψ1 and ψ2 are continuous with ψ1(0) = ψ2(0) = 0, there exist c ∈ (0, 1) and
η ∈ (0, π) such that c1c2ψ1(θ)ψ2(θ) ≤ (1− c)ψ(θ) for every θ ∈ (0, η).

Hence, |µ̂| ≤ 1 − cψ on (0, η). Arguing as in the previous proof, we see that taking c
smaller if necessary, the inequality holds on (0, π] either.

Using that µ̂′ = µ̂′1µ̂2 + µ̂1µ̂
′
2, we infer that items (ii) and (iii) of hypothesis (H) hold.

We have µ̂′′ = µ̂′′1µ̂2 + 2µ̂′1µ̂
′
2 + µ̂1µ̂

′′
2. Hence, for every θ ∈ (0, π]

|θµ̂′′(θ)| ≤ C1ψ
′
1(θ) + 2C1ψ1(θ)C2ψ

′
2(θ) + C2ψ

′
2(θ) ,

and we see that item (iv) holds, since ψ1 is bounded.
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Let α ∈ (0, 1). Let µ := αµ1 +(1−α)µ2. One can see that items (i)− (iv) of hypothesis
(H) hold with ψ := αψ1 + (1− α)ψ2. �

2.2. A sufficient condition for the Ritt property. In this subsection we derive a
condition ensuring that a probability measure is Ritt. This condition will be used for cen-
tered probability measure with either a second moment, or a first moment and completly
monotone coefficients. For non centered probability measure another argument will be
needed.

We start with a general result.

Proposition 2.5. Let (σn)n∈N be a sequence of finite signed measures on Z, such that for
every n ∈ N, σ̂n is twice differentiable on R− 2πZ. Assume moreover the following

(i) supn∈N
∫ π
−π
|σ̂n(θ)|
|θ| dθ <∞;

(ii) supn∈N
∫ π
−π |σ̂

′
n(θ)|dθ <∞;

(iii) supn∈N
∫ π
−π |θ| |σ̂

′′
n(θ)|dθ <∞ .

Then, supn∈N ‖σn‖`1(Z) <∞.

Proof. We first notice that, by (i),

sup
n∈N
|σn(0)| ≤ sup

n∈N

∫ π

−π
|σ̂n(θ)|dθ <∞

Let k ∈ Z− {0}. We have

σn(k) =

∫ π

−π
σ̂n(θ)e−ikθdθ

=

∫ π/|k|

−π/|k|
σ̂n(θ)e−ikθdθ +

∫
[−π,π]−[−π/|k|,π/|k|]

σ̂n(θ)e−ikθ dθ .

Integrating by part and using that σ̂n is 2π-periodic, we have∫
[−π,π]−[−π/|k|,π/|k|]

σ̂n(θ)e−ikθ dθ = −
∫
[−π,π]−[−π/|k|,π/|k|]

σ̂′n(θ)
e−ikθ

−ik
dθ +

σn(−π/|k|)− σn(π/|k|)
−ik

,

and∫
[−π,π]−[−π/|k|,π/|k|]

σ̂′n(θ)
e−ikθ

−ik
dθ = −

∫
[−π,π]−[−π/|k|,π/|k|]

σ̂′′n(θ)
e−ikθ

−k2
dθ +

σ′n(−π/|k|)− σ′n(π/|k|)
−k2

Now, ∑
|k|≥1

|
∫ π/|k|

−π/|k|
σ̂n(θ)e−ikθ dθ| ≤

∫ π

−π
|σ̂n(θ)|

∑
1≤|k|≤π/|θ|

1 dθ ≤ 2π

∫ π

−π

|σ̂n(θ)|
|θ|

dθ ,

and∑
|k|≥1

|
∫
[−π,π]−[−π/|k|,π/|k|]

σ̂′′n(θ)
e−ikθ

−k2
dθ| ≤

∫ π

−π
|σ̂′′n(θ)|

∑
|k|≥π/|θ|

1

k2
≤ C

∫ π

−π
|θ| |σ̂′′n(θ)|dθ .
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Hence, it remains to show that supn∈N
∑
|k|≥1

|σ̂n(π/k)|
|k| <∞ and supn∈N

∑
|k|≥1

|σ′n(π/k)|
k2

<
∞.

Let fn(θ) := θσ̂n(θ), for every θ ∈ R− 2πZ. Then fn is differentiable on R− 2πZ and,
by (i) and (ii), σ̂′n ∈ L1([0, 2π]), f ′n ∈ L1([0, 2π]). Hence, σ̂n and fn can be continuously
extended to R with fn(0) = 0. Then, for every k ≥ 1,

π

k
|σ̂n(π/k)| =

∣∣ ∫ π/k

0

f ′n(θ)dθ
∣∣ ≤ ∫ π/k

0

|σ̂n(θ)|dθ +

∫ π/k

0

θ|σ̂′n(θ)|dθ .

Dealing similarly with k ≤ −1 we infer that∑
|k|≥1

|σ̂n(π/k)|
|k|

≤
∑
k≥1

( ∫ π/k

−π/k
|σ̂n(θ)|dθ +

∫ π/k

−π/k
θ|σ̂′n(θ)|dθ

)
≤ π

∫ π

−π

|σ̂n(θ)|
|θ|

dθ + π

∫ π

−π
|σ̂′n(θ)|dθ ,

which is bounded uniformly with respect to n.

Proceeding as above with gn(θ) := θ2σ̂′n(θ) in place of fn(θ) we see that, by (ii) and

(iii), supn∈N
∑
|k|≥1

|σ′n(π/k)|
k2

<∞. �

Let µ be a probability measure on Z. We say that µ satisfies hypothesis (H̃) if it
satisfies hypothesis (H) with a function ψ such that there exists D > 0 such that for
every θ ∈ (0, π],

(19) ψ(θ) ≤ Dθψ′(θ) .

Proposition 2.6. Let µ be a probability measure on Z satisfying hypothesis (H̃). Then
(σn)n∈N := (n(µ∗n − µ∗(n+1)))n∈N satisfies to items (i), (ii) and (iii) of Proposition 2.5.
In particular, supn∈N n‖µ∗n − µ∗(n+1)‖`1(Z) <∞, i.e. µ is Ritt.

Proof. By Proposition 2.3 we already know that (iii) holds. It follows from the proof of
Proposition 2.3 and from (19) that there exist C, c > 0 such that for every θ ∈ (0, π],

|σ̂n(θ)|/θ ≤ Cne−cnψ(θ)ψ(θ)/θ ≤ CDne−cnψ(θ)ψ′(θ)

|σ̂′n(θ)| ≤ Cne−cnψ(θ)ψ′(θ)(nψ(θ) + 1) .

then, we conclude as in the proof of Proposition 2.3. �

We now provide a sufficient condition on sequence of finite signed measure on Z to be
bounded in `1(Z), that will be needed in the sequel.

Proposition 2.7. Let (σn)n∈N be a sequence of finite signed measures on Z such that for
every n ∈ N, σ̂n is continuously differentiable on [−π, π]− {0}. Assume that

(i) supn∈N n
∫ π
−π |σ̂n(θ)|dθ <∞;

(ii) supn∈N
∫ π
−π
|σ̂′n(θ)|2
n+1

dθ <∞.

Then, supn∈N ‖σn‖`1(Z) <∞.
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Proof. Let n ≥ 1. Let k ∈ Z. We have

σn(k) =

∫ π

−π
σ̂n(θ)e−ikθdθ ,(20)

and if k 6= 0,

σn(k) =

∫ π

−π
σ̂′n(θ)

e−ikθ

ik
dθ ,(21)

Using (20), we infer that
∑

0≤|k|≤n |σn(k)| ≤ (2n + 1)
∫ π
−π |σ̂n(θ)|dθ. Using (21), Cauchy-

Schwarz and Parseval, we infer that

(
∑
|k|>n

|σn(k)|)2 ≤
(∫ π

−π
|σ̂′n(θ)|2dθ

) ∑
|k|>n

1

k2
≤ C

n

∫ π

−π
|σ̂′n(θ)|2dθ .

