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This paper surveys a new perspective on tree automata and Monadic Second-
Order Logic (MSO) on infinite trees. We show that the operations on tree au-
tomata used in the translations of MSO-formulae to automata underlying Rabin’s
Tree Theorem (the decidability of MSO) correspond to the connectives of Intuition-
istic Multiplicative Exponential Linear Logic (IMELL). Namely, we equip a variant of
usual alternating tree automata (that we call uniform tree automata) with a fibred
monoidal closed structure which in particular handles a linear complementation of
alternating automata. Moreover, this monoidal structure is actually Cartesian on
non-deterministic automata, and an adaptation of a usual construction for the simu-
lation of alternating automata by non-deterministic ones satisfies the deduction rules
of the !(—) exponential modality of IMELL. (But this operation is unfortunately not
a functor because it does not preserve composition.)

Our model of IMLL consists in categories of games which are based on usual
categories of two-player linear sequential games called simple games, and which gen-
eralize usual acceptance games of tree automata. This model provides a realizability
semantics, along the lines of Curry-Howard proofs-as-programs correspondence, of a
linear constructive deduction system for tree automata. This realizability semantics,
which can be summarized with the slogan “automata as objects, strategies as mor-
phisms”, satisfies an expected property of witness extraction from proofs of existen-
tial statements. Moreover, it allows to combine realizers produced as interpretations
of proofs with strategies witnessing (non-)emptiness of tree automata.

1. Introduction

Monadic Second-Order Logic (MSO) on infinite trees is a rich system, which contains non
trivial mathematical theories (see e.g. [Rab69, BGG97]), and which subsumes many logics, in
particular modal logics (see e.g. [BARV02]) and logics for verification (see e.g. [VWO08]). Rabin’s
Tree Theorem [Rab69], the decidability of MSO on infinite trees, is an “important and difficult
decidability theorem for mathematical theories” ([BGG97, §1.3, p. 11]).

The original proof of [Rab69] relied on an effective translation of formulae to finite state
automata running on infinite trees. Since then, there have been considerable work on Rabin’s
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Tree Theorem, culminating in streamlined decidability proofs, as presented e.g. in [Tho97,
GTWO02, PP04]. Most current approaches to MSO on infinite trees are based on translations of
MSO-formulae to automata.’

In this paper, we show that the operations on tree automata used in the translations of
MSO-formulae to automata underlying Rabin’s Tree Theorem correspond to the connectives
of Intuitionistic Multiplicative Exponential Linear Logic (IMELL) [Gir87]. Namely, we equip a
variant of usual alternating tree automata (that we call uniform tree automata) with a fibred
monoidal closed structure which in particular (via determinacy of w-regular games) handles a
linear complementation of alternating automata. Moreover, this monoidal structure is actually
Cartesian on non-deterministic automata, and an adaptation of a usual construction for the
simulation of alternating automata by non-deterministic ones satisfies the deduction rules of
the !(—) exponential modality of IMELL. (But this operation is unfortunately not a functor
because it does not preserve composition.)

Our model of IMLL consists in categories of games which are based on usual categories of two-
player linear sequential games called simple games (see e.g. [Abr97, Hyl97]), and which generalize
usual acceptance games of tree automata.? This model provides a realizability semantics, along
the lines of Curry-Howard proofs-as-programs correspondence (see e.g. [GLT89, SU06]), of a lin-
ear constructive deduction system for tree automata (see Fig. 1). This realizability semantics,
which can be summarized with the slogan “automata as objects, strategies as morphisms”’, satis-
fies an expected property of witness extraction from proofs of existential statements. Moreover,
it allows to combine realizers produced as interpretations of proofs with strategies witnessing
(non-)emptiness of tree automata.

Our motivation for this deduction system is that even if Rabin’s Tree Theorem proves the
existence of a decision procedures for MSO on infinite trees, there is (as far as we know) no
working implementation of such procedures. The reason is that all known translations of for-
mulae to tree automata involve at some stage the determinization of automata on w-words
(McNaughton’s Theorem [McN66]), which is believed not to be amenable to tractable imple-
mentation (see e.g. [KV05]). We instead target semi-automatic approaches in which the user
can interactively perform some proofs steps and can delegate sufficiently simple subgoals to
automatic non-emptiness checkers (solving parity games). The partial proof tree built by the
user is then translated to a combinator able to compose the witnessing strategies obtained from
the algorithms.

This work builds on [Rib15], which proposed monoidal fibrations of games and tree automata,
and extends it with a monoidal closed structure, based on a variant of alternating automata (that
we call uniform automata), and which allows a clearer connection of our model with IMELL.
We follow the guidelines and axiomatizations provided by categorical logic and categorical
approaches to the Curry-Howard correspondence, for which we refer to [Jac01, LS86] and [AC98].
We moreover refer to [Mel09] for a comprehensive presentation of categorical axiomatizations
of models of (subsystems of) linear logic. In the remaining of this Introduction, we sketch
some key points of Rabin’s Theorem (§1.1, §1.2) and then outline the main aspects of our
decomposition of MSO in IMELL and the corresponding realizability interpretation (§1.3-§1.5).

1.1. MSO and (Non-Deterministic) Tree Automata. Let us set some concepts and notations.
Concatenation of sequences s,t is denoted either s.t or s-t, and ¢ is the empty sequence. We
fix throughout the paper a finite non-empty set © of tree directions. We are interested in

'But with the notable exception of [Blul3].
2However, the IMLL-structure underlying our model differs from the usual IMLL-structure of simple games.



labelings of the full D-ary tree ©* over different alphabets. Alphabets (denoted X, T, etc) are
finite non-empty sets, and »-labeled ®-ary trees are functions T : ®* — 3.

There are different expressively equivalent variants of MSO over infinite trees. The main idea
is that we have a two-sorted logic, with a sort of individuals ranging over the positions of the
full D-ary tree ©* (that is over ©* itself) and a sort of monadic second order variables ranging
over sets of positions (that is over P(D*)). When discussing translations to automata, it is
actually customary and convenient (following e.g. [Tho97]), to only allow monadic variables,
and to simulate quantifications over individuals via a (definable) singleton predicate. We shall
moreover not be concerned with any particular choice of atomic predicates. We thus assume
given a set At of atomic predicates. MSO-formulae are then given by

e, n= a | e | oAy | (3X)e (where a € At)

These formulae are interpreted in the full ®-ary tree ®* as expected, assuming an interpretation
of the atomic predicates.

On the other hand, there are two families of tree automata involved in the interpretation
of MSO-formulae: non-deterministic tree automata and alternating tree automata®. The sim-
plest notion is that of non-deterministic automaton, and it is sufficient to introduce the basic
motivations and methodology of this work.

A tree automaton A consists of a finite set @ of states, with a distinguished? initial state
q" € @, an acceptance condition given by an w-regular set 2 C Q“, and a transition function 0.
A non-deterministic tree automaton A over 3 has a transition function of the form

9 : QQxY — P®-—Q)

Acceptance for tree automata can equivalently be described by games or run trees. The
notion of run tree is simpler and sufficient at various places in this Introduction and §2. A
run tree of A on T : ©* — ¥ is a tree R : ©* — @ such that R(e) = ¢’, and which respects
the transitions of A, in the sense that for each tree position p € ©*, there exists a D-tuple
(gd)aco € O(R(p),T(p)) such that R(p.d) = g4 for all d € ®. The run R is accepting if all its
infinite paths belong to 2. We say that T is accepted by A if there exists an accepting run of
Aon T, and let L£(A) be the set of trees accepted by .A. We moreover write A(T") for the set
of accepting runs of A on T.

1.2. Games and Alternating Automata. The main difficulty when translating MSO-formulae
to tree automata is the interplay between negation and (existential) quantification. Histori-
cally, Rabin [Rab69] translated MSO-formulae to non-deterministic tree automata. The major
achievement of Rabin [Rab69] was to show that non-deterministic automata on infinite trees
are closed under complement. This means that for every non-deterministic automaton 4 one
can build a non-deterministic automaton ~.4 which accepts exactly the trees rejected by A.
Rabin’s original construction [Rab69] of a complement ~.A4 from 4 has been considerably
simplified by Gurevich and Harrington [GH82] thanks to the notion of acceptance game. The
idea is to model the evaluation of an automaton A on an input tree 7" as an infinite two-players
game G(A,T). In this game, the Proponent P (also called Jloise or Automaton) plays for
acceptance while its Opponent O (also called Vbélard or Pathfinder) plays for rejection, and A

3 Alternating automata are not always explicited (see e.g. [Tho97]).
Tt is also customary (and equivalent in terms of expressivity) to allow several initial states.



accepts T" when P has a winning strategy. A typical (infinite) play x in G(A,T') has the form:

P 0 P 0] P 0]
(90.d)ded do (q1,d)de cody - o (Guyrd)ded 0 dogt
m m m m m m
a<ql7T(€)> D 3(@0,doaT(d0)) D 8(Qn,dnaT(p)) D
where p = dp - ... - d,. Then x is winning for P if the sequence of states ¢*,qody,q1,d;5---

belongs to §2; otherwise it is winning for O. Note that P chooses transitions (ggq)qep while O
chooses tree directions d € ©. Hence, there is a bijection between accepting runs R € A(T) and
winning P-strategies in G(A, T). Since acceptance games are determined, A does not accept T'
precisely when O has a winning strategy in G(A,T). Gurevich and Harrington [GH82] show
that in acceptance games, winning strategies can always be assumed to be finite state w.r.t.
game positions of the form (p, q) € D* x Q, that is to only depend on a finite memory in addition
to the game positions in ®* x Q.% This allows to devise an automaton ~.4 which, using a usual
projection operation, non-deterministically checks the existence of winning O-strategies.

However, the construction of ~A is still not trivial because the roles of P and O in acceptance
games are not symmetric, so that dualizing the acceptance game of a non-deterministic automa-
ton A does not directly give a non-deterministic automaton ~A. Since [MS87, EJ91, MS95] it
is known that the construction of ~A can be neatly decomposed using alternating automata.
The original idea, as stated in e.g. [MS87, MS95], is for an alternating automaton A with state
set @) to have transitions with values in the free distributive lattice over ) x ©. But recall from
e.g. [Joh86, Lem. 1.4.8] that free distributive lattices are given by irredundant disjunctive nor-
mal forms. Actually, following [Wal02], we can give up irredundancy. We thus simply assume
that transitions are of the form

0 : Q@Qx¥ — PPQRxDD)) (1)
and we read J(¢,a) as the disjunctive normal form
VoA @
7€9(g:2) (¢',d)ev

This results in acceptance games where intuitively P plays from disjunctions while O plays from
conjunctions. A typical play in the acceptance game G(A,T') with A alternating has the form

P 0 P 0 P

Y - (qo,do) - ol - (q,dy) - Tn+1

m m m m m
(q",T(e)) Yo 9(qo, T'(do)) 7 (qn, T (p))

Hence, P chooses relations v € P(Q x ©) instead of tuples (i q)deo while O chooses pairs
(qk, dr) € i instead of just tree directions dj € ©. The main consequence is that O may now
be allowed to choose between pairs (q;, di), (¢}, di) € v, with different states gy, q;, for the same
tree direction di € .

The extra possibility for O to choose states in addition to tree directions allows to define a
complement of 4 which essentially simulates .4 while reversing the roles of P and O. This can

5This is trivial for P-strategies but not for O-strategies.



be implemented with an alternating automaton® A' having the same states as A. The idea is
that since the double powerset P(P(Q x ©)) in (1) represents disjunctive normal forms over
Q x ©, the transition function of A can just take (¢,a) € Q x ¥ to a disjunctive normal form
representing the dual of d(q,a). Then, if the acceptance condition of A is the complement of
Q, it follows from game determinacy that £(A') is the complement of £(A).

On the other hand, every alternating automaton 4 can be simulated by a non-deterministic
automaton A of exponential size (this is the Simulation Theorem [MS87, EJ91, MS95], see
also §7.2), while non-deterministic automata are linearly embedded into alternating automata
via the obvious mapping

(qa)aco €Q° +— {(qa,d) | d€D} € P(Q x D) (2)

The situation can be pictured as follows:

~ Alternating
Automata

Non-Deterministic
Automata

Accordingly, in most modern approaches to MSO on infinite trees, the complementation of
non-deterministic tree automata can be decomposed as

~A = (AN (4)

1.3. Toward Linear Logic. The model of [Rib15] consists in categories of two-player sequential
games generalizing the usual acceptance games of tree automata. Using the notion of uniform
automata (to be introduced in §3), the extension of [Rib15] proposed in this work shows that
the decomposition depicted in (3) of the translation of MSO-formulae to non-deterministic tree
automata via alternating automata corresponds to some extent to an IMELL-structure:

e First, the usual direct synchronous product of alternating automata (which we denote
(—) ® (—)) has a symmetric monoidal structure. Moreover, thanks to the monoidal-closed
structure of (—) ® (—) on uniform automata, the set of morphisms from A to B is in
bijection with the set of winning P-strategies in the acceptance game of an automaton
(A — B) over T'. In particular, linear complements are obtained with

AY ~ AL
(where L is a particular automaton accepting no tree), with as expected T € L(A") iff
T & L(A).

e Second, we show that the simulation operation !(—) satisfies the deduction rules of the
usual modality !(—) of IMELL. Moreover, the symmetric monoidal product (—) ® (—) is
Cartesian on non-deterministic automata, so that the picture (3) is similar to the usual

6(=)* was noted ~(—) in [Rib15].



linear-non-linear adjunctions in models of IMELL. (Unfortunately, in our models the
operation !(—) is not a functor.”)

