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Abstract. The paper considers a model for Bose gases in the so-called "high-temperature range’
below the temperature where Bose-Einstein condensation sets in. The model is of non-linear two-
component type, consisting of a kinetic equation with periodic boundary conditions for the distri-
bution function of a gas of excitations interacting with a Bose condensate, which is described by
a Gross-Pitaevskii equation. Results on well-posedness and long time behaviour are proved in a
Sobolev space setting close to equilibrium.

1 Preliminaries and main results.

1.1 Physics motivations.

The phenomenon of Bose-Einstein condensation occurs when a large number of particles of a Bose
gas enter the same lowest accessible quantum state. Predicted by Bose and Einstein in 1924 [4] [6], it
was first unambiguously produced in 1995 by E. Cornell and C. Wieman. This paper studies a Bose
condensate below the transition temperature 7T, for condensation, and in interaction with a non-
condensates component. The setting is a two-component space-dependent model well established
in physics (see the monograph [10] and its references) of pair-collision interactions involving a gas
of thermally excited (quasi-)particles and a condensate. The two-component model consists of a
kinetic equation for the distribution function of the gas, and a Gross-Pitaevskii equation (cf [21])
for the condensate. A rather general form of the kinetic equation in the superfluid frame is (cf [22],
26])

atf + (vp(E(p)) + Uc) : va:f - Vz(E(p) + Ve 'p) : fo = CQQ(f) + ClQ(fa nc)' (1'1)

Here f is the quasi-particle phase space density, n. (resp. v.) is the mass density (resp. the velocity)
of the condensate, and E(p) denotes the (Bogoliubov) quasi-particle energy. The Nordheim-Uehling-
Uhlenbeck term Cas for collisions between (quasi-)particles is given by

92

== Bé(p+ps =p" +0)0(E(p) + E(ps) = EQ') + E(p,))
R3xR3xR3

Ca2(f)(p)
(£70+ DO+ L) = F1(L+ )L+ £1) ) dpodp'dyl, (1:2)
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where g = %, a is the scattering length of the interaction potential, & the Planck constant, m

the atomic mass, B a collision kernel, and

=1, fo=rfp), f=F0), fi=rf0).

The collision term Cp2 for collisions between (quasi-)particles and condensate is

2
Crafne)p) =5 [ AS(py = p2 = p)3(Es — Ba = E9)lo(p— ) (13)

=0(p —p2) —0(p — p3)|((L + f1) fafz — f1(1 + f2) (1 + f3))dp1dpadps,

where A is a collision kernel and

fi=fwj), Ej=E@pj), 1<j<3.

The usual Gross-Pitaevskii equation for the wave function 1 (the order parameter) associated with
a Bose condensate is
2

, B
ihOy = =5 —Agtp + (glY)? + Uent)0,
m

where U, is an external potential, i.e. a Schrodinger equation complemented by a non-linear term
accounting for two-body interactions.

In the present context, the Gross-Pitaevskii equation is further generalized by letting the condensate
move in a self-consistent Hartree-Fock mean field 2 ng, f(p)dp produced by the thermally excited
atoms, together with a dissipative coupling term associated with the collisions. The generalized
Gross-Pitaevskii equation derived in e.g. [15], [16], [22] and [10], is of the type

. 2
ihOy) = —%Amw + (9’¢’2 + Uecat +29 Jps fdp + 1% Jos pasgs A0(p1 — p2 — p3)d(E1 — Eo — E3)

(T4 fi)fafs — fr(1 + f2)(1 + f3))dP1dP2dP3)¢- (1.4)

The two component problem (1.1), (1.4) is extensively discussed in the physics literature (see [5],
[11], [12], [13], [14], [15], [16], [17], [22], [24], [26]). It is proven in [1] that these equations as given
in [22], conserve the total energy. That is not so in some of the other settings, in particular not for

(1.6)-(1.8) below.

1.2 The model under study.

We restrict to the "high temperature range’, and more particularly consider the temperature range
close to 0.7T,. As discussed in [5], [15], [16], [26] and more in details in [13], then |p| >> /2mgn,,
the approximation E(p) = % + gn. of the quasi-particle energy is commonly used, A = 1, the
operator Cas is negligible, and the mass of the condensate exceeds that of the excitations, i.e.
ne > [ P(p)dp. In equilibrium, the right hand side of (1.1) vanishes. Multiplying the collision term

by log % and integrating in p, it follows that in equilibrium

f1 fo f3

= , when = p2 + p3, 2= 24 2 4 2mgne.. 1.5

v f Tt hith p1=p2+p3, |p1]” = [p2|” + [ps] gne (1.5)

Equation (1.5) implies that ﬁ is a Maxwellian, hence the phase space density f of the excitations
is a Planckian, which is of the type

1
ea(lp|*+2mgne)+Bp _ 1’

a>0, BeR® peR>.



In the equilibrium Planckian distribution function, fix the condensate as identically equal to a
constant ng > 0. Set a = 1, take the z-component of 5 as zero, |f| = 2v/2mgny and write the

Planckian as ﬁpl with pg = —g. Changing variables p — p — pg gives
o _

P(p) = ———— R3
(p) €|p‘2 _ 17 p € 9
as equilibrium Planckian distribution function.
The present paper studies the stability of the equilibrium (P, /ng) of the system under small
deviations, that respect the conservation laws. Although we are not deriving hydrodynamic limits,
we take into account that the system is close to equilibrium and introduce a mean free path ¢, so
that C1o becomes %Clg. The factor g is proportional to the scattering length a, which is smaller than
the mean free path e. Take X of magnitude bounded by (£)*(< 1). The functions (f(¢, z,p), ¥(t, x))
are considered in the slab Q = [0, 27] in the a-direction with periodic boundary conditions, and

taken as

(f;1) = (P(1+ AR),v/ng + A®).

In this paper the external potential U, is assumed to be a constant that will be further discussed.
We could alternatively have left out the external potential in (1.4) but replaced v by eVests) in
the proofs. The atomic mass m (resp. the Planck constant /) will be taken as % (resp. one) for
simplicity. Contrary to the classical Boltzmann operator in velocity space, f € L'(R3) does not
imply C12(f) € L'(R3). This paper is restricted to distribution functions, cylindrically symmetric
in p = (pz,pr) € R x R2. That changes the linear moment conservation Dirac measure in the
collision term to 0(p1z — P2z — P3z). Since the collective excitations play no role within the present
temperature range, the domain of integration is here taken as the set of p € R? such that |p|? > 2A?

with A > 2,/gng. Denote by x the characteristic function of the set
{(p,p1,p2,p3) € R X R X R® x R?; [p[?, |p1[?, |p2|?, [ps]? > 2A%}.

The restriction |p|> > 2A? will be implicitly assumed below, and [ dp will stand for ||

Ip|2>2A2 dp. Set

63 =0(p—p1) —6(p—p2) —(p—p3) and 8 = 6(prz = P2z + P3a, [P1|* = |p2|? + [p3]* + n0)-

The system of equations to be satisfied by (f,v) is

00+ padaf =gV | Woda(fofs — fi(L+ o+ fs))dprdpadps, (1.6)
R3 xR3xR3
and
.02 \/X ~ . Uext
O —i00) = (7 X0o(faf3— f1(1+ fa+ f3))dp1dp2dpz —i(n.+ +2/fdp))gi/1a (1.8)
R3xR3 xR3 g

(0, 2) = thi(x). (1.9)

Here, the function n, is defined by n. = n.(t,z) := [¢|?(t,z). The approximate energy |p|? + gne
used in (1.5), at this range of temperature is replaced by |p|? + gng as an approximation of order \.
The total initial mass is

Mo = / i ()P + / fi(@, p)dadp,
Q OxR3



which is formally conserved by the equations (1.6) and (1.8).
The initial data f; and ; are taken as

fi = P(l—l—)\Ri), P = \/Tlio-l-)\q)i,

for some functions R;(z,p) and ®;(z) with

/(|¢i|2 —np + A/Rg PR;dp)dz = 0.