Then, we conclude thanks to (i) and (ii). �

2.3. Centered probability measures with a second moment. It is known, see [3],
that a centered and strictly aperiodic probability measure µ on Z with a second moment
satisfies (13). As an application of the previous subsections we add here that µ is moreover
Ritt and satisfies (14). Indeed, we shall prove Theorem 1.3.

By Proposition 2.3 and Proposition 2.6, it suffices to prove that a centered and strictly
aperiodic probability measure µ with a second moment satisfies condition (H̃) for some
function ψ.

We shall take ψ(θ) = θ2, for every θ ∈ [−π, π]. Then ψ satisfies (19) hence we just have
to prove that µ satisfies (H).

Since µ has a second moment and is centered, it is twice continuously differentiable on
[−π, π] and we have

lim
θ→0,θ 6=0

(1− Re µ̂(θ))/θ2 = µ̂′′(0)/2 > 0 ,

and

lim
θ→0,θ 6=0

Im µ̂(θ))/θ2 = 0 .

It follows that item (i) of hypothesis (H) is satisfied for θ close enough to 0. Then, taking
c smaller if necessary, it holds on (0, π] by strict aperiodicity.

Using again that µ has a second moment and is centered we see that for every θ ∈
[−π, π], |µ̂′(θ)| ≤ ‖µ̂′′‖∞|θ|. Hence items (ii) and (iii) of hypothesis (H) hold. Similarly,
item (iv) holds.

3. Probability measures without first moment

In this section as well as in sections 4 and 5, we shall consider probability measures µ
on Z such that (µ(n))n∈N is completely monotone sequence. Let us recall some definition
and facts.
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Definition 3.1. Let ∆ be the operator defined for every sequence (tn)n∈N of real numbers,
by (∆tn)n∈N = (tn − tn+1)n∈N. We say that a sequence (tn)n≥0 is completely monotone if
for every m ≥ 0 (with the convention ∆0 = Id, (∆mtn)n≥0 is non-negative.

Definition 3.2. We say that an infinitely differentiable function f : [s,+∞)→ [0,+∞)
is completely monotone, if for every m ≥ 0, (−1)mf (m) ≥ 0.

The following characterization of completely monotone sequences is due to Hausdorff
and may be found in Widder [27], p.108.

Proposition 3.1 (Hausdorff). A sequence (µn)n∈N is completely monotone if and only if

there exists a finite positive measure ν on [0, 1], such that µn =
∫ 1

0
tnν(dt for every n ∈ N.

A way to generate completely monotone sequences is the following, see [27], Theorem
11d, p. 158.

Proposition 3.2. Let f be a completely monotone function. Then (f(n + 1))n∈N is a
completely monotone sequence.

Definition 3.3. We say that a probability measure µ on Z is CM if it is supported on N
and if there exists a finite (positive) measure ν on [0, 1], such that

(22)

∫ 1

0

ν(dt)

1− t
= 1 .1

and

(23) µ(n) =

∫ 1

0

tnν(dt) ∀n ∈ N .

To emphasize the measure ν we shall say that µ is a CM probability measure on Z with
representative measure ν.

Notice that for µ as above, µ(n) > 0 for every n ∈ N, hence µ is strictly aperiodic.

3.1. Characterization of the BAR property. We first give an equivalent formulation
of the BAR property that will be more convenient in the sequel.

Definition 3.4. We say that a subset of C is a Stolz region if it is the convex hull of 1
and a circle centered at 0, with radius 0 < r < 1.

It is known that µ is strictly aperiodic and has BAR if and only if the range of µ̂ is
included in a Stolz region.

1All along the paper (for esthetical reasons) we shall adopt the convention
∫ b

a
ϕdν =

∫
[a,b]

ϕdν. Hence,

for non-negative ϕ we will have
∫ c

a
ϕdν ≤

∫ b

a
ϕdν +

∫ c

b
ϕdν with equality if ν({b}) = 0
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If µ is strictly aperiodic, for every ε ∈ (0, π), µ̂([ε, 2π−ε]) is included in a disk centered
at 0 with radius strictly smaller than 1. Hence, a strictly aperiodic µ has BAR if and
only if

(24) sup
θ∈(0,2π)

|Im (µ̂(θ))|
1− Re (µ̂(θ))|

<∞ .

We shall consider the following condition on ν: there exists L > 0 such that for every
x ∈ [0, 1),

(25)

∫ x

0

t

(1− t)2
ν(dt) ≤ L

1− x

∫ 1

x

t

1− t
ν(dt) .

Notice that this condition implies that
∫ 1

0
ν(dt

(1−t)2 = +∞ or, equivalently, that
∑

n∈N nan =

+∞, i.e. µ does not have first moment.

Proposition 3.3. Let µ be a CM probability measure on Z with representative measure
ν. Then, µ has BAR if and only if there exists L > 0 such that ν satisfies (25). Moreover,
then

(26)
1− Re µ̂(θ)

|θ|
−→
θ→0

+∞ .

We deduce the following corollary, in the spirit of Theorem 4.1 of Dungey [10].

Corollary 3.4. Let µ be a CM probability measure on Z with representative measure ν
satisfying (25) for some L > 0. Let τ be a probability measure on Z such that there exists
c > 0 such that ∑

n∈Z

n|τ(n)− aµ(n)| <∞ .

Then, τ has BAR.

Throughout the paper we will make use of the following easy inequalities.

| sin θ| ≤ |θ| , 1− cos θ ≤ θ2

2
∀θ ∈ R ,

| sin θ| ≥ 2|θ|/π , 1− cos θ ≥ θ2

4
∀θ ∈ [−1, 1] .

Proof of Proposition 3.3. Assume first that ν satisfies (25). Since ν is not null, the
support of µ is N and µ is strictly aperiodic.

Hence, we just have to prove that there exists K > 0, such that

(27) |Im µ̂(θ)| ≤ K(1− Re µ̂(θ)) ∀θ ∈ [−π, π] .

We have, for every θ ∈ [−π, π], µ̂(θ) =
∫ 1

0
ν(dt)
1−teiθ .

Notice that |1− teiθ|2 = 1 + t2 − 2t cos θ = (1− t)2 + 2t(1− cos θ) and that
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Re
( 1

1− t
− (1− te−iθ)
|1− teiθ|2

)
=

(1− t)2 + 2t(1− cos θ)− (1− t)(1− t cos θ)

(1− t)|1− teiθ|2

=
t(1− cos θ)

(1− t)|1− teiθ|2
.

Hence, using (22), we have

1− Re µ̂(θ) =

∫ 1

0

t(1− cos θ)

(1− t)((1− t)2 + 2t(1− cos θ))
ν(dt) .(28)

Moreover,

(29) Im µ̂(θ) =

∫ 1

0

t sin θ

|1− teiθ|2
ν(dt) =

∫ 1

0

t sin θ

(1− t)2 + 2t(1− cos θ)
ν(dt) .

Since, µ̂ is continuous and 1−Re µ̂ vanishes only at 0, on [−π, π], it is enough to prove
(27) for θ ∈ [−1/2, 1/2]. Moreover, (27) is clear for θ = 0. So, let θ ∈ [−1/2, 1/2]− {0}.

Let us first estimate 1− Re µ̂(θ). Using that (1− t)2 + 2t(1− cos θ) ≤ (1− t)2 + θ2 ≤
2 max((1− t)2, θ2), we obtain

1− Re µ̂(θ) ≥ 1

2

∫ 1−|θ|

0

t(1− cos θ)

(1− t)3
ν(dt) +

1

8

∫ 1

1−|θ|

t

1− t
ν(dt)(30)

Now, we estimate Im µ̂. We have,∫ 1

1−|θ|

t| sin θ|
(1− t)2 + 2t(1− cos θ)

ν(dt) ≤
∫ 1

1−|θ|

tθ2

(1− t)((1− t)2 + 2t(1− cos θ))
ν(dt)

≤ 4

∫ 1

1−|θ|

t(1− cos θ)

(1− t)((1− t)2 + 2t(1− cos θ))
ν(dt) ≤ 4(1− Re µ̂(θ)) .

