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STUDY OF ALMOST EVERYWHERE CONVERGENCE OF
SERIES BY MEANS OF MARTINGALE METHODS

CHRISTOPHE CUNY AND AI HUA FAN

Abstract. Martingale methods are used to study the almost everywhere con-
vergence of general function series. Applications are given to ergodic series,
which improves recent results of Fan [9], and to dilated series, including Dav-
enport series, which completes results of Gaposhkin [12] (see also [13]). Appli-
cation is also given to the almost everywhere convergence with respect to Riesz
products of lacunary series.

1. Introduction

Let us first state two problems which motivate the investigation in this paper.
One comes from the classical analysis and the other from the ergodic theory.

Given a function f ∈ L1(R/Z) (or equivalently a locally integrable 1-periodic

function on the real line R) such that
∫ 1

0
f(x)dx = 0, an increasing sequence of

positive integers (nk)k≥0 ⊂ N and a sequence of complex numbers (ak)k≥0 ⊂ C,
one would like to investigate the convergence (almost everywhere convergence or
L1-convergence etc) of the following series, called dilated series,

(1)
∞∑
k=0

akf(nkx).

If the series converges almost everywhere (a.e.) whence (ak) ∈ `2, we say that
{f(nkx)} is a convergence system. The famous Carleson theorem states that
both {sinnx} and {cosnx} are convergence systems. In general, one should find
suitable conditions on f and on (nk) for {f(nkx)} to be a convergence system.
This is a long standing problem. One may consult the survey by Berkes and
Weber [2] and, for recent progresses, Weber [22] and the references therein.

The other problem is the almost everywhere convergence of the so-called ergodic
series

(2)
∞∑
k=0

akf(T kx)

where T is a measure-preserving map on a probability space (X,B, µ) and f ∈
L1(µ) such that

∫
fdµ = 0. To be more precise, we want to find sufficient condi-

tions on the dynamical system (X,B, µ, T ) and/or on f , such that the series (2)
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2 CHRISTOPHE CUNY AND AI HUA FAN

converges for any sequence (an)n∈N ∈ `p, where 1 ≤ p ≤ 2 is fixed (our main inter-
est is in the case p = 2). Sufficient conditions for the a.e. convergence with specific
(regular) sequences (an)n∈N may be found for instance in [4]. The fact that condi-
tions have to be imposed to ensure the a.e. convergence of (2) may be illustrated
by the following result of Dowker and Erdös [6]: if µ is an non-atomic ergodic
measure, for every positive sequence (an)n∈N such that

∑
k∈N ak =∞, there exists

f ∈ L∞(µ) with
∫
fdµ = 0 such that

∑
k∈N akf(T kx) diverges a.e. Some sufficient

conditions are recently found in [9] for {f ◦ T n} be to be a convergence system.

In this paper, we will study series in a general setting. The above situations are
special examples. Let (Ω,A,P) be a probability space. Let (Zn)n≥0 ⊂ Lp(Ω,A,P),
p ≥ 1, be a sequence of Lp-integrable random variables with EZn = 0. We shall
study the almost sure convergence of the random series

(3)
∞∑
n=0

Zn(ω).

Suppose that we are given an increasing filtration (An)n∈N such that A0 =
{∅,Ω} and A∞ = A where A∞ :=

∨∞
n=0An. We will analyze random variables

using this filtration. For every n ∈ N∪{∞}, denote En := E(·|An) and introduce
the operator

Dn = En+1 − En.
If Z ∈ Lp(Ω,A,P) with EZ = 0 (p ≥ 1), we have the decomposition

Z =
∞∑
n=0

DnZ ,

where the convergence takes place a.e. and in Lp. This is what we mean by the
analysis based on the filtration (An)n∈N and it is a simple consequence of Doob’s
convergence theorem of martingales.change

One of our main results is the following theorem, which is a special case of
Theorem 5 corresponding to p = 2.

Theorem A. Let (Zn)n∈N ⊂ L2(Ω,A,P) be such that EZn = 0 for every n ∈ N.
Then the series

∑
n∈N Zn converges P-a.s. and in L2(Ω,A,P) under the following

set of conditions

(4)
∞∑
k=0

( ∞∑
n=0

‖Dn+kZn‖2
2

)1/2

<∞

and

(5)
∞∑
k=1

( ∞∑
n=0

‖DnZn+k‖2
2

)1/2

<∞ .

One of ingredients in the proof of Theorem A is the Doob maximal inequality
of martingales. Assume that {Zn} ⊂ L2(Ω,A, P ) are independent and EZn = 0



ALMOST EVERYWHERE OF SERIES 3

for all n. It follows from Theorem A that
∑

E|Zn|2 < ∞ implies the almost
sure convergence of

∑
Zn. This is a trivial application of Theorem A, because

this known result of Kolmogorov is actually covered by the Doob convergence
theorem of martingales.

We can also make an analysis using a decreasing filtration. Suppose that we
are given a decreasing filtration (Bn)n∈N such that B0 = A. Let B∞ :=

⋂∞
n=0 Bn.

For every n ∈ N ∪ {∞}, denote En = E(·|Bn) and introduce

dn = En − En+1.

Let p ≥ 1. For Z ∈ Lp(Ω,A,P) with E(Z|B∞) = 0 which implies EZ = 0, we
have the decomposition

Z =
∞∑
n=0

dnZ ,

where the series converges in Lp and P-a.s.

Theorem B. Let (Zn)n∈N ⊂ L2(Ω,A,P) be such that E∞(Zn) = 0 for every
n ∈ N. Then the series

∑
n∈N gn converges P-a.s. and in L2(Ω,A,P) under the

following conditions

(6)
∞∑
k=0

( ∞∑
n=0

‖dn+kZn‖2
2

)1/2

<∞

and

(7)
∞∑
k=1

( ∞∑
n=0

‖dnZn+k‖2
2

)1/2

<∞ .

As an application of Theorem A, we have the following theorem, in which the
condition (8) is sharp (see Proposition 16).

Recall first that a sequence of positive integers (nk)k∈N is said to be Hadamard
lacunary if infk nk+1/nk ≥ q > 1 for some q and that the modulus of L2-continuity
of f ∈ L2(R/Z) is defined by ω2(δ, f) = sup0≤h≤δ ‖f(·+ h)− f(·)‖2.

Theorem C. Suppose that f ∈ L2(R/Z) satisfies
∫
f(x)dx = 0 and

(8)
∑
n∈N

ω2(2−n, f)√
n

<∞

and that (nk)k∈N is Hadamard lacunary. Then {f(nkx)} is a convergence system.

Let us look at a very interesting special system {f(nkx)} where f is a Davenport
function. Let λ > 0. The function

fλ(x) =
∞∑
m=1

sin 2πmx

mλ
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is well defined because the series converges everywhere. It is called Davenport
function. When λ > 1/2, it is L2-integrable and {fλ(nx)}n≥1 is a complete system
in L2([0, 1]) ([23]). When λ > 1, {fλ(nx)}n≥1 is even a Riesz basis ([15, 18]).
When 1/2 < λ ≤ 1, {fλ(nx)}n≥1 is not a Riesz basis, but Brémont proved that
{fλ(nkx)}nk≥1 is a Riesz sequence (see Definition 1) for any Hadamard lacunary
sequence {nk}.

Theorem D Let λ > 1/2. Suppose that {nk} ⊂ N is lacunary in the sense of
Hadamard. Then the so-called Davenport series

∑∞
k=1 akfλ(nkx) converges almost

everywhere if ond only if
∑∞

k=1 |ak|2 <∞.

In this special case of Davenport series, the condition
∑∞

k=1 |ak|2 < ∞ is also
proved necessary for the almost everywhere convergence. Both the sufficiency and
necessity are new.

Now let us give an application of Theorem B. Consider a measure-theoretic dy-
namical system (X,B, µT ). Let L be the associated transfer (or Perron-Frobenius)
operator, which is defined by

(9)

∫
f · Lgdµ =

∫
f ◦ T · gdµ (∀f ∈ L∞(µ),∀g ∈ L1(µ)).

