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Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 38054, Grenoble Cedex 9, France

Abstract

We study both theoretically and experimentally the transmission of coherent light by a drop pattern (dew). The theory is based

on the Kirchhoff scalar approach to diffraction. The polarization of the diffracted wave in the zero diffraction order is analyzed

separately. The intensity in the zero diffraction order in the far zone is an oscillatory function of the drop size. These oscillations

are observed with a pattern of water drops growing on glass. The model allows the evolution of the important parameters of the

drop pattern (average radius and surface coverage) to be obtained from the light intensity in the zero diffraction order.

1. Introduction

Depending on the wettability of the surface on which vapor

condenses, dew forms a transparent film or a diffuse assembly

of droplets. The knowledge of the properties of dew, “breath

figures” or, generally speaking, dropwise condensation, opens

a vast field of applications ranging from high-technology pro-

cesses of film growth [1] to soil desinfection in agronomy [2],

sterilization in pharmacology [3] and water recovery in dew

condensers [4]. The optical properties of dew have received

considerable attention from the scientists who studied the nat-

ural physical effects (see, e.g. [5, 6]) and from those who are

interested in industrial applications [7, 8].

The morphology and kinetics of dew formation were inves-

tigated extensively both theoretically and experimentally (see

e.g. [9, 10] and refs. therein). Its growth can be characterized

by several physical values, the most important of which are the

mean radius 〈a〉 of the drops and the surface coverage ε2, which

is the fraction of surface area covered by the projections of the

drops on the surface.

Two regimes of growth can be identified. At the beginning

of the condensation process the drops grow independently, 〈a〉
follows a power law 〈a〉 ∼ tµ0 , where t is the elapsed time, and

the surface coverage increases. When the temperature of the

substrate is kept constant, µ0 =
1
3
. When the drop radius be-

comes large enough, coalescences between drops occur and the

exponent changes to another value µ = 3µ0. The growth is then

self-similar and the surface coverage reaches a saturation value
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ε2
∞ as well as all the statistical characteristics of the drop pat-

tern, except 〈a〉. When the surface is ideally smooth and clean

ε2
∞ ≈ 0.55 independently of the wetting properties (character-

ized by the contact angle φ, see Fig. 1). For a nonideal surface,

the pinning of the contact lines by the surface heterogeneities

leads to a hysteresis of the contact angle, i.e. to a significant

difference between the advancing and receding contact angles.

The shape of the drop is no more a spherical cap. In this case ε2
∞

becomes dependent on the hysteresis, and since the hysteresis

effects are stronger for small contact angles [11], ε2
∞ becomes

higher as φ is smaller. This dependence will be used in section 3

to determine the contact angle. In the analysis below, the drops

are considered to be spherical caps and the influence of gravity,

which is important only when the drop reaches a size of ≈ 2mm

(the water capillary length), is neglected.

2. Theoretical description

Despite its importance, the optical properties of a dew pat-

tern has up to now been investigated to our knowledge by ge-

ometrical optics only [2, 6]. Indeed, the light scattering by a

random set of nearly hemispherical drops with different size is

quite difficult to describe. Here we give a solution in a partic-

ular, but important, case: we calculate the intensity of the zero

order of the far zone diffraction, i.e. the transmission of a co-

herent light through the dew pattern.

2.1. Optical properties of a single drop

Let a monochromatic linearly polarized plane wave with

amplitude ~E s travel through a transparent substrate and then fall

Preprint submitted to Elsevier January 26, 2016
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Figure 1: The geometry of a drop. See text for the explanations.

normally on the interface between the transparent substrate and

a water drop (see Fig. 1). The wave is partially reflected, and

the amplitude of the wave just after the plane substrate-water

interface is [12] 2nw
~E s/(nw + ns), where ns and nw are the re-

fractive indices of the substrate and water respectively. Passing

through water, the wave gains a phase shift. Thus the complex

amplitude of the wave just before the water-air interface is

~Ei = 2nw/(nw + ns) ~E s exp(ik0nwl), (1)

where k0 = 2π/λ, λ being the wavelength in vacuum, and

l =
√

R2 − r2 − R cosφ, (2)

is the geometrical path of the ray inside the water drop. Here r

is the distance of the ray from the center of the drop (Fig. 1), R

is the radius of curvature of the drop and φ is the contact angle.