The connection between alternating automata and IMELL suggests that we may take variants
of IMELL as intermediate steps between MSO and automata. In our setting, an IMELL-based
language for MSO would consist of the following formulae:

o0 n= o | L[ T | ey | o—9 | lo | @X)e [ (VX)p

This language must be seen as a refinement of MSO with finer-grained connectives, which
directly correspond to operations on automata (the primitive universal quantification is actually
non-standard, see §6). Since the connectives of IMELL correspond to operations on automata,
provided an automaton A(«) is given for each atomic formula o € At, one can (inductively)
associate an automaton A(p) to each IMELL formula .

It would have been be natural to also consider the additive connectives & (conjunction) and
@ (disjunction) of linear logic, which do correspond to known constructions on alternating
automata. However, the expected categorical properties of these connectives would require an
extension of our setting that we leave for further work. Keeping this in mind, the translation of
MSO to non-deterministic automata induced by (4) factors via the map (—)"d : MSO — IMLL
given by

nd — a
(—g)nd = (e — 1)
(A = gy
(@X)p)d = (IX)

while the translation of MSO to alternating automata factors via the map (—)% : MSO — IMLL
given by

al = «
(~o)" = pF ol
At = Pl eyr
(BX)p)t = (3X)lp"

The factorizations of the translations of MSO to automata via IMELL are sound in the following
sense.

Proposition 1.1. Let (=) be either (=) or (—)F.

(a) A closed MSO-formulae o is true (in the standard model) if and only if A(e') accepts the
unique 1-labeled tree.

(b) Given MSO-formulae @, @, if = ¢ in second-order logic, then

o Fimerr @

1.4. Computational Interpretation of Proofs. In our view, proposing IMELL as an intermedi-
ate system between MSO and automata should rely on a suitable computational interpretation
of proofs, along the lines of the Curry-Howard proofs-as-programs correspondence. We explain
here our view that the relevant computational objects are runs of automata or P-strategies in

"It does not preserves composition, because of issues with positionality of strategies. Possible workarounds,
leaved as future work, are discussed in §8.1.



acceptance games. This leads us to the slogan “automata as objects, strategies as morphisms”,
and implies that we consider a deduction system for automata rather than IMELL formulae.
Our deduction system manipulates sequents of the form

T: A,..., A, B (5)

where T is an infinite tree labeled over (say) the alphabet ¥, and Ay, ..., A,, B are tree automata
over Y. We see these sequents with two different levels of interpretation. The first level interprets
provability: if the sequent (5) is provable, then the automaton B accepts the tree T' as soon as
the automata Aq,..., A, all accept T

The second level is the computational interpretation of proofs of the Curry-Howard correspon-
dence. This is best exemplified with existential quantifications. The existential quantifications
of MSO are implemented by a projection operation on non-deterministic automata. Consider
a non-deterministic automaton A over the alphabet I" x 3. Its projection dx.A is the non-
deterministic automaton over I' defined as A but with transition function

0

ERY QaxI' —  P®—=Qua)

(Q7 b) — UaEE a.A(Q? (b’ a))

As expected, ﬁzA accepts T : ®* — I iff there exists U : ©®* — ¥ such that A accepts
(TU) : 9" =T x X.

Consider now a non-deterministic automaton B over the alphabet ¥ ~ 1 x X, where 1 ~ {e}
is a singleton set. By computational interpretation of proofs, we mean that from a formal proof

of the sequent N
1; F3sB

(where 1 stands for the unique 1-labeled tree) one should be able to extract a witness for
the existential quantification ﬁgB, that is a X-labeled tree accepted by B. Such witnesses can
actually be extracted from the runs of 355 on 1. First note that a run R of a non-deterministic
automaton A on T defines a function p € ®* +— (qa)qen € OA(R(p), T(p)). It follows that
given an accepting run R of J5B on 1, then from the induced function

pPED* > (qa)aen € | 98(R(p),2)
acx

one can get a YX-labeled tree T such that R is an accepting run of B on 7.

In other words, runs of automata convey the kind of information one is usually interested in
with computational interpretations of proofs. We will however rather rely on the more complex
notions of acceptance games and strategies. There are two reasons for this choice. First, as
discussed in §1.2 above, games give a smooth treatment of complementation of tree automata.
The second reason, which we motivate with more details in §2, is that games and strategies
are equipped with well-known categorical structures, which allow to easily define compositional
interpretations of proofs.

Following the methodology of categorical logic, the categories proposed here and in [Rib15]
are indezxed (or fibred) over a base category T of trees, whose objects are alphabets and whose
morphisms from ¥ to I' induce functions from Y-labeled trees to I'-labeled trees (see §2.2
and §4). In this setting, existential quantifications (in the categorical sense) are provided by a
slight modification (denoted 3(—)) of the usual projection 3(—).



1.5. Toward Realizability Interpretations of MSQO. The ultimate motivation for the Curry-
Howard approach to automata on infinite trees proposed in this paper, together with the un-
derlying decomposition of the translation of MSO-formulae to tree automata via IMELL, is to
provide realizability interpretations of MSO (in the spirit of e.g. [SU06, Koh08]). We think that
the model presented here (consolidating [Rib15]) is a preliminary step toward this goal. Let us
briefly describe our main results in this direction.

Generalizing (5), our deduction system also manipulates sequents of the form

M: Ay,..., A, B (6)

(see §2.2) where M is a T-morphism, from say ¥ to I' and the automata Ay,..., A, B have
input alphabet I'. In the case M is the identity T-map on X, the sequent (6) is written

Y Ay, A F B (7)

which in contrast with (5) and (6) does not mention any tree. The full system is presented in
Fig. 1, and we can state a second soundness result.

Proposition 1.2. Given IMELL-formulae @, p,

P FimeLL ¢ = 275 Alp) F A(p)
(where @, ¢ have free variables among X1, ..., Xp).

The symmetric monoidal closed structure, together with the categorical quantifiers and the
interpretation of simulation as an exponential modality !(—), allows to interpret proofs in the
deduction system of Fig. 1. From a proof Z of a sequent (7), one can (compositionally w.r.t.
the structure of 2) extract a winning finite-state strategy o in an infinite game of the form
A1 ® - ® A, — B. As indicated in §1.3, 4; ® --- ® A,, essentially evaluates the automata
A1, ..., A, in parallel, while the linear arrow —o is a synchronous restriction of the usual linear
arrow of simple games. When we have a strategy ¢ winning in 4; ® - -- ® A, — B, we say that
o is a realizer and write

o F A4® - --®A — B

In case (7) is of the form 1 ; + IpN (with N non-deterministic), we indeed obtain a compu-
tational interpretation of proofs in the sense of §1.4, since as shown in §7.1.2, we have

olk3IgN — o=(T,7) where T:®" =% and 7IFN(T)
Assume now that (7) is of the form
X; AFB (8)

Then a X-labeled tree T induces a substitution functor T*, whose action on o gives a function
T*(o) taking any winning P-strategy 7 on A(T) to a winning P-strategy 7" (o) o7 on B(T) (see
Prop. 4.11). This gives the rule
clFA—B
T*(o) IF A(T) — B(T)

and the function
T I- A(T) — T*(o) o1 IFB(T)

In other words, realizers of sequents of the form (8) can be composed (via substitution) with
strategies 7 on A(T) obtained by any possible mean.
The summarize, we get the following soundness result.



Theorem 1.3. Given automata A, A over 3,
L AR A = F®A— A (9)
FoAd—A = (LA LA (10)

More generally, the methodology behind our deduction system and its realizability interpre-
tation targets interactive proofs systems, allowing possible human simplifications or decom-
positions of the goals given to automatic tools, and moreover to combine the corresponding
witnessing strategies. Our motivation is that even if Rabin’s Tree Theorem proves the existence
of a decision procedures for MSO on infinite trees, there is (as far as we know) no working im-
plementation of such procedures. The reason is that all known translations of formulae to tree
automata involve at some stage the determinization of automata on w-words (McNaughton’s
Theorem [McN66]), which is believed not to be amenable to tractable implementation (see
e.g. [KV05]). We instead target semi-automatic approaches in which the user can delegate
sufficiently simple subgoals to automatic non-emptiness checkers (solving parity games). The
partial proof tree built by the user is then translated to a combinator able to compose the
strategies obtained by the algorithms.® To this end, some relevant properties of our framework
are the following.

First, thanks to the (non-standard) primitive universal quantifications, games of the form
¥ F A — Bare equivalent to games of the form 1 F Vx (A — B), which are themselves equivalent
to w-regular games on finite graphs. Thanks to the Biichi-Landweber Theorem [BL69], one can
thus decide if there is a strategy realizing the implication A — B, and if such a strategy exists,
then there exists a finite state one, which is moreover effectively computable from A and B (see

Cor. 6.5).
Second, following Ex. 6.10, our system can be extended with the rule
LA:1)#0
1;+-A

This rule has the following consequences:

(1) Assuming
Al ® M ® An —0 B

(over say X)) is realizable, following the same reasoning as for Cor. 6.5, we get (leaving
implicit some structural and cut rules)

LUVs(A®- @A, — B)) #0
1; FVg(A1®---® A, — B)
YiFAR-QA, —B
Y A®---0A,FB
Y A,..., A, FB

This entails the rules of Ex. 5.9, and in particular allows to derive the general (WEAK) rule

M; ABFC
M; A, ABFC

8The author and P. Pradic have recently obtained preliminary results in this direction for MSO on w-
words [PR17, PR18].



(2) Given A, B : ¥ non-deterministic we have

LA NLB) =0
¥, AR BL

Indeed, from L£L(A) N L(B) = 0 we can derive (again leaving implicit some structural and
(CuT) rules)
LO(A®B) — L) £0
1;F3s(A0B) - 4L
1; Ix(A®B)FAL

Y, A BE A
>, A, BEL
Y A B*

Moreover any (finite-state) O-strategy witnessing £(A ® B) = () can be lifted to a (finite-
state) realizer of A —o B* (Prop. 7.7).

(3) In particular, for A, B : ¥ not-necessarily non-deterministic, we have

L(A) C L(B)
¥, 1AF?B

where ?(—) :=!((—) — L) — L (Prop. 7.16).

1.6. Outline. The paper is organized as follows. In §2, we expose some ingredients and
methodology of our approach based on categorical logic, and we sketch the connection be-
tween IMELL and the interpretation of MSO in usual tree automata. We then turn in §3 to
our notion of uniform automata (motivated by monoidal closure), and present basic material
on zig-zag games required for our setting. Section 4 then deals with the fibred structure (which
is essentially a refinement of [Rib15]), §5 presents the monoidal closure and the corresponding
deduction rules, while §6 deals with quantifications. Finally, in §7 we concentrate on the Carte-
sian structure of non-deterministic automata and present the interpretation of the Simulation
Theorem using the deduction rules of usual !(—) IMELL-exponential modalities. App. A pro-
vides connections with usual game semantics. Further examples, showing that our setting can
handle constructions of [CL08, SA05], are presented in App. C.

2. Toward Categories of Games and Automata

The purpose of this Section is twofold. First, in §2.1-2.3, we expose some ingredients and
methodology of our approach based on categorical logic. We state in §2.1 the minimal re-
quirements imposed by categorical semantics of proofs, and §2.2 presents some basic ideas
and motivations on indexed categories for modeling free variables and quantifications. Finally,
in §2.3 we explain why it seems difficult to obtain a suitable categorical semantics of implications
using usual connectives on automata. Second, building on [Rib15], in §2.4 & §2.5 we sketch
the connection between linear logic and the interpretation of MSO in tree automata mentioned
in §1.3.

10
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(LEFT —o) M,AFiAi M ; B,ES,CI—C M,iA,BI— (RiGHT —o)
M; B, A A—-B,CkHC M; AFB —
(DERELICTION) M;LA’A’B'_C M;AH_ (PROMOTION)
M; A VA, BEC M ; NF!
M; A, BrC M; A N,N,B-C
W S e C
(WEAKND) VLB e M AN, Bre  (CONTRND)
(Lerr 3) M x Idr ; Alr], B+ Alr] MxN; A A (RiguT 3)
M A IrBFA M x N ; A (3rA)x]
(LEFT V) MxN; A BFA M xIdr ; A[r]F A (RicT )
M x N ; A, (VrB)[#]F A M ; A-VrA

Figure 1: Deduction rules on automata of Fig. 18 (§5.3), Fig. 20 (§6.3) and Fig. 24 (§7.2.4),
where M, M’ are composable, N', N are non-deterministic, and where the weakening
functor (—)[r] takes automata over ¥ to automata over ¥ x I'.
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2.1. Compositionality and Categorical Semantics. The method of categorical semantics of
proofs (see e.g. [LS86, AC98, Jac01, Mel09]) is to interpret proofs as morphisms of a category
C, such that C is equipped with some structure corresponding to the connectives and rules of
the deduction system. For the moment, let us step back from acceptance games and consider
run trees. Our task is thus to devise categories whose objects include all sets of the form A(T),
for an automaton A and a tree T, and such that the proofs of a sequent T'; A+ B can be
interpreted as morphisms from A(T) to B(T).