This is consistent with the asymptotic behavior proven in the paper, i.e. (f — P, |¢|?> — ng) tending
to zero when time tends to infinity. It implies that (up to the multiplicative constant i) the initial
(and conserved) total mass equals the mass of (P, ng), i.e

Mo = /P(p)dp + 1o, (1.10)

The separate masses of condensate and excitation may, however, not be conserved. The constant
Uyt will be taken as g(ng — 2My). For a discussion of general modeling aspects, see also our paper
[2] and its references.

1.3 The main mathematical result.

The main results of the paper concern the well-posedness and long time behaviour of the problem
(1.6-9).

For an initial perturbation of an equilibrium (P, \/n,) of order (£)? and conserving the total mass,
the axial momentum and the kinetic energy of the excitations, the problem is well posed and the
asymptotic limit when ¢ — +oo of the quasi-particle phase space density and the condensate mass
are P resp. 2mng. The mass of the excitations together with the mass, the kinetic energy and the
internal energy of the condensate converge exponentially to their equilibrium values when ¢ — 4-o00.
Let || . ||2 denote the norm in Lz([() 27]), and set || ¥ || gr:=|| ¥ |2 + || 9z¢ |2, let || . ||2,2 denote
the norm in L?, ([0, 27] x R3), i.

1+

P 1
2,2 = (/h (m, P)ﬁdpdm)z

and let L? |  denotes the L?-space of functions A with norm f P(1 )) dpdx)%

P(11P)
The solutions of (1.6-7) will be strong solutions, i.e. such that the collision operator Cia(f, n)
belongs to Cy, (R*; L?_, \/T(RS; H'(0,27))), v being the collision frequency defined in (2.5). The
v 2 1P
solutions of (1.8-9) are H'-solutions in the following sense. A function ¢ € Cy(R™; H}.(0,2m)) is
an H'-solution to (1.8-9), if for all ¢ € C(R*; H!,.(0,27)) and all ¢ > 0,

per

/¢(t,x (ta:dx—/wz ():L‘d:U—I—Z/ /8stx8¢(sx)da:ds

t
— /0 / ({ s X00(fafs — fi(1 4 fa + f3))dprdpadps — i(n. + ng — 2Mo + Q/fdp))gqpédmds‘



Theorem 1.1
There are A1, c¢c and n1 > 0, such that for X < A1 and
(Ri,®;) € L2 . p (R} HL.(0,27)) x H...(0,27) with

(1+1pl) 125 per per
/Ri(:v,p)pdexdp = /Ri(ﬂc,p)(lpl2 + gno) Pdxdp = 0, (1.11)
Jwi=nosx [ PRpyiz =0, (1.12)

R3

and

| @i i< m, | Rill22+||0zRill22< m, (1.13)

there is a unique solution

(f,4) = (P(L+AR),\/no + A®) € C(RY; L2 1 (R Hyer(0,2))) x Cp(RY; Hyye (0, 2))

P+P) per

to (1.6-9) with f > 0. For all t € RT, the solution satisfies,

f € L2(1+|PD3 ({O’ ﬂ X RS; H}%er(()) 27’[‘))),
P(1+P)
| R(t,-) la2 + | O2R(t, -, ) [l2.2< come™, (1.14)

0202 + 400 = o)ty < 2,

where ( = 04\5.
Moreover, n.(t) = [ |[¢(t,z)|*dz converges exponentially of order ¢ to ng, when t — +o00,

lim [ (|00 + %(W — n9)?)(t, z)dz (1.15)

t——+o0

exists, and the convergence to its limit is exponential of order (.

Whereas non-linear systems of the type (1.6-9) and its generalizations have been much studied in
mathematical physics below T, there are so far only few papers with their focus mainly on the non-
linear mathematical questions. Starting from a similar Gross-Pitaevskii and kinetic frame, two-fluid
models are derived in [1]. The space homogeneous initial value problem for this system is treated
in [2] for a large data setting. A Milne problem related to the present set-up is studied in [3]. The
paper [8] considers a related setting, and has its focus on linearized space homogeneous problems.
Validation aspects in the space-homogeneous case are discussed in [23]. There has also been a
considerable interest recently (see ee.g. [7], [18] and references therein) in the bosonic Nordheim-
Uehling-Uhlenbeck equation as a model above and around 7, for blow-ups and for condensation in
space-homogeneous boson gases.

A classical approach to study kinetic equations in a perturbative setting, is to use a spectral inequal-
ity (resp. Fourier techniques and the || - ||7,2.2 norm) for controlling the non-hydrodynamic (resp.
hydrodynamic) part of a solution. An additional problem here is the coupling with the generalized
Gross-Pitaevskii equation. The general approach, together with a Fourier based analysis of the gen-
eralized Gross-Pitaevskii equation, provide local in time solutions to the present coupled system.
Since the condensate and the normal gas are coupled by the collision interaction, the exponential



decrease of the deviation of the kinetic distribution function from the equilibrium Planckian P,
helps to control the long-term evolution of the condensate. This is an important ingredient in the
passage from local to global solutions, which leads to exponential decreases of the deviation of the
condensate mass from its equilibrium state ng, and of the energy (1.15) from its limit value.
Within this frame the kinetic equation (1.6) differs from earlier classical ones. The collision operator
in space-homogeneous bosonic Nordheim-Uehling-Uhlenbeck papers has so far been taken isotropic,
but is here, due to the space-dependent slab-context, cylindric. Mass density does not belong to the
kernel of the present linearized collision operator. The scaling at infinity in its collision frequency
is stronger than in the classical case.

The one-dimensional spatial frame induces simplifications of the functional analysis, mainly in
the control of the condensate. The T? spatial frame, for d > 2, is an open problem.

The conservation properties of the model (1.6-9), as well as some properties of the collision operator
% and its linearized operator L around the Planckian P, are discussed in Section 2, including a
spcectral estimate for L. This is used in Section 3, which is devoted to a priori estimates for some
linear equations related to (1.6) and (1.8). They are then employed in the proof of the main the-
orem in Section 4. The proof starts with a contractive iteration scheme to obtain local solutions.
A key point in the global in time analysis is the exponential convergence to equilibrium for f when
t — —+o00. The analysis of v differs from the classical Gross-Pitaevskii case. It uses the exponential
convergence to equilibrium of f to control the behaviour of the kinetic energy [ |01)|?dx and the
internal energy ¢ [ |[¢[*dz of 4.

2 Some properties of the model and the collision operator.

The model induces total mass conservation as well as axial momentum and kinetic energy conser-
vations for the excitations, as stated in the following lemma.

Lemma 2.1 It holds that

d

G sta iz [ o) o (21)

dt OxR3 (9}

d

- paf(t, @, p)dzdp =0, (2.2)

dt Joxps

d 2

T (Ip|* + gno) f(t, x, p)dzdp = 0. (2.3)
OxR3

Proof of Lemma 2.1.

Integrate (1.6) with respect to space and momentum. Add it to (1.8) multiplied by ¢ ( resp. the
conjugate of (1.8)) multiplied by 1) integrated with respect to space. One obtains (2.1). Multi-
plying (1.6) by p, (resp. (|p|? + gno) and integrating it w.r.t. space and momentum leads to (2.2)
(resp. (2.3)). |




Since the solutions will remain close to an equilibrium (P, /ng), the linearized operator of Cis
around P is of interest. For v := v/, consider the decomposition

f=PA+7R), ¢ =g+~
It holds
[0 = ne = no +yv/mo(® + @) + I,
and the collision term can be written
[ obalfats = £i(1+ o+ F))dirdpadps =~ (PLE+1@Q(R B)).
where
LR = 5 [ %6010 = pc 4 pa)3(Ips = ol + sl + gm0)(3(p — 1) = 60— p2) = (0~ po)
| = (1 Py+ Py)PRy + (Ps — P)Pafy + (P2 — P2) Py Ry | dprdpadps,
and
2Q(R, S) = /5(5053 (P2P3(R2§3+Rggz)—P1R1(P2§2+P3§3)—Plgl(P2R2+P3R3))dp1d]92dp3-
(2.4)

We recall some properties about L proved in [3].