Then the ray is refracted and its polarization changes according

to the Fresnel formulae [12]. While the component of the field

which lies in the plane of incidence is transformed according to

Et
‖ = Ei

‖t‖ with t‖ =
2 sin β cosα

sin(α + β) cos(α − β)
, (3)

the component which lies in the perpendicular plane is

Et
⊥ = Ei

⊥t⊥, with t⊥ =
2 sin β cosα

sin(α + β)
, (4)

where α and β are the angles of incidence and refraction re-

spectively (see Fig. 1). These angles are related through the

Descartes-Snellius law

nw sinα = na sin β, (5)

where na is the refractive index of air and α is defined directly

by r:

sinα = r/R. (6)

We consider a polar coordinate system in a plane parallel

to the substrate, see Fig. 2. It is chosen in such a way that its

reference point coincides with the drop center O and the refer-

ence direction (called the ξ-axis below) is the direction of po-

larization of the incident wave. Then for an arbitrary point with

coordinates (r, ψ)

Ei
‖ = Ei cosψ, Ei

⊥ = Ei sinψ. (7)

r

E

ξ
O

ψ
i

incident ray

drop

η
substrate
transparent

Figure 2: The top view of the drop in Fig. 1 with ξOη Cartesian and rOψ polar

coordinate systems.

Using the ξOη Cartesian coordinate system (Fig. 2), it is easy

to check with the help of Eqs. 3, 4 and 7 that

Et
ξ = Ei(t‖ cos2 ψ + t⊥ sin2 ψ), (8)

Et
η = Ei(t⊥ − t‖) sinψ cosψ. (9)

Waves of different polarization do not interfere and can be

analyzed separately. The η-components of the waves, emitted

by two mirror symmetrical points (r, ψ) and (r,−ψ) of the drop

surface satisfy the following relation

Et
η(r, ψ) + Et

η(r,−ψ) = 0. (10)

Because the drop is a spherical cap and the incidence is nor-

mal, the angles α and β as defined by Eqs. 5 and 6 are indepen-

dent of the ψ-coordinate of the incident ray (Fig. 2). Thus t‖
and t⊥ as defined in (3) and (4) are independent of ψ too. Then

(10) follows from (9). Therefore, as far as only the zero or-

der of diffraction is concerned, the η-polarized components of

the waves which come from two these points annihilate each

other. Since this argument is applicable to every two symmet-

rical points, the η-polarized components of the waves yield no

contribution. Therefore, the wave in the zero order of diffrac-

tion (unlike any other point in the image plane) is polarized in

the ξ-direction, i.e. in the direction of polarization of the inci-

dent wave. This allows the index ξ to be omitted hereafter and

the scalar wave theory for the ξ-component to be applied. The

key parameter of this theory [12] is the complex transparency

of the drop which we introduce now.

The visible radius of the drop a can be related to its curva-

ture radius R through the contact angle φ (see Fig. 1):

ζ ≡ a

R
=

{

sin φ, if φ < π/2,

1, otherwise.
(11)

We neglect the contribution of the rays which are multiply

reflected or refracted before leaving the drop. Each reflection or

refraction decreases strongly the amplitude of the correspond-

ing fields according to the Fresnel formulae, the angles of re-

flection or refraction being there large. An additional attenua-

tion is due to the light absorption by water. Another reason for

amplitude decrease is the angle factor K, which is small for the

large angles of refraction (see below).
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When the angle of incidence at the surface of the drop α

(see Fig. 1) is larger than αcr, which is defined by the relation

sinαcr = γ ≡ na/nw,

full internal reflection occurs. Therefore, two regions can be

defined in a drop: an inner transparent region of radius a′ < a

and an outer annular “black” region. The ratio χ = a′/R is easy

to determine by using Fig. 1 after straightforward geometrical

arguments:

χ =

{

γ, if αcr < φ < π − αcr,

sinφ, otherwise.
(12)

The contribution of the rays which have to cross an air layer be-

fore entering the drop when φ > π/2 is neglected in accordance

with our “single-refraction” assumption.