As an application of Theorem B, we have the following theorem, in which the
condition (H2) is sharp to some extent (see Proposition 18).

Theorem E Assume that (X,B, T, µ) is an ergodic measure-preserving dynamical
system and f ∈ L2(µ). Suppose

(H1) limm→∞ E(f |T−mB) = 0 a.e., which implies
∫
fdµ = 0;

(H2)
∑∞

n=1
‖Lnf‖2√

n
<∞

Then {f(T nx)} is a convergence system.

This theorem improves a result in [9], where the norm ‖ · ‖∞ was used instead
of the norm ‖ · ‖2.

The paper is organized as follows. In Section 2 we performs an analysis us-
ing increasing filtrations. Theorem A will be proved there, together with some
more general results. Conditions in Theorem A will be converted into some more
practical conditions and divergence will also discussed. Section 3 is parallel to
Section 2, as Theorem B is parallel to Theorem A. There an analysis is made
using decreasing filtration. But details are omitted and some details can also be
found in [9]. Application of Theorem A to ergodic series is discussed in Section 4
and Theorem E will be proved there. Section 5 is devoted to dilated series (The-
orem C and Theorem D) and Section 6 is devoted to lacunary series and their
almost everywhere convergence with respect to Riesz product and to more general
inhomogeneous equilibriums.
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2. Analysis using increasing filtration

Let (Ω,A,P) be a probability space and p ≥ 1. Let (Zn)n≥0 ⊂ Lp(Ω,A,P) be a
sequence random variables such that EZn = 0 for all n. We shall study the almost
sure convergence of the random series

∑∞
n=0 Zn(ω). For n ≥ 0, denote the partial

sum

Sn =
n∑
k=0

Zk.

Then define the maximal functions

S∗(ω) = sup
n∈N
|Sn(ω)|, S∗N(ω) = max

0≤n≤N
|Sn(ω)| (∀N ≥ 0).

In this section, we give an analysis of the series by using an increasing filtration.
In the next section, we do the same by using an decreasing filtration. Notice that
there will be minor differences between two analysis. But applications will show
that there is a question of how to choose a filtration. For example, for the dilated
series, we will introduce an increasing filtration and for the ergodic series, there
is a natural decreasing filtration.

2.1. Decomposition relative to an increasing filtration. Suppose that we
are given an increasing filtration (An)n∈N. Assume that A0 = {∅,Ω} and A∞ = A
where A∞ :=

∨∞
n=0An. For every n ∈ N ∪ {∞}, denote En := E(·|An) and

Dn = En+1 − En.

The operators Dn have the following remarkable properties. The proofs, which
are easy, are left to the reader.

Lemma 1. Assume h ∈ L1(Ω,A,P) and f, g ∈ L2(Ω,A,P). The operators Dn
have the following properties.

(1) For any n ≥ 0, Dn is An+1-measurable and EnDnf = 0.
(2) For any distinct integers n and m, Dnf and Dmg are orthogonal.
(3) For any N1 < N2 we have

N2∑
n=N1

‖Dnf‖2
2 = ‖EN2+1f − EN1f‖2

2.

The first assertion implies that for any sequence (fn) ∈ L1(Ω,A,P), (Dnfn) is
a sequence of martingale differences. The second assertions will be referred to as
the orthogonality of the martingale difference.

For any integral random variable of zero mean, we may decompose it into
martingale as follows. In the following lemma, we include an inequality of Bahr-
Esseen-Rio and an inequality of Burkholder.
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Lemma 2. Let Z ∈ Lp(Ω,A,P), p ≥ 1 with EZ = 0. We have the decomposition

(10) Z =
∞∑
n=0

DnZ ,

where the series converges in Lp and P-a.s. Moreover we have

(11) ‖Z‖p ≤ max(1,
√
p− 1)

( ∞∑
n=0

‖DnZ‖p
′

p

)1/p′

,

where p′ := min(2, p) and, if p > 1,

(12)
∥∥∥( ∞∑

n=0

|DnZ|2
)1/2∥∥∥

p
≤ Cp‖Z‖p .

Proof. By assumptions, (EnZ)n∈N is a uniformly integrable martingale converging
in Lp and P-a.s. to E∞Z = Z. Hence, (10) follows from the equality

N∑
n=1

DnZ = EN+1Z − E0Z

where E0Z = E(Z|A0) = EZ = 0, for A0 = {∅,Ω}. Then, (11) follows from von
Bahr-Esseen [1] when 1 ≤ p ≤ 2 and from Rio [21] when p ≥ 2, while (12) is the
Burkholder inequality. �

Remark. The inequality (12) is nothing but the (reverse) Burkholder inequality.
In particular, we have a converse inequality but we shall only need (12) in the
sequel.

We call DnZ the n-th order detail of Z with respect to (An).

For any Zn, we have the following decomposition

Zn = Xn + Yn with Xn = Zn − EnZn, Yn = EnZn.

Notice that EnXn = 0 i.e. Xn is conditionally centered, and Yn is An-measurable
with E(Yn) = 0. Our random series is thus decomposed into two random seriesrajout

∞∑
n=0

Zn =
∞∑
n=0

Xn +
∞∑
n=0

Yn.

The convergence of
∑
Zn is reduced to those of

∑
Xn and

∑
Yn. In the sequel,

we separately study these two series.
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2.2. Conditionally centered series
∑
Xn. The maximal functions associated

to the series
∑
Xn will be denoted by S∗N,X and S∗X . Recall that we write p′ =

min(2, p) for p ≥ 1.

Proposition 3. Let (Xn)n∈N ⊂ Lp(Ω,A,P) be such that En(Xn) = 0 for every
n ∈ N (p > 1). Then, for every N ∈ N, we have the following maximal inequality

(13)
∥∥S∗N,X∥∥p ≤ p

p− 1
max(1,

√
p− 1)

∞∑
k=0

( N∑
`=0

‖D`+kX`‖p
′

p

)1/p′

.

Consequently, the series
∑

n∈NXn converges P-a.s. and in Lp(Ω,A,P) under the
following condition:

(14)
∞∑
k=0

( ∞∑
n=0

‖Dn+kXn‖p
′

p

)1/p′

<∞ .

Moreover, when (14) holds, we have S∗X ∈ Lp(Ω,A,P).

Proof. By the decomposition in Lemma 2 applied to each X` and using the fact
E`(X`) = 0 which implies that, for every k ≤ `, EkX` = Ek(E`X`) = 0, hence that
DkX` = 0 for k < `, we have

X` =
∑
k≥`

DkX` =
∞∑
k=0

Dk+`X` .

Let N ∈ N and 0 ≤ n ≤ N . We obtain that

|Sn| =

∣∣∣∣∣
n∑
`=0

X`

∣∣∣∣∣ =

∣∣∣∣∣
n∑
`=0

∞∑
k=0

D`+kX`

∣∣∣∣∣ ≤
∞∑
k=0

max
0≤m≤N

∣∣∣∣∣
m∑
`=0

D`+kX`

∣∣∣∣∣ .
Now, for every k ∈ N fixed, the sequence (

∑m
`=0D`+kX`)m∈N is a martingale.

Hence, by Doob’s maximal inequality and the von Bahr-Esseen-Rio inequality
(11) in Lemma 2, we have

‖S∗N‖p ≤
p

p− 1
max(1,

√
p− 1)

∞∑
k=0

( N∑
`=0

‖D`+kX`‖p
′

p

)1/p′

.

Thus we have proved the maximal inequality. Consequently, for any N ′ ≤ N ′′,
setting Kp := p

p−1
max(1,

√
p− 1), we have

‖ max
N ′≤p,q≤N ′′

|Sp−Sq|‖p ≤ 2‖ max
N ′≤n≤N ′′

|Sn−SN ′|‖p ≤ 2Kp

∞∑
k=0

( N ′′∑
`=N ′+1

‖D`+kX`‖p
′

p

)1/p′

.

Letting N ′′ → +∞, we infer that

(15) ‖ sup
p,q≥N ′

|Sp − Sq|‖p ≤ 2Kp

∞∑
k=0

( ∑
`≥N ′+1

‖D`+kX`‖p
′

p

)1/p′

<∞ ,
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by (14). By the Lebesgue dominated convergence theorem on N, applied to the
counting measure, we deduce that

‖ sup
p,q≥N ′

|Sp − Sq|‖p −→
N ′→+∞

0 .