Lemma 2.2 L is a self-adjoint operator in LQL. Within the space of rotationally invariant dis-
1+P

tribution functions, its kernel is the subspace spanned by (|p|> + gno)(1 + P) and p(1 + P).

The operator L splits into K — v, where

v(p) := /)250(1 + P + P3)dpadps + 2 / X0o(Ps — P1)dpidps (2.5)
and
Kh(p) := P?p)</>~<50(P3 — P)Pyhadpadps + /)250(1 + P + P3)Prhidpidps
+/>~<50(P1 - P)P3h3dp1dp3>- (2.6)

Lemma 2.3 The collision frequency v satisfies
vo(L+[pl)* < v(p) <L+ 1p)°s p= (porpr) € R xR, (2.7)

for some positive constants vy and v1. The operator K is compact from LIQ, p into L?ﬁl P -

1+P 1+P

Denote by (+,-) the scalar product in L2L, and by P the orthonormal projection on the kernel of

. _ TP
L. Set hy := Ph and h := (I — P)h.



Lemma 2.4 L satisfies the spectral inequality,

2
_(Lha h) > CO(VhJ_a hJ.)? h e L(1+‘p|)31+ipa

(2.8)
with ¢y > 0.
We will also need an estimate for the quadratic collision operator Q).

Lemma 2.5 For cylindrically symmetric functions (g,h) € L?j p X L*p

(resp. (g,h) € L?p x Lii), it holds

1+P 1+P
1+P 1+P

(/VllfP(Q(i]a’h)fdP)% 56(/”151392@)@/1fPh2(p)dp>%7

(resp.

(/V_IH_PP(Q(?}L))de)é < c(/ulfphz(p)dp 141:]392(19)6129)2)-

Proof. Considering cylindrically symmetric functions, we will use g = g(pz, p?), h = h(pz, p?). The
theorem is a consequence of the following estimates for each of the terms of @. They are of the
type

Psh
Q1(g,h)(p) :=2 / k1(p, p2)gadpa where ky(p, pa) == P2/5(px = pow + P3a, |PI? = |2 + |ps|® + gno) jD?’dp:a,

or

Q2(g,h)(p) :==2 / k2(p, p2)gadpa where ka(p, p2) := P2h/5(111m = pox + P, [P1)? = |p2* + P12 + gno)dps,

or

Q3(g,h)(p) =2 / ks(p, p2)g2dps where ks(p, p2) := Pyh / 8(Px = P2z + P3as [P|* = |p2|? + |p3]* + gno)dps,

or

Qa(g, h)(p) =2 / ka(p, p1)g1dp1 where ky(p, p1) == Plh/c?(pu = pu + P3a [p1[* = |p|* + |ps|* + gno)dps,

or

P
Q5(g,h)(p) :=2 / ks (p, p3)hadps where ks(p, ps) := F?’ /5(]7130 = px + p3x, [P1)? = |p|? + |ps* + gno) Prgidp:.

Let (g,h) € L?> p x L?p . Consider first the term ([ y_lHLP(M)de)%. P is uniformly
Yirp irpP

+
bounded by M from above and below in the domain of integration, so in the estimates below it is



enough to use M instead of P. It holds
(/ VlM(/ k1 (p, p2)g2dpa)?dp) 2
< /(/ LMK} (p, p2)dp) 2 gadps

1
/M292 / “HMQ)(py — P2, [P = |p2* — gno — |ps —pzx\Q)dp) * dps

1
< C/ Msgo /l/_l(\/!p2|2 + |p3|? + gno)MQ_IMg_l(M:ah?))Q)dps) * dps
1 1 1
< of / L MF gadpa)( / MhZdps)
(14 [p2])2
< c(/ Vo Mogadps)? ( /M3h3dp3)§a
by the Cauchy-Schwartz inequality. For the ([ V_ILP(QZSg’h))de)% term,
([ v i3t [ oo p)guipaPa)t < [( [ v 0183 0. p2)i0) e
< C(/ M292dp2)(/ vt Mh?dp)

< C(/ V2M29§dp2)%(/ Mh2dp)%~

(S

The ( Jvi=s ))2d )2 ) terms can be handled similarly. Finally,

3<i<4

( / v LM / s (p, pa)hsdps)2dp) < / ( / v M2 (p, ps)dp)  hadps

3 5 1
< C/M32h3dp3</M191dp1>
2 1 2 1
< | M3hzdps)z( | Migidp1)2.

This completes the proof of the lemma.

Lemma 2.6
There is a constant ¢ > 0 such that for any cylindrically symmetric function f € L*(R3),

| [Paneais e [+ opitw)"

Proof. Using the Cauchy-Schwartz inequality,

| / P(Lf)(p)dp | =] / (ﬁv)(\/fo)dpr

<ol [Prww)’
C</1+Pfj_() > :

IN



3 Rest term estimates.

Consider the decomposition

f=PQ+7R), = /ng+~2.
The equations (1.8)-(1.9) written for ® with periodic boundary conditions when R is given, are

O — 102 = S1® + Spd + U,  B(0,) = ;. (3.1)

Here S1 and S» are the coefficients of the linear terms in P resp. <I> and U contains the 1nhomoge—
neous terms and the non-linear terms in ®, ®. In the following lemmas the dependence of U on ®
is not taken into account.

Lemma 3.1
Let ®; (resp. S1, Sz, U) be a given function in H},.(0,2r) (resp. L=°(R*; H].(0,2)).

per

There is a unique solution ® to (8.1) in C(RT; H}, (0,27)). Moreover,

per

~ ~ t t
1 D(t,.) 120 < (2] ®; |13 +6t /O 1 U(s,.) |5 ds)e® oStz +Iseolln)dr =y g (3.9)

Proof of Lemma 3.1
Consider first the equations

P —idPd =W,  ®(0,-)=d;, (3.3)

for a given W e L®°(R*; H!, (0,2x)). Writing W and ® in Fourier series, gives

per

and so
2 2 . t ~ .
B, (t) = B (0)e ™t 4 / Wi(s)e™ =D ds. (3.4)
0
Hence

[B(t)] < [ B (0)] + /0 W, (s)ds.

D (1+n?) )|®, (1 B <2) [(1+n?) 13,,(0 )|2+t/t(1+n2)|Wn(s)]2ds].
0

neN neN

And so the function ® defined by (3.4) belongs to LiS (RT; H},, (0, 27)). Moreover,

per

t
1800, < 2 1 el +t [ 1 Ws.0) 3 ds).

10



We conclude that given ®; € H' (0,27) and W € L®°(R*; HL (0,27)), there exists a unique

per per

solution ® € L (Rt; HL, (0,27)) to (3.3). It also follows from (3. 4) that the solution is a continuous

loc per

function of ¢ € R* into H},.(0,27). For W = W (®) := S1® + Sp® + U it holds,
I W (s,) 7 <31 S1®(s.) [0 +3 || S2®(s,.) 10 +3 1 Uls, ) 7
<311 S1(s, ) [l @(s,) 13 +3 11 Sals, ) 3nll D(s,0) 13 +3 1 U (s, ) (17 -
With &y = 0, an iterative sequence of solutions @j of (3.3) for j > 1 with the right hand side

W (®;_1), gives

t
195080 1< 2 18 s 460 | (11050 I+ 1 Sato) i) | a5, I+ 1 UG5, [ ),
(3.5)

and with 5(fj = (i)j — (i)j_l,

t
1685083 1< 6t | (01 S1(6..) I +1 Sals) ) 1) 685165, I

It follows that the sequence converges on some interval ¢ € [0,7], and that (3.4) and (3.5) hold
for the limit @, a unique solution of (3.1). By an iteration of the argument the existence and the
continuity of ® hold for ¢ > 0. Using Gronwall on (3.5) for ® gives (3.2). |