The first requirement of categorical semantics is that the very notion of category already
imposes interpretations to be compositional. Recall that the sets of morphisms of a (locally
small) category C come with associative composition operations

(=)o(=) : C[B,C]xC[A,B] — C[A,C] (for each C-objects A, B,C)
and with identity morphisms id4 € C[A, A] which are neutral for composition:
foidga = f = idgof for every f € C[A, B (11)

Composition and identities provide the interpretations respectively of the following instances of
the usual cut and aziom rules:
T; AFB T; BEC

T; AFC T; AFA

(CuTy) (AXI0M)
The identity laws (11) imply for instance that the three derivations below must be interpreted
by the same morphism:

9 2 9
T; AFB ’ T; A-B

2.2. Indexed Structure: Substitution and Quantification Rules. Our categories actually in-
volve a slight generalization of the usual notion of acceptance (either with run trees or games)
of automata. This generalization is induced by the axiomatization of quantification and substi-
tution in categorical logic (see e.g. [JacO1, LS86]).

Let us briefly discuss the usual setting of first-order logic over a multisorted individual lan-
guage. The categorical semantics of existential quantifications is given by an adjunction which
is usually represented as

Jz p(x) F 9
p(x) -
This adjunction induces a bijection between (the interpretations of) proofs of the sequents
o(z) F 1 and Jz.(x) F 1, that we informally denote

p(x) = ~ Jz p(x) F 9

(z not free in ) (13)

Now, in general the variable  will occur free in . As a consequence, in order to properly
formulate (13) one should be able to interpret sequents of the form ¢(z) b= ¢ with free variables.
More generally, the formulae ¢ and 1 should be allowed to contain free variables distinct from .

The idea underlying the general method (but see e.g. [JacO1] for details), is to first devise
a base category B of individuals, whose objects interpret products of sorts of the individual
language, and whose maps from say ¢ X « -+ X ¢y, t0 01 X - -+ X 0, Tepresent n-tuples (t1,...,ty)
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of terms t; of sort o; whose free variables are among z,,,...,z,, with T, of sort ¢j. Then, for
each object t = ¢1 X -+ X 1, of B, one devises a category E, whose objects represent formulae
with free variables among x,,,...,x,,, and whose morphisms interpret proofs. Furthermore,
B-morphisms

t=(t1,...,tn) + L1 X Xly —> 01X X0y

induce substitution functors

t* . E01><~~'><On — EL1><~"><Lm
The functor ¢* takes (the interpretation of) a formula ¢ with free variables among yo,, - - . , Yo, t0
(the interpretation of) the formula ¢[t1/yo,, - .., tn/Yo,] With free variables among z,,,...,z,,, .
Its action on the morphisms of E,, x...xo, allows to interpret the substitution rule
et

Plt1/Yors - s tn/You] = Plt1/Yors - -+ tn /Yoo

In very good situations, the operation (—)* is itself functorial. Among the morphisms of B, one
usually requires the existence of projections, say

T 1 0oXL — o0
Projections induce substitution functors, called weakening functors
™ : E, — Eox

which simply allow to see formula v (y,) with free variable y, as a formula v (y,, z,) with free
variables among vy,, 2, (but with no actual occurrence of x,). Then the proper formulation
of (13) is that existential quantification over z, is a functor

Jz, (=) : Eox, — E,

which is left-adjoint to 7*:

3z, (20, Yo) = P (Yo)
(0, Yo) F T (V) (21, Yo)

(where z, does not occur free in 1) since 9 is assumed to be (interpreted as) an object of E,, thus
replacing the usual side condition). Universal quantifications are dually axiomatized as right ad-
joints to weakening functors. In both cases, the adjunctions are subject to additional conditions
(called the Beck-Chevalley conditions) which ensure that they are preserved by substitution.

Returning to automata and infinite trees, we will take as base category the following category
T of trees.

(14)

Definition 2.1 (The Base Category T). The objects of T are alphabets, and its morphisms
from ¥ to I', denoted M, N, L, ..., are functions of the form

UJEtxom) — T

neN
A T-morphism M € T[X,T] thus takes for each n € N a sequence of input characters a =
ag-...-a, € 2" and a sequence of tree directions p =d; ... -d, € ®" to an output character

M(a,p) € I'. In particular, we have T[1,X] ~ (D* — X), so each X-labeled D-ary tree T
corresponds to a morphism 7" € T[1,X]. Moreover, (¥ — T')-labeled trees M : ©* — (¥ — T
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induce T-morphisms from ¥ to I.? T-morphisms are composed in the expected way (see §4.3
for details).

We will therefore not devise a single category C, but a T-indexed collection of categories
Ex, one for each alphabet 3. Let us sketch the general idea with runs of non-deterministic
automata. Given a non-deterministic automaton A over I' and a morphism M € T[X,T], a
Y-run of A on M is a tree

R : ®F — X XQq

such that R(e) = (ag, ¢") for some ag € X, and which respects the transition function
8,4 D QaxIl — P(@—)Q_A)

supplied with input characters b € I' computed by M from tree positions p = dqi - ... - d,
and sequences of input characters a = ag - ... - a, where a; is given by the X-component of
R(dy-...-di) € ¥ x Q4. (So ag is given by R(e) and a, is given by R(p).) Explicitly, R is a
Y-run tree when for p and a as above, if R(p) is labeled with state ¢ € Q 4, then there exists
a D-tuple (gq)deo € 04(q,b) with b = M (&, p) and such that for all d € ©, R(p - d) is labeled
with state gg. Such a Y-run R is accepting if the @ 4-labeled tree

pe® — w(R(p) €Qu

is accepting in the usual sense (where 7 : 3 X Q4 — Q4 is the second projection), that is if all
its infinite paths belong to Q4. We let X + A(M) be the set of accepting Y-run trees of A on
M, and simply write A(M) for ¥ + A(M) when ¥ is clear from the context.

Roughly speaking, for each X, the objects of the category Ex; will include all sets of the form
Y+ A(M). Moreover, given L € T[A, X], the substitution functor

L : Exy — Ea

will take an Ex-object ¥ = A(M) to the Ex-object A = A(M o L), where the T-map Lo M €
T[A, T is the T-composition of L and M (assuming M € T[3,I'| as above).

This will induce sequents generalizing (5). For instance, given M € T[X, T'], we have sequents
of the form

M; A,..., A B (15)

where A1, ..., A, and B are automata over I". Such sequents are to be thought about as our
version of “open sequents” or “sequents with free variables” (here of sort X), with the usual
implicit prenex universal quantification, and are to be interpreted in the category Ex (the fibre
over ). Substitution functors such as L* : Ex; — Ea above will act in the deduction system
via a substitution rule

M; .Al,....Anl_B

(SUBST) ST A A FB

(where M € T[S,T] and L € T[A,X])  (16)

Let us briefly sketch the most important instances of this construction.

(a) Consider a T-map T : T[1, ¥] representing a tree T : ©* — 3. Then the accepting runs of
A on T are in bijection with the accepting 1-run trees of A on T

(1FAT) =~ AT)

9The morphisms from ¥ to T' of the base category of [Rib15] are restricted to (¥ — I')-labeled trees.
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Sequents of the form (15) thus indeed generalize sequents of the form
T; Ay,..., A, B

with 7' : ©* — ¥ (as depicted in (5)), which are to be interpreted in the category E; (the
fibre over 1), and are to be thought about as representing closed statements.

Given a non-deterministic automaton A over ¥, we write ¥ - A (or even just A when no
ambiguity arises) for 3 - A(Idy) where the T-identity Idy € T[X, X] is given by

Idy(a-a,p) = a

Consider now another automaton B, also over ¥. Then we write
Y¥; AFB (17)

(or even A b B) for the sequent Idy, ; A+ B. The provability interpretation of (17) will
be that if (17) is provable, then £(A) C L(B). The computational interpretation of (17)
will consist in a form of uniform simulation of A by B (generalizing the notion used with
the guidable automata of [CLO8]). Moreover, given a X-labeled tree T" seen as a morphism
T € T[1,%], the interpretation of the substitution rule

>, ARB
T: A+B
will take a morphism o € Ex[A, B] to a function T7*(o) : A(T) — B(T).

Any ordinary function f : ¥ — I" induces a morphism [f] € T[X, '] defined as

£ : (@-ap) — 1(a)

The action of the substitution functor [f]* : Ep — Ex on Ep-objects of the form I' - A can
be internalized in automata. We indeed have

fF]*THA) = XFA(f]) = Xk A[f]
where the automaton A[f] over ¥ is defined as A but with transition function:

8A[f] : QAXF — 'P(@—>QA)
(¢;b)  +—  Oalg,£(b))

In particular:

(i) T-maps from X x I" to ¥ indeed include projections [r] : ®* — (X x I' — X) induced
by Set-projections 7w : X x I' = 3.

(ii) Consider automata Aj,...,A, and B, with A; over ¥; and B over I'. Consider fur-
thermore T-morphisms M; € T[A,¥;] and L € T[A,T']. Then we write

A A(M), ..., Au(My) F B(L)

for the sequent
<M1, e ,Mn,L> 5 Al[ﬂ—l]a ey .An[ﬂ'n] F B[ﬂ']
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where
(My,...,M,,Ly € T[A, X1 x---x X, xT]

is the T-tupling of My, ..., M,, L (see Cor. 4.6) and where the m;’s and 7 are suitable
projections:

T 2 X e XY, xID o — 3

™ D XX xy,xI' — T

Unless otherwise stated, all the sequents seen up to now must from now on be thought about
as being of the more general form (17), that is a with a T-map M (of appropriate type) instead
of the labeled tree T'.

2.3. Toward a Semantics for Implications. The provability interpretation of sequents tells us

that in sequents of the form
M; AFB (18)

the symbol F is a form of implication. One of the main contributions of this work is that this
implication can be internalized in automata. This will lead us outside of non-deterministic
automata (see §3), but for the moment let us sketch some salient consequences this imposes to
the interpretation of the symbol - in sequents of the form (18).

Assume that proofs of our deduction system are interpreted in categories E(_) indexed over
T. Then, internalizing F in automata will imply that given automata A and B over X there is
an automaton (A —o B) over ¥ such that there is a bijection

Ex[A,B] ~ XF(A—DB)
that we informally write as
¥; AEB o~ YF(A— B)

In other words, morphisms in the interpretation of ¥ ; A+ B will correspond to the X-runs of
an automaton (A — B) (on Idy). This could suggest to interpret ¥ ; A F B as the Y-runs of
an automaton of the form ~AV B, where ~A is the complement of A (in the sense of §1.1) and
(=) V (—) is a disjunction on automata. Let us rule out this possibility, at least for the natural
implementation of (—) V (=) with an additive disjunction (—) & (—). Given automata .4; and
A3, both over 3 and with A; = (Q.4;,74,,94;,4,), the non-deterministic automaton A; & As
over X is

-/41 @ A? = (QAl + Q.AQ + 17 e, aAléBAQ 9 QA1@A2)
where, via the embedding of Qal + QaQ into (Qu, + Qua,)°, we let
- 8A1(q3417a)+6A2<QZ42>a) ifg=ec1l
dmenlnd) = | ghih ifg e Qua,

and where ®,q1, 2, ... € Qa,a4, iff either ¢4, q1,q2,... € Qa, Or ¢4, q1,q2,- .. € Qa,.
Note that in Set, for every M : ®* — (I' = X) we have

(A1 @ A2)(M) =~ A (M) + Az (M)

so in particular

L(A @ Az) L(A1) U L(A2)

Assume now that we take for Ex[A(M), B(NNV)] the set of X-runs of (~A[m1] & B[m]) on
(M, N), that is the disjoint union ~A(M) + B(NN). Then one faces the following difficulties.
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e We have to devise identity morphisms, say'’

Assuming say M € T[X,T], one may take for id A(M) either an accepting ¥-run of A on
M or an accepting Y-run of ~A on M. But this raises two problems. First, it may
be undecidable whether a possibly non-recursive tree is accepted or rejected by a given
automaton. So this precludes any general and effective computational interpretation of
the deduction system. Second, even if we restrict to trees 1" for which acceptance is known
to be decidable (e.g. trees generated by higher-order recursion schemes [Ong06]), there
seem to be no canonical choice of an actual accepting run id 47y € ~A(T) + A(T).

e It is not clear how to define composition, say
(=)o(=) : (~B+C)x(~A+B) — ~A+C

Given run trees, say

R ¢ C C ~B+C and Rog e ~AC~A+B

there seems to be no obvious choice for Rg o R4 € ~A + C. Both
RecoRo4 = Re and RcoR.q4 = Ry

may seem reasonable. But each of them breaks one of the equalities between the inter-
pretations of the derivations depicted in (12).