Now, using our assumption on ν and (30), we obtain∫ 1−|θ|

0

t| sin θ|
(1− t)2 + 2t(1− cos θ)

ν(dt) ≤
∫ 1−|θ|

0

t| sin θ|
(1− t)2

ν(dt)

≤ L

|θ|

∫ 1

1−|θ|

t

1− t
ν(dt) ≤ 8L(1− Re µ̂(θ)) .

and we see that (27) holds.

Let us prove the converse. Assume that (27) holds.
Let S ≥ 1 be fixed for the moment. Let θ ∈ [−1/2S, 1/2S]− {0}.
Using that |1− teiθ|2 ≤ (1 + 1/S2)(1− t)2, whenever 0 ≤ t ≤ 1− S|θ|, we see that

(31)

∫ 1−S|θ|

0

ν(dt)

(1− t)2
≤ 1 + 1/S2

2|θ|/π
|Im µ̂(θ)| ≤ C

1 + 1/S2

2|θ|/π
(1− Re µ̂(θ)) .
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Now, we see that

1− Re µ̂(θ)) ≤ 1− cos θ

S|θ|

∫ 1−S|θ|

0

tν(dt)

(1− t)2
+

∫ 1

1−S|θ|

tν(dt)

1− t
.

Hence, taking S large enough and using (31), we infer that there exists D > 0 such
that ∫ 1−S|θ|

0

ν(dt)

(1− t)2
≤ D

|θ|

∫ 1

1−S|θ|

tν(dt)

1− t
,

which prove that (25) holds �

It remains to prove (26). Using (25), we see that

1− Re µ̂(θ)

|θ|
≥ 1− cos θ

2|θ|3

∫ 1

1−|θ|

t

(1− t)
ν(dt) ≥ 1− cos θ

2|θ|2

∫ 1−|θ|

0

t

(1− t)2
ν(dt) −→

θ→0
+∞ ,

hence the result.

�

Proof of Corollary 3.4. By assumption and Proposition 3.3, there exists K > 0 such
that

∑
n≥1 n|τ(n)− aµ(n)| ≤ K and for every θ ∈ [−π, π], |Im (µ̂(θ))| ≤ K(1−Re (µ̂(θ)).

Let us prove that τ is strictly aperiodic. If τ were not strictly aperiodic, there would
exists ` ≥ 2 and 0 ≤ k ≤ `− 1, such that the support of τ would be contained in k + `Z.
In particular τ(k + 1 + `m) = 0 for every m ∈ Z. Hence,

∑
m∈Z |m|µ(k + 1 + `m) < ∞

and (using that (µ(n))n≥1 is non increasing) µ must have a first moment, contradicting
(25) (see the remark after (25)).

We first prove that there exists C > 0 such that for every θ ∈ [−π, π],

(32) Re (1− τ̂(θ)) ≥ C|θ| .
Since τ is strictly aperiodic, it is enough to prove the result for small enough θ’s. By
Proposition 3.3, there exists δ ∈ (0, π), such that for every θ ∈ [−δ, δ], |θ| ≤ a(1 −
Re (µ̂(θ))/2K. Then, using that 1− cosu ≤ |u| for every u ∈ R,

|θ| ≤ (1− Re (τ̂(θ))/2K +
1

2K

∑
n≥1

|τ(n)− aµ(n)|(1− cos(nθ))

≤ (1− Re (τ̂(θ))/2K + |θ|/2 ,
and (32) follows.

Let θ ∈ [−π, π]. We have, using that | sinu| ≤ u for every u ∈ R,

|Im (τ̂(θ))| ≤ a|Im (µ̂(θ))|+
∑
n≥1

|τ(n)− aµ(n)| | sin(nθ)| ≤ aK(1− Re (µ̂(θ)) +K|θ|

≤ K(1− Re (τ̂(θ)) +
∑
n≥1

|τ(n)− aµ(n)| |(1− cos(nθ)|+K|θ|

≤ K(1− Re (τ̂(θ)) + 2K|θ| ≤ K(1 + 2C)(1− Re (τ̂(θ)) ,
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and the corollary is proved. �

From a pratical point of view it is better to have a condition on (µ(n))n∈Z. Indeed we
may consider completely monotone sequences given thanks to Proposition 3.2, in which
case, we do not know ν.

Proposition 3.5. Let µ be a CM probability measure on Z with representative measure
ν. Then, ν satisfies (25) if and only if there exists D > 0, such that for every n ≥ 1,

(33)
n∑
k=1

kµ(k) ≤ Dn
∑
k≥n

µ(k) .

Proof. Assume (25). Let n ≥ 1. We have

n∑
k=1

kµ(k) ≤
∫ 1−1/n

0

t

(1− t)2
ν(dt) + n

∫ 1

1−1/n

t

1− t
ν(dt) ≤ (1 + L)n

∫ 1

1−1/n

t

1− t
ν(dt) .

Using that
∑

k≥n µ(k) =
∫ 1

0
tn

1−tν(dt) and that (1− 1/n)n −→
n→∞

e−1, we see that (33) holds.

Assume now that (33) holds.
Let A ≥ 1 be a positive integer fixed for the moment. Let n ≥ 2.

Let 1 ≤ m ≤ n− 1 be an integer and let t ∈ [1− 1/m, 1− 1/(m + 1)]. Using that the
sequence ((1− 1/k)k−1)k≥1 decreases to 1/e, we obtain that (with the convention 00 = 1)

An∑
k=1

ktk ≥ t
m−1∑
k=0

(k + 1)(1− 1/m)m−1 ≥ tm(m+ 1)

2e
≥ t

e(1− t)2
.

Hence,∫ 1−1/n

0

t

(1− t)2
ν(dt) ≤ e

An∑
k=1

kµ(k) ≤ eDAn
∑
k≥An

µ(k) = eDAn

∫ 1

0

∑
k≥An

tkν(dt) .

Now notice that for t ∈ [0, 1− 1/n],∑
k≥An

tk−1 ≤ 1

A2n2

∑
k≥An

k(k + 1)tk−1 ≤ 1

A2n2(1− t)3
≤ 1

A2n(1− t)2
,

and that for t ∈ [1− 1/n, 1],
∑

k≥An t
k−1 ≤ 1/(1− t).

Hence, taking A large enough we infer that (25) holds. �

3.2. Hypothesis (H) for CM probability measures. We shall prove that the condi-
tions imposed in the previous subsection guarantee hypothesis (H).

Proposition 3.6. Let µ be a CM probability measure on Z satisfying (33). Then, µ
satisfies hypothesis (H).
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Proof. To check the conditions (i) − (iv) of hypothesis (H) with a suitable function ψ
we must first estimate µ̂ and its derivatives.

Let us first compute the derivatives of µ̂. Recall that for every θ ∈ [−π, π],

1− Re µ̂(θ) =

∫ 1

0

t(1− cos θ)

(1− t)
(
(1− t)2 + 2t(1− cos θ)

) ν(dt)

=
1

2

∫ 1

0

ν(dt)

1− t
− 1

2

∫ 1

0

(1− t)
(1− t)2 + 2t(1− cos θ)

ν(dt) ,

and

Im µ̂(θ) =

∫ 1

0

t sin θ

|1− teiθ|2
ν(dt) =

∫ 1

0

t sin θ

(1− t)2 + 2t(1− cos θ)
ν(dt) .