The rest of this section prepares for the control of the excitation distribution function f around the
equilibrium P. With

f=P(1+R), fi=P(l+~R),

the equations (1.6)-(1.7) written for R, are

R+ pr0:R = gy(noLR +v(LiR+ Q1(R,R))), R(0,-,-) = R;, (3.6)

where Ly (resp. 1) is a linear (resp. quadratic) operator.
The following norms are used. For 1 < ¢ < oo,

1
1= ([ 7 pU [, 1 pla)ian)”

P
o= ([ e p U 1S ) P)dad)

=

1

S hraa= ([ ppl e Pdady)
X us

To study (3.6), some a priori estimates will be needed for the linear problem

Oth + ppO:h = g’y(noLh + ’yG), h(0,-,-) = ho, (3.7)
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periodic in = with period 27. Assume G € L*°([0,T]; L R3; H!..(0,27))) for T > 0. The

(1) 25 (B Hper

function d,h is at least formally a solution to
at(axh) + pzam(axh) = g’Y(”OL(arh) + 7637(;)’ 8wh(0a E ) = axh()a (3'8)

periodic in = with period 27. For existence of solutions to problems of the type (3.7), see [19] or
alternatively, consider the Fourier transform in x of (3.7) and argue as in the proof of Lemma 3.1.

The solutions are unique and continuous as functions of ¢ into L? , (R?; le)er(()? 27)). Multiply the
+
0g

equation by hiL5, integrate on [0,T] x [0,27] x R3, and use (2.8) t

1+P

Lemma 3.2 For anyn > 0,

| A(T, )H22 +v | ’/ZhL HT22<C(H ho H22 +° v~ QGL HT22 +v°n || G| HT22+ H hy HT22)

Lemma 3.3 Assume v < 1,

27 27
/ / P(pl? + gno)G(t, z, p)dpdz = / / PpoG(t,z,p)dpdz = 0, t e (0,T), (3.9)
0 0

and

2 2
/ / P(pl? + gno)ho(a, p)dpda — / / Ppaho(z, p)dpdz = 0. (3.10)
0 0
Then

I 122 e (37" 1 o 132 +9%C

2 7 ))
Proof of Lemma 3.3
Let {xz = c1pz(1 + P), x2 = c2(|p|?> + gno)(1 + P)} be an orthonormal basis for the kernel of L.
Consider the Fourier series in x of (3.7),

Ohi — ikpehy = cx + 972 Gh, (3.11)

where ¢ (resp. Gy) is the k-th Fourier coefficient of gyngLh (resp. G). Set hgo = (hg,x2) and
hie = (hi, Xz). Multiply (3.11) by H_LPXQ (resp. HLPXQC) and integrate in p,

Ao — ikk(hie + K Y hip, o) = 972 Gira, (3.12)

Othiz — ik”(th + /{_lhkpwxw) = g’YQGkJr (313)

Here hy,y, and Ay, y,, denote non-hydrodynamic moments of h, and x := [ Hippwxgxxdp.
By adding and subtracting (3.12) resp. (3.13) with their conjugates, and dividing by 2 or 2i, we
get equations for the real and imaginary parts,

O Rhya — ikk(Thiy + £ Thip,y,) = 97 RGia,
O ZThia — ikk(Rhyy + £ Rhgp,vs) = 97 ZGha,
O Rhiz — ikr(Tha + £ Thip,y,) = 97*RGra,
O Thiy — ikk(Rhga + £ " Rhp,r,) = 97 LGy

12



Multiply the four equations by respectively Zhg,, Rhke, Zhgo, Rhio, and sum. This leads to the
Os-derivative

O (Rhy2Zhiy) + O (RhugLhiz),
which after integrating with respect to ¢ on [0, 7], evaluates at T" and at zero. Considering the full
expressions for k #£ 0 and dividing by kk, gives
T
| el + ol < (| (RhiaZhu) ()] -+ | (Rhao Zhia) (D] + |(RbyaThi) 0 + |(RbiaThsz) 0)
0

T
+/O (1P| * | Ptepaa | + [B2] + [Pbpoxe| + 972 ([Pt | - |Gra| + |2l - |ka\))dt)-

Finally for k = 0, 9;hoa = g7°Goz, Othor = 972Gos, so that by (3.9)-(3.10),
|h02‘2+‘h0x’2:0, t e (O,T).

We conclude that

T T
/0 | hy(t,.) 152 dt < C( | hy(T,.) 1132 + Il oy 1132 +771/0 | hy(7,.) I35 dt

LT 2 2 [T 2
[ i) Badr+g® [ 1 Gyt 132 dt).
mJo 0
Using Lemma 3.2 leads to the statement of the lemma. [ |

Moreover, it follows from the expression of hy in the basis {(1 + P)ps, (1 + P)(|p|* + gno)} of
the kernel of L, that there is a constant ¢ such that for any h € L?, |

i+P
1
[vzhy llz2<cll by ll22 - (3.14)
Consequently, lemmas 3.2-3.3 give that

Lemma 3.4 Under the assumptions (3.9) and (3.10), there is a constant 31 > 0 such that the
x-periodic solution h to the initial value problem (3.7) satisfies

[ 7(t,-) |

1 ~ 3 1
22 +vA | V3R Ir22< B (1l ho llz2 +93 (1 v 3G L limaz + 1 Gy llrz2)), e (0,71,

Due to the periodic setting, the integrals fo% 0,Gdx = f027r Orhodx = 0, and so assumptions (3.9)-
(3.10) are satisfied by 9;h, solution to (3.8). Similarly to Lemma 3.4, it holds

Lemma 3.5 Under the assumptions (3.9) and (5.10) and analogous ones for Ozho and 0;G, there
is a constant Bo > 0 such that the x-periodic solution h to the initial value problem (3.7) satisfies

1 = 3 _1
| zh(t, ) ll22 +v7 [ v20:h || 12,2< 52(” Ozho ll22 +72(I| v 20:G 1 [l122 + || 0G| HT,2,2)>7 te[0,T].
In the rest of the paper, the notation
By = max{f1, B} (3.15)

will be used.
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4  Proof of the main theorem.

We shall now use the a priori estimates for the linearized equations in Section 3 to construct solutions
to the two component model (1.6-9), and begin with local in time solutions ® and R to the equations

8 — i02D = S, (R)® — igno® + U(®, R), &(0,) = &;, (4.1)

O+ py0u R = g7 (noLR+5(Ly R+ Qg (RR)),  RO,-) = i, (4.2)
obtained from (1.8), and (1.6). Here,

S1(R) = —igno — %72 / PLRdp — 2igy / PRdp — %73 / Q(R, R)dp,

U(®,R) = —@gv PLRdp — 2@'9\/%/Pl?dp —iy/nogy (2|9 + $?)

— 797 /Q (R, R)dp — igy*®|®|?,
_ :z s\, [P =m0, 5 5
L3R = (\/770(‘1’ + B) + 4| ®| )Ls = LR = LR
Q,.4(R, R) = (no +7v/no(® + &) +7°|®*) ——=—

Denote by

| @ loori= sup || D(t,.) |l r1(0,2m);
t€[0,7

S

T
I Flgairi= ([ IR s gomoamy ) 0 € Rotosl
P

I R(t)

=] R(ta ) ||L2P (R3;H1(0,2m)) -
P

Some constants to be used later, are introduced next. By rescaling it is enough to consider ng = 1.
The constant 37 was defined in (3.15). Set

By — (/P(l—%P)dp)é, 8 = (/P(l#—P)udp)é. (4.3)

Denote by B3 (resp. B4) the norm of the injection from H'(0,27) into L*(0,27) (resp. L>°(0,27)).
By the Cauchy-Schwartz inequality and Lemmas 2.2 to 2.6, there are constants (/;)5<;<g such that
for any function g € L?, (resp. g € L 2 h € L2 “p ),

P 1
|/PLgdp| < ﬂ5(/921_H3dp)27 (4.4)
(resp.
P 1 P 1
(vt P taPan’ < bl [ v o Pdn (45
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-

I/Q(g,g)dp < ﬂ7(/921fpdp)2(/V(p)921fpdp)é,

(/V_llJI:P(Q(?D,h))zdp); Sﬁs( VHPPg2(p)dp/1_fPh2(p)dp)2)'

A control of || V7%@ ll2,2,/1 Will also be needed and is given in the following lemma.