The methodology of linear logic may suggest here to devise a linear implication of the form
A—B = A'"%B

where % is a dual of the direct product ® (see §1.3 and §2.4 below), relying on a Cartesian prod-
uct of states and evaluating its arguments in parallel, with acceptance given by a disjunction.
However, in contrast with w-word automata [PR18], such a connective does not seem not exist
on tree automata. The reason is that the universal quantification on paths (in the definition of
acceptance) does not commute with disjunction.

2.4. The (Synchronous) Direct Product of (Non-Deterministic) Automata. The solution
to obtain a suitable closed structure will be provided by uniform automata, to be defined in §3.
On the other hand, part of the program announced up to now was already completed in [Rib15].
In that work, using the notions of substituted acceptance games and of synchronous linear arrow
games, we obtained categories of (usual) alternating automata fulfilling the requirements of §2.1
and §2.2. Although [Rib15] does not explicitly mention any deduction system, it does devise
categorical structures allowing for parts of the linear logic based approach mentioned in §1.3.

We survey here the relevant connections between [Rib15] and IMELL, as they underlie the
role of linear logic in this paper. Returning to the general case of sequents of the form

M: A,...,A, "B (19)

"Note that A[m]((M, M)) = A([r;] o (M, M)) = A(M).
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the provability interpretation tells us that the left commas correspond to a form of conjunc-
tion. A conjunction on non-deterministic automata can be implemented with a direct (syn-
chronous) product. The direct product A1 ® Az of the non-deterministic automata A; =
(Qa4,, q, 04,;,4,), both over ¥, is the non-deterministic automaton over ¥

AL@ Ay = (Quy X Qay s (d4,,94,) > Otio4s » QareAs)
with
8A1®.A2((q17QQ)7a) = {<g17g2> 10— Q-Al X QA2 | g € 8A¢(Qi7a) for i =1, 2}

and where Q4,04, 18 Q4, X Q4, modulo (Qa, X Qa,)¥ ~ Q4, x Q4,- For every tree T,
the (accepting) runs of A; ® Az on T are exactly!! the pairs (Ry, Ro) : ®* — Q4, X Q4, of
(accepting) runs of A; and A over T. We therefore have, in the category Set

(A1 @ A)(T) =~ A(T) x Ax(T) (20)
from which we immediately get
LA @A) = L(A)NL(A2)

For similar reasons, the direct product (—) ® (—) on non-deterministic automata is also
Cartesian in the games of [Rib15] provided one restricts to total automata.'? This Cartesian
structure on total non-deterministic automata imply that we can equip them with the deduction
rules of a Cartesian product, such as the following (where I is a unit automaton similar to that
of Ex. 3.2.(1)):

M; A A B, B-C M; AF A M ; BB
(LEFT ®) = — — (RIGHT ®)
M; A AR B, B-C M; A BFA®B
(21)
M; A BFC
LerT I - ——— (RiGgHT I
( )M;A,I,BFC M;FI( )
together with the structural exchange rule:
M; A Ch
(EXCHANGE) - é’ 4 5B, E ¢ (22)
M; A B, A CEC
as well as the structural weakening and contraction rules:
M; A B+-C M; A BrC
(WEAK) L’A’ — d 'ALA’ AL (CONTR) (23)
M; A, A, BEC M; A A, BFC
and the following general (multiplicative) cut rule:
M; A- M; B, ACHC
(CuT) s AR A B, 4, (24)

M; B ACFC
To summarize, with total non-deterministic automata, the left commas in sequents of the

form (19) can be internalized as a product (®,I), whose deduction rules are induced by its
structure in the computational interpretation.

HBecause universal quantifications commute over conjunctions!
12We say that a non-deterministic automaton A is total if the empty set is not in the range of its transition
function.
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2.5. Alternating Automata and Linear Logic. With respect to the context of this paper,
the basic insight of linear logic [Gir87], is that having an explicit control on the weakening
and contraction structural rules depicted in (23) gives rise to a decomposition of the usual
intuitionistic connectives A, — into more refined connectives (usually denoted ®, &, !, —o), which
in a lot of cases allow, thanks to the Curry-Howard correspondence, refined constructions of
models of programming languages based on (typed) A-calculi (see e.g. [AC98]).

In the case of conjunction, this can be phrased as follows. First, when suppressing the struc-
tural rules (WEAK) and (CONTR), the rules displayed in (21) and (22) do not specify anymore
a Cartesian structure for the product (®,I), but merely a symmetric monoidal structure (see
e.g. [Mel09] for definitions). This implies that in contrast with intuitionistic sequents, the left
commas in linear sequents, which have the same structure as (®,I), do not anymore behave as
a Cartesian product. Moreover, (®,I) is not anymore equivalent to the additive conjunction
(usually denoted &, with unit T), which, as a logical connective, would be defined in linear

sequents by rules of the form!3:

Al A F By Ay, ..., A, ¢ By
A, ... A, F B & By A AT
A, Ay, . A B A, A A B
A, .. A&C,.. A FB A,... . C&A,. . A FB

Second, the structural rules (WEAK) and (CONTR) are restored but for a specific exponential
modality !(—):
A, ....... A FB Ay, ... 1A, \Ai. . A+ B
AL, .. A, .. A FB AL, 1A, .. A FB

(25)

The modality !(—) is itself subject to specific introduction rules, called dereliction and promotion:

Ay, ... A, ... A FB 1Ay, ... 1A, B
A, ... \A;,... A FB 1A,, ..., 1A, - B

(26)

Then (but see also [Gir87, AC98, Mel09] for details), the categorical interpretation of proofs
gives an isomorphism

A!B ~ (A& B) (27)
which implies that an intuitionistic sequent
Ay, ..., A, b B
where the left commas behave as a Cartesian product, corresponds to the linear sequent
1A, ..., A, - B

where the left commas behave as a symmetric monoidal product (—) ® (—).

The pertinence of intuitionistic linear logic in our context comes from the fact that the
product (—)®(—) defined in §2.4 on non-deterministic automata extends to (total') alternating
automata, but induces a symmetric monoidal product which is not Cartesian.

13We do not consider in this paper the usual additive conjunction on alternating automata, which would provide
an implementation of &, because its categorical properties would require a slight extension of our setting.
4 Total alternating automata were called complete in [Rib15].
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Given alternating automata A4 and B over ¥, the automaton A ® B over X has state set
Q4 X Qp, and evaluates A and B along comon paths p € ©* (see [Rib15] for details). Now,
recall that with alternating automata, O can choose states in addition to tree directions. Hence,
given a P-strategy on (A®B)(T) (for T : ©* — ¥), and given a branch of this strategy following
a given path p € ©*, it is possible for P to make different choices according to previous O-moves.
In particular, some choice of P in component A may depend on previous O-moves in B. (Note
that this was not possible with non-deterministic automata, since p € ®* determines uniquely
the previous O-moves.) So a P-strategy on (A ® B)(7T) may not uniquely determine a pair of
strategies in A(T) x B(T).

On the other hand, in any model of intuitionistic linear logic, the isomorphism (27) implies
that every object of the form !4 is a commutative commonoid w.r.t. (®,I) (see e.g. [Mel09)]),
which essentially means that (®,I) has a Cartesian structure w.r.t. objects of the form !A.
This indicates that non-deterministic automata behave as objects of the form !A, and it turns
out that to some extent, the powerset construction translating an alternating automaton to an
equivalent non-deterministic one (the Simulation Theorem [MS87, EJ91, MS95]), corresponds
to an !(—)-modality of intuitionistic linear logic. In particular, all the !(—)-rules (25) and (26)
can be interpreted in our categories'®. (But unfortunately, this interpretation is not compatible
with usual cut-elimination, because the operation !(—) fails to be a functor.)

3. Uniform Automata and Zig-Zag Games

In view of §2.3, it seems that the categorical structure required for a Curry-Howard approach
should involve some machinery not given by usual connectives on automata. In [Ribl5], we
proposed categories of generalized acceptance games based on the technology of game semantics,
and more precisely on simple games (see e.g. [Abr97, Hyl97]), which stem from Berry & Curien’s
sequential data structures (see e.g. [AC98, Chap. 14], but also [Mel05]). The model of [Rib15]
uses usual alternating automata, which seem unfortunately not to induce categories equipped
with a monoidal closed structure while providing a computational interpretation of proofs in
the sense of §1.4.

We present here the notion of automata (called uniform automata) on which this paper
relies (§3.1 and §3.2), as well as the adaption of the substituted acceptance games of [Rib15]
to this context (§3.3). Uniform automata are motivated by the extension of usual alternating
automata with a monoidal closed structure. Working with uniform automata instead of usual
automata allows, w.r.t. [Rib15], a considerable simplification of the underlying technology of
game semantics. We rely on a very simple category DZ of (total) zig-zag games (§3.4), on top of
which the counterpart for uniform automata of substituted acceptance games and synchronous
arrows games is built (§3.5).

The proof that DZ is a category is deferred to App. A, which also discusses the connections
between our approach and usual simple games.

3.1. Uniform Automata. In order to obtain the required categorical properties of a monoidal
closed structure, we devise a “uniform” variant of usual alternating automata, whose transitions
are given by explicit arbitrary non-empty finite sets of P and O-moves. The corresponding
monoidal closed structure is presented in §5.

15(WEAK) actually holds (in a non-canonical way) for total alternating automata (i.e. the ! is not strictly
necessary in the conclusion).
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Definition 3.1 (Uniform Tree Automata). A uniform tree automaton A over ¥ (notation
A :X) has the form
A = (Qa,dq4,U, X, 04, Q4) (28)

where Q 4 is the finite set of states, ¢'4y € Q4 is the initial state, U and X are finite non-empty
sets of resp. P and O-mowves, the acceptance condition €24 is an w-reqular subset of Q%, and
the transition function 04 has the form

&4 : QAXE — UxX — (@—)QA) (29)

Following the usual terminology, an automaton A as in (28) is non-deterministic if X ~ 1,
universal if U ~ 1, and deterministic f U ~ X ~ 1.

Example 3.2. (i) The unit automaton Iy, : ¥ is the unique uniform deterministic automaton
over ¥ with state set 1 (with e initial) and acceptance condition 1¥. Explicitly,

Is = (17.717178171w)
where 01 s the unique function

o 1x¥ — 1x1 — (®-—1)

We write I for I, when X is clear from the context.

(ii) Each alternating automaton A can be translated to a uniform automaton A. The automa-
ton A simulates A as long as P and O respect the transition function of A, and switches
to an accepting (resp. rejecting) state as soon as O (resp. P) plays a move not allowed by
A. Assuming

o4 @ Qax¥ — PPQaxD))

we let A be the uniform automaton
(A:%) = (Qa+B, g4, P(QuxD), Qu, 5,2
where B := {t, T}, with transitions given by 0 z(b,a,—, —, —) := b if b € B and for g € Q a:

q" ifv€dalqg,a) and (¢',d) €~
di1(g,a,7,4',d) == t ify€dalg,a) and (¢',d) ¢ v
f ify ¢ 0alq,a)

and with 7 = Qq+ Q.17

3.2. Full Positive Games and Acceptance for Uniform Automata. The shape (29) of the
transition functions of uniform automata allows their acceptance games to be defined without
imposing legality conditions on plays. This leads to a slightly simpler setting than for usual
automata.

Definition 3.3 (Full Postitive Games).

e A full positive game has the form A = (U, X) where U and X are sets of resp. P and
O-moves. We say that A = (U, X) is total if U and X are both non-empty.
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A(T)
(e,4%)

(p,qa)
P U

0| (z,d)
(p.d,qy)
U/
(«',d’)
(p.d.d,q})

O ©

Figure 2: Acceptance game for uniform automata

e A full positive game with winning is a full positive game A = (U, X) together with a
winning condition Wy C (U - X)“.

A typical (infinite) play x in a full positive game A has the form

P o) P ) P )
uo . '1"0 . ul . xl . ... . un . :L‘n
m m m m m m
U X U X U X

So P plays first (hence the term “positive”) and all P-moves (resp. O-moves) are available to P
(resp. O) when it has to play (hence the term “full”). Assuming A is equipped with the winning
condition Wy, a play x as above is winning if (uy - xg)r € Wa.

Consider a uniform automaton A : ¥ as in (28), and a X-labeled tree T. The acceptance
game A(T) is the full positive game with P-moves U and O-moves X x ©. So a play in A(T)
has the form

P 0 P 0 P 0
up - (xo,do) - wr - (z1,d1) - o - up - (T, dp)
m m m m m m
U X X% U X X% U X X%

Similarly as in acceptance games for a usual non-deterministic or alternating automaton (§1.2),
O chooses tree directions. Note that if A is non-deterministic in the sense of Def. 3.1 (i.e.
X ~ 1), then O only chooses tree directions. Dually, if A is universal (U ~ 1) then P has no
choice. Finally if A is deterministic (U ~ X =~ 1) then the only choices available in the game
A(T) are the O’s choices of tree directions. Note also that because the sets of P and O-moves
of a uniform automaton are always assumed to be non-empty (in this sense uniform automata
are always total), there is no maximal finite play in the game A(T).