By the Fatou lemma we infer that almost surely

sup
p,q≥N ′

|Sp − Sq| −→
N ′→+∞

0 ,

which finishes the proof. �

Remark. If p ≥ 2, then p′ = 2 and the condition (14) with p ≥ 2 is stronger
than the condition (14) with p = 2. Hence, the relevance of the proposition when
p ≥ 2 lies in the integrability of the maximal function S∗X . While if one is only
concerned with the a.s. convergence it is better to apply the proposition with
p = 2. However, as we shall see, the control of S∗ in Lp with p > 2 will allows us
to study the divergence of the series

∑
Xn.

2.3. Adapted series
∑
Yn. The maximal functions associated to the series

∑
Yn

will be denoted by S∗N,Y and S∗Y .

Proposition 4. Let (Yn)n≥1 ⊂ Lp(Ω,A,P) be such that Yn is An-measurable and
EYn = 0 for every n ≥ 1 ( p > 1). Then, for every N ≥ 1,

(16) ‖S∗N,Y ‖p ≤ Kp

N∑
k=1

( N∑
`=k

‖D`−kY`‖p
′

p

)1/p′

Consequently, the series
∑

n∈N Yn converges P-a.s. and in Lp(Ω,A0,P) under the
following condition

(17)
∞∑
k=1

( ∞∑
n=0

‖DnYn+k‖p
′

p

)1/p′

<∞.

Moreover, when (17) holds, we have S∗Y ∈ Lp(Ω,A,P).

Proof. The proof is similar to that of Proposition 3. By assumption, we infer
that for every ` ≥ 1,

Y` =
`−1∑
k=0

DkY` =
∑̀
k=1

D`−kY` .

Hence,

|
n∑
`=1

Y`| = |
n∑
`=1

∑̀
k=1

D`−kY`| ≤
N∑
k=1

max
k≤m≤N

|
m∑
`=k

D`−kY`| .

Since, for every fixed k ∈ N, (
∑m

`=kD`−kY`)m≥1 is a martingale, then (16) follows
from the Doob maximal inequality and the Bahr-Esseen-Rio inequality (11).

The proof of the P-a.s. and Lp-convergence may be done as for Proposition 3.
�
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2.4. Convergence and integrability of general series
∑
Zn. Combining

Proposition 3 and Proposition 4 and using the decomposition Zn = Xn + Yn,
we derive the following theorem.

Theorem 5. Let p > 1. Let (Zn)n∈N ⊂ Lp(Ω,A,P) be such that EZn = 0 for
every n ∈ N. Then, for every N ∈ N,

(18) ‖S∗N,Z‖p ≤ Kp

( ∞∑
k=0

( N∑
`=0

‖D`+kZ`‖p
′

p

)1/p′

+
N∑
k=1

( N∑
`=k

‖D`−kZ`‖p
′

p

)1/p′)
.

Consequently, the series
∑

n∈N Zn converges P-a.s. and in Lp(Ω,A,P) under the
following set of conditions

(19)
∞∑
k=0

( ∞∑
n=0

‖Dn+kZn‖p
′

p

)1/p′

<∞

and

(20)
∞∑
k=1

( ∞∑
n=0

‖DnZn+k‖p
′

p

)1/p′

<∞ .

Moreover, if both conditions (19) and (20) are satisfied, then S∗Z ∈ Lp(Ω,A,P).

Remark. If (Zn) is adapted to (An), then the condition (19) is trivially satisfied.

Proof. Recall that Xn = Zn − EnZn and Yn = EnZn. The theorem follows
immediately from the decomposition Zn = Xn+Yn, Proposition 3 and Proposition
4 and the following simple facts

S∗N ≤ S∗N,X + S∗N,Y ,

D`+kX` = E`+k+1(Z` − E`Z`)− E`+k(Z` − E`Z`) = D`+kZ`,

D`−kY` = E`−k+1(E`Z`)− E`−k(E`Z`) = D`−kZ`.
�

We call (19) the condition on higher order details and (20) the condition on
lower order details.

2.5. Practical criteria. In order to apply Theorem 5, it is sometimes more con-
venient to use the sufficient conditions in the next lemma. The proof of the lemma
will use the Burkholder inequality.

The condition (21) suggests that we need some order of approximation of Zk
by E(Zk|An) as n tends to infinity and the condition (22) suggests that the condi-
tional expectation E(·|An)) would contract in some order on the space Lp0(Ω,A, P )
consisting of p-integrable variables with zero mean; sometimes it is really the case
(see Lemma 21, see also Theorem 2 in [8] and Lemma 2 in [10]).
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Lemma 6. Let (Zn)n∈N ⊂ Lp(Ω,A,P), p > 1, with EZn = 0 for all n. The
condition (19) on the higher order details is satisfied if

(21)
∞∑
`=0

2`(1−1/p)
( ∞∑
k=0

‖Zk − E2`+k−1Zk‖p
′

p

)1/p′

<∞ .

The condition (20) on the lower order details is satisfied if

(22)
∞∑
`=0

2`(1−1/p)
( ∞∑
k=2`

‖Ek+1−2`Zk‖p
′

p

)1/p′

<∞ .

Proof. We make the proof when p ≥ 2, then p′ = 2. The proof when 1 < p < 2
may be done similarly. Look first at the condition (19) on the higher order of
details. Cutting the sum over k into dyadic blocks and applying Cauchy-Schwarz
inequality to each block we get

∞∑
k=0

( ∞∑
n=0

‖Dn+kZn‖2
p

)1/2

≤
∞∑
`=0

2`/2
( 2`+1−2∑
k=2`−1

∞∑
n=0

‖Dn+kZn‖2
p

)1/2

.

Now, using successively the Hölder inequality (notice that p/2 ≥ 1), the trivial
inequality ‖ · ‖`p ≤ ‖ · ‖`2 and the reverse Burkholder inequality (12), we get that

2`+1−2∑
k=2`−1

‖Dn+kZn‖2
p ≤ 2`(1−2/p)

( 2`+1−2∑
k=2`−1

‖Dn+kZn‖pp
)2/p

= 2`(1−2/p)
(
E
( 2`+1−2∑
k=2`−1

(Dn+kZn)p
) )2/p

≤ 2`(1−2/p)
∥∥∥( ∑

k≥2`−1

(Dn+kZn)2
)1/2

∥∥∥2

p

≤ Cp2
`(1−2/p)‖Zn − En+2`−1Zn‖2

p .

Thus the first assertion follows. Similarly, we have
∞∑
k=1

( ∞∑
n=0

‖DnZn+k‖2
p

)1/2

=
∞∑
k=1

( ∞∑
n=k

Dn−kZn‖2
p

)1/2

≤
∞∑
`=0

2`/2
( 2`+1−1∑

k=2`

∞∑
n=k

Dn−kZn‖2
p

)1/2

.

Now, we first change the order of summation to get

2`+1−1∑
k=2`

∞∑
n=k

‖Dn−kZn‖2
p =

∞∑
n=2`

min(n,2`+1−1)∑
k=2`

‖Dn−kZn‖2
p .
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Then, using the same arguments as above, we have

min(n,2`+1−1)∑
k=2`

‖Dn−kZn‖2
p ≤ Cp2

`(1−2/p)‖En+1−2`Zn − E0Zn‖2
p

= Cp2
`(1−2/p)‖En+1−2`Zn‖2

p.

Finally we get
∞∑
k=1

( ∞∑
n=0

DnZn+k‖2
p

)1/2

≤ Cp

∞∑
`=0

2`(1−1/p)
( ∞∑
k=2`

‖Ek+1−2`Zk‖2
p

)1/2

.

�

In view of the above results and of Lemma 5 of [9], one expects to have better
integrability properties for S∗Z when (Zn) ⊂ L∞(Ω,A,P).