Hence, for every θ ∈ [−π, π]− {0},

Re µ̂′(θ) = − sin θ

∫ 1

0

t(1− t)(
(1− t)2 + 2t(1− cos θ)

)2 ν(dt) ,(34)

Re µ̂′′(θ) = − cos θ

∫ 1

0

t(1− t)(
(1− t)2 + 2t(1− cos θ)

)2 ν(dt)(35)

+2 sin2 θ

∫ 1

0

t(1− t)(
(1− t)2 + 2t(1− cos θ)

)3 ν(dt)

Im µ̂′(θ) =

∫ 1

0

t cos θ

(1− t)2 + 2t(1− cos θ)
ν(dt)(36)

−
∫ 1

0

2t2 sin2 θ(
(1− t)2 + 2t(1− cos θ)

)2 ν(dt) ,

Im µ̂′′(θ) =

∫ 1

0

−t sin θ

(1− t)2 + 2t(1− cos θ)
ν(dt)(37)

−
∫ 1

0

8t2 sin θ cos θ(
(1− t)2 + 2t(1− cos θ)

)2 ν(dt) +

∫ 1

0

4t3 sin3 θ(
(1− t)2 + 2t(1− cos θ)

)3 ν(dt) .

Define, for θ ∈ [−π, π],

(38) ψ(θ) =

∫ 1

0

t|θ|
(1− t)(1− t+ t|θ|)

ν(dt) = 1−
∫ 1

0

ν(dt)

(1− t+ t|θ|)
.

Hence, for every θ ∈ (0, π],

ψ′(θ) =

∫ 1

0

tν(dt)

(1− t+ tθ)2
.(39)
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Notice that, for every θ ∈ (0, 1/2],

θ

2

∫ 1−θ

0

tν(dt)

(1− t)2
+

1

2

∫ 1

1−θ

tν(dt)

1− t
≤ ψ(θ) ≤ θ

∫ 1−θ

0

tν(dt)

(1− t)2
+

∫ 1

1−θ

ν(dt)

1− t
;(40)

θ

4

∫ 1−θ

0

tν(dt)

(1− t)2
+

1

4θ

∫ 1

1−θ
tν(dt) ≤ θψ′(θ) ≤ θ

∫ 1−θ

0

tν(dt)

(1− t)2
+

2

|θ|

∫ 1

1−θ
ν(dt) .(41)

Claim 1. There exists C > 0, such that for every θ ∈ [0, π],

1− Re µ̂(θ) ≥ Cψ(θ) .

Proof. It suffices to prove the claim for θ ∈ (0, 1/2]. Using (30), (25) and (40) we have

1− Re µ̂(θ) ≥
∫ 1

1−|θ|

t

8(1− t)
ν(dt) ≥ 1

8(L+ 2)
ψ(θ) ,

and the claim follows. �

Claim 2. There exists C > 0, such that for every θ ∈ (0, π], |µ̂′(θ)| ≤ Cψ′(θ) .

Proof. Again, we only consider the case when θ ∈ (0, 1/2]. We deal separately with the
real and imaginary part of µ′. We have, using (34) and (41)

|Re µ̂′(θ)| ≤ 2θ

∫ 1−θ

0

tν(dt)

(1− t)3
+

2

θ3

∫ 1

1−θ
t(1− t)ν(dt) ≤ 8ψ′(θ) ,

Similarly,

|Im µ̂′(θ)| ≤
∫ 1−θ

0

( t

(1− t)2
+

tθ2

(1− t)4
)
ν(dt) +

( 1

1− cos θ
+

2θ2

(1− cos θ)2

)∫ 1

1−θ
tν(dt)

≤ Cψ′(θ) .

Claim 3. There exists C > 0, such that for every θ ∈ (0, π], |θµ̂′(θ)| ≤ Cψ(θ) .

Proof. Combine Claim 2 and (41). �

Claim 4. There exists C > 0, such that for every θ ∈ (0, π], |θµ̂′′(θ)| ≤ Cψ′(θ) .

Proof. We assume that θ ∈ (0, 1/2]. By (35) and (41), we have

|Re µ̂′′(θ)| ≤
∫ 1−θ

0

( 2t

(1− t)3
+

4tθ2

(1− t)5
)
ν(dt)

+
2

(1− cos θ)2

∫ 1

1−θ

t

1− t
ν(dt) +

4θ2

(1− cos θ)3

∫ 1

1−θ
t(1− t)ν(dt) ≤ Cψ′(θ)/θ.

Similar computations based on (34) and (41) yields

|Im µ̂′′(θ)| ≤ Cψ′(θ)/θ .
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Then, items ii), (iii) and (iv) of Proposition 2.3 follows from the combination of the
claims 2, 3 and 4.

Let us prove item (i) of Proposition 2.3. Let θ ∈ [0, 1/2]. Recall that |Im µ̂(θ)| ≤
C(1− Re µ̂(θ)). Hence,

|µ̂(θ)|2 = |Im µ̂(θ)|2 + 1− 2(1− Re µ̂(θ)) + (1− Re µ̂(θ))2

1− (1− Re µ̂(θ))(2− (C + 1)(1− Re µ̂(θ)))

Since (1− Re µ̂(θ)) −→
θ→0

0, using Claim 1, we infer that for θ small enough

|µ̂(θ)|2 ≤ 1− C̃ψ(θ) .

Hence (i) holds for, say, θ ∈ [0, η], with η small enough. Since supθ∈[η,π] |µ̂(θ)| < 1, wee
see that (i) holds for every θ ∈ [0, π], taking c smaller if necessary.

�

Corollary 3.7. Let µ be a CM probability measure on Z. Let σ be a probability measure
on Z such that σ̂ is twice continuously differentiable on [−π, π]−{0} and such that σ̂′ and
θ 7→ θσ̂′′(θ) are bounded. Then, σ ∗ µ satisfies hypothesis (H). Moreover, if µ satisfies

hypothesis (H̃), so does σ ∗ µ.

Remark. The assumptions on ν holds, for instance, as soon as
∑

n∈Z n
2σ(n) <∞.

Proof. Let ψ be the function defined in (38). Since
∫ 1

0
ν(dt)
(1−t)2 = +∞, one easily infers from

(39) that lim infθ→0,θ>0 ψ
′(θ) = +∞. In particular, there exists K > 0 such that for every

θ ∈ (0, π], ψ′(θ) ≥ K and, consequently, ψ(θ) ≥ Kθ. Then, the fact that σ ∗ µ satisfies
hypothesis (H), with the same function ψ as µ, may be proved exactly as Proposition 2.4.

Since we use the same function ψ for σ ∗ µ and µ, then σ ∗ µ satisfies hypothesis (H̃) as
soon as µ does. �

Corollary 3.8. Let τ be a probability measure on Z. Assume that there exists a CM
probability measure µ and c > 0 such that

∑
n∈Z n

2|τ(n)− cµ(n)| <∞. Then, τ satisfies

hypothesis (H). If moreover µ satisfies hypothesis (H̃), so does τ .

Remark. It follows from the proof that we only need that σ̂ be twice continuously
differentiable on [−π, π]− {0} and that τ̂ ′ and θ 7→ θτ̂ ′′(θ) be bounded.
Proof. Define a signed measure by setting σ := τ − cµ. Then, σ̂ is twice continuously
differentiable on [−π, π], σ̂(0) = 1−c and there exists C > 0 such that for every θ ∈ [0, π],
|σ̂(θ) − (1 − c)| ≤ Cθ. Then, the proof may be finished using the same arguments as in
the proof of Corollary 3.7. �

3.3. The Ritt property on `1(Z). In this section, we finish the proof of Theorem 1.4.
We first prove the Ritt property of CM probability measures, which corresponds to the
case where σ = δ0.

Let µ be a probability measure on Z. Notice that the fact µ is Ritt is equivalent to the
fact that
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sup
n≥1

n‖πnµ − πn+1
µ ‖`1(Z) <∞ ,

where πµ stands for the operator of convolution by µ.