We now equip A(T) with a winning condition W) C (U - (X x D))¥. Each infinite play
X = (ug - (g, di))r € (U - (X x D))¥ generates an infinite sequence of states (gp)r € Q% as
follows. We let qo := ¢4 and

Qe+1 = Oalqr, ak, ug, Tp, di)
where ay = T(do-... -dg_1)

22



Then x is winning (i.e. x € W) iff (qx)x is accepting, i.e. iff (qx)r € Q4. (See also Fig. 2,
where states and tree positions are explicitly represented.)
Strategies for P in full positive games are what one expects.

Definition 3.4 (Strategies in Full Positive Games). A (P-)strategy in a full positive game
A= (U,X) is a function
c : X — U

Assume now that A is a game with winning condition Wa. Given a strateqy o : X* — U and a
sequence (zx)r € X%, define the sequence (uy)r € U as

U, = o(zo-... Tp1)
We then say that o is winning in A if (uy - xx)r € Wa for all (zg)r € X¥.

Example 3.5. Continuing Ex. 3.2.(ii), given an alternating automaton A over ¥ and a -
labeled tree T', P has a winning strategy in A(T) iff it has a winning strategy in A(T).

Definition 3.6. Given a uniform automaton A : X and a X-labeled tree T, we say that A
accepts T if P has a winning strategy in A(T'), and we let L(A) be the set of 3-labeled trees
which are accepted by A. Moreover, a set L of 3-labeled trees is regular if there is an automaton

A 3 such that L= L(A).

3.3. Substituted Acceptance Games. We now turn to substituted acceptance games, a simple
but central notion of this paper, which allows to obtain the indexed structure discussed in §2.2.
Substituted acceptance games are simply the (essentially obvious) adaptation of the 3-runs
of §2.2 to the acceptance games of §3.2. A similar notion for usual alternating automata was
introduced in [Rib15].

Consider a uniform automaton A : I' as in (28), and a morphism M € T[X,I']. The uniform
substituted acceptance game ¥ F A(M) is the full positive game with P-moves ¥ x U and
O-moves X x ®. So a play in ¥ F A(M) has the form

P 0] P 0 P 0
(a07u0) : ($Oad0) . (al,’lj,l) . (x17d1) ° e : (anvun) : (xnadn)
m m m m m m
Y xU X x2® YxU X x® YxU X x9

Similarly as in a substituted acceptance game for a usual non-deterministic or alternating au-
tomaton [Rib15], P chooses input characters and O chooses tree directions. Similarly as in the
acceptance games of §3.2, there is no maximal finite play in the game ¥ - A(M).

We now equip ¥ - A(M) with a winning condition Wy € (X x U) - (X x D))“. Each
infinite play x = ((ag, ux) - (zx,di))x € (E x U) - (X x D)) generates an infinite sequence of
states (qx)r € Q% as follows. We let o := ¢'4 and

dk+1 = aA(qu ) bk‘ y Uk y Tk dk‘)
where bg = M(ao-...-ak,do-...-dk,l)

Then x is winning (i.e. x € Wyar)) iff (qr)r is accepting (i.e. iff (qr)r € Qa).

Let us set some notations. When the input alphabet X is irrelevant or clear from the context,
we omit it and write A(M) for ¥ + A(M). We write I' = A (or simply A) for the game
I' - A(Idr). Moreover, we extend the notation A[f] of §2.2 to uniform automata.
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A —opgz B

Figure 3: A typical zig-zag play with full positive games A = (U, X) and B = (V,Y)

Definition 3.7. Given an ordinary function £ : ¥ — I’ and a uniform automaton A : T, we let
A[f] : 3 be the uniform automaton defined as A, but with

aA[f](qa a, u, T, d) = a.A(Q? f(a)a u, T, d)
Similarly as in §2.2, the game ¥ - A([£]) is the same as the game ¥ F A[f].

Example 3.8. Continuing Fz. 3.5, given a usual alternating automaton A over I' and some
M € T[E,T], P has a winning strategy in A(M) (in the sense of [Rib15]) if and only if P has
a winning strategy in A(M).

As expected, substituted acceptance games generalize usual acceptance games. Consider
a uniform automaton A : ¥ and a Y-labeled tree T. Let T € T[1,%] be the T-morphism
corresponding to T' (see §2.2). The game 1+ A(T) is similar (actually isomorphic in the sense
of §3.4) to the acceptance game A(T) defined in §3.2. A typical play of 1 F A(T) has the form

P O P 0 P 0
(.’U’O) : (x(]vdo) : (.aul) : (:Clvdl) oot (.7un) : (xnadn)
m m Mm m m m
1xU X x® 1xU X x® 1xU X x®

In words, since 1 ~ {e} is a singleton, P has actually exactly the same choices in the game
1+ A(T) as in the game A(T).

3.4. Zig-Zag Games. Zig-zag games are at the core of the notion of morphism of our categories
of automata. They stem from usual simple games (see e.g. [Abr97, Hyl97]), by imposing a very
strong restriction on the shape of plays, essentially corresponding to a form of simulation games.
This lead to a very simple notion of games, whose strategies admit a very simple functional
representation (at least compared to usual simple games [BE93, AC98]).

Consider full positive games A = (U, X) and B = (V,Y). Intuitively, a total zig-zag strategy
o : A —opz B amounts to a strategy for P in an infinite game which consists in countably many
sequences of rounds. In a single round n € N, four moves occur in succession (see also Fig. 3):

(1) O plays a move u,, € U,
(2) P plays a move v, € V,

(3) O answers with a move y, € Y,

24



(4) P concludes with a move z, € X.

So, in a zig-zag strategy o : A —opz B, each P-move v, depends on the previous O-moves
uQ, - - -, Uy and yo, . . ., Yn—1, while each P-move x,, depends on the previous O-moves uyg, ..., U,
and yo,...,Yn—1,Yn. Lhis leads to the following definition.

Definition 3.9. Given full positive games A = (U, X) and B = (V,Y), a (total zig-zag) strategy
o : A —opyz B is a pair of functions o = (f, F') where

foo Unen (Uxym) =V
F i Upen (U xynt)y  — X

Assume now that A and B are equipped with winning conditions W4 and Wpg. Given sequences
(un)n € U* and (yn)n € Y¥, a strategy o induces sequences (vy), € V¥ and (z,)n € X¥ defined
as
Up = f(UO"'unuyO”'yn—l)ev
and  xp, = F(ug - Up, Yo Yn-1-Yn) € X

Then o is winning if for all (up), € U* and all (yn)n € Y, we have (vy, - yn)n € Wp whenever
(Up - Tp)n € Wa.

It is easy to see that (winning) total zig-zag strategies form a category. We defer the proof
of this fact to App. A, which also gives further background on game semantics.

Proposition 3.10. Full positive games (with winning) and (winning) total zig-zag strategies
form a category DZM) .

Remark 3.11. The functional representation of strategies of [BE93, AC98] is (at least in
spirit) inspired from approaches to Godel’s Dialectica interpretation (see e.g. [AF98, Koh08])
in categorical logic [dP91] (see also e.g. [HS03, Hyl02, Hof11] and [Jac01, Ex. 1.10.11] for
modern refinements and variations). Actually, the category DZ can be constructed (via a dis-
tributive law) from a category of simple self dualization [HS599, HS03] (over the topos of trees,
see e.g. [BMSS12]), which can be seen as a skeleton of Dialectica-like categories, and our cate-
gories of automata (84) have a shape similar to Dialectica fibrations. Besides, as we shall see
in Ex. 6.4, there is an IV-structure on automata which is reminiscent from Gdédel’s Dialectica.

3.5. Toward Uniform Linear Synchronous Arrow Games. We now prepare to introduce (cat-
egories of) uniform linear synchronous arrow games, the last simple but central notion of this
paper. Similarly as with §3.3, the material of this section is essentially the adaptation to uni-
form automata of corresponding notions of [Rib15]. We shall however postpone the proper
categorical treatments to §4, as we rely on more advanced material.

Consider substituted acceptance games ¥ = A(M) and ¥ F B(N). Our goal is to devise a
notion of morphism

S AM) —o B(N)

with a behaviour similar to the linear synchronous arrow games of [Rib15]. This would amount
to devise a notion of strategy

¥ F o AM) — B(N)

playing similarly as in Fig. 4 (left). Such a strategy o is therefore required to be a total zig-zag
strategy A(M) —opz B(N) in the sense of Def. 3.9. But in addition, we should as in Fig. 4
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) A(M) —o B(N)
(5,5.,(124) (5’5.7%3) by A —o B
s et e
(a,v) P : i
(y,d) 0 w.d))
P (z,d) ° .
(p.d,a.a,qy) (pd,a.a, qp)

Figure 4: Linear synchronous arrow games

also require the a € ¥ and d € ® played by P to be the same as their immediate predecessors
played by O. The approach we adopt in this paper is to simply remove these moves from the
game. This leads to the following notion.

Definition 3.12 (DialZ(X)-Games). Fiz an alphabet .
e A DialZ(X)-object A is given by non-empty sets U and X.

e Given DialZ(¥)-objects A = (U, X), B = (V,Y), a DialZ(X)-morphism o : A —opjaz(s) B
is a total zig-zag strategy (see Fig. 4 (right))

o : (ExUX) —opz (V,Y xD)

The proper categorical treatment of DialZ(X)-games is postponed to §4. This will in particular
allow us to equip these games with winning conditions (leading to the indexed category DialAut).

If we forget about winning, it is possible to see here why DialZ(X)-games induce a gener-
alization of the acceptance games of §3.2. First, a substituted acceptance game ¥ + A(M)
with A as in (28) induces the DialZ(X)-game A = (U, X). Hence substituted acceptance games
Y+ A(M),B(N) induce a DialZ(X)-game

A(M) —°DialZ(%) B(N)

in the obvious way. Consider now an automaton A : ¥ as in (28) and a X-labeled tree T.
As before, let T € T[1,X] be the T-map corresponding to 7. Recall the unit automaton
I:1 of Ex. 3.2.(i). Then the moves allowed in 1 + A(T') correspond exactly to those of the
DialZ(1)-game I —opjs17(1) A(T) (see Fig. 5).

4. Fibrations of Tree Automata

In this Section we present an indexed structure for uniform synchronous linear arrow games, in
which morphisms L € T[A, Y] induce substitution functors, and such that the operation (—)*
is itself functorial (see §2.2 and [Jac01, Chap. 1]). While substitution in [Rib15] was defined di-
rectly at the level of synchronous arrow games (via the representation of strategies as relations),
we devise here an indexed structure induced by a reformulation of synchronicity (in the sense
of [Rib15]) based on §3.5. We use the techniques of monoid and comonoid indexing [HS99, HS03]
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1 I —opiaizy) A(T)
(€, ) (e,d%)
(p,®) (p,q4)
O| (e,0)
U P
(x,d) | O
P °
(pd,e) (p-d, qy)

Figure 5: Acceptance games as DialZ(1)-games

on zig-zag games, which allows a smooth treatment of monoidal closure and universal quantifi-
cations. This will lead us to a proper treatment of the DialZ(X)-games of Def. 3.12, and to the

category DialAut, fibred over T.

The material of this section relies on the symmetric monoidal structure of DZ.

4.1. Symmetric Monoidal Structure of DZ

The category DZ has a particularly simple symmetric monoidal structure, but which differs

from the usual ones in game semantics.

Proposition 4.1. The category DZ is symmetric monoidal with unit I := (1,1) and with

AB:=UxV,X xY) for A= (U,X) and B= (V,Y).

The action of the tensor ® on strategies o; : A; —opz B; (for i = 1,2, A; = (U;, X;) and

B; = (V;,Y;)) is depicted on Fig. 6. If the o; = (f;, F;) where

fit Unen (U x Y — i
Eot Upen @M <y — X,

(2

~

then o1 ® o9 = (h, H) where

h o Unen (U1 x U2)" x (Y1 x Y2)") — VixVa
H : Unen ((Ul x Ua)™h x (Y1 x Y2)n+1) — X1 x Xy

are defined as
h((ﬂhﬂQ) ) (?17@2)) = (fl(ﬂlayl) ) f2(ﬂ27§2))
H((w, W), H1,%2) = (Fi(w,5), Fa(uz, 7))

The natural structure isomorphisms of DZ are depicted on Fig. 7. This structure obviously

lifts to DZ"W, but we shall not directly use this fact.