Lemma 4.1
For cylindrically symmetric functions g and h in L*(0,T; Lii (R3; HY(0,27))),

+P

|v2

1 1
2,211 < 2B4B8(]] 9 lloo2, 11|l V2R 225t + || B lloo 2,51l ¥29 |l2,2,51)-

Q(g,h)
P
Proof of Lemma 4.1
By deﬁnition Of H . H2,27H17

Q(g,h)

2
P ||2,2,H1

v

(4.8)

< /u1(Q(?h))21fpdpdxdt+2/uI(Q(g}fwh))2lfpdpdxdt+2/u1(Q(a}g’h)
< 265(/ (/921fpdp)(/u(h2 + (ag;h)Q)l_]:Pdp)dmdt

[ Rt ([ ol + 0u9) i) dade).

Moreover,

il P
9 9 o P
[ (]2 5o [ o2 + @) ) o
P 1
< sup /92 tx,p)———dp) || v2h ||2
<(t,z)e[0,T]x[o,2ﬂ ( )1 + P ) I H2,2,Hl

P 1
< (sw [ sup [ota )Py pdp) | vhh [
tef0,1]J)  z€[0,27] +

< Bi( sup /(92 + (9:9)°)(t, z, p)

te[0,7)

P
1+

1.2
dedp) | v2h ||2,2,H1

=Billgl

1
20,2,H1|| v2h ”g,z,Hl .

Applying an analogous inequality to [ ( [ thLPdp) ([v(g*+ (5$g)2)l+ipdp leads to (4.8).

Proposition 4.1
Let (94, R;) € HL..(0,2m) x L? p (R H},.(0,27)), satisfy

+P P

/Rz-(x,p)szd:rdp = /Rz-(ﬂc,p)(lpl2 + gno) Pdxdp = 0,

and

/(Wi’Q -1 +’y/3 P]%idp)dac =0.
R

15
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There are Ty, vo €10,1] and ¢1 > 1, such that for v €]0,v0|, there is a unique solution

(®, R) € Cy([0,Tp); H.,(0,27)) x Cb([O,TO];LiP (R3; HL_(0,27)))

per per

to (4.1-2), for which

R S L(1+\PI)3 ([OuTO] X RS Hl (07 2W>))7

per
P(1+P)

and
| @ floor + | B ooz +vA | V2R llazm < er(l il + | i llam),
where
¢1 = max{1,2(8; + 2¢'279°)}. (4.11)

Given 1y > 0, when || @; ||z1 + || R ||los1 is bounded by o, then Ty and ~o can be taken to depend
only on ng.

Proof of Proposition 4.1.

Denote by 79 > 0 a bound of || @; ||z + || B; [l2,z1- Let ¢ be the maximum of
30g(1 + 27706127@12)(62 + B5 + B BB + 2770612#9 Je 60g (1+Bmo(ﬁ§+ﬁ§+(ﬁlﬁ4ﬁ7m)2))7 (4.12)

1+ 4628485 (1 + Ba)no(1 + 4n2e® ™), (4.13)

and

12g(c1mo(3 + c1mo + 482 + Bs + 48584B8s(1 + cimo)) + 2B2 + B5)e 129 (3+c{ng ((B2+85)*+(BaBre1mo)?))
+61B4c110 (86 + 4BaBscimo) (1 + cimo) + 2B4Bs(1 + 2c1mo + cing) + 1).

(4.14)
Let ~p (resp. Tp) be chosen so that
o—127g° e—24mg° 1
Y0 < min{L 2N 0 2 ) 2}
861 6m0(1 + noe'279”) " (1681(1 + B1)Bero(1 + 20279 )) 2" 451 B6(1 + 2B4)camo(2 + crmo) " 1667
(4.15)
Ty<1, Tp<— (4.16)
0="5 "0= 16¢3° '

Let us prove by induction the existence and uniqueness of sequences (®") in C([0, ), Hper(O 27))
and (R") in C([0, Tp], L? » (R3, HL,,(0,27))) solutions to
1P

per

=0, R'=0, (4.17)

('9t£~1?"+1 - Zag(in—i_l - Sl (Rn)én—l-l - ig(fn+1 + U((i)na Rn% (i)n—i-l (va) = (Dl(x)’ (418)
atRn+1 _'_pmamRnJrl = g (LRn+1 +’Y(L1,§>nﬁ{n+1 +Q1,<f)n (Rn, Rn)))j Rl (07 . ) = Ri’ (4,19)
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and such that for any T' < T and v < 7o,

~ ~ l ~
110n® [loor + | 0n R [loo 2,1 +3/7 | V200 R |22, 11

— 4 D 1 D
< (VT + VA 621 lloor + | 01 R [l 2t +3/7 | V2001 R [l22,80);
(4.20)

and
~ ~ l ~ ~ ~
| " floor + | B" lloo2,5t +v/Y 1 VER™ [log i< c1([| @4 |lgr + || Rillo,m1), n €N (4.21)

Here 6,® = ®"t! — ®" and §,R = Rl — Rn,
The existence and uniqueness of ®! in C([0, Tp), H;ET (0,27)) follow from Lemma 3.1. By (3.2) and
the first bound on Tj in (4.16),

| O (o< 2 || ®; |1 €27, T €0, To). (4.22)
The existence and uniqueness of R in C/([0, Tp), L2Lp (R3, H}.,(0,2m)))) follow from analogous ar-
1+ ~
guments for the solution of the linearized Boltzmann equation. Lemmas 3.4-5 apply to R' and
0, R', by the assumption (4.3) on R;, and because by periodicity

/@Rl(t, z,p)(|p|* + g) Pdadp = /@Rl(t, x, p)py Pdzdp = 0.
Hence,
~ l ~ ~
| B o2t 3/ V2 R o 2,m1 < Bu || R lla,m1 (4.23)
so that
H1l H1 1~y c1 ~ ~
12" oo + 1 B lloo 2, v 192 R o < 5 (1 @il + 1| Ri llz,n ) (4.24)

And so, (4.21) holds forn=1. }
The existence and uniqueness of ®2 in C([0,Tp], H},,.(0,27)) follow from Lemma 3.1, since S;(R')

per

and U(®', R') belong to L>®(0,Tp; H'_.(0,27)), H'(0,27) being an algebra. By (3.2),

per
| 610 Jloor< 3VT( /0 U U@ EY + (SR + ig)8)(0) [ dr) IS EO rons)
T €0, Ty).
Moreover, by (4.4) and (4.6),
|U(@Y, RY)(r) + (S (R")(r) +ig)®" ||
< 29(1+ || @' [loor) (B5 + B2 + SaBry” | ViR 2,2, ) 1| B (r) llz
+10g || @ [I3or (14 | @' [loor), 7€ [0,1].
And so,
| 619 [loor
< 30VT(1+ | @1 [loor) (85 + B2 + 84872 | AR o ) 1| B o + 1| 97 2r )

~ ~ 1~
o SOPOFBHEDIRE , 1 +BIBARYZ, , 1 R 0)

2 ~ 2
< 30gVT(1 + 2npe'*™ )((ﬁz + B85+ B181B0) || R |looa.mr +2m0e™2™ || @1 oo )
« 66092(1+5%7]8(554‘5?"!‘(515457770)2))' (4.25)
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per

A solution R? € C([0,Ty],L?» (R3, H,,.(0,27))) to (4.19) can be obtained as the limit of the
sequence (r*)en defined by o

0 =0, OuFt 4 pd,rftl = gy (erH + 7(L1@1 k4 quﬂ(Rl, Rl))>,

r*(0,-,-) = R;.
By Lemma 3.4, (4.5) and the second condition in (4.15),

| v20kr 22 < 38186(2+ | @' llaor) || @1 flaor |l v2 847 172

1.1
<5 lv2de-rflree, keN

And so, by a contraction argument, the local existence and uniqueness of R? follow. Applying
Lemmas 3.4-5 to 61 R leads to

| 618 e +v7 | V201R o200

< B3 (1@ + ' 4 A|@ P TELO Ry m + || (@1 + @+ 9@ )y ELR [y
+ | ’/7%@1,@1(]5&1731) ll2,2,m1 )

< B1(1+ Ba)73 (286 |1 @1 loor (1 1| @ loer) (| V3O R llap i + | ¥3 R [30.m)
+ 484851 | @ 1) | B e, | VAR a0 ).