Let Γ be the open unit disk in the complex plane. By Theorem 1.5 of Dungey, µ is
Ritt if and only if the spectrum σ(πµ) of πµ is contained in Γ ∪ {1} and the semi-group
(e−t(I−πµ))t≥0 is bounded analytic. The fact that (e−t(I−πµ))t≥0 is bounded analytic means
that

sup
t>0

(
‖e−t(δ0−µ)‖`1(Z) + t‖(I − T )e−t(δ0−πµ)‖`1(Z)

)
<∞ .

Remark. Notice that Theorem 1.5 of Dungey is valid for probabilities supported on N.

Proposition 3.9. Let µ be a CM probability measure on Z with representative measure
ν satisfying (25). Then, µ is Ritt.

We already saw that ν satisfies (25) if and only if µ has BAR. The fact that a CM
probability measure on Z having BAR is Ritt has been proved very recently (see their
Theorem 7.1) by Gomilko and Tomilov [15] as a consequence of another very recent result
of their own [14].

The latter paper deals with subordination semi-groups hence is written in a continuous
setting.

For reader’s convenience we explain below how to derive Proposition 3.9 from the work
[14].

First of all, by Theorem 2.1 of Dungey [10], we have σ(πµ) ⊂ µ̂([−π, π]) ⊂ Γ ∪ {1},
where the latter inclusion follows from the fact that µ has BAR. Hence, Proposition 3.9
will be proved if we can prove that (e−t(I−πµ))t≥0 is bounded analytic.

Definition 3.5. An infinitely differentiable function f : (0,+∞) → [0,+∞) is called a
Bernstein function if f ′ is completely monotone. If limx→0+ f(x) exists and if f admits
an holomorphic extension to {z ∈ C : Im z > 0}, such that Im f(z) ≥ 0, then f is called
complete Bernstein.

For every x ≥ 0, define χ(x) := 1 −
∫ 1

0
ν(dt)

1−t+tx =
∫ 1

0
ν(dt)
1−t −

∫ 1

0
ν(dt)

1−t+tx . Then χ is non-
decreasing, with χ(0) = 0, hence it is non-negative. It is not hard to see that it is infinitely
differentiable and that χ′ is completely monotone, hence χ is a Bernstein function and
one can easily see that it is actually a complete Bernstein function.

Since χ is Bernstein, it is well known (see e.g. Theorem 1.2.4 of [11]) that there exists
a convolution semi-group (σt)t≥0 (of probability measures on [0,∞)), such that for every
x ≥ 0, and every t ≥ 0, ∫ ∞

0

e−xyσt(dy) = e−tχ(x) .
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Following Dungey [10, p. 1734], we consider the Poisson semi-group (Ps)s≥0 acting by
convolution on `1(N), and defined by

Ps := e−s(δ0−δ1) = e−s
∑
k≥0

sk

k!
δk ∀s ≥ 0 .

Consider now the associated subordinated semi-group (Qt)s≥0 defined by

Qt :=

∫ ∞
0

Ps σt(ds) ∀t ≥ 0 .

Let t ≥ 0. Then, Qt is a probability measure on N, whose generating function is given
(on [0, 1]) by

x 7→
∫ ∞
0

e−s(1−x)σt(ds) = e−tχ(1−x) .

Let Gµ denote the generating function of µ, i.e.

Gµ(x) =
∑
n≥0

µ(n)xn =

∫ 1

0

ν(dt

1− tx
= 1− χ(1− x) ,

for every x ∈ [0, 1]. Then, for every t ≥ 0, the generating function of the probability

e−t(I−µ) = e−t
∑

k≥0
tkµ∗k

k!
is given by

e−t
∑
k≥0

tkGk
µ

k!
= e−t(1−Gµ) .

In particular, we see that the semi-groups (e−t(I−πµ))t≥0 and (Qt)t≥0 cöıncide. Hence, to
prove that (e−t(I−πµ))t≥0 is bounded analytic, it is enough to prove that any subordinated
semi-group associated with (σt)t≥0 is bounded analytic (see the introduction of [14] for
more details). To prove the latter point, since χ is complete Bernstein, by Corollary 7.10
of [14], it is enough to prove that χ sends the half-plane {z ∈ C : Re z ≥ 0} to a sector
{z ∈ C : |Im z| ≤ CRe z}, for some C > 0.

Let z = a+ ib such that a ≥ 0 and |z|2 = a2 + b2 ≤ 1/4. We have, using (25)

|Imχ(z)| = |b|
∫ 1

0

t

(1− t+ at)2 + t2b2
ν(dt)

≤ |b|
∫ 1−|z|

0

t

(1− t)2
ν(dt) +

4b

|z|2

∫ 1

1−|z|
tν(dt) ≤ K

∫ 1

1−|z|

t

1− t
ν(dt) .

On the other hand,

Reχ(z) =

∫ 1

0

at(1− t) + |z|2t2

(1− t)
(
(1− t+ at)2 + t2b2

) ν(dt) ≥
∫ 1

1−|z|

|z|2t2

5|z|2(1− t)
ν(dt)

≥ 1

10

∫ 1

1−|z|

t

1− t
ν(dt) .
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This gives the desired bound when |z|2 ≤ 1/4.

Assume now that |z|2 ≥ 1/4. In particular, we have 4|z| ≥ 2. Hence,

|Imχ(z)| ≤
∫ (4|z|)−1

0

t|z|
(1− t)2

ν(dt) +
|z|
|z|2

∫ 1

(4|z|)−1

t−1ν(dt)

≤ 1

4

∫ 1/2

0

ν(dt)

(1− t)2
+ 4

∫ 1

0

ν(dt) <∞ .

Moreover, using that the integrand below is non decreasing with respect to |z|, we have

Reχ(z) ≥
∫ 1

0

|z|2t2

2(1− t)
(
(1− t)2 + t2|z|2

) ν(dt)

≥ 1

8

∫ 1

0

t2

(1− t)2 + t2/4
ν(dt) > 0 ,

which finishes the proof. �

Proposition 3.10. Let µ be a CM probability measure on Z with representative mea-
sure ν satisfying (25). Let σ be a probability measure on Z such that σ̂ is continuously
differentiable on [−π, π]− {0} and such that σ̂′ is bounded on [−π, π]− {0}. Then,

(42) sup
n∈N

n‖(δ0 − σ) ∗ µ∗n‖`1 <∞ .

In particular, σ ∗ µ is Ritt and for every α ∈ (0, 1], αµ+ (1− α)σ is Ritt.

Proof. To prove (42), we check that (σn)n∈N := (n(δ0 − σ) ∗ µ∗n)n∈N satisfies items (i)
and (ii) of Proposition 2.7.

By assumption there exists L > 0 such that |σ̂′| ≤ L and it follows that |1−σ̂(θ)| ≤ L|θ|
for every θ ∈ [−π, π].

Let ψ be the function given in (38). Recall that there exists K > 0 such that for
every θ ∈ [−π, π] − {0}, ψ(θ) ≥ Kθ and ψ′(θ) ≥ K. Hence, for every n ∈ N and every
θ ∈ [−π, π]− {0},

n|σ̂n(θ)| ≤ Ln2

K2
ψ(θ)ψ′(θ)(µ̂(θ))n .

Hence, arguing as in the proof of Proposition 2.6, we see that (σn)n∈N satisfies item (i) in
Proposition 2.7.

For every θ ∈ [−π, π]− {0}, we have

σ̂′n(θ) = −nσ̂′(θ)µ̂n(θ) + n2(1− σ̂(θ))µ̂′(θ)µ̂n−1(θ) .

Then, we infer that

|σ̂′n(θ)|2 ≤ 2n2L2

K
ψ′(θ)|µ̂2n|(θ) +

2n4L2

K3
ψ2(θ)ψ′(θ)|µ̂n−1|(θ) ,

Hence, arguing as in the proof of Proposition 2.6, we see that (σn)n∈N satisfies item (ii)
in Proposition 2.7.
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It remains to prove the second part of the Proposition.