The complex transparency of the drop with visible radius a

can be written as

τa(~r) =























nw(na+ns)

na(nw+ns)
C(ψ)eik0(nw−na)l−µl if 0 ≤ r ≤ a′,

0, if a′ < r < a,

1, if r ≥ a,

(13)

where µ is the coefficient of light absorption. It is negligible for

visible light and we put µ = 0 in the following. The function

C(ψ) is given by

C(ψ) = t‖ cos2 ψ + t⊥ sin2 ψ. (14)

Eq. 13 follows from (8) after substitution of (1) and division by

the amplitude of the wave unperturbed by the presence of the

drop.

2.2. Diffraction by a single drop.

Kirchhoff’s formula [12], reduced for the diffraction in the

far zone, gives the following expression for the amplitude de-

pending on the direction to the point of observation ~k:

E(~k) =

∫ ∫

τa(~r)K exp[−ina~r · (~k0 + ~k)] d~r, (15)

where τa is the complex transparency of the object and K is the

angle factor given by

K =
1

2k0

(~k0 + ~k) · ~n. (16)

The integration in (15) is performed over the reference plane

parallel to the substrate, ~n is a unit normal to it (Fig. 1), ~k0 is

a normal vector to the wave front which falls on the reference

plane, |~k0| = |~k| = k0. Expression (15) holds just for the small

scattering angles, i.e. for ~k close to k0~n (in the case considered

here ~k = k0~n exactly). Thus (16) reads

K =
1

2















~k0

k0

· ~n + 1















.

For the diffraction by the drop (see Fig. 1) this expression re-

duces to

K =
1

2
[cos(β − α) + 1]. (17)

In the familiar case of the Fraunhofer diffraction by a hole or

by a quasi-flat phase object, ~k0 does not depend on ~r, ~k0 = k0~n,

and E(~k) is just the Fourier-transform of τa(~r). In the case of

a drop, the direction of ~k0 is a function of ~r, and E(~k) is the

Fourier transform of the function

τ̃a(~r) = τa(~r)K exp(−ina~r · ~k0). (18)

Note that τ̃a(~r) = τa(~r) = 1 outside the drop.

2.3. Zero-order diffraction by a dew pattern

The theory of diffraction by an assembly of objects is pre-

sented in [13] under the assumption of applicability of the con-

ditions of Fraunhofer diffraction when the amplitude in the im-

age plane is the Fourier transform of the object transparency. It

is shown in [13] that the intensity in the zero diffraction order is

defined by the so-called “Debye volume scattering term” which

can be written within a constant as

I0 ≡ |E(~k = 0)|2 = |〈τ〉|2, (19)

where

〈τ〉 = 1

s1

〈
∫

(s1)

τa(~r) d~r 〉. (20)

Here s1 is the total illuminated area of the substrate divided by

the total number of the drops and the angle brackets mean an

average over the size distribution. Although the theory was de-

veloped for a real transparency τa(~r) (called “density” in [13]),

it can be easily generalized for the complex case. The invari-

ance with respect to the spatial distribution of the drops is an

interesting feature of expression (19).

As already discussed, the function τ̃a(~r) should be used in

(20) instead of τa(~r). It is easy to check that this function is

radially symmetric which is a necessary condition of the appli-

cability of the results [13]. Thus

τ = 1 − πa2

s1

+
1

s1

na + ns

nw + ns

nw

na

a′
∫

0

JKr exp{ik0[(nw − na)l + nar sin(β − α)]} dr, (21)

where

J =

2π
∫

0

C(ψ) dψ = π(t‖ + t⊥).

In order to find an average of (21), one needs to introduce

the distribution H(a), which defines the probability to find a

drop with the visible radius a. Since the two important phys-

ical values are the average size 〈a〉 and the polydispersity g =

(〈a2〉−〈a〉2)1/2/〈a〉, a distribution with only two free parameters

can be considered. We choose for this purpose the Maxwellian

distribution as described in [13]:

H(a) =
B(m)

a0

(

a

a0

)m

e−(a/a0)2

, (22)
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where B(m) is a normalization constant. The free parameters

m ≥ −1 and a0 can be related to g and 〈a〉 [13] through

g ≈ (2m + 2)−1/2, (23)

〈a〉 ≈ a0[(m + 0.5)/2]1/2. (24)

These approximations become accurate within less than 1%

when m > 4.