And so, by (4.22), (4.23) and the third condition in (4.15),

~ 3 1 ~ T 1~
1018 lloo 2,1t + V7 [ V201 R [l 91 < ( +4B3BaBs(1+ Bu)no(1+4nge* ™))y [| v2 RY [|o0,411).
(4.26)

It results from (4.25), (4.26) and the bounds from below (4.12)-(4.13) on ¢; that
~ ~ l ~
| 61® Jloor + || 1R [[oo,2,1 +v/7 [ VZ01R |la 9 m1
_ ~ ~ 1=
<a(VT+ vl @ oo + | B lloczm +V7 | VER [22,00). (4.27)

And so, (4.20) holds forn=1.
The existence and uniqueness of (®"),>3 in C([0, Tp], HL.,(0,27)) follow from Lemma 3.1, since by

per ‘ -
induction on n and H'(0, 27) being an algebra, S1(R") and U(®", R") belong to L>(0, Tp; HpeT(O 27)).
The existence and uniqueness of (R™),,>3 in C([0, Tp], L2 (R3 H}..(0,2m))) follow from similar ar-

guments to those previously used for the existence and umqueness of R2.
Assuming (4.20)-(4.21) up to n — 1, and using the second (resp. fourth) condition in (4.16) (resp.
(4.15)) implies that (4.21) holds for n. Then 6,® and 6, R satisfy

800 ® — 1025,® = S1(B™)5,® — ig0n® + Tp_1, 2 ®(0,2) =0,

000 R+ pududnR = gy (Lénf% + ULy gubu R+ G 1)) SuR(0,2,p) = 0.
Here

Tno1 = ®"0,-1(S1(R)) + 6,—1U(®, R),

Gno1 = (57171&) +0,1® + W(énm + ﬁ%q‘f))LR" + 5n71Q17<i>(R7 R),
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and (Gp-1)) = 0. Applying Lemma 3.1, it holds that
T -
1629 [|Zr< 6T(/ I T (8) (7 dt>eGTfoT(”Sl(R")(tw)||§{1+27r92)dt.
0

By definition of S;(R) and U(®, R),

Ty =— g’y@" (fy/PLén_ll?dp + 4i/P5n_1de + A2 /(Q(R”, S 1R) + Q(6n 1R, Rnfl))dp)
- gy / PL(Sn,lep — 2ig/P5n1de
—igy (20" + & + )5, b + 20715, D)
997 [(QUR5,1R) + Qs B B )i

- ig’yQ((é" + é”_l)inén_lé + (é”_l)Qén_lé).

It follows from the Cauchy-Schwartz inequality w.r.t. the p variable and (4.7) that for every
te[0,7],

</(/Q(R”,(5n_1R)(t,x,p)dp)2d:I:); < Bé(/ r _1<Q(Rn’]§n_lR))2dpd:r)§

1+P”
~ 1 ~
< B swp | Rt ) Nz, ) V361 R(E)
z€[0,27] H—LP

< B58Bs || B (1) Il || v20n 1 R() [l22 -
Analogously, 8,Q(R™, 6,_1R) being equal to Q(9,R",6n_1R) + Q(R™, 8,6,_1R),
1
([ @ [ @ su-iR) . pyipar)’
~ 1 ~ ~ 1 ~
< 38485 (| Bucr R0 s | V3OLR () 12 + 1| B (1) o | 30,001 R(E) [l ).
And so,
I [ Q" 8 B)e s p)ip
< 2555458( | B"(t)

211t V30 R(E) o + VAR ) N ann | 60r BOE) o )
Consequently,
I Tt ) N <97 | 8" lloor (857 + 482) 1| G2 () [, 11
+ 8581857 (1 B () s + 1| B(®) lo,pr0) [ 2601 R(E) [0
+ (|73 R ) Nl + | V3R Nl ain) | S0t B Lo ) )
+9(B5y +2B2) || dn1R(1) |2,
+3g7(1 "7 oo + 1| 2" lloor) 1| $u18(2) [l
+ 98381857 (I B @) lloar + | B ) lla1) || v2 801 RE)
+ (12 RN o + [ V2R W) o) | uma RO o)
+ 2072 8" 2 + 1| 8™ 12r) || Gnma B(E) [ -
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Moreover, for any t € [0, T,

I S1(R™)(t) [l < 2g<1 + 9By + Bo) || B2 lla,rr +B4877° | B (1) lloysro | v R (1) o, )

And so, using (4.21) at steps n — 1 and n, and the first condition in (4.16)

| 6 ||oor < 6g/Tel28” (3 (Bat85)%+(Basream)?))
(261770(3 +2¢1m0) || 6p—1® [loor +(c1m0(4B2 + Bs + 285B4Bs(1 + c1no)) + 262 + B5) || n-1R |lco.2.1

l ~
+ 2e1m0(1+ c1n0) B3BaBsv/A | v30n1 R lpm1 )- (4:28)

Multiplying the equation for 8, R by (|p|> + g)P (resp. p,P) and integrating on (0,27) x R3, gives

d - d -
p /5nR(t, z,p)(|p|* + g)Pdxdp =0, (resp. p / o R(t,x,p)py Pdxdp = 0).
Indeed, it follows from Lemma 2.1 that
- - P
[ WoB) (o + 9Py = [(GuRIL(IE + 91+ P) o =0

Similarly, the 0,-1Q,5 (R, R)(|p|> + g)P term vanishes after integration, by the d factor in the
definition of Q(R, R).

Being zero initially, [ 6,R(t,z,p)(|p|> +g)Pdxdp and [ 8, R(t, x, p)p, Pdrdp remain identically zero,
so that Lemmas 3.4-5 apply to the equation for 6, R, and 6,8, R. Hence,

~ 1 ~ 3 _1
| 0nR lloo 2, +v7 | V200 R |22 m < 1y || v 2 (L1, 005 + Gn-1) [l22.m1 - (4.29)
Moreover,
1 ~ = ~ 1. =
772 Ly gnbnR 22,0 < B6(1 4 264) [| " lloor 2+ [| ™ lloor) | 200 RL [l2,2,m

1 ~
< Bs(1+2B4)cimo(2 + cimo) | v20n R (20,11,
and, using (4.8),

| v™2Gns l2,2,#1
<2802 1 " oer + 1 8 oer) | 8ucr® e (B -+ 475185 | B i) | VAR o
+28485(1+ 2 || " Jloor + | "7 1) (1 V2 B oz + 1| V2R o) 1| G 1 R ooz
F R oz + 1| B o) | V0a R ) )
< 4Bsermon 2 ((56 +4B4Bscino) (1 + c1mo) || n-1® [loor
+ 28185 (1 + 2c1m0 + 303) | Sn1 R ezt A | ¥200 1R 20,00 )
And so, using (4.28), the fourth condition on 7 in (4.15), in order to move the
B1Bs(1+2B1)c1mo(2 + camo)y? || 2R |z
term from the r.h.s. of (4.29) to its Lh.s., and using the bound from below (4.14) of ¢,
| 60® oo + 1| 6nR lloo21 +v/7 | v20uR Ils0,0
<a (VT + V(| 601® lloor + | 01 R [lo gyt /7 | V2001 R [la2,110). (4.30)
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This proves the induction (4.20) for n.
It follows from (4.20)-(4.21), and the fifth (resp. second) condition in (4.15) (resp. (4.16)), that the
sequence (®", R™) converges in
L>®(0, To; Hl,.(0,2m)) x L°°(0,Ty; L? p (R3; HL,.(0,27))) when n — 400 to a solution
P

per per

(®, R) € L>(0,To; Hp,, (0,2m)) x L0, To; L? p_(R®; Hy,,.(0,2m)))
1+P

per per
of (4.1-2), satisfying

~ ~ l ~ ~ ~
12 lloory + | B oot +3A V2R llo0,m < ex (1 @5l + 1] R llo, a1 )- (4.31)
The solution belongs to W(0, To; HY,.(0,27)) x Wh1(0,Tp; L? » (R3; H, (0,27))), hence
=P

per per

(®, R) € Co([0, To]; Hpe, (0, 2m)) x Cy([0, To); L2 p_ (R Hy,,.(0,27)).