Theorem 7. Let (Zn)n∈N ⊂ L∞(Ω,A,P) with EZn = 0 for all n. Assume that

(23) ∆1 :=
∞∑
`=0

( ∞∑
k=0

‖Zk − E`+kZk‖2
∞

)1/2

<∞ .

and

(24) ∆2 :=
∞∑
`=0

( ∞∑
k=`

‖Ek+1−`Zk‖2
∞

)1/2

<∞ .

Then
∑

n∈N Zn converges P-a.e. and in any Lp with p ≥ 1. Moreover, we have

E(eβ(S∗Z)2) <∞,
for every β < 1

4e(∆1+∆2)2
.

Proof. We follow a standard strategy to prove the exponential integrability S∗Z
by estimating the p-th moments of S∗Z . To estimate the p-th moments we shall
not use Lemma 6 which yields badly behaving constants Cp, as p → ∞, due to
the use of Burkholder’s inequality. Hence, we shall use Theorem 5 instead.

First remark that ‖S∗Z‖p (p ≥ 2) is bounded by Kp times the sum of the two
terms in (19) and (20). Notice that

‖D`+kZ`‖p ≤ ‖E`+k+1Z` − Z`‖p + ‖E`+kZ` − Z`‖p.
Then, using Minkowski’s inequality in `2 we obtain that for every N ∈ N,

∞∑
k=0

( ∞∑
`=0

‖D`+kZ`‖2
p

)1/2

≤ 2
∞∑
k=0

( ∞∑
`=0

‖Z` − E`+kZ`‖2
∞

)1/2

= 2∆1 .

On the other hand, using

‖DnZn+k‖p ≤ 2‖En+1Zn+k‖p,
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we have
∞∑
k=1

( ∞∑
n=0

‖DnZn+k‖2
p

)1/2

≤ 2
∞∑
k=1

( ∞∑
n=0

‖En+1Zn+k‖2
∞

)1/2

= 2∆2 .

Thus we have proved ‖S∗Z‖p ≤ 2Kp∆ with ∆ = ∆1 + ∆2 for p ≥ 2. Let β > 0.
We have

E(eβ(S∗Z)2) =
∞∑
p=0

βp‖S∗Z‖
2p
2p

p!
≤ 1 +

∞∑
p=1

βp(2K2p∆)2p

p!
.

Since K2p
2p ≤

(
2p

2p−1

)2p
pp ∼ epp and, by Stirling’s formula, p! ∼

(
p
e

)p√
2πp, we infer

that E(eβ(S∗Z)2) <∞ as soon as β < (4e∆2)−1. �

2.6. Series of the form
∑∞

n=0 anWn. In our applications, we shall be concerned
with the situation where

Zn = anWn

with (an)n∈N a deterministic sequence and (Wn)n∈N a stationary sequence or at
least a sequence behaving somehow closely to a stationary one. When p ≥ 2
(resp. when 1 < p < 2), we are going to control the Lp-moment of

∑
anWn by the

`2-moment (resp. the `p-moment) of (an). Before stating the result, let us state
Cauchy’s condensation principle whose proof is easy.

Lemma 8. Let (un)n∈N be positive numbers such that un+m ≤ Kun for every
n,m ∈ N and for some K > 0. Then the series

∑
`∈N u` converges if and only if

the series
∑

`∈N 2`u2` converges.

Theorem 9. Let 1 < p ≤ ∞. Let (Wn)n∈N ⊂ Lp(Ω,A,P) be such that

(25) ∆̃p :=
∞∑
`=0

1

(`+ 1)1/p

(
sup
k∈N
‖Wk − Ek+`−1Wk‖p + sup

m∈N
‖Em+1Wm+`‖p

)
<∞ .

Then the series
∑

n∈N anWn converges P-a.e. for every (an)n∈N ∈ `p
′
. Moreover,

when 1 < p < ∞, there exists Cp > 0 (independent from (an)n∈N and (Wn)n∈N)
such that

(26) ‖ sup
N∈N
|
N∑
n=0

anWn| ‖p ≤ Cp∆̃p‖(an)n∈N‖`p′ ;

and when p =∞, we have

Eexp
(
β sup
N∈N
|
N∑
n=0

anWn|2
)
<∞

for every β < (4e∆̃∞‖(an)n∈N‖`2)−1.
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Proof. Let 1 < p <∞. By Theorem 5 and Lemma 6, we only have to check that

(27)
∞∑
`=0

2`(1−1/p)
(

sup
k∈N
‖Wk − Ek+2`−1Wk‖p + sup

m∈N
‖Em+1Wm+2`‖p

)
<∞ .

This is actually equivalent to the condition (25), by the Cauchy condensation
principle. Let us check the condition in the Cauchy condensation principle. Notice
that

sup
m∈N
‖Em+1Wm+`+1‖p ≤ sup

m∈N
‖Em+2Wm+`+1‖p ≤ sup

m∈N
‖Em+1Wm+`‖p ,

and that, by the Burkholder inequality (12), for every k, ` ∈ N and every m ≥ 1

Cp‖Wk − Ek+`−1Wk‖p ≥ ‖
(
Wk − Ek+`+m−1Wk)

2 + (Ek+`+m−1Wk − Ek+`−1Wk)
2
)1/2‖p

≥ ‖Wk − Ek+`+m−1Wk‖p
The case p =∞ can be proved similarly basing on Theorem 7. �

To conclude this section we shall prove that, when p ≥ 2, there are situations
where the condition (an)n∈N ∈ `2 in the above theorem is also necessary for the
P-a.e. convergence of

∑
n∈N anWn.

Definition 1. We say that a sequence (Wn)n∈N ⊂ L2(Ω,A,P) is a Riesz system
if there exists C > 0 such that for every (bn)n∈N ∈ `2,

C−1‖(bn)n∈N‖`2 ≤ ‖
∑
n∈N

bnWn‖2 ≤ C‖(bn)n∈N‖`2 .

If moreover (Wn)n∈N is complete in L2(Ω,A,P), we say that is a Riesz basis.

Theorem 10. Let 2 < p ≤ ∞. Suppose that (Wn)n∈N ⊂ Lp(Ω,A,P) such that

(28)
∞∑
`=0

1

(`+ 1)1/p

(
sup
k∈N
‖Wk − Ek+`−1Wk‖p + sup

m∈N
‖Em+1Wm+`‖p

)
<∞

and that (Wn)n∈N is is a Riesz sequence in L2(Ω,A,P). Then the series
∑

n∈N anWn

does not converge P-a.e. for every (an)n∈N such that
∑

n∈N |an|2 =∞.

Remark. We do not know whether the series is P-a.e. divergent under the above
conditions.

Proof. We proceed as in the proof of Theorem 2.6 of [9]. Recall first the following
Paley-Zygmund inequality (see Kahane [16] for the case q = 2, the proof being
the same for general q > 1): Let Z ∈ Lq(Ω,A,P) be non negative (q > 1). For
any 0 < λ < 1, we have

P(Z ≥ λEZ) ≥
(

(1− λ)
EZ
‖Z‖q

)q/(q−1)

.
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We apply the inequality with q = p/2 and Z = ZN = sup0≤n≤N |
∑n

k=0 akWk|2.
By Theorem 9 and the hypothesis that (Wn)n∈N is a Riesz sequence, we know that
there exist C,D > 0 such that

D

√√√√ N∑
k=0

|ak|2 ≤ EZN ≤ ‖ZN‖q ≤ C

√√√√ N∑
k=0

|ak|2 .

Hence, we infer that

P
(
ZN ≥ λD

N∑
k=0

|ak|2
)
≥
(

(1− λ)
D

C

)q/(q−1)

.

Since,
∑

n∈N |an|2 =∞, the result follows. �

3. Analysis using decreasing filtration

We can also use decreasing filtrations to analyze our series. Recall that (Ω,A,P)
is a probability space and (Zn)n≥0 ⊂ L1(Ω,A,P) is a sequence of random variables
such that EZn = 0 for all n. Our object of study is the random series

(29)
∞∑
n=0

Zn(ω).

Suppose that we are given an decreasing filtration (Bn)n∈N. Assume that B0 = A.
Let B∞ :=

⋂∞
n=0 Bn. We will suppose that

(30) ∀n, E(Zn|B∞) = 0

which implies EZn = 0.
For n ≥ 0, denote the partial sum

Sn =
n∑
k=0

Zk.