4.2. Monoid and Comonoid Indexing in DZ

Fix an alphabet ¥. We are now going to see that the DialZ(X)-games of Def. 3.12 form a
category. Recall that given DialZ(X)-objects A = (U, X) and B = (V,Y), a DialZ(X)-morphism

from A to B is a total zig-zag strategy

g (EXU,X) —oDZ (‘/,YXQ)
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o
A; —opz B

T1®02

Ai®Ay —opz BI®DB

(u1,u2)
Vi P (/U17U2) P
y; | O (y1,92) | O
P Z; P (xl,iL‘Q)
Figure 6: Action of ® on o; : A; —opz B;.
@A, B,C Aa
(A B)®C —opz A®(B®C) IA — A
O] ((u,v),w) O | (e,u)
(u, (v,w)) P u | P
(z,(y,2)) | O z | O
Pl ((z9),2) Pl (e,2)
A,B pPA
ARB —opz B®A ARI —0 A
O (u,v) O | (u,e)
(v,u) | P u | P
(v.2) | O x| 0
P

Figure 7: The structure maps of DZ, for A = (U, X), B= (V,Y) and C = (W, Z)
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MoM)M ——M® (Mo M

Mo M _ M
ToM P Are 298 reT Mo M x M® M
A P
M M

Figure 8: Coherence for a monoid (M,m,u) (where «, A, p and 7 are symmetric monoidal
structure maps)

We will use some algebraic structure. Objects of the form (1, M) (resp. (K,1)) are actually
(commutative) monoids (resp. comonoids) in DZ. Recall from e.g. [Mel09] that a commutative
monoid in a symmetric monoidal category (C,®,I) is an object M equipped with structure
maps m: M @ M — M and u : I — M subject to coherence conditions depicted on Fig. 8. A
(commutative) comonoid in C is a (commutative) monoid in C°P. In this paper, by (co)monoid
we always mean commutative (co)monoid. Write Comon(C) for the category of comonoids in C.
Maps from (K, d,e) to (K',d’,e’) are C-maps f : K — K’ which commute with the comonoid
structure:

(f@flod = dof and e = eof (30)

It is well-known that the symmetric monoidal structure of C induces a Cartesian product on
Comon(C) (see e.g. [Mel09, Cor. 18, §6.5]), and conversely that if (C,®,I) is Cartesian, then
every C-object has a canonical comonoid structure. Moreover, note that any set I ~ 1 is a
monoid in Set.

Proposition 4.2. If M, K are non-empty sets and I ~ 1, then M := (I, M) is a monoid and
K = (K,I) is a comonoid in DZ. Structure maps are depicted on Fig. 9 (in the case of I =1).

From now on, we reason modulo the following DZ-isos (with the notations of Prop. 4.2):
ExU,X) ~ Yo (UX) and VY x®) ~ (VYY)

It is well-known (see e.g. [HS99, HS03]) that a monoid M (resp. a comonoid K) in a symmetric
monoidal category (C,®,I) induces a monad (—) ® M of indexing with M (resp. a comonad
K ® (—) of indexing with K).

Proposition 4.3. Let (C,®,1I) be a symmetric monoidal category.

(a) A monoid (M, m,u) in C induces a (lax symmetric monoidal) monad ((—) @ M, p,n). The
functor (=) @ M takes an object A to AQ M and a map f: A— B to fidy : AQ M —
B ® M. The natural maps p and n are given by

ua = (idg®@m)oa o (A M)y M — AM
na = ({da®@u)op ! A — AM
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MoM opg, M 1 2oz M
(@) (o,o) Ole
e |P o (P
m | O m | O
Pl (m,m) Ple
dy €K
K —oD7Z K® K K —°DZ I
Ol k Ol k
(k,k) | P P
(e,0) | O 0
P| e P| e

Figure 9: Structure maps for the monoid M = (1, M) and the comonoid K = (K,1)
(b) Dually, a comonoid K = (K,d,e) in C induces an (oplax symmetric monoidal) comonad
(K ®(—),0,€), where

04 = ao(d®idy) : K®A — Ko(K®A)
€4 = Jdo(e®ids) : K®A — A

The maps p, a and A above are structural isomorphisms of (C,®,I).

Moreover, the comonad K ® (—) is related to the monad (—) ® M via a distributive law.
A distributive law A of a comonad (G, d,€) over a monad (T, u,n) on C is a natural map
A :GoT = T oG subject to some coherence conditions (see e.g. [HHMO07]), which ensure that
we have a category KI(A) with the same objects as C and with homsets

KI(A)[A, B] := C[GA, TB]
and that there is a lifting functor (—)" : KI(A) — C taking f : GA — T'B to
f1 = GupoTfoAs)odrs : GTA — GTB

In the case of comonoid and monoid indexing, a distributive law of K ® (—) over (—) ® M is
given by the natural associativity maps:

by = a;(?(_%M : Ke(-)oM) = (Ko (-)eM

Returning to our case, we let
DialZ(¥) := KI(®)
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o®idgy idp®@myp
YRARD —opz BRIDRX®D —o pz BRD
0 (a,u)
v
v P
(y.d) | O
(y,d,d)
P (z,d)
dz@idA@@ idy®d

YRARD —o pz LRYRARD —opz LRXBRD

(a,a,u)

<
&
O

(z,d)

Figure 10: Decomposition of '

where ® is the distributive law of the comonad of indexing with the comonoid . over the monad
of indexing with the monoid ® in the category DZ. The canonical lifting functor

(=)' : Dialz(x) — DZ
takes a total zig-zag strategy
o : Y®A —opz BRD
to a total zig-zag strategy
o LRARD) —pz L@ (B®D)

Modulo associativity, the strategy o' is given by
(ids, ® ((idp @ mp) o (¢ ®idp))) 0 (ds @ idagp) : L®A®D —opz S@BED
Note that if o plays as in Fig. 4 (right) then the strategy
6 = (dp®mp)o(oc®idp) : YRARD —opz BRD

plays as in Fig. 10 (top). It follows that 0! = (ids ® &) o (dy ® idago) plays as in Fig. 10
(bottom).
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4.3. The Indexed Structure of DialZ(—) and the Base Category T

We therefore have for each alphabet 3 a category DialZ(X). We now discuss an indexed structure
on the categories DialZ(—), based on pattern similar to the simple fibration s : s(B) — B over a
category B with finite products (see e.g. [JacO1, Chap. 1] but also [Hyl02, Hof11]). The objects
of s(B) are pairs (I, X) of B-objects. The morphisms (I, X) — (J,Y) are pairs (fo, f) with
fo:I— Jand f:IxX — Y. The functor s : s(B) — B is the first projection, and the fibre
over I is the Kleiseli category of indexing with the comonoid I (see e.g. [Jac01, Ex. 1.3.4]).

A similar construction can be done if instead of a category B with finite products, one starts
from a symmetric monoidal category C, and take as base the category Comon(C). The fibre over
the comonoid K is the Kleisli category K1(K) of indexing with K, and a comonoid morphism
u: K — L induces a functor v* : K1(L) — KI(K) acting as the identity on objects and taking
f:L®A = Bto fo(u®ida) : K® A — B. It readily follows that idj, = idkyk) and
that (uowv)* = v* ou*. In other words, we have a functor CI(C) : Comon(C)°? — Cat. The
corresponding Grothendieck construction [ CI(C) (see e.g. [JacO1, Chap. 1]) is the category
whose objects are pairs (K, A) of an object K of Comon(C) and an object A of C, and whose
morphisms from (K, A) to (L, B) are pairs (u, f) where v : K — L is a comonoid morphism
and f: K ® A — B. The category [ CI(C) is fibred over Comon(C) via the first projection,
that we denote

sa(C) /CI(C) — Comon(C)

Returning to our case, recall that DialZ(3) = K1(®) where ® is the distributive law of ¥®(—)
over (—) ® ©. The category DialZ(X) can alternatively be obtained as a Kleiseli category of
indexing with comonoids over a symmetric monoidal category. Let DZs be the Kleisli category
of indexing with the DZ-monoid ®. The objects of DZg are full positive games, and maps
from A to B are DZ-maps from A to B ®.

Let us spell out composition in DZg. First recall that for a monad (7, u,n) on a category C,
composition in the Kleisli category K1(7') is given by

goxuny f = A L 1TB % TTC L9 TC

for f: A—TB and g : B — TC. In the case of DZg-morphisms ¢ : A —opz B ® ® and
T:B —opz C®D (where A = (U,X), B= (V,Y) and C = (W, %)) as depicted on Fig. 11
(top), the composite 7 opgz, o is depicted (modulo associativity) on Fig. 11 (bottom).

Since DZg is the Kleisli category of a lax symmetric monoidal monad on DZ, it is symmetric
monoidal with structure induced by that of DZ (see e.g. [Mel09]).

Proposition 4.4. (a) Consider a monoid M in a symmetric monoidal category (C,®,1). The
Kleisli category K1(M) is symmetric monoidal with A @K1 B := A® B on objects and
unit 1.

Moreover, each comonoid (K,d,e) in C induces a comonoid (K, n%gKod, nMoe) in KI(M).
(b) In the case of DZp = KI(D), the action of ®pz, on maps o; : A; —opz B; @ ® (for
i=1,2, A; = (U;, X;) and B; = (V;,Y;)) is depicted on Fig. 12. If the o; = (fi, F;) where
fii o Unen (U x Y7 x D7) — Vi
Fi . UnEN (UTL+1 % }/inJrl « @n-i-l) N Xz

(2
then 01 ®pzy 02 = (h, H) where

h: Unen ((U1 x Up)™1 x (Y1 x Yo)" x ZD") — Vi x Vs
H UnEN ((Ul X U2)n+1 X (Yl X }/’2)n+1 X ®n+1) — X1 x Xy
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(y,d) | O (z,d) | O
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o T®idg ﬂg
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w P
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(z,d,d)
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Figure 11: Composition in DZgp = K1(9)
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o 0180DZ5 02
A; —opz Bi®D Al ® Ay —o DZ (Bl & Bg) ®RD
0] Us (0] (’LLl,’LLQ)
(Y P (U17U2) P
(yi,d) | O ((y1,92),d) | O
Pl P (xl,xg)

Figure 12: Action of ®pz, on 0; : A; —opz, B;

are defined as

h((ﬂbﬂ?)’ (ylag2)7p) = (fl(ﬂlagbp)a f2(U27y27p))
H((HMHQ)? (gth)vp) = (Fl(ﬂlayhp)v FQ(ﬂ%g%p))

Moreover, the DZg-structure maps ds, and €, of the comonoid induced by ¥ can be depicted

as in Fig. 14.
It follows from Prop. 4.4 and the fact that ® is a distributive law, that each category DialZ(X)
is the Kleisli category of indexing with ¥ in DZgp. We can therefore index DialZ(—) with the
comonoids of DZg. We will actually index DialZ(—) over the base category T (of Def. 2.1),
which is isomorphic to a subcategory of Comon(DZy). First, it directly follows Def. 3.9 that
T-strategies from ¥ to I' in the sense of Def. 2.1 correspond exactly to total zig-zag strategies
from (X, 1) to (I',®), that is to DZg-maps from ¥ to I'. Hence T is isomorphic to a subcategory
of DZg. Second, T-maps induce comonoid maps.

Proposition 4.5. The category T embeds in Comon(DZyg) via the functor Ex which takes an
alphabet 3 to the comonoid (X,ds, éx) and a morphism M : T[I', X] to the DZg-morphism

M = ]EOM : (]._‘,1) —ODZ (271)®(1a©)

induced by the DZ-iso jx : (X,D) ioDz (2,1)®(1,D).

Proof. We have to check that T-morphisms induce Comon(DZg )-morphisms, that is that the
equations (30) hold in DZg:

(M@M)OCZF = CZEOM and er = ézOM
Assume that M plays as in Fig. 13 (top left). The first equation follows from the fact that
ds; o M plays as in Fig. 13 (middle), while (M ® M) o dr plays as in Fig. 13 (bottom). The
second equation follows from the fact that ésx o M plays as in Fig. 13 (top right). O
We thus get an indexed category
Dialz := C(CI(DZp)oEr : T® — Cat

We already mentioned the well-known fact that the symmetric monoidal structure of a cate-
gory induces a Cartesian structure on its category of comonoids (see e.g. [Mel09, Cor. 18, §6.5]).
By Prop. 4.5, this gives a Cartesian structure on T.

Corollary 4.6. The category T is Cartesian, with on objects the Cartesian product of alphabets,
and with unit 1.
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M éx
i T —oDZ5 DRI —0DZp I
' —opz, X
: O|b
b a|a
al|P o |P
d| O d| O
° d| e
P|e
M ds.
T —DZs DN —DZp YRY
Olb
a a
(a,a) |P
d 0
d| e
Ple
dr M®M
r —DZs 'l | ' — DZs YR
O|b
(b,b) | (b,b)
(a,a) | P
d 0]
d °
Ple

Figure 13: T-maps as comonoids morphisms in the proof of Prop. 4.5
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d; é
S —opz, O Y —opzy 1
O|a Ol a
(a,a) | P o | P
d 0 d| O
P|e Ple

Figure 14: Structure maps for the comonoid ¥ = (X,1)

4.4. The Fibred Category DialAut

We thus have a category DialZ indexed over T, and whose fibre over ¥ is the category DialZ(X).
We will now define a fibration da : DialAut — T of uniform substituted acceptance games, which
essentially extends DialZ with winning (and acceptance). The fibration da : DialAut — T is
obtained by applying the Grothendieck construction to an indexed category (—)* : T°? — Cat,
which takes an alphabet ¥ to a category DialAuty. The action of (—)* on T-maps is based on
the indexed category DialZ.