+P

The uniqueness of the solution to (4.1-2) follows similarly, considering the difference of two solu-
tions. -

The following lemma on the kinetic and internal energies of v, will also be needed to prove the
global in time existence result of Theorem 1.1.

Lemma 4.2 The solution (f,) = (P(1 4 vR),) of (1.6-9) satisfies

d
dt

-4 / (D0t + $0D) / (PLO,R +10,Q(R. R))dpdz — g / 10,0 / (PLR +~Q(R. R))dpdz
2,2 / WPGUE - 1) [(PLR+5Q(R B)dpde. (4.32)

Proof of Lemma 4.2.
Given (1.10), equation (1.8) satisfied by # is

(1000 + S0P = 1) (t0)do = 2igy [ (G020~ w0,0) [ P, Rpis

Opp — 102 = —w(g +1iA), (4.33)

where
D = gv? /(PLR+ YQ(R, R))dp, A=g(|v]* -1+ 27/13de).

Multiply (4.33) (resp. the conjugate of (4.33)) by 949 (resp. —0y%) ), integrate on [0, 27] so that

d

& [ Q0P + 500~ 02) eyt =5 [ Dwrs — G0yt — 2y [ wari+ vow) [ PRapas

=2igy / (VO — O2Y) / PRdpdx + 2g / [Y[*D / PRdpdx
+ % /(waﬁ& + %) Ddx — /|1/)|2ADd:v
~igy [ (50,0~ v0.0) [ Posfapds +297 [WPD [ Phapda
1 o
-3 /(wazw + 0,) 0, Ddx — /yamzpy?Dda; — /\WAde.
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This proves the lemma.

Proof of Theorem 1.1. }
Defining s = €' R, we look for a solution (®, s) to the equations

O — 1928 = S1(s)® —igd + U(®,s), ®(0,") = d;,

Ors + padas = gy (Ls +7(Ly g5+ Q 3(5:5)) ) +Cs, 5(0,-,) = R,
obtained from (4.1) and (4.2).

Here ¢ will be the positive rate of an exponential in time decay of R. Set cc =

(4.34)

(4.35)

Let vy be given as in Proposition 4.1 when the norm of the initial conditions is bounded by 7y = 1.

Let ¢¢ and (¢;)2<i<7 be the constants defined by

|2

c¢c = min{1l

10 (2
' V1+g(1 +5§)’ 481(1 4+ /vy)
¢y = 4P1 (461 Baca(Bs + j}%) +1),
c3 = V2gc4 (2\/5 + Ba + 55),

c4 :54(M0+1)%,

c5 = 454( +2c3) 4+ g+ 7(55 + Bapr),

N
c6 = 905(3B4 + /9),

cr = 1% + 9B487(3B4 + \/9)-

Additionally, it is required that
1 1
45 (BGCS + 2ﬁ45804) 4,31 (,3605 + 4ﬂ464(56 + 5804 + \/—))

7o = min{ 1,

and

11 1}
nov2 Beg” 25¢27

Yo < min{1,

Assume that

n¢

617 H 7 HQ,Hl— 1001

(1 + 02)(1 + 03)7

| ; [ < 10 with n < ng.

Set

a(t) = [ (.08 + (0P - 1) (t.2)da.

22
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(4.36)

(4.37)

(4.38)
(4.39)
(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)



To start, there is by Proposition 4.1 a unique solution to problem (4.1-2) on a time interval [0, Tp].
From the computation,

JUi@P = 2z =22 [(@+ 8)(@) + i o < 202 [(8:(0) + [bio) ),
it holds that
a(0) < (1+g(1+ B2 || & 2,
hence
a(0) < 7°n?, (4.46)

by (4.45) and the second bound in (4.36). Consider the set of times ¢; < T such that on [0,¢1) the
solution of (4.1-2) exists and satisfies

1 1
a(t) <29%° and || s(t) 52 + || Dus(®) 32 +7(| 25 |17, 00 + | 2055 |17, 22) < 20°. (4.47)

This set is nonempty by continuity. Denote by 73 its upper bound. We shall next prove that
Ty = Tp and improve the bounds (4.47), which will allow the solution to be continued beyond Tp.
That result is a main step in the proof of global existence, since it will imply that a solution will,
as long as it can be continued, stay within the bounds of (4.47).

On [O,Tl] X [0, 27[‘],

N|=

(t,2)] < B / (I (t, )| + |aw<t,:c>|2>d:fc)é < B (MOM@)% < B (Mot1)* = e, (4.48)
by the bound on a(t) in (4.47), the second bound in (4.44) and the definition of ¢;. Moreover,
ot o) = 1= o [t = Dyl < o [ (el - 1= 5 [ (it )P - 1dy)’du
+ [ 0,5+ 0,0t w)du)
< ([ (Wt 0l = 0 + 430,06, ) )
< @;(2 + 4c)a(t)
<42 te 0T

Multiplying (1.8) (resp. the conjugate of (1.8)) by 9 (resp. 1), integrating w.r.t. = and adding the
resulting equations leads to

< / (6(t,2)[2 — 1)dz | = 72 | / ()2 / (PLR + vQ(R, R))dpds |

dt
_ _ 1
< geiv2myPe " | 5(t) [la2 (Bs + BaBryve™" | v2s(t) [l22)-

And so, using the Cauchy-Schwartz inequality when integrating the previous inequality on [0, t],

1 1 1
[0t = 1] < 451+ 2y + 5 [ tsta) = )dol + L2 H s 2z

V2T
+ 2 _2B1BP(4C) 72 sup | s(t) |2l v [lanmn -
V2 te[0,T4]
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Using (4.46) and the s-part of (4.47), leads to

| [9(t,2)[> = 1] < esym, (4.49)

with ¢ defined in (4.40).
On [0,T1], consider the function s which is a solution to

O0ts + p20z8 = gy (Ls + v (L1ys + ectWJ\QQ(;’S) + QC’Y28)>’

S(Oa 337p) = Ri(xvp)'

By Lemma 3.4, (4.5), (4.7), (4.48), (4.49), the third bound on ¢¢ in (4.36), and the s-part of (4.47),

3 1
sup || s(t) [l2,2 +VY | v2s |7y 2,2
te[0,Th]

~ 3 1 3 1

< Bi( Il Rill22 +Becsv2n || v2si ||y 2.2 +B1Bscin® || 8 loogmn | V25 [Ty 22 )
~ 3 1

< B1(( I R llzz +(Bocs + 28483 || 35 Iy 22 ).

If follows from the second bound on 7y in (4.43) that

Yot =
22+ 50 1 vEs aa< 61 | R las (4.50

sup || s(t) |
te[0,T1]

The function 0, s satisfies

0¢0ys +pxaxax5 =97 (Laxs + (W}(t’ $)‘2 - 1)Lax5 + (1/18351; + iaxlD)LS

—C Q(S,S) i
FCO(UPTET) + g0es),

8w8(0, x‘,p) = 8mRz(xap)

Analogously, using Lemma 3.5,

3 1 ~ 3 1
sup || Ozs(t) ||l2,2 + VY | v20,s |1y 2.2< 51( | 0z R |l2,2 +Becsv2n || ¥200s |1y 2,2

t€[0,T1)
D 7,22 -

+ 2047 || (Ou)v 2 Ls |7y 20 +v7 || v 20 (|00

Here,

2
1+PV(1))8 (t,z,p)dpdxdt

<o (s [iowPenw) ([ [0 sw 50 )
S sup x y L)ax vip) sup s\i,T,p)ap
Nieom) 0 1+P z€[0,27]

2.2 2 ! ! 2
< 283 vy u t dpdt by 4.47
= 67V T </0 / 1 PV(p> S[Og ]S ( 71'7]9) p ) ( )

1 1
< 283837%0 (| v3s I3y 20 + | V3005 B 20 ).