For N ≥ 0, define the maximal function

S∗N(ω) = max
0≤n≤N

|Sn(ω)|.

The basic idea is to convert the random series into reverse martingales.

For every n ∈ N ∪ {∞}, denote En := E(·|Bn) and

dn = En − En+1.

Let us state the useful properties of the operators dn in the following proposition.
The following lemma is the same as Lemma 1.
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Lemma 11. Let h ∈ L1(Ω,A,P) and f, g ∈ L2(Ω,A,P). The operators dn have
the following properties:

(1) For and n ≥ 0, Dn is Bn-measurable and En+1Dnf = 0.
(2) For any distinct integers n and m, dnf and dmg are orthogonal.
(3) For any N1 < N2 we have

N2∑
n=N1

‖dnf‖2
2 = ‖EN1f − EN2+1f‖2

2.

The first assertion implies that for any sequence (fn) ∈ L1(Ω,A,P), (dnfn) is a
sequence of reverse martingale differences.

For any integral random variable such that E(Z|B∞) = 0, we may decompose
it into martingale as follows. We have the following analogue of Lemma 2, whose
proof is the same (it does not matter here that we are dealing with reverse mar-
tingale differences rather that martingale differences).

Lemma 12. Let Z ∈ Lp(Ω,A,P), p ≥ 1 with E(Z|B∞) = 0. We have the
decomposition

(31) Z =
∞∑
n=0

DnZ ,

where the series converges in Lp and P-a.s. Moreover we have

(32) ‖Z‖p ≤ max(1,
√
p− 1)

( ∞∑
n=0

‖dnZ‖p
′

p

)1/p′

,

where p′ := min(2, p) and, if p > 1,

(33)
∥∥∥( ∞∑

n=0

|dnZ|2
)1/2∥∥∥

p
≤ Cp‖Z‖p .

We call dnZ the n-th order detail of Z with respect to (Bn). Since Bn is de-
creasing, we say that dnZ is a detail of higher order than dmZ when n < m.

Theorem 13. Let (Zn)n∈N ⊂ Lp(Ω,A,P), p > 1, be such that E∞(Zn) = 0 for
every n ∈ N. Then, for every N ∈ N,

(34) ‖S∗N‖p ≤ 2Kp

( N∑
k=1

( N∑
`=k

‖d`−kZ`‖p
′

p′

)1/p′

+
∞∑
k=0

( N∑
`=0

‖d`+kZ`‖p
′

p′

)1/p′)
.

Consequently, the series
∑

n∈N gn converges P-a.s. and in Lp(Ω,A,P) under the
following conditions

(35)
∞∑
k=0

( ∞∑
n=0

‖dn+kZn‖p
′

p′

)1/p′

<∞
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and

(36)
∞∑
k=1

( ∞∑
n=0

‖dnZn+k‖p
′

p′

)1/p′

<∞ .

If (Zn) is adapted to (Bn), the condition (36) on the higher order details is trivially
satisfied.

The proof being similar to that of Theorem 5, we leave it to the reader. Some
similar arguments can be found [9].

In order to apply Theorem 13, it will be convenient to use the sufficient condi-
tions in the next lemma.

Lemma 14. Let (Zn)n∈N ⊂ Lp(Ω,A,P), p > 1, with E∞Zn = 0 for all n. The
condition (36) on the higher order details is satisfied if

(37)
∞∑
`=0

2`(1−1/p)
( ∞∑
n=2`

‖Zn − En−2`+1Zn‖p
′

p′

)1/p′

<∞ .

The condition (35) on the lower order details is satisfied if

(38)
∞∑
`=0

2`(1−1/p)
( ∞∑
n=0

‖En+2`−1Zn‖p
′

p′

)1/p′

<∞ .

The proof is similar to that of Lemme 6 and we leave it to the reader.
Results similar to Theorems 7, 9 and 10 holds.

4. Convergence of ergodic series

Let (X,B, µ, T ) be a measure-preserving dynamical system. By an ergodic
series we mean a series of the form

(39)
∞∑
n=0

anfn(T nx)

where it is assumed that the fn’s are integrable with Efn = 0 and that (an) is
a sequence of numbers. The almost everywhere convergence of such series was
studied in [9] where the martingale method was already used, and which is a
motivation of our present study.

In this case, the natural filtration that we can use to analyze the series is the
one defined by

Bn = T−nB.
It is a decreasing filtration. Let L be the transfer operator associated to the
dynamical system which can be defined by∫

f · Lgdµ =

∫
f ◦ T · gdµ (∀f ∈ L∞(µ),∀g ∈ L1(µ)).
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Theorem 15. Assume that (X,B, T, µ) is an ergodic measure-preserving dynam-
ical system. Let (fn)n∈N ⊂ Lp(µ), 1 < p ≤ ∞. Suppose

(H1) ∀n ∈ N, limm→∞ ‖E(fn|T−mB)‖p = 0;

(H2)
∑∞

i=0 2`(1−1/p) supn≥0 ‖L2`fn‖p <∞.

Then for any complex sequence (an)n∈N ⊂ C such that
∑∞

n=0 |an|p
′
< ∞, the

ergodic series
∑∞

n=0 anfn(T nx) converges a.e., and in Lp(X,B, T, µ) if p < ∞.

Moreover, when 1 < p < ∞, supN∈N |
∑N

n=0 anfn(T nx)| ∈ Lp(X,B, T, µ) and

when p =∞, E(exp(β supN∈N |
∑N

n=0 anfn ◦ T n|2)) <∞ for some β > 0.

Proof. Since (fn ◦ T n) is adapted to (Bn), we can apply Theorem 13 by just
checking the condition (38) on the higher order details. The checking is easy and
is a direct consequence of the fact that for m ≥ n we have

E(fn ◦ T n|T−mB) = (Lm−nf) ◦ Tm.
Then, letting Zn = anf ◦ T n, it suffices to notice

‖En+2`−1Zn‖p
′

p = |an|p
′‖(L2`−1fn) ◦ Tm‖p′p = |an|p

′‖L2`−1fn‖p
′

p .

�

When p =∞, the condition (H2) reads
∑∞

i=0 2` supn≥0 ‖L2`fn‖∞ <∞. Under
this last condition, the above theorem was proved in [9] and the exponential in-
tegrability of the maximal function was not mentioned in [9] but it follows from
the obtained estimates there. If one is only interested in almost everywhere con-
vergence but not in the exponential integrability, Theorem 15 relax the condition
in [9] by requiring only Lp-integrability, 2 ≤ p ≤ ∞ and weakening the exponent
of 2` in (H2).

In the study of dynamical systems, the decay of Lnf (measured by L∞-norm
or the Hölder norm) was extensively studied for regular functions f like Hölder
functions. The above theorem shows that for the almost everywhere convergence
of the ergodic series, weaker regularity would be sufficient and that there is an
interest to study the decay of Lnf measured by L2-norm. Several situations where
such a decay is measured, for unbounded functionals, may be found for instance
in [5], section 3.2 or in [8].

To conclude the section, let us show that the condition (H2) in Theorem 15 is
sharp. We shall use the notation L0(x) = 1, L1(x) = max(1, log x) and Lm(x) =
L1 ◦ · ◦ L1(x) (where L1 appears m times).

Let T be the measure preserving transformation on ([0, 1),B([0, 1)), λ) (λ being
the Lebesgue measure) defines by Tx = 2x mod 1. Then ‖Lng‖1 → 0 for every
g ∈ L1([0, 1),B([0, 1)), λ) such that

∫
g(x)dx = 0.

Proposition 16. Consider the dynamics ([0, 1),B([0, 1)), λ, T ) where λ is the
Lebesque measure and Tx = 2x mod 1. For every m ∈ N, there exist (an)n∈N ∈ `2

and f ∈ Lp([0, 1),B([0, 1)), λ) for every 1 ≤ p < ∞ with
∫
f(x)dx = 0, such
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that ‖L2nf‖2 = O( 2−n/2

Lm(2n)
) and that the series

∑
n∈N anf ◦ T n diverges almost

everywhere.