The mean surface coverage ε2 is related to s1 by ε2 = π〈a2〉/s1.

Note that it is defined here by the projected area covered by the

drops, not by the actual area in contact with water. The set of

Eqs. 21-24 allows one to calculate 〈τ〉 as a function of the pa-

rameters 〈a〉, g (or a0, m) and ε2:

〈τ〉 = 1 − ε2 +
ε2

ζ2γ2

na + ns

nw + ns

B(m + 2)

1
∫

√
1−χ2

dx
x2(1 + γ + vx − x2)2

(v + x)(vx + 1 − x2)

∞
∫

0

dy ym+2

exp

{

iynw

2πa0

ζλ
[(1 − γ)(x − cos φ) − (1 − x2)(x − v)] − y2

}

,

(25)

where v =
√

x2 + γ2 − 1. The intensity of the zero diffraction

order I0 can now be calculated by using (19).

Let us analyze now the function I0(〈a〉) with g and ε2 as

parameters. This choice reflects the growth kinetics of the self-

similar regime (see section 1) when the only growing parameter

is 〈a〉. Oscillations of the function I0(〈a〉) can occur due to the

exponential dependence of ia0, the latter being related to 〈a〉 by

(24).

The asymptotic values of the function I0(〈a〉) can be calcu-

lated explicitly:

I0(〈a〉 → 0) =

[

1 − ε2 +
ε2

ζ2γ2

na + ns

nw + ns

1
∫

√
1−χ2

x2(1 + γ + vx − x2)2

(v + x)(vx + 1 − x2)
dx

]2

, (26)

I0(〈a〉 → ∞) = (1 − ε2)2. (27)

The interesting feature of these expressions is that they do

not depend on the polydispersity and, therefore, on the form

of the function H(a). While (26) is not particularly useful for

practical purposes (since ε2 = 0 always when 〈a〉 = 0, giving

I0 = 1), Eq. 27 is more interesting because it relates I0(t → ∞)

to ε2
∞. It is easy to see that the value (27) gives the geometrical

optics limit and corresponds to the transparency of an assem-

bly of black spots. In this case 〈τ〉 = 1 − ε2 and I0 depends

either on the shape or on the size of the spots through ε2 only.

One can therefore conclude that the presence of the oscillations

is connected to the phase shift of the transmitted wave by the

drops.

The results of the calculations of the function I0(〈a〉) for

different constant values of the other parameters are presented
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the contact angle φ for g = 0.16 and ε2 = 0.6.

in Figs. 3 and 4. We recall here that in a real condensation

experiment g and ε2 are not constant in the beginning of the

growth (see section 1). Thus the curves presented in Figs. 3

and 4 cannot be observed experimentally. For example, it is

generally impossible to obtain ε2 = 0.6 for small values of 〈a〉,
while the curve which corresponds to this surface coverage is

plotted for all values of 〈a〉 in Fig. 4.

Figs. 3 and 4 show that the amplitude of the oscillations of

the function I0(〈a〉) is controlled mainly by the polydispersity,

while the “mean” level, around which the intensity oscillates,

depends strongly on ε2. A large polydispersity suppresses the

oscillations. The positions of the extrema of I0(〈a〉) are practi-

cally independent of ε2 and g over a wide range of the param-

eters. However, the dependence of the positions of the extrema

on the contact angle φ is stronger. It is presented in Fig. 5.

These features allow the values of the parameters 〈a〉 and ε2 to

be determined experimentally as will be demonstrated below.