1 Ty
| ety Ls 3, 55 < 52 /0 / 0,021, )
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Moreover,

30, 2) 1B,

T
< 43( / / 0l (L2, ) dpasar
0

P 1+ P
T s, S
+c§/ /V_l((Q(a‘r 2 )))2(15,30,]))1 P dpdxdt)

Ty P
<4ﬁsc4 sup /|6x¢| txda: / / sup 52(t,x,p)?dpdt)2

VO tel0,Ty) z€[0,27] 1

AR || il V005 I 22 )
< 464/38(:4( V2 | ves [dgmm +E s 2]l V2005 [ 22)
< 864Bsc4( ot | vas (30,0 +ein 1| 3005 I, 02)
by (4.47). It follows from the third bound on 79 in (4.43) that

VT 130, Iy 20 B (881 Baca(Bo + 5= || Rillop + | : s [22).

| 0es(t) NG

Consequently,

1 1
Y ves 22 + | v20es |1y 22 )
< Ri |22 + || 9uR; ||2.2 ), (4.51)

I'5(t) ll22 + || Ous(t)

with ¢z defined in (4.37). And so, using (4.45),

1 1
| s(t) l2,2 + || Des(t) ll2z +vA (1 v2s 122 + || v200s [|I1y 2.2 ) < 1%

= m, € [0,T1]. (4.52)

Recalling that ¢ < 1, this improves the second inequality in (4.47).

Next consider . To improve the first inequality in (4.47), each term in the right hand side of
(4.32) is first controlled separately. By (4.48) and the Cauchy-Schwartz inequality,

1207 / (P00 — $0,D) / PO, Ripdz — 4 / (P02 + 00,D) / (PLO, R+ 10,Q(R, R))dpda
< gea(2v/Ba+ e [t [ 15
+2gei®e < [0t ol [ {25 plstt ey [ 1 l0ns(t, 0, ) Pdp) s

1
< geaye St a(t) || Bas(t) (2\/5*2 + 85+~ sup ( / vb sQ(t,x,p)dp)%)

1+ P

10:5(t, 2, p)|2dp) 2 dx

z€0,27]
<964(2¢/3?+/35+/34)76*Wa<t> | 9us(8) llzo (14+(v25(8) llz2 + || v2005(1) [|22))
“alt) | Des(t) lloz (L+ | v2s(t) o,m), (4.53)
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by the definition (4.38) of ¢3. And so, by the a-part of (4.47) and (4.52),

2igy [ (0.0~ v0.9) [ Po.Rdpds — 57 [ 00,6+ 00,5) [(PLOR+10.Q(R. R))dpda]

2,2
—at M 1
< G My [ v2s(t) llzm)- (4.54)

By (4.4), the a-part of (4.47) and (4.52),

N

~ - P
| / 0,02t 2) / PLRApds | < Bsea(t) sup ( / (t, 2, p)—— dp)
z€[0,27] 1+P

< 2B4B57°n%e” " || s(t) ll2,m1
< BuBsy*n’Ce” !, (4.55)
and, by (4.6), (4.52) and (4.47),

| [1o0Pt0) [ QUR Rydpas |

P P
< e ta(t) su / t,xz,p)——d su /l/ S2(t, z,p)——d
Br ()xemgﬂ]( ’(t, p)1+P p) xe[ogﬂ( (p)s=(t, p)1+P p)

NI
NI

_ 1
< BiBre ¢ a(t) || s lloo g, [l v25(t) Il
_ 1
< BB e | vas(t) llo - (4.56)

The |[¢|?(|¢|> — 1) factor of the integrand in the last term of the r.h.s. in (4.32) is split into
[2(|v]2 — 1) = (||* = 1)2 + (|9|> — 1). Tt gives rise to the terms

/(W— 1)? /(PLRJr’YQ( R))dpdz end /(W—l) /(PLRJer( R))dpdz.

Analogously to the previous control of [|8,4|? [(PLR +~Q(R, R))dpdz, it holds that

| [ =12 [ (PLE+1Q(R Rdpds 1< 242 6e (85 + i || vE5(0) aan ).
Moreover,
| [10P = 1) [(PLR+ QR B)dpds |
< F //PLR+’YQ R))dp) dx)

< 2\/? (85 | 5(t) ll22 +BaBrve ™ || s oo prt | vE5(2) ll22 )

< L 2ee (s + BuBrrve St || vEs(t) [z ).

7

Consequently,

1

e / (w2 — 1) / (PLR +~Q(R, R))dpda]
< 9281 + VIV nACe (B + Bufrre=t || v s(t) o ). (4.57)
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And so, it follows from (4.32), (4.54), (4.55), (4.56) and (4.57) that

1 _ — 1
o' (O] < (35 + )V’ n’Ce ™ + et Ce [ vas(t) o, t € [0,Th), (4.58)
with ¢g (resp. c¢7) defined in (4.41) (resp. (4.42)). Integrating (4.58) on [0,t] for t € [0,7}), using
the Cauchy-Schwartz inequality in the last term, (4.52) and the two last inequalities in (4.44) gives

1 2 1
(10 +c67)V° 0 + ey n? || v2s |lagm

+ (E + 6y + ery/An) Y

a(0) +

2
< a(0) + % te0,Ty),

so that, by (4.46),

3
a(t) < 572?72, t €[0,11). (4.59)
Since the bounds obtained in the r.h.s. of (4.52) and (4.59) are better than the ones defining 7 as
the maximal time so that (4.47) holds, it implies that 77 = Tp.

Let T, be the maximal time such that the solution exists on [0, T5[ and (4.47) holds.
The family (®(t))iejoz, is bounded in H'([0,2n]). Indeed, the a-part of (4.47) implies that

f 10,®(t, z)|2dz < 2. Moreover, (4.49) implies that
Y(RP)? 4 2R® + v(ZP)? — ¢5m < 0,

so that
Y@t x)| <3+es, (tx) e [0,To[x[0,27].

Moreover, it follows from (4.47) that (R(t ))tejo,1,[ is bounded by 2 in H1 ([0 2m] x R3).

Consequently, Proposition 4.1 applies with any time ¢ < T3 as initial tlme and provides a unique
solution to (4.34)-(4.35) on an interval of time of length Tj from Proposition 4.1 when the 1n1t1al

data are bounded by 1y = 3(3+7Cs +1). If Ty is finite, using Proposition 4.1 with initial time T» — 7

and arguing as for (4.52), (4.59), it follows that the solution can be continued beyond T3 up to
5+ %, so that (4.47) holds. This contradicts T5 being the maximal time. It results that Th = +oc.

Set A = ~2 and write R; = YR;, R = vR, ®; = v®;, and & = y®.

The existence part of Theorem 1.1 is thus proved for A; in the statement of Theorem 1.1 given by
72 with 7o defined in (4.15)-(4.44), c¢ given by (4.36), and m from (4.45) with n
smaller than ngy given by (4.43).

It follows from (4.51) that R and 0, R converge exponentially to zero of order (. As a consequence
using the total mass conservation, [ |¢|?dz converges exponentially to 27ng. Using (4.58), it follows
that aeo := limy_,o (1) exists, and is finite with the convergence to the limit being exponential of
order ¢. The solution f is positive. Namely, by (4.52) the magnitude of R is bounded by 1 in L,
and so |AR| < 1. ]

— n
- 1061(1+CQ)(1+63)
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