The proposition follows from Proposition 18 in the next section and the fact
that for Tx = {2x} and for f ∈ L2([0, 1),B([0, 1)), λ) with

∫
f(x)d(x)dx = 0,

we have ‖Lnf‖2 = ω2(f, 2−n) (Theorem 2 in [8]), where ω2 is the L2-modulus of
continuity.

5. Convergence of dilated series

We want to apply our general results in Section 2 to the study of the following
series, called dilated series,

(40)
∞∑
k=0

akf(nkx),

where we assume f ∈ Lp([0, 1],B, λ) for some p > 1 (λ being the Lebesgue measure
and B the Borel σ-algebra), (ak)k∈N ∈ `p

′
(N) (p′ := min(2, p)), and (nk)k∈N an

increasing sequence of positive integers.

There is an extensive literature on the topic for p = 2, which is our main concern
here. Let us mention the surveys [11, (1966)] by Gaposhkin and [2, (2009)] by
Berkes and Weber. For more recent results, one may refer to Weber [22], see also
the references therein.

5.1. Lacunary dilated series. Before stating our next result we need a defini-
tion.

Definition 2. For every f ∈ Lp([0, 1],B, λ), we define its Lp-modulus of continu-
ity ωp(·, f) by

ωp(δ, f) := sup
0≤h≤δ

‖τhf − f‖p ∀δ ∈ [0, 1]

where τhf(x) := f(x+ h).

Theorem 17. Let f ∈ Lp([0, 1],B, λ), 1 < p ≤ ∞, be such that

(41)
∑
n∈N

ωp(2
−n, f)

n1/p
<∞.

Let (nk)k∈N be a Hadamard lacunary sequence of positive integers. Then for every
(ak)k∈N ∈ `p

′
(N), the series

∑
k akf(nk·) converges λ-a.s. and in Lp. Moreover, if

1 < p <∞, we have

sup
N∈N
|
N∑
k

akf(nk·)| ∈ Lp([0, 1],B, λ);
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and if p =∞, there exists γ > 0 such that

(42) E exp
(
γ sup
N∈N
|
N∑
k

akf(nk·)|2
)
<∞.

Remarks. If f is a trigonometric polynomial, the condition (41) holds with
p = ∞. In this case Kuelbs-Woyczyński [17, Corollary 4.1] proved (42) for all
γ > 0.

Let us mention some previous results closely related to Theorem 17 with p = 2.
Gaposhkin [13] (see also Theorem 2.4.2 in [11] and the footnote there), proved
that if

∑
n∈N ω2(2−n, f) < ∞, then the series

∑
k∈N akf(nkx) converges almost

everywhere for every (an)n∈N ∈ `2. Here the lacunarity of (nk) is not needed.
But under the assumption of lacunarity, we gain a factor

√
n in (41). Moreover,

in [12], Gaposhkin proved that if f is defined by a lacunary Fourier series with
ω2(f, 2−n) = O(n−γ) for some γ > 1/2, the same conclusion holds, and the condi-
tion γ > 1

2
is sharp by Proposition 18, quoted from Gaposhkin [12]. Proposition

18 also proves the sharpness of (41) in Theorem 17.
To conclude our discussion let us mention that our proof makes use of dyadic

martingales while the proof of Gaposhkin is based on Lebesgue’s differentiation
theorem. It is well-known that these two objects are linked (see for instance [14]).
In our context such a link appears in the proof of Lemma 20, see the remark after
it.

Proposition 18. (Gaposhkin [12, Theorem 3]) For every m ∈ N, there exists f
which is in Lp([0, 1],B, λ) for every 1 ≤ p <∞, such that ω2(f, 2−n) = O( 1√

nLm(n)
)

and a sequence (an)n∈N ∈ `2 such that the series
∑

n∈N anf(2nx) diverges almost
everywhere.

Proof. Fix m ∈ N. Define

f(x) :=
∞∑
k=1

sin(2k · 2πx)

k
∏m

i=0 Li(k)
; an :=

1√
n
∏m−1

i=0 Li(n)Lm(n)
(∀n ≥ 1).

Since f is lacunary and in L2, it is in every Lp by Theorem 8.20, Chap V, vol I
(page 215) of [24]. Then, the rest of the proof is exactly as in Gaposhkin [12]. �

Now we show that the condition (an)n∈N ∈ `2 in Theorem 17 may be necessary.

Theorem 19. Let f ∈ Lp([0, 1],B, λ), 2 < p ≤ ∞, satisfying (41). Let (nk)k∈N be
a Hadamard-lacunary sequence of positive integers. Suppose that (f(nk·))k∈N is a
Riesz system. Then, for every sequence (an)n∈N, with

∑
n∈N |an|2 =∞, the series∑

k∈N akf(nk·) is not a.e. convergent.
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5.2. Proofs of Theorem 17 and Theorem 19. As for several results on the
topic (see e.g. Theorem 2.1 of [2]), dyadic martingales were used. We also use the
dyadic filtration.

For every n ∈ N, denote by Fn the σ-algebra generated the family In of the
intervals In,k := [ k

2n
, k+1

2n
], 0 ≤ k ≤ 2n − 1. We will choose our filtration (Ak) to

be (Fmk) for some suitable increasing sequence of integers (mk).
For every increasing sequence (mk)k∈N, we do have

∨
k∈NFmk = B. For ev-

ery f ∈ Lp([0, 1],B, λ), p ≥ 1, (E(f |Fmk)k∈N converges to f λ-a.s. and in
Lp([0, 1],B, λ).

In the next lemma, which would be known to specialists, we control the rate of
approximation of f ∈ Lp by E(f |Fn), by using the Lp-modulus of continuity of f .

We convention that our functions are periodically extended to the whole line
R.

Lemma 20. Let f ∈ Lp([0, 1],B, λ), 1 ≤ p ≤ ∞, and n ∈ N. We have

(43) ‖f − E(f |Fn)‖p ≤ 2Ωp(2
−n, f) .

Remark. When, p = 2, the lemma improves Lemma 2.1 in [2]. Notice that in

the proof we make use of
∑2n−1

k=0 mIn,k(τx−2−nkf)1In,k(x) = 2n
∫ x+ 1

2n

x
f(u)du, which

is related to Lebesgue’s differentiation theorem.
Proof. We give the proof when p < ∞, the case p = ∞ being obvious. For
simplicity, for any interval I we write

mI(f) =
1

|I|

∫
I

f(x)dx

where |I| denotes the length of I. Let n ∈ N. We have, for λ-a.e. x ∈ [0, 1],

E(f |Fn)(x) =
2n−1∑
k=0

mIn,k(f)1In,k(x) .

Since f(x) =
∑2n−1

k=0 f(x)1In,k(x), we can write

f(x)− E(f |Fn)(x) = ϕn(x) + ψn(x)

where

ϕn(x) :=
2n−1∑
k=0

[f(x)−mIn,k(τx−2−nkf)]1In,k(x)

ψn(x) :=
2n−1∑
k=0

[mIn,k(τx−2−nkf −mIn,k(f))]1In,k(x).
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Using that f(x)
2n

= f(x)
∫ k+1

2n

k
2n

du and using the Hölder inequality in the following

integral with respect to du, we get that

‖ϕn‖pp =
2n−1∑
k=0

∫
In,k

|f(x)− τx−2−nkf(u)|pdu

=
2n−1∑
k=0

∫ k+1
2n

k
2n

∣∣∣2n ∫ k+1
2n

k
2n

(
f(x)− f(u+ x− k2−n)

)
du
∣∣∣pdx

≤ 2n
2n−1∑
k=0

∫ k+1
2n

k
2n

[ ∫ k+1
2n

k
2n

∣∣f(x)− f(u+ x− k2−n)
∣∣p du ]dx

= 2np
2n−1∑
k=0

∫ k+1
2n

k
2n

(
2n(1−p)

∫ 1
2n

0

∣∣f(x)− f(x+ v)
∣∣p dv )dx

= 2n
∫ 2−n

0

dv

∫ 1

0

|f(x)− f(x+ v)|pdx

≤ Ωp
p(2
−n, f).