Definition 4.7 (The Category DialAuty). Fiz an alphabet X.

e The objects of the category DialAuts, are tuples (U, X, W) where U and X are non-empty
sets and where Wa C (X x U) - (X x D))~.

e The DialAuty-morphisms from (U, X, W4) to (V,Y,Wpg) are DialZ(X)-morphisms from
(U,X) to (V,Y), that is total zig-zag strategies

o Y®(UX) —pz (VYY)D
whose lift o are winning strategies on

(ExUXxD,W4) —opzw (ExVY xD Wg)

Composition and identities of DialAuty, are induced by composition and identities of DialZ(3)
(using the functoriality of (=)' for winning). Given a uniform automaton A : A and M €
T[X, A], we still write ¥ - A(M) for the DialAuty-object induced by the uniform substituted
acceptance game X+ A(M) of §3.5.

We now turn to substitution and indexing. Morphisms L € T|I', ¥] induce functors

L* : DialAuty —— DialAutr

defined as follows. Given a DialAutyg-object A = (U, X, W4), we let L*(A) be the DialAutr-
object (U, X, L*(Wa4)), where

((bk,uk) . (ack,dk))k € L*(WA) iff ((L(bo. -+ by, do. cee .dk,l),uk) . («'L'k,dk»k € Wy

When the DialAuts-object A is induced by a uniform substituted acceptance game 3 = A(M),
we have the expected result that L*(A) is induced by the uniform substituted acceptance game
'k A(MoL) (see §2.2).
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Lemma 4.8. Given a uniform substituted acceptance game ¥ F A(M) and L € T[I', %], we
have
L*(XFAM) = TFHAMoL)

Proof. Recall from §3.2 that W) € (X x U)- (X x D)) is the set of infinite plays ((ay, ug) -
(h, di))k € (Ex U) - (X xD))“ such that (gr)r € Q4, where gy = ¢4 and

Gry1 =  Oalgr, M(ag.--- .ag, do. - .dp—1), up, op , di)
Now, we have ((bg,u) - (zg, di))r € L*(Wa(ar)) if and only if
((L(bg. -+ bk, do. - -+ .dg—1),ug) - (Tk, di))r € Waar)

that is, if and only if (qi)r € 4 for the sequence of states (gi)xr with go = ¢*4 and

a1 = Oalge, M(ag. - .ag, do.- - 1), up, T, di)
where ay = L(b(). <o+ by, dy. - .dgfl)
But for ag.--- .a; with
ay = L(b(). -+ by, dy. - .dgfl)
we have
M(a()'...'ak,do-...-dk_l) = (MOL)(b(]'...'bk,do-...-dk_l)

so that the sequence of state (qi)r actually satisfies

@1 = Oalge, (MoL)(by-...-ag,do-... dp_1), ug, <, di)

We thus get

((ows uk) - (ks die))k € L*Waary) M ((bk, uk) - (2k, dic) )k € Waquror)
]

The action of L* on maps is induced by CI(DZg)(L) : DialZ(¥) — DialZ(T"), so that for
o € DialAutx[A, B, we let
L*(o) = oo(L®idy)

(where o, ® and id4 are taken in DZg). It remains to check that L*(0)" is winning whenever
so is o1, Our proof relies on the representation of strategies as sets of plays (App. A).

Proposition 4.9. Let L € T[I',X] and consider DialAutg-objects A = (U, X, W4) and B =
(V,Y,Wg). Given a total strategy 0 : ¥ @ (U, X) —opz (V,Y) ® D, if the strategy o' is
winning on

(EXU,XX@,WA) —oD7Z (EXV,YX@,WB)

then the strategy L*(U)T is winning on

(F X UaX X QaL*(WA)) —°DZ (F X V7Y X ng*(WB))
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Proof. First note that for an arbitrary total zig-zag strategy 7 : C' —opz D (for full positive
games C' and D), every infinite play y such that 3°°k.x(0).--- .x(k) € 7 is uniquely determined
by xic and x;p. In the following, we write x = (x;c, X|D)-

Assume that o plays as in Fig. 4 (right) so that (reasoning as in §4.2) o plays as in Fig. 10
(bottom). Hence, if L € T[T, ] is represented by the strategy depicted on Fig. 15 (top left),
then modulo associativity L*(o) plays as in Fig. 15 (bottom) so that L*(o*)T plays as in Fig. 15
(top right).

Consider now an infinite play x of L*(o’)T7 that is an infinite play x on

I'xU,XxD) — (I'xVY xD)
such that 3%°k.x(0).--- .x(k) € L*(o)". Write

X = (((bg,ur) - (@r,di))k s ((or,vi) - (Yk, di))x)

so that (((bg,ux) - &)k, (vk - (yk, dr))x) is an infinite play of L*(o) and

(((L(oo- -+ bk, do-+ -+ di—1),uk) - )k 5 (v (Y dic) i)

is an infinite play of o. But it follows that

((L(bo. <o b, do. - - -dk,’—l); uk) . (:Uk, dkz))k ceW, —
((L(bo. - -+ bg, do. - -+ .di—1), k) - (Y, di)) € Wh

and by definition of the action of L* on DialAuts-objects, we thus get

((bg, ur) - (T, dp))e € L*Wa) = ((br, ) - (k> di))x € L*(Wg)
O

We thus obtain an indexed category (—)* : T°P — Cat since (—)* is itself functorial. We let
da : DialAut — T be obtained by applying the Grothendieck construction to (—)*.

Definition 4.10 (The Fibred Category DialAut). The objects of DialAut are pairs (3, A) where
A is an object of DialAuty. Maps from (X, A) to (I', B) are pairs (L,o) of a T-map L : ¥ — T
and a DialAuty,-map o from A to L*(B).
The fibration
da : DialAut — T

is the first projection, so that da(X, A) := ¥ and da(L,0) := L.

4.5. Substitution and Language Inclusion

We now check that DialAuty, is correct w.r.t. language inclusion. First, consider substituted
acceptance games X - A(M), B(N) in the sense of §3.3. We thus obtain DialAuty, objects, that
we still write ¥+ A(M), B(N). Now, it follows from Lem. 4.8 that given

o : AM) ——o B(N) and LeT[lX]

we have
L*(o) : AMoL) —o B(NolL)
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L L*(o)"
' —opz, ¥ CxUXxD) —o ([IxV,YxD)
Ofb 0] (b, u)
al|P (b,v) P
d |0 (y,d) 0
Ple P (z,d)
L®pzgidy @ (id p@m)o(o®ids)
e A —o pz LRA®D —o pz B®D
O (a0
(a,u)
v P
(y,d) | O
(z,d)
P T

Figure 15: The strategies L, L*(c) and L*(c)" of the proof of Prop. 4.9
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Hence, DialAut interprets all instances of the (SUBST) rule (16) of the form

M; AFB

MoL: ArB (where M € T[X,A] and L € T[I', X])

In particular, given A, B : X, for all 3-labeled tree T' (and using the notation of §2.2.(b)) we

have
> AFB

T; A-B
Assume given 0 : A — B. If T' € L(A), then there is some 7 : Iy — A(T'). It follows that

we obtain T*(0) o 7 : I — B(T), which implies 7' € £(B). In other words, o : A — B and T
induce a function

T I— A(T) — T*(c)ot : I —o B(T)
and we have shown:

Proposition 4.11 (Thm. 1.3, (10)). If P has a winning strategy in ¥+ A — B, then we have
L(A) C L(B).

5. Symmetric Monoidal Closed Structure

We show here that the category DZ of full positive games and total zig-zag strategies is equipped
with a monoidal closed structure, and that this structure lifts to DialZ(X) and to the fibres of
DialAut. This in particular gives a (symmetric) monoidal closed structure on uniform automata.

We first discuss the closed structure of DZ (§5.1). We then show how the symmetric monoidal
closed structure of DZ lifts to DialAut and to uniform tree automata (§5.2). This provides a
realizability interpretation of a propositional linear (multiplicative) deduction system (§5.3). We
finally show how the closed structure gives a (functorial) notion of linear complement (§5.4).

Recall from e.g. [Mel09] that a symmetric monoidal category (C,®,1I) is closed if for every
object A, the functor A ® (—) has a right adjoint (—)*. According to [ML98, Thm. IV.1.2], it
is sufficient to show that for every object C' there is an object C4 and map

evale @ AeCct — C

such that for every f: A® B — C there is a unique A(f) : B — C4 with

A® CA evalg C
A
ida®A(f)

A®B

5.1. The Symmetric Monoidal Closure of DZ

The monoidal closed structure of DZ and can actually be read off from the definition of zig-zag
strategies given in Def. 3.9.

Let us see how to define a linear exponent full positive game B4 = (A —opz B) from full
positive games A = (U, X) and B = (V,Y), such that a strategy ¢ : A —opz B induces
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(modulo A ~ A®1I) a strategy A(o) : I —opz (A —opz B). Assume that o plays as in Fig. 3.
From each play s of o, the responses v € V' of ¢ to O-moves u € U define a function

fs U — V
and the responses = € X of ¢ to further O-moves y € Y define a function
F, : UxY — X
This amounts to describe o by a pair of maps

Foo Upen (U YT
F i Upen (Ut xY™)

U—YV)

—
— (UxY —X) (31)
Proposition 5.1. The category DZ is symmetric monoidal closed. The linear exponent of

A= U,X)and B= (V,Y) is A—opgz B = (VU x XU*Y U xY).

The monoidal closed structure of DZ departs from traditional game semantics since the natural
isomorphism A ® B —opz C' ~ B —opz (A —opz C) relates strategies, but not plays.

Proof of Prop. 5.1. We use notations of App. A. Let A= (U,X), B=(V,Y) and C = (W, Z),
so that A —opz C' is the game (WU x XUXZ U x Z). The total zig-zag strategy evalc is defined

as follows:
evalg

A® (A —-opzC) —opz C

ol (W (. D)
f(u)

z

([@lmv}

P| (F(u,2),(u,2))

Consider first the unicity requirement of monoidal closure. Given any total

7 : B —opz (A-—opzO)
the composite evalc o (idg ® 7') plays as in Fig. 16. It follows that 7/ = 7" whenever evalg o
(ida®7") = evalgo(ida ®7"), since any distinct pairs (f/, F') and (f”, F") can be distinguished
with O-moves u € U and z € Z.

Fix now some total zig-zag 0 : A ® B —opz C. We define

T = Aloc) : B —opz (A—pzC)

by induction on plays. To each (s,t) € HS(7), with s and ¢ even-length, we associate (s',t') €
HS(0), with s" and ¢’ of the same length, and such that, for (v,7) = d(s) and ((f, F), (@, %)) =

d(t), we have d(s') = ((u,v),(F(u,z),y)) and O(t') = (f(u),z), where we take the pointwise
application of sequences of functions.

e For the base case, we put (g,¢) € HS(7), and associate it to (¢,¢) € HS(0).
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id g @7/ evalc

A® B —opz A®(A—-opzC) —opz C

(u, (f', "))

(F'(u, 2), (u, 2))

P | (F(u,2),y)

Figure 16: The composite evalg o (id4 ® 7’) in the proof of Prop. 5.1

e Assume now (s,t) € HS(7), associated to (s',t') € HS(o). For each v € V, we de-
fine the functions f, : U — W and F, : U x Z — X as follows: given v € U, let
w such that (s'.(u,v),t’.w) € HS(o), and for each z € Z, let = and y, . such that
(¢ (u,v).(x, Yu,z),t" . w.z) € HS(s). We then let f,(u) := w and Fy,(u,z) = z. We
now let (s.v.yy 2, t.(fu, Fy).(u, z)) € HS(7), and associate it to (s'.(u,v).(z, yu,), t' . w.2) =
(8" (u,v).(Fy(u, 2),yu.z), t'. fo(u).z) so that the invariant is satisfied.

It then follows from the invariant that we indeed have evalgc oidy ® 7 = o. First note that the
map (s,t) € HS(7) — (s',t') € HS(0) is surjective. The property then follows from the fact
that (s,t) € HS(7) iff (s,¢') € HS(evalg o (id4 ® 7)). This is shown by induction on pairs of

plays (s,t) € pH" x PA—opzc- The base case is trivial. For the induction step, given

even

(5 v Yuzs t-(fo, Fo) (u,2)) € pF" X PA-opzC
we have (s-v-yyz, t- (fo, Fv) - (u,2)) € HS(7) if and only if
(s (u,v) - (Fy(u, 2),yuz) , t' - folu)-2) € HS(evalgo (ida ® 7))

and we are done. O

5.2. The Symmetric Monoidal Closed Structure of DialAut and Tree Automata

The symmetric monoidal closed structure of DialAut and of tree automata is induced by the
symmetric monoidal closed structure of DialZ, which is itself lifted from DZ.

5.2.1. The Symmetric Monoidal Structure of DialZ. We have seen in Prop. 4.4 that the
symmetric monoidal structure of DZ lifts via monoid indexing to give a symmetric monoidal
structure to DZg. The same scheme actually applies to DialZ, which is symmetric monoidal
with structure induced by comonoid indexing in DZx.