3. Experimental: determination of the characteristics of a

dew pattern

The sketch of the experimental setup is shown in Fig. 6. It is

derived from the setup in [14]. It permits simultaneous obser-

vation of the scattered light and measurement of the intensity

on the optical axis. No direct visualization of the droplets was

sought. Dew is produced by blowing air saturated with water

vapor on a cooled glass slide coated with a hydrophobic layer

of silane, which plays the role of the substrate from the opti-

cal point of view. The process of glass coating is described

in [10]. The coherent light beam generated by a 5mW He-Ne

laser (λ = 0.6328µm) passes through the glass plate and the dew

pattern. The diffracted light is collected by a large lens (10cm

diameter) placed at its focal length. The diffraction pattern is vi-

sualized through a translucid screen. The pictures are recorded

by a CCD video camera and digitized for further analysis. A

mirror placed at the center of the lens deviates the transmitted

light perpendicularly towards a photodiode. The distance be-

tween the photodiode and the mirror is chosen so as to provide

the conditions of Fraunhofer diffraction [12] in the photodiode

plane. The size of the mirror and the pin-hole in front of the

transparent substrate
with droplets

pinhole

laser
light

mirror

focal length

photodiode

screen to visualize
the diffraction ring

Figure 6: Schematic diagram of the experimental setup.
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Figure 7: Experimental time evolution of I0. The data are normalized by the

value I0 at t = 0.

photodiode correspond to the width of the laser beam. This al-

lows all the light to be collected in the absence of scattering by

dew. When condensation starts, the photodiode measures the

intensity of the zero diffraction order. The temperature of the

glass slide is stabilized by an attached large copper block con-

nected to the Peltier element and a power supply. The tempera-

ture is controlled during the experiment. The video image and

the photodiode signal are simultaneously recorded when vapor

is blown onto the glass slide.

A typical I0 recording is shown in Fig. 7. The time evolution

of I0 can be understood on the basis of the model considered in

the previous section. The sharp decrease of the “mean” value

with respect to the oscillations reflects the evolution of the sur-

face coverage ε2. The latter increases until it reaches the value

ε2
∞. Several oscillations appear, in agreement with the above

theoretical prediction. Moreover, the model gives an opportu-

nity to determine the parameters of the dew pattern by using the

time dependence of I0 (Fig. 7). The algorithm for the determi-

nation of ε2 and 〈a〉 as functions of time t can be described as

follows.

1. The value of I0 at large time corresponds to the saturation

5
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value (27). Here we obtain I0 = 0.16, thus ε2
∞ = 0.6.

2. The data [11] where ε2
∞ is plotted versus contact angle shows

that this value corresponds to an average contact angle φ ≃ 90◦.

We thus use the data calculated for this particular value of φ.

3. Because the positions of the extrema of the function I0(〈a〉)
are nearly independent of ε2 and g, we can determine with high

accuracy the values of 〈a〉 at the times which correspond to the

extrema of the function I0(t). They are plotted versus t in Fig. 8.

Fig. 3 shows that the value of I0 is independent of the poly-

dispersity g in the inflection points [15] of the function I0(〈a〉).
By making use of this property, we can obtain the values of ε2

by the following steps.

4. The time values at the inflection points and the correspond-

ing values of the intensity are extracted from Fig. 7.

5. The values of 〈a〉 at these values of time are determined by

the interpolation of the dependence 〈a〉(t) obtained in step 3.

6. Eq. 25 can be rewritten in the form

〈τ〉 = 1 − ε2 + ε2(A + iD), (28)

where the quantities A and D are independent of ε2. Then (19)

with the substitution of (28) can be easily solved for ε2:

ε2 = {1−A−{I0[D2+(1−A)2]−D2}1/2}/2/[D2+(1−A)2]. (29)

Since A and D can be calculated for an arbitrary value of g

(we took g = 0.16) and values of 〈a〉, obtained in the step 5,

the corresponding values of ε2 can be determined from (29) by

using the values of I0 from step 4. These data for ε2(t) are

plotted in Fig. 8 with the saturation value from the step 1.

One can see that the curve ε2(t) is similar to the curve ob-

tained by numerical simulation [10]. The time evolution of 〈a〉
can be compared with that of k−1

m . The value of km is defined as

the wavevector corresponding to the maximum intensity in the

diffraction pattern (ring). It is obtained by the image analysis

of the diffraction picture as recorded by the video camera. One

can see that for large times the growth laws of k−1
m and 〈a〉 are

the same. They correspond to the growth exponent µ ≃ 1.

4. Conclusions

The theoretical model developed here deals with the inten-

sity of the coherent light transmitted by a time dependent dew

pattern. The theory explains the oscillations of the intensity ob-

served in the zero diffraction order in the far zone. In addition,

the model allows the evolution of the two most important pa-

rameters of the drop pattern to be assessed: the average drop

radius and the drop surface coverage.
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