Let n ≥ 1. We have

(δ0 − σ ∗ µ) ∗ (σ ∗ µ)∗n = σ∗n ∗
[
(δ0 − µ) ∗ µ∗n

]
+
[
(δ0 − σ) ∗ µ∗(n+1)

]
∗ σ∗n ,

which proves that σ ∗ µ is Ritt.

Let α ∈ (0, 1] and n ≥ 1, and τ := αµ+ (1− α)σ. We have

(δ0 − τ) ∗ τ ∗n =
n∑
k=0

(
n

k

)
αk(1− α)n−k

k + 1

[
α(k + 1)(δ0 − µ) ∗ µ∗k + (1− α)(k + 1)(δ0 − σ) ∗ µ∗k

]
∗ σ∗(n−k) .

Hence,

(n+ 1)‖(δ0 − τ) ∗ τ ∗n‖`1 ≤
C

α

n∑
k=0

(
n+ 1

k + 1

)
αk+1(1− α)(n+1)−(k+1) ≤ C ,

and we see that τ is Ritt. �

3.4. Examples. To exhibit examples we will make use of Proposition 3.2. Hence we shall
first exhibit completely monotone functions.

Lemma 3.11 (Miller-Samko [21]). Let f, g : (0,+∞) → (0,+∞) be infinitely differen-
tiable functions functions such that g′ is completely monotone.

(i) If f is completely monotone then f ◦ g is completely monotone either;
(ii) If f ′ is completely monotone then (f ◦ g)′ is completely monotone either.

Proof. Item (i) is just Theorem 2 of [21]. Let us prove item (ii). We have (f ◦ g)′ =
f ′ ◦ g × g′. By (i), f ′ ◦ g is completely monotone. Then, (f ◦ g)′ is completely monotone
by Theorem 1 of [21]. �

Define by induction L1(x) = L(x) := log(1 + x) and Lk+1(x) = L(Lk(x)) for every
x > 0.

Corollary 3.12. For every integer k ≥ 1 and every real numbers α1, . . . , αk ∈ [0,+∞)
and α ∈ [0,+∞) the function given by

fα,α1,...,αk(x) =
1

xαL1(x)α1 . . . Lαkk (x)
∀x ≥ 0 ,

is completely monotone.

Proof. Obviously, x 7→ x−α is completely monotone. By (ii) of the previous lemma Lk
admits a completely monotone derivative and then L−αkk is completely monotone by (i).
The fact that fα,α1,...,αk is also completely monotone then follows from Theorem 1 of [21].
�

Example 1. Let µ be a probability measure supported on N such that µ(n) = cfα,α1,...,αk(n+
1) for every n ∈ N, where α1, . . . , αk ∈ [0,+∞), α ∈ (1, 2) and c is a normalizing constant
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ensuring that we have a probability. Then, µ ∈ H∩R Of course one may take α = 1 and
α1 > 1, and so on... But for α = 2, µ does not even have BAR.

It is more difficult to produce examples allowing negative α′ks. One way to handle the
difficulty is to proceed as in the proof of Proposition 5.11 of [8].

Example 2. Our next example is a basic example of Ritt probability measures already
considered by Dungey [10] and Gomilko and Tomilov [15]. Let γ ∈ (0, 1). We have a power
series expansion 1− (1− t)γ =

∑
n≥1 an(γ)tn, 0 ≤ t ≤ 1. Notice that

∑
n≥1 an(γ) = 1 and

an(γ) ≥ 0 for every n ≥ 1. Define two probability measures τ and µ by setting for every
n ∈ N, µ(n) = an+1(γ) = τ(n + 1). so that τ = δ1 ∗ µ. Then, see for instance example
3.10a of [15], τ is a CM probability measure which has BAR. In particular, τ ∈ H ∩ R
and µ ∈ H ∩R.

4. Probability measures with a first moment

When µ has a first moment, a necessary condition for the BAR property is that µ be
centered, i.e.

∑
n∈Z nµ(n) = 0, see Proposition 1.9 of [6].

Hence we cannot consider probability measures µ supported by N anymore. We shall
consider the following situation.

Definition 4.1. We say that a probability measure µ on Z is CCM if it is supported on
{−1} ∪ N and if there exists a finite positive measure ν on [0, 1], such that∫ 1

0

ν(dt)

(1− t)2
= 1 .

and

µ(n) :=

∫ 1

0

tnν(dt) ∀n ∈ N;

µ(−1) = 1−
∫ 1

0

ν(dt)

1− t
=

∫ 1

0

tν(dt)

(1− t)2
.

It is not hard to see that µ is indeed a probability measure and that it is centered.

4.1. Characterization of the BAR property. Let µ be a CCM probability measure
on Z with representative measure ν.

For every θ ∈ [−π, π], we have

µ̂(θ) =

∫ 1

0

1− 2t+ 2t2e−iθ − t2e−2iθ

(1− t)2((1− t)2 + 2t(1− cos θ))
ν(dt) .

In particular,

(43) 1− Re µ̂(θ) = (1− cos θ)

∫ 1

0

2t(1− t cos θ)

(1− t)2((1− t)2 + 2t(1− cos θ))
ν(dt) ,
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and

(44) Im µ̂(θ) = 2 sin θ (1− cos θ)

∫ 1

0

t2

(1− t)2((1− t)2 + 2t(1− cos θ))
ν(dt)

Consider the following condition on ν: there exists L > 0, such that for every x ∈ [0, 1),

(45)
1

1− x

∫ 1

x

tν(dt)

(1− t)2
≤ L

∫ x

0

tν(dt)

(1− t)3
.

Notice that if
∫ 1

0
ν(dt)
(1−t)3 < ∞ (i.e. µ has a moment of order 2), condition (45) is auto-

matically satisfied.

Proposition 4.1. Let µ be a CCM probability measure on Z with representative measure
ν. Then, µ has BAR if and only if there exists L > 0 such that ν satisfies (45).

Proof. Assume (45). Let us prove that µ satisfies (24). As noticed previously, it is
enough to consider θ ∈ [−1/2, 1/2]. We have

|Im µ̂(θ)| ≤ C
(
|θ|3

∫ 1−|θ|

0

t

(1− t)4
ν(dt) + |θ|

∫ 1

1−|θ|

tν(dt)

(1− t)2
)
.

Using that 1− t cos θ ≥ 1− t, we see that

1− Re µ̂(θ) ≥ C̃θ2
∫ 1−|θ|

0

tν(dt)

(1− t)3
,

and (24) holds, by (45).

Let us prove that if µ has BAR, then (45) holds. There exists C > 0 such that for
every θ ∈ [−1/2, 1/2],

(46) |Im µ̂(θ)| ≤ C(1− Re µ̂(θ)) .

Let θ ∈ [−1/2, 1/2] and α ∈ (0, 1]. We have

|Im µ̂(θ)| ≥ |θ|
4(1 + α2)

∫ 1

1−α|θ|

tν(dt)

(1− t)2
.

It is not hard to prove that there exists Cα, D > 0 such that

1− t cos θ ≤ Cα(1− t) ∀t ∈ [0, 1− α|θ|] ;

1− t cos θ ≤ Dα|θ| ∀t ∈ (1− α|θ|, 1] .

Hence, using (46), we infer that

|θ|
4(1 + α2)

∫ 1

1−α|θ|

tν(dt)

(1− t)2
≤ C

(
Cα|θ|2

∫ 1−|θ|

0

tν(dt)

(1− t)3
+ α|θ|

∫ 1

1−α|θ|

tν(dt)

(1− t)2
)
.

Taking α = 1/(8C) gives the desired result. �

As before, we shall now characterize the BAR property in terms of the coefficients of
µ.