By a similar computation, we infer that

‖ψ‖pp ≤ Ωp
p(2
−n, f) ,

and the result follows. �

We will also need the following lemma.

Lemma 21. Let f ∈ Lp([0, 1],B, λ), 1 ≤ p ≤ ∞, with
∫ 1

0
f(u)du = 0. For any

integers n ∈ N and m ≥ 1, we have

(44) ‖E(f(m·)|Fn)‖p ≤
2n

m
‖f‖p.

Proof. Assume that p < ∞. Since
∫ 1

0
f(u)du = 0, the integral of f over any

interval of integral length is equal to zero. So that for any a < b, we have∫ b

a

f(x)dx =

∫ a+[b−a]

a

f(x)dx+

∫ a+[b−a]+{b−a}

a+[b−a]

f(x)dx =

∫ a+{b−a}

a

f(x)dx

where [x] and {x} denote respectively the integral part and the fractional part of
a real number x. It follows that∣∣∣ ∫ (k+1)m

2n

km
2n

f(u) du
∣∣∣p ≤ (∫ 1

0

|f(u)| du
)p
≤ ‖f‖pp.

Hence,

‖E(f(m·)|Fn)‖pp =
2n(p−1)

mp

2n−1∑
k=0

∣∣∣ ∫ (k+1)m
2n

km
2n

f(u) du
∣∣∣p ≤ 2np

mp
‖f‖pp .
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The proof when p =∞ follows similarly. �

Remark. Notice that if m ≡ ` mod 2n, with 0 ≤ ` ≤ 2n − 1, we actually have

‖E(f(m·)|Fn)‖2 ≤
√
`2n

m
‖f‖2. We can replace the norm ‖ · ‖2 by the norm ‖ · ‖1.

Proof of Theorem 17. It is easy to see that there exists an integer r ≥ 1, such
that in each interval [2`, 2`+1 − 1], there are at most r terms from the sequence
(nk)k∈N. Splitting our series into r series we may and do assume that r = 1.

For every k ∈ N, define mk := [log2 nk], in other words 2mk ≤ nk < 2mk+1. The
sequence (mk)k∈N is strictly increasing and tends to the infinity. We are going to
apply Theorem 5 to

Zk = akf(nk·), Ak = Fmk .
By Lemma 6, it suffices to check that

(45)
∞∑
`=0

2`(1−1/p)
( ∞∑
k=0

ap
′

k ‖f(nk·)− E(f(nk · |Fm
k+2l

)‖p′p
)1/p′

<∞ ,

and that

(46)
∞∑
`=0

2`(1−1/p)
( ∞∑
k=0

ap
′

k ‖E(fnk ·)|Fmk−2`
)‖p′p
)1/p′

<∞ .

Using (43), we see that (45) holds as soon as

∞∑
`=0

2`(1−1/p)
( ∞∑
k=0

ap
′

k ω
p′

p (
nk

2mk+2`
, f)
)1/p′

<∞ .

Notice that as function of δ, ω2(δ, f) is non-decreasing. Then (45) holds as soon
as

∞∑
`=0

2`(1−1/p)
(

sup
k∈N

ωp
′

p (
2nk
nk+2`

, f)
)1/p′

≤
∞∑
`=0

2`(1−1/p)
(
ωp
′

p (
2

q2`
, f)
)1/p′

<∞ ,

which is equivalent to (41), using once more the monotony of ωp(·, f).
It remains to prove (46). Using (44), we see that (46) holds as soon as

∞∑
`=0

2`(1−1/p)
( ∞∑
k=2`

ap
′

k

2p
′m

k+1−2`

np
′

k

)1/p′

<∞ .

To conclude, just notice that

2p
′m

k+1−2`

np
′

k

≤ 2p
′ n

p′

k+1−2`

np
′

k

≤ 2p
′

qp′2`
.

�
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5.3. Lacunary Davenport series. As an example we apply Theorem 17 and
Theorem 19 to Davenport series. For λ > 0?we consider the function

fλ(x) =
∑
m≥1

sin(2πmx)

mλ
∀x ∈ [0, 1] .

It is everywhere defined and continuous except at x = 0 and belongs to L2([0, 1]).
It is Hölder continuous when λ > 1. When λ = 1, we have f1(x) = −{x} (where
{x} = x− [x]− 1

2
), hence ω(δ, f1) = O(δ1/p), pour tout p > 1.

The study of the regularity of fλ for 0 < λ < 1 needs more care (notice that
when 1/2 ≤ λ < 1 one may use the Hausdorf-Young theorem).

Let 0 < λ < 1. By formula (2.3) p. 186 and formula (1.18) p. 77 of Zygmund
[24, Vol. I], there exists (cn)n≥1 with |cn| ≤ Cλn

−1−λ for some Cλ > 0 and κλ ∈ R,
such that for every x ∈ [0, 1),

fλ(x) = κλIm
(
(1− e2iπx)λ−1

)
+
∑
n≥1

cn sin(2πnx) := gλ(x) + hλ(x) .

It is not difficult to see that hλ is Hölder continuous and that

(47) ωp(δ, gλ) = O(δλ−
p−1
p ) ,

for every p < (1− λ)−1.

These regularity properties allow us to apply Theorem 17. We shall see right
now that when λ > 1

2
, it is also possible to apply Theorem 19. In fact, for any

λ > 1/2, Wintner proved that {fλ(nx)} is complete in L2([0, 1]). When λ > 1,
Hedenmalm, Lindqvist and Seip proved that {fλ(nx)} is a Riesz basis, a fortiori
{fλ(nkx)}nk≥1 is a Riesz sequence for any sequence {nk}. When 1/2 < λ ≤
1, Brémont proved that {fλ(nkx)}nk≥1 is a Riesz sequence for any Hadamard
lacunary sequence {nk}.

Theorem 22. Let λ > 1/2. Suppose that {nk} ⊂ N is lacunary in the sense of
Hadamard. Then for every sequence (ak)k∈N the following are equivalent

(i) The series
∑∞

k=1 akfλ(nkx) converges almost everywhere;
(ii)

∑∞
k=1 |ak|2 <∞.

Moreover, if any of the above holds then, when 1/2 < λ ≤ 1, for every p ≤ 1
1−λ ,

supn∈N |
∑N

k=1 akfλ(nkx)| ∈ Lp([0, 1)); and; when λ > 1, there exists β > 0 such

that
∫ 1

0
eβ supn∈N |

∑N
k=1 akfλ(nkx)|2 dx <∞.

Remark. The fact that (ii) ⇒ (i) follows from Gaposhkin [12], but we provide
here integrability properties of the maximal functions. The Theorem says that
when

∑∞
k=1 |ak|2 = ∞ then the series

∑∞
k=1 akfλ(nkx) does not converge almost

everywhere. Hence, one may wonder whether we have almost everywhere diver-
gence. For a large class of sequences (ak)k∈N and (nk)k∈N a positive answer follows
from Theorem 2.4.14 of [13]. Finally, notice that when 1/2 < λ ≤ 1,

∑
|an|2 <∞
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is not sufficient for
∑
anfλ(nx) to converge almost everywhere. But when λ > 1,∑

|an|2 <∞ is sufficient, as a consequence of Carleson theorem.

Proposition 23. Let 0 < λ ≤ 1/2 and p < (1− λ)−1. For every Hadamard lacu-
nary sequence (nk)k∈N and every (ak)k∈N ∈ `p the series

∑
k∈N akfλ(nkx) converges

almost everywhere. Moreover, supn∈N |
∑N

k=1 akfλ(nkx)| ∈ Lp([0, 1).

6. Convergence of lacunary series with respect to Riesz products

The classical Riesz products in harmonic analysis are defined as follows [24].
Let (λn)n∈N be a sequence of positive integers such that λn+1 ≥ 3λn for all n ≥ 0
and (cn)n∈N be a sequence of complex numbers such that |cn| ≤ 1 for all n ≥ 0.
Then we can define a Borel probability measure on T = R/Z, denoted by

(48) µc =
∞∏
n=0

(1 + Re cne
2πiλnt).

