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1 Introduction

The Event Scheduling Problem with Consumption and Production of Resources (ESPCPR)
[4] is an extension of the Resource Constrained Project Scheduling Problem (RCPSP) where
activities are replaced by events which can produce or consume the resources. ESPCPR
consists in scheduling a group of events limited by precedence and resource constraints in
order to minimize the makespan. Some other authors have worked on models similar to the
ESPCPR. We can quote the works of Neumann and Schwindt [6] and of Laborie [5].

The aim of this paper is to introduce for ESPCPR new lower bounds whose calculation
serves two goals. First, lower bounds can help in deleting useless nodes in a branch-and-
bound tree in order to decrease the computation time. Second, they may help in evaluating
the efficiency of heuristic methods when optimal solutions are not available.

The paper is organized as follows. We define in Section 2 the ESPCPR. In Section 3,
we briefly present the Cumulative Scheduling Problem (CuSP) and we show how we can
get a relaxation from ESPCPR to CuSP. In Section 4, we present our lower bounds and we
conclude the paper in Section 5.

2 Problem description

An instance I = (X ,U,a,v) of ESPCPR is defined by a set X = A∪ {0,n+ 1} of events
where A = {1,2, ...,n} is the set of real events and 0 (resp. n+1) is the fictitious beginning
(resp. termination) event of the project, U is the set of precedence relations on the set X of
events, a is the vector of resource production and consumption of events, and v is the matrix
of time lags. The number of resource units produced or consumed by event i is defined by
ai, where a0 corresponds to the initial resource units of the project. If ai < 0, then event i
consumes |ai| resource units, whereas if ai > 0, it produces ai resource units. A schedule S
is a function assigning an occurrence time ti to each event i ∈ X . The time lag from event
i to event j is defined by vi j. If vi j ≥ 0, then event j cannot occur before time ti + |vi j|,
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where ti is the occurrence time of event i. If vi j < 0, this implies that event i has to occur no
later than time t j + |vi j|. At any time the resource availability has to remain positive or null.
The makespan of a schedule S can be computed as Cmax = tn+1. A schedule is feasible if it
satisfies all precedence and resource constraints. An optimal schedule is a feasible schedule
which minimizes the makespan. In the case of multiple resources, K is the set of resources
and ak

i defines the quantity of resource k produced or consumed by event i, where k ∈ K.

3 Cumulative Scheduling Problem (CuSP)

In the Cumulative Scheduling Problem, a set I of n activities has to be scheduled without
preemption in order to minimize the makespan. Each activity i has a processing time or
duration di, a release date ri, a tail or latency duration qi and a resource requirement ei, the
availability of the resource is equal to R. Carlier and Pinson in [3] have adapted the Jackson’s
Pseudo-Preemptive Schedule (JPPS) to this problem in order to compute a lower bound with
O(n logn+nm logm)-time complexity.

This problem is of prime interest for solving more complex scheduling problems like
the ESPCPR. In fact, we can get a relaxation for ESPCPR based on CuSP as follows. We
separate all events into two subsets. Let C contain all consumption events and P contain
all production events. For each consumption event c, we compute its earliest starting time
ESTc and store it as rc. For each production event p, we compute its latest starting time
LSTp and denote qp = l0,n+1−LSTp, which means latency duration or tail where l0,n+1 is
the length of the longest path from the beginning event 0 to the termination event n+ 1.
For a production event p and a consumption event c, if there exists a positive path from
c to p, we denote lcp the length of the longest path between c and p. So a bipartite graph
G′ is established G′ = (C∪P,U ′) where U ′ = {(c, p)|c ∈ C, p ∈ P, lcp ∈ N∗}, it defines a
transportation problem (lcp is the benefit).

A solution of the transportation problem is computed and transformed into a CuSP
where each assignment of the resource is regarded as an activity. The resource flow between
two events is converted into the resource required by the activity and lcp into the duration of
the activity. rc is the release date and qp is the tail.

Production and consumption events, which are not included in the solution, can also be
transformed into activities by setting a hypothetic makespan Cmax. Let P′ (resp. C′) be the set
of the remaining production (resp. consumption) events and a′p (resp. a′c) the new quantity to
produce (resp. consume) by event p of P′ (resp. c of C′). For each production event p (resp.
consumption event c), it corresponds an activity i with release date ri = 0 (resp. ri = LSTc),
a processing time di = ESTp (resp. di =Cmax−LSTc), a tail qi =Cmax−ESTp (resp. qi = 0)
and a resource capacity requirement ei = a′p (resp. ei = −a′c). The resource availability of
this new instance which we denote CuSP(Cmax) is equal to ∑p∈P′ a′p.

4 Lower bounds for ESPCPR

The first lower bound we present is a destructive bound based on JPPS that we compute as
follows. First we fix a hypothetic makespan Cmax and we extract an instance of the Cumu-
lative Scheduling Problem CuSP(Cmax) as explained in the previous section. Then we apply
JPPS to the corresponding instance to get a lower bound JPPS(Cmax). If Cmax < JPPS(Cmax)
then Cmax +1 is a lower bound for ESPCPR.



The second lower bound is based on the Shifting Algorithm. The Shifting Algorithm
[1] [2] was introduced to solve the Financing Problem in polynomial time (O(n logn)). This
problem is a special case of the ESPCPR, where the dates of production events are given. So
to compute this bound, first we make a relaxation from ESPCPR to the Financing Problem
by setting the production events at their earliest starting times and the consumption events
at their latest starting times according to l0,n+1. Then, we apply the Shifting Algorithm to
the corresponding instance. At last, we take the makespan as a lower bound for ESPCPR.

Another destructive bound can be computed as follows. We fix the value of Cmax and we
set the date of production events at their earliest starting times and the date of consumption
events at their latest starting times. If a resource conflict is detected then Cmax +1 is a lower
bound [2] [6].

The last lower bound is a destructive bound based on flow that we compute as follows.
First, we introduce a bipartite graph GI = (P∪C,UI). The first part of the graph is the set
of all production events P and the second part is the set of all consumption events C. We
fix a hypothetic makespan Cmax and we set the date of production events at their earliest
starting times and the date of consumption events at their latest times. We consider an arc
between a production event p and a consumption event c, if event p can start before event c
which is obviously impossible if there exists a strictly positive path from c to p. If the flow
problem defined by the graph GI does not admit any solution then Cmax +1 is a lower bound
for ESPCPR.

5 Conclusion

In this paper, we have studied the Event Scheduling Problem with Consumption and Produc-
tion of Resources (ESPCPR). We have shown how we can get a relaxation from ESPCPR
to the Cumulative Scheduling Problem and the Financing Problem. Moreover, we have pro-
posed three new lower bounds for this problem. We have tested them on the benchmark
of Neumann and Schwindt [6]. Our lower bounds are very close to the optimal solution
makespans. In fact, they reach them for more than 90.29% instances with 1.12% average
deviation in percent. As a perspective, we aim to build a branch-and-bound method to solve
the ESPCPR using our lower bounds.
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