26 CHRISTOPHE CUNY

Proposition 4.2. Let µ be a CCM probability measure on Z with representative measure
ν. Then, ν satisfies (45) if and only if there exists L > 0 such that

(47) n
∑
k≥n

kµ(k) ≤ L
n∑
k=1

k2µ(k) ∀n ∈ N .

Proof. Assume (45). Let n ≥ 2, we have

n
∑
k≥n

kµ(k) ≤
∫ 1−1/n

0

∑
k≥n

k2tkν(dt) + n

∫ 1

1−1/n

tν(dt)

(1− t)2

≤ (1 + L)

∫ 1−1/n

0

tν(dt)

(1− t)3
.

Now, for every 1 ≤ ` ≤ n− 1 and every t ∈ [1− 1/`, 1− 1/(`+ 1)], we have
∑n

k=1 k
2tk ≥

t
∑`

k=1 k
2e−1 ≥ Ct/(1 − t)3, where we used that (1 − 1/m)m−1 decreases to e−1. Hence,

(47) holds.

Assume that (47) holds. Let γ ∈ (0, 1] and n ≥ 2. For every t ∈ [1 − 1/n, 1], since
γ ≤ 1, we have ∑

k≥γn

ktk =
∑
k≥0

(k + n)tk+n ≥ t(1− 1/n)n

(1− t)2
≥ t(2e)−1

(1− t)2
.

Hence

n

∫ 1

1−1/n

tν(dt)

(1− t)2
≤ 2en

∑
k≥γn

kµ(k) ≤ 2nLe

[γn]

[γn]∑
k=1

k2µ(k)

≤ 2nLe

[γn]

(∫ 1−1/n

0

tν(dt)

(1− t)3
+ [γn]2

∫ 1

1−1/n

tν(dt)

1− t

)
,

and we conclude by taking γ small enough �

Theorem 4.3. Let µ be a CCM probability measure on Z with representative measure ν.
Assume that (µ(n))n∈N satisfies (47). Then, µ is Ritt and for every m ∈ N, there exists
Cm > 0 such that for every f ∈ `1(Z),

sup
λ>0

λ#{k ∈ Z : sup
n≥1

nm|µ∗n ∗ (δ0 − µ)∗m ∗ f(k)| ≥ λ} ≤ Cm‖f‖`1 .

Proof. It suffices to check that µ satisfies hypothesis (H) and to apply Propositions 2.3
and 2.5.

To check the conditions we must estimate µ̂ and its derivatives.
Define

(48) ψ(θ) = θ2
∫ 1

0

tν(dt)

(1− t)((1− t)2 + θ2)
=
tν(dt)

1− t
−
∫ 1

0

t(1− t)ν(dt)

(1− t)2 + θ2
.
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Then,

(49) ψ′(θ) = 2θ

∫ 1

0

t(1− t)ν(dt)

((1− t)2 + θ2)2
.

Hence for every θ ∈ [0, 1/2], we have

θ2

2

∫ 1−θ

0

tν(dt)

(1− t)3
+

1

2

∫ 1

1−θ

tν(dt)

1− t
≤ ψ(θ) ≤ θ2

∫ 1−θ

0

tν(dt)

(1− t)3
+

∫ 1

1−θ

tν(dt)

1− t
(50)

θ

∫ 1−θ

0

tν(dt)

(1− t)3
+

1

θ3

∫ 1

1−θ
t(1− t)ν(dt) ≤ ψ′(θ) ≤ 2θ

∫ 1−θ

0

tν(dt)

(1− t)3
+

2

θ3

∫ 1

1−θ
t(1− t)ν(dt) .

In particular, using (45), we see that (19) holds.
Let us compute the derivatives of µ̂. We shall not give the full details here. Using (43),

we infer that

1− Re µ̂(θ) =

∫ 1

0

1− t cos θ

(1− t)2
ν(dt)−

∫ 1

0

1− t cos θ

(1− t)2 + 2t(1− cos θ)
ν(dt) ;

Re µ̂′(θ) = 2 sin θ(1− cos θ)

∫ 1

0

t2

(1− t)2((1− t)2 + 2t(1− cos θ))
ν(dt)(51)

+ sin θ

∫ 1

0

2t(1− t cos θ)

((1− t)2 + 2t(1− cos θ))2
ν(dt)

= − sin θ

∫ 1

0

t

(1− t)2
ν(dt)− sin θ

∫ 1

0

t(1− t2)
((1− t)2 + 2t(1− cos θ))2

ν(dt) ;

and

Re µ̂′′(θ) = − cos θ

∫ 1

0

t

(1− t)2
ν(dt)− cos θ

∫ 1

0

t(1− t2)
((1− t)2 + 2t(1− cos θ))2

ν(dt)(52)

+4 sin2 θ

∫ 1

0

t2(1− t2)
((1− t)2 + 2t(1− cos θ))3

ν(dt) .

Using (44), we infer that

Im µ̂(θ) = sin θ

∫ 1

0

t

(1− t)2
ν(dt)− sin θ

∫ 1

0

t

(1− t)2 + 2t(1− cos θ)
ν(dt) ;

Im µ̂′(θ) = 2 cos θ(1− cos θ)

∫ 1

0

t2

(1− t)2((1− t)2 + 2t(1− cos θ))
ν(dt)(53)

= cos θ

∫ 1

0

t

(1− t)2
ν(dt) +

∫ 1

0

2t2 − t(1 + t2) cos θ

((1− t)2 + 2t(1− cos θ))2
ν(dt) ;

and
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Im µ̂′′(θ) = − sin θ

∫ 1

0

t

(1− t)2
ν(dt) + sin θ

∫ 1

0

t(1 + t2)

((1− t)2 + 2t(1− cos θ))2
ν(dt)(54)

−4 sin θ

∫ 1

0

t(2t2 − t(1 + t2) cos θ)

((1− t)2 + 2t(1− cos θ))3
ν(dt)

We now derive the necessary estimates on µ̂ and its derivatives.
Using (43), we infer that

Claim 5. There exists C > 0 such that 1 − Re µ̂(θ) ≥ Cθ2
∫ 1−θ
0

t
(1−t)3ν(dt), for every

θ ∈ (0, 1/2].

Using (51), we infer that

Claim 6. There exists C > 0 such that |Re µ̂′(θ)| ≤ Cθ
∫ 1−θ
0

t
(1−t)3ν(dt) + C

θ2

∫ 1

1−θ tν(dt),

for every θ ∈ (0, 1/2].

Using (53), we infer that

Claim 7. There exists C > 0 such that |Im µ̂′(θ)| ≤ Cθ2
∫ 1−θ
0

t
(1−t)4ν(dt)+C

∫ 1

1−θ
t

(1−t)2ν(dt),

for every θ ∈ (0, 1/2].

Using (52), we infer that

Claim 8. There exists C > 0 such that |Re µ̂′′(θ)| ≤ C
∫ 1−θ
0

t
(1−t)3ν(dt) + C

θ4

∫ 1

1−θ t(1 −
t)ν(dt, for every θ ∈ (0, 1/2].

Notice that there exists α > 0 such that for every t ∈ [0, 1] and every θ ∈ (0, 1/2],

|2t2 − t(1 + t2) cos θ)| = t|(1 + t2)(1− cos θ)− (1− t)2| ≤ αmax(θ2, (1− t)2) .
Combining this estimate with (54), we infer that

Claim 9. There exists C > 0 such that |Im µ̂′′(θ)| ≤ Cθ
∫ 1−θ
0

t
(1−t)4ν(dt) + C

θ3

∫ 1

1−θ tν(dt),

for every θ ∈ (0, 1/2].

We already saw that (19) holds. Let us prove that items (i) − (iv) of Proposition 2.3
hold.