Actually the partial products of the above infinite product are positive trigono-
metric polynomials which converge to a measure µc in the weak-* topology of
C(T)∗. Suppose that we are given a sequence of Borel functions fn on T, say
bounded. A problem associated to Riesz products is the µc-a.e. convergence of
the following lacunary series

(49)
∞∑
n=0

an
(
fn(λnx)− Eµcfn(λn·)

)
.

It was independently proved in [7] and [20] that when fn(x) = e2πix, the series
(49) converges µc-a.e. if and only if

∑∞
n=0 |an|2 <∞. For more general functions

fn, such results are not known. But under the conditions that λn divises λn+1 for
all n and that fn are analytic or more precisely

∃ρ ∈ (0, 1), sup
j∈Z

ρ−|j| sup
n≥0
|f̂n(j)| <∞,

Peyriere [19] proved that
∑∞

n=1 |an|2 < ∞ implies the µc-a.e. convergence of the
series (49). By using Theorem 13, we can improve Peyrière’s result as follows

Theorem 24. Assume that supn∈N |cn| < 1. Let (fn)n∈N be functions on [0, 1],
such that there exists C > 0 and ε > 0 such that

sup
n≥0

ω(t, fn) ≤ C

| log t|1/2+ε
,

Then, for every (an)n∈N ⊂ `2, the series
∑∞

n=0 an
(
fn(λnx)−Eµcfn(λn·) converges

µc-a.e.

We emphasize that we keep the divisibility condition on {λn}. Otherwise, more
efforts are needed and for the moment we don’t succeed.



ALMOST EVERYWHERE OF SERIES 25

We can do little more than Riesz products. Actually the above result holds not
only for Riesz products but also for non-homogeneous equilibrium states studied
in [10]. We shall now consider this situation. The proof of the Theorem will be
given at the end of the paper.

Let us recall the definition taken from [10]. Let {Sn}n≥1 be a sequence of finite
sets of discrete topology. Assume that `n := card Sn ≥ 2 for all n ≥ 1. Consider
the infinite product space X :=

∏∞
n=1 Sn equipped with the product topology. A

compatible metric on X may be defined as

d(x; y) =
1

`1`2 · · · `n
where n = n(x, y) = sup{j ≥ 1 : xi = yi,∀i = 1, 2 · · · , j} (with convention
sup ∅ = 0). Let A = {An}n≥1 be a sequence of matrices such that An ∈MSN ,Sn+1 ,
meaning that the rows of A are indexed by Sn and the columns by Sn+1. Suppose
the entries of An are 0 or 1. Such a matrix is called an incidence matrix. We
define a subspace XA of X by

XA = {x = (xn) ∈ X : ∀n ≥ 1, An(xn, xn+1) = 1}.

We call XA a non-homogeneous symbolic space. We always suppose that there
exists an integer M ≥ 0 such that

∀n ≥ 1,
n+M∏
j=n

Aj > 0

(A > 0 means that the entries of A are all strictly positive). In this case, XA is
said to be transitive. If all entries of every An are equal to 1, we have XA = X.
We call X the full symbolic space.

A sequence G = {gn}n≥1 of non-negative functions defined on XA is called a
sequence of potentials if for any ≥ 1, gn(x) does not depend on the first n − 1
coordinates of x (so, we sometimes write gn(x) = gn(xn, xn+1, · · · )). It is said to
be normalized if for any n ≥ 1,∑

yn:An(yn,xn+1)=1

gn(yn, xn+1, · · · ) = 1 (∀x = (xn) ∈ XA).

For n ≥ 1, let

Gn(x) =
n∏
j=1

gn(x).

Then define a sequence of averaging operators Pn : C(XA) → C(XA), where
C(XA) is the space of all continuous functions on XA, by

Pnf(x) =
∑

y1,··· ,yn

Gn(y1, · · · , yn, xn+1, · · · )f(y1, · · · , yn, xn+1, · · · )
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where the sum is taken over all sequences (y1, · · · , yn) such that

A1(y1, y2) = · · · = An−1(yn−1, yn) = An(yn, xn+1) = 1.

It is easy to check that Pn is positive and Pn1 = 1. Therefore, the adjoint operator
P ∗n : M+(XA)→M+(XA) admits fixed points, where M+(XA) is the space of all
Borel probability measures on XA. A measure µ ∈ M+(XA) is called a (non-
homogeneous) equilibrium state associated to G = {gn} if P ∗nµ = µ for all n ≥ 1.

Theorem 25. [[10]] Let G = {gn} be a normalized sequence of potentials defined
on a transitive symbolic space XA.

(a) The set of all equilibrium states associated to G is a non-empty convex
compact set.

(b) There is a unique equilibrium state if and only if for any f ∈ C(XA), Pnf(x)
converges uniformly (in x) to a constant as n→∞.

(c) There is a unique equilibrium state if

(50) inf
n≥1

inf
x∈XA

gn(x) > 0; sup

{
Gn(x)

Gn(y)
: x1 = y1, · · · , xn = yn

}
<∞.

(c) Under the condition in (c), there exist constants D1 and D2 such that

D1Gn(x) ≤ µ(In(x)) ≤ D2Gn(x)

for all x ∈ XA and all n ≥ 1, where In(x) = {y ∈ XA : yj = xj∀1 ≤ j ≤ n}.

For a function f defined on XA and for n ≥ 1, we define the n-th variation of
f by

varn(f) = sup{|f(x)− f(y)| : x1 = y1, · · · , xn = yn}.
A careful inspection of the proof of Theorem 4 of [10] gives the next theorem,

which corresponds essentially to the case where α = 1 + ε for ε > 0.

Theorem 26. Let {gn} be a normalized sequence of potentials defined on a tran-
sitive symbolic space XA. Suppose there are constants A > 0 and α > 0 such that
for every m > n > 1,

(51) varm(log gn) ≤ A

(m− n)α
.

Then there is a unique equilibrium state µ.

Let {fn} be a sequence of functions such that fn depend only upon xn+1, xn+2, · · · .
Assume moreover that there exists B > 0 such that for every m > n > 1,

‖fn‖∞ ≤ B; varm(fn) ≤ B

(m− n)α
.

Then there exists C > 0 such that for every m > n > 1,

(52) ‖Pmfn‖∞ ≤ C
(log(1 +m− n))1+α

(m− n)α
.
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In particular, if α > 1/2, the series

(53)
∞∑
n=1

an

(
fn(x)−

∫
fndµ

)
converges µ-a.e. if

∑∞
n=1 |an|2 <∞.

Proof. The condition (51) {gn} ensures that condition (50) holds, hence the unique-
ness of the equilibrium state, by the Theorem 25.

The fact that (52) holds may be proved as in the proof of Theorem 4 of [10],
see pages 111-112 there.

Assume that α > 1/2. Let Bn be the σ-field generated by the coordinate
functions x 7→ xj (j = n + 1, n + 2, · · · ). Then our series (53) is adapted to the
decreasing filtration {Bn}. Then we will apply Theorem 13. By Lemma 14, what
we have to check is just the condition (37), because the condition (38) is trivially
satisfied by adapted series.

Notice that E(f |Bn) = Pnf . So, taking Zn = anfn, we infer that for every
n, ` ≥ 0,

‖En+2`−1Zn‖2 ≤ |an|(‖Pn+2`−1fn‖2 ≤ C
|an|`1+α

2α`

for some C > 0. Then

∞∑
`=0

2`/2
( ∞∑
n=0

‖En+2`−1Zn‖2
2

)1/2

≤ C
∞∑
`=0

`1+α

2`(α−1/2)

( ∞∑
n=0

|an|2
)1/2

<∞.

Thus the condition (35) is verified. �

Proof of Theorem 24. We can identify the full symbolic space X with the circle
T by the map from X to T:

(xn) 7→
∞∑
n=1

xn
`1 · · · `n

.

Then the Riesz product is nothing but the equilibrium state associated to

∀n ≥ 0, gn+1(x) = `−1
n+1(1 + Recne

2πiλnx)

where `n+1 = λn+1/λn. The assumption (51) is easily verified, using that supn∈N |cn| <
1. �
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