Item (i) follows from Claim 5 and (45) (see the proof of Theorem 3.6.
Item (ii) follows from Claims 6 and 7 combined with (45) and (50).
Item (iii) follows from item (ii) combined with (19).
Item (iv) follows from Claims 8 and 9 combined with (45) and (50). �

Proposition 4.4. Let τ be a centered probability measure on Z such that
∑

n∈Z |n|τ(n) <
∞. Assume moreover that there exists a CCM probability measure µ satisfying (47) and
that there exists a > 0 such that

∑
n∈Z n

2|τ(n) − aµ(n)| < ∞. Then the conclusion of
Theorem 4.3 holds for τ .
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Proof. We shall assume that
∑

n∈Z n
2τ(n) =∞, otherwise, the result holds by Theorem

1.3. In particular we must have
∑

n∈Z n
2µ(n) =∞ and by (48) and (49)

(55) lim inf
θ∈(0,π]

ψ(θ)/θ2 = +∞ and lim inf
θ∈(0,π]

ψ′(θ)/θ = +∞ (θ → 0) .

It follows from the proof of Theorem 4.3 that there exists an even function ψ continuous
on [−π, π] and continuously differentiable on (0, π], with ψ(0) = 0 such that µ and ψ satisfy
the item (i)− (iv) of hypothesis (H), for some C, c > 0.

Since τ̂ = (τ̂ − aν̂) + aµ̂ is clearly twice differentiable on (0, π], the proposition will be
proved if we can show that the items (i)− (iv) of hypothesis (H) hold with τ in place of
µ with the same ψ, but for possibly different C, c > 0.

We already saw that τ must be strictly aperiodic. Hence |µ̂| < 1 on (0, π]. In particular,
to prove item (i) it suffices to consider θ ∈ (0, η] for some small enough η > 0.

For every θ ∈ (0, π], we have

τ̂(θ) =
∑
n∈Z

(τ(n)− aµ(n))(einθ − 1) +
[
1− a+ a

∑
n∈Z

µ(n)einθ
]

:= χ(θ) + φ(θ) .

Using that
∑

n∈Z n
2|τ(n)− aµ(n)| <∞ and that

∑
n∈Z n(τ(n)− aµ(n)) = 0, we see that

limθ→0,θ 6=0 χ(θ)/θ2 = χ′′(0) exists. In particular, limθ→0,θ 6=0 χ(θ)/ψ(θ) = 0.
Now, we have

|φ(θ)|2 = (1−a+aRe µ̂(θ))2+a2(Im µ̂(θ))2 = 1−2a(1−Re µ̂(θ))+a2(1−Re µ̂(θ))2+a2(Im µ̂(θ))2.

Hence, using Claim 5, we infer that there exists η > 0 such that for every θ ∈ (0, η],
|τ̂(θ)| ≤ 1− δψ(θ), for some δ > 0.

The proofs of item (ii) − (iii) are similar (but simpler) hence we leave them to the
reader. �

Example 3. Let α ∈ (2,+∞) and α1, . . . , αk ≥ 0. Let µ be a probability on Z such that∑
n∈Z |n|µ(n) < ∞,

∑
n∈Z nµ(n) = 0 and

∑
n∈Z n

2|µ(n) − afα,α1,...,αk(n + 1)| < ∞, for
some a > 0, where we extended fα,α1,...,αk to Z− by setting, fα,α1,...,αk(−n) = 0 for every
n ∈ N.

5. Symmetric probability measures

In this section we consider symmetric probability measures. If µ is symmetric (i.e.
µ̌ = µ), then µ̂ is real valued, hence has BAR. It is known that if moreover (µ(n))n∈N is
non-increasing then (13) holds. However we are not aware of any result concerning the
Ritt property or (14) with m ≥ 1.

We shall again investigate the situation where we have completely monotone coefficients.
To be more precise we consider the following situation.
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Definition 5.1. We say that a probability measure µ on Z is SCM if it is symmetric and
if there exists a finite positive measure on [0, 1] such that∫ 1

0

1

1− t
ν(dt) = 1/2 , µ(0) = 2

∫ 1

0

ν(dt);

µ(n) =

∫ 1

0

tnν(dt) ∀n ≥ 1 .

Let µ be an SCM probability measure on Z with repesentative measure ν. Define
another measure on Z, supported on N, by setting

µ1(0) = 2

∫ 1

0

ν(dt);

µ1(n) = 2

∫ 1

0

tnν(dt) ∀n ≥ 1 .

Then µ1 is a probability measure, (µ1(n))n∈N is completely monotone and µ = 1
2
(µ̌1 +

µ1). In particular, it follows from Proposition 2.4 and Theorem 3.6, that µ satisfies
hypothesis (H) as soon as µ satisfies (33). The fact that µ is Ritt when it satisfies (33)
may be proved similarly (but more easily).

We could use a similar argument based on Theorem 4.3. However, doing so, we would
miss some symmetric probability measures satisfying hypothesis (H).

Let us explain how to be more precise. Let µ be a SCM probability measure.
It follows from previous computations that, for every θ ∈ R,

1− µ̂(θ) = 1− Re µ̂(θ) =

∫ 1

0

t(1− cos θ)

(1− t)((1− t)2 + 2t(1− cos θ))
ν(dt) .

Consider the following condition on ν: there exists L > 0 such that for every x ∈ [0, 1),

(56)

∫ 1

x

t

1− t
ν(dt) ≤ L(1− x)2

∫ x

0

t

(1− t)3
ν(dt) .

This condition can be proved to be equivalent to the following one: there exists D > 0
such that for every n ≥ 1,

(57) n2
∑
k≥n

µ(k) ≤ L
n∑
k=1

k2µ(k) .

One can prove that if (56) holds, then µ satisfies hypothesis (H̃) with ψ given by

ψ(θ) = θ2
∫ 1

0

t

(1− t)(1− t+ |θ|)2
ν(dt) ∀θ ∈ [−π, π]− {0} .

Notice that ψ′(θ) = 2θ
∫ 1

0
t

(1−t+θ)3ν(dt), for every θ ∈ (0, π].

Then, one can prove that a SCM probability measure satisfying (57) is Ritt and satisfies
(14) for every m ∈ N and some Cm > 0.
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In particular, we have the following.

Theorem 5.1. Let µ be a SCM probability measure such that (µ(n))n∈N satisfies either
(33) or (57). Then, µ is Ritt and satisfies (14) for every m ∈ N and some Cm > 0.

Example 4. Let α > 1 and α1, . . . , αk ≥ 0. Let µ be a symmetric probability measure
defined by µ(0) = 2cfα,α1,...,αk(1) and for every n ≥ 1 µ(n) = cfα,α1,...,αk(n + 1), where c
is a normalizing sequence ensuring that µ is a probability. Then, µ is a SCM probability
measure for which the above theorem apply.

6. Discussion and open questions

- Most of the examples of (strictly aperiodic) probability measures on Z that have BAR
are known to be Ritt. We do not believe that the BAR property and the Ritt property
are equivalent, but one has to find a counterexample. This problem was also formulated
by Dungey [10] (see his remarks page 1729).

- One may wonder whether, in the symmetric case, the condition ”(µ(n))n∈N is non-
increasing” is sufficient for the Ritt property or for weak type maximal inequalities (5),
since it is sufficient for the weak type maximal inequality (4). At least, for a SCM
probability measure on Z, can one remove the conditions (33) and (57) from Theorem 5.1
?

- Let µ be a probability measure on Z. Let f ∈ `p(Z), p ≥ 1. Consider the square

function defined by sµ(f)(k) :=
(∑

n≥1 n
(
(µ∗n−µ∗(n+1))∗f(k)

)2)1/2
. Assume that µ has

BAR. When p > 1, it follows from the work of Le Merdy and Xu [17] that there exists
Cp > 0 such that for every f ∈ `p(Z), ‖sµ(f)‖p ≤ Cp‖f‖p, i.e. s(f) satifies a strong p− p
inequality. A natural question is whether s(f) satisfies a weak 1− 1 inequality.
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