Proposition 5.2. (a) Consider a comonoid K in a symmetric monoidal category C. The
Kleisli category K1(K) is symmetric monoidal with A @k B := A ® B on objects and
unit 1.
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i

.
Y®A; —opz, Bi Y® (A1 ®A) —opz, B1®DB

(av ul) O (a7 (u17u2))
(% (Ul, U2)
(yi, d) ((y1,92),d)
€Ty P ($1, xz)

v O ©vo
O T

Figure 17: Action of ®pjaiz(z) on 0; : A;i —opiaiz(s) Bi, where 7 := 01 ®pjaiz(s) 02

(b) In the case of DialZ(X) = KI(X), the action of the tensor ®pj,z(xy on strategies o; :
Y ® A; —opzy B (fori=1,2, A, = (U;, X;) and B; = (V;,Y;)) is depicted on Fig. 17. If
the o; = (fi, F;) where

s U (5 <0 xyixon)
E, UneN (Zn—i-l % Uin-i-l % }/in—i-l « ©n+1) N X;
then o1 ®pjaiz(s) 02 = (h, H) where
he o Unen (B" % (Un x Ua)™h x (Y1 x Ya2)" x D7) —  VixW

H : Upen (" x (U x Up)"t x (Y1 x Yo)"H x @74 — X x X))
are defined as

h(av (61762) ) (yl>@2) ) p) = (fl(

a,u1, Y, p
H(ﬁ, (HhH?)a (y17y2)7p) = (F1(§7ulyylap)7F2(57ﬂ27527p))
5.2.2. The Symmetric Monoidal Closure of DZ5 and DialZ. The monoidal closed structure
of DZ lifts to DZ+o and to the fibres of DialZ. In the case of DZg, since
DZs[A® B, C] = DZA®B,C®®] =~ DZA, (B-—opz(C®29)

we should have (A —opz, B) @ ® ~ (A —pz B®D). Given A = (U, X) and B = (V,Y) this
leads to (A —opz, B) = (W, Z) with

W, Zx®D) ~ (VUx XU [ xy xD)
We therefore let
(U,X) —opz, (V,Y) = (VUxXUY*®P U xY)
The closed structure of DZg directly lifts to DialZ(X) since
DialZ(S)[A® B, C] = DZgE®(A®B), C] ~ DZg[E®A, B—opgz, C]

Proposition 5.3. The categories DZg and DialZ(X) are symmetric monoidal closed.
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5.2.3. The Symmetric Monoidal Closed Structure of DialAut. The symmetric monoidal
closed structure of DialZ gives the fibrewise symmetric monoidal closed structure of DialAut
(in the sense of [Jac01, §1.8]). The unit over ¥ is Iy := (1,1,1¥). Given DialAutg-objects
A= (U, X,W4) and B = (V,Y, Wp), let

A ®pa B = (UXV,XXY,WAHWB)
A—ppa B = (VUx XUYXD U xY | Wi 3IWs)
with
weWs N Wpg iff (w[(EXU)—i—(XX@) € W4 and WHEXV)+(Y xD) € WB)
and

((aks (fwr Fr)) - ((uryy) s di))e € WaIWp iff (aeWy = B€Wp)
where o and [ are obtained by pointwise application:
a = ((ak, ug) - (Fp(ug, yr, di)  di))k
B = ((ak, fe(ur)) - (r di))k

In the notations A ®pa B and A —opa B we omit the subscript DA and write AQ B and A — B
whenever possible.

Proposition 5.4. The fibration DialAut is fibrewise monoidal closed.
5.2.4. The Symmetric Monoidal Closed Structure of Uniform Automata. We now turn to
uniform automata. Their symmetric monoidal closed structure is inherited from DialAutsy.

Definition 5.5 (Monoidal Product and Linear Implication on Uniform Automata). Assume A
is as in (28) and

B = (QBaq;)’aV7Y788793>
so that
o4 : Qax¥ — UxX — (®—Qu)
and BB : QBXE — VxY — (@—)QB)

e We let A® B be the automaton over ¥ defined as
-’4®B = (QAXQBv(q347Q%)7UXVvXXY78A®B7QA®B)

with
OaeB((24:48) s 2, (u,v), (z,y), d) = (d4, qp)
where
q4 = Oalqa, a,u, z,d) and qg = Oplgs,a,v,y,d)

and with ((¢n, ¢))n € Qaes iff ((gn)n € Qa4 and (q),)n € Qp).
o We let (A —o B) be the automaton over ¥ defined as

(A—B) = (QaxQs, (¢4,qs), VU x XVY2 U XY, 045, Qa-8)

with
8AﬂB((QA7QB)7 a, (f7 F)7 (ua y)a d) = (Q:él? q,B)
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where
Q,/A = 8A(qA,a,u,F(u,y,d),d) and ng = 85(q13,a,f(u),y,d)
and with ((qn, @,))n € Qa—s iff ((gn)n € Q4 = (¢)n € QB).

Note that Qe as well as Q4 .5 are w-regular since {24 and () are both assumed to be w-
regular. Note also that A ® B is non-deterministic (resp. universal, deterministic) if both A
and B are non-deterministic (resp. universal, deterministic). Moreover, assuming A, B : I' and
M € T[X,T], we have, as DialAutg-objects,

Y+ (A(M) —opp B(M))
and Y (A(M) ®pa B(M))

YF(A— B)(M)
L (A®B)(M)

~
~

Note also that we obtain a notion of linear complement with
AY = AL

where L is a particular automaton accepting no tree (see §5.4), and it follows from monoidal
closure that (—)* is a contravariant functor taking o : A(M) — B(N) to o* : B*(N) —o
At (M).

5.3. Deduction, Adequacy and Correctness

We now return to the deduction system for automata outlined in §1, and discuss the role of
linearity in our setting following §2.4 and §2.5. First, the monoidal structure of DialAuty, allows

to interpret sequents of the form
M Ay, A FB (15)

where M € T[X,T] and Ay,...,A,, B are uniform automata over I'.  The sequent (15) is
interpreted as the homset

DialAuts[A; (M) @pa - - - @pa An(M) , B(M)]

Moreover, the monoidal closed structure implies that (15) can equivalently be interpreted as
the set of winning P-strategies in the uniform substituted acceptance game

SF(AL @@ A —o B)(M)

Second, the symmetric monoidal closed structure allows to interpret the deduction rules of
IMLL. We gather them on Fig. 18. Using the notations of §2.2, we write Ay,..., A, F B to
denote the sequent Id ; Aq,..., A, F B. Our model is sound w.r.t. this deduction system.

Proposition 5.6 (Adequacy). If the sequent M ; Aj,..., A, F B is derivable using the rules
of Fig. 18, then there is a winning P-strategy o in

A1 (M) ®pa -+ @pa An(M)  —o  B(M)

In particular, if A F B is derivable, then by combining Prop. 5.6 with Prop. 4.11, we obtain
a strategy witnessing that £(A) C L(B).

Proof of Prop. 5.6. The strategy o is built (as usual) by induction on the derivation 2 of the
sequent M ; Ai,..., A, F B, and using the categorical combinator corresponding to the last
applied rule.
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M; A, A B CHC
(EXCHANGE) — —
M; A B A CHC
M; AFA M; B ACFKC
C ) 7777 9 ) - A
(Cur) M; B ACrcC M AR A AXOM)
M; A A B, B-C M; AFA M; B-B
(LEFT ®) — — — (RIGHT ®)
M; A AR B, BFC M; A BFA®B
M; A BFC
(LEFT I) M ALBrRC M FI (RigHT I)
(LEFT —o) M;.A}—;Ai M ; B,ES,CI—C 7./4 B+ (RIGHT —o)
M; B A A—-B CFC c AFB—

Figure 18: Rules of IMLL for uniform automata

e If 2 ends with the (AXIOM) rule, then o is the identity (copy-cat) strategy.

e If 7 ends with the (CuT) rule, then o is obtained (using symmetric monoidal structure) by
composing the strategies obtained by induction hypothesis for the left and right premises.

o If 7 ends either with the (EXCHANGE) rule, or a rule for ® or I, then o is obtained using
the fibrewise symmetric monoidal structure of DialAut.

o If & ends with a rule for —o, then o is obtained from the induction hypothesis using the
fibrewise monoidal closure of DialAut. O

Note that the strategy o is obtained from the derivation Z in a purely compositional way.
Moreover, all the rules of Fig. 18 are compatible cut-elimination.

Remark 5.7 (On Cut-Elimination). It follows from the fact that we have monoidal closed cat-
egories (Prop. 5.4), that the interpretation of derivations as strategies for the rules of Fig. 18 is
compatible with cut-elimination, in the sense that if a derivation 9’ is obtained from a deriva-
tion 9 by applying the proof transformation steps described in e.g. [Mel09, §3.3], then 9 and 9’
are interpreted by the same strategy. This in particular applies to the following two derivations:

2 7 ,
AFB IrA BFB :
IFA—B A—-BFB D%/ Al

IF B I8

Example 5.8. Proposition 5.6 yields a winning P-strategy in
BoB(B—oA) — A®B

obtained from the proof tree

BF B AF A
BB — A A BF B

B,(B— A),BF A®B
B,B,(B— A+ Az B
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Note that in Fig. 18 we omitted the weakening and contraction rules (23):

M: A BFC M; A A, A, BFC
M A A B+C M;: A, A B-C

(WEAK) (CONTR)

Similarly as with usual automata, the contraction rule can be interpreted on non-deterministic
uniform automata but not on general uniform automata. This rule amounts to providing win-
ning P-strategies in the game

A —o AA (32)

If A is non-deterministic (and with P-moves U), then a winning P-strategy in (32) simply takes
an O-move u € U in component A to the pair (u,u) € U x U in component A ® A. Note that
such strategy may not exist when A is a general uniform automaton, that is when it is equipped
with a set of O-moves X # 1, since O can play two different (x,2') € X x X in the component
A® A, that P may not be able to merge into a single ” € X in the left component A.

On the other hand, the weakening rule, which asks for a winning P-strategy in

A —o 1

can always be realized (since we required the set of P and O-moves to be always non-empty),
but in a non-canonical way for general uniform automata. More generally, given A and B over
the same input alphabet, there is always a winning P-strategy in

ARB — A (33)

Assuming A and B are as in Def. 5.5, such a strategy takes (u,v) € U x V to u € U and takes
xz € X to (z,y) € X xY, where y is an arbitrarily chosen element of Y.

We shall come back on the connection between non-deterministic automata, the interpretation
of the (WEAK) and (CONTR) rules and IMELL in §7.

Example 5.9. Proposition 5.6 actually holds for any extension of the deduction system of
Fig. 18 with realizable rules, that is with rules

At B
such that there is a winning P-strateqy in A —o B. In particular:

(i) We can extend the system with the following generalization of (33):

A, oo Ap B A,
We thus get
A A BB
AB-A®B A BFA
A BHA
AFB —o A

So there is a winning P-strategy on
A — (B—A)

and by Prop. 4.11 we have
LA) C L(B—A)
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(ii) For B non-deterministic, we can extend the system with the following generalizations

of (32):

BFB®...®B

Continuing Ez. 5.8 with B non-deterministic, we thus have

B.B.(B—-AFA2B
BFBoB BaB,(B—oAFAcB
B.(B—-AFA2B

Finally, we note that the monoidal structure together with (33) imply that ® indeed imple-
ments a conjunction on automata.

Proposition 5.10. Given A,B: X, we have L(A® B) = L(A) N L(B).

Proof. The inclusion (C) is given by winning strategies in A ®@ B — A and A® B — B.
For the other direction, using Prop. 5.4, tensor o winning on I3 — A(T") with 7 winning on
I; — B(T) and then precompose with a monoidal unit map. O

5.4. Falsity and Complementation

We have already seen in §1.2 that usual alternating automata are equipped with a complemen-
tation construction (—)* linear in the number of states (see e.g. [MS87]). Using the monoidal
closed structure, a similar construction can be done with uniform automata.

Definition 5.11 (Falsity Uniform Automaton). For each alphabet X, the falsity uniform au-
tomaton L over ¥ is
L= B,f,9,1,0,,0)

where Q := B* -t and where

f ifb=fandd=d
t otherwise

afL(bafvdla.>d) = {

Note that in the game ¥ F L, O looses as soon as it does not play the same tree direction
as proposed by P. On the other hand, L accepts no tree since in an acceptance game L(7'), O
can always play the same d as P.

Consider a uniform automaton A : ¥ with set of P-moves U and set of O-moves X. The
automaton (A —o L) is isomorphic (via XU*® ~ XUX1x9) t0 the automaton A" defined as

AY = (QaxB, (¢4, ), DY x XUX® U 9,0, Q4u)
where
(qk, bk)k € Q‘AL iff ((qk)k eEQy = (bk)k € B*- tw)
and where

(¢4, f) ifb=Ffand d= f(u)

8./4* (a7 (QAa b)7 (f7 F) , U, d) = { (q£4 t) otherwise

with ¢4 :== da(a, qa, u, F(u,d), d). Hence O looses as soon as it does not follow the direction

proposed by P via f.
Thanks to the determinacy of w-regular games (see e.g. [Tho97, PP04]), we get:
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Proposition 5.12. Given A: Y, we have L(AY) = 27\ L(A).

Proof. The argument is an adaptation of the one given in [Wal02]. By determinacy of w-regular
games, it is equivalent to show that:

P wins the game 1 - A*(T) = O wins the game 1 + A(T)

where, using the notions of App. A, an O-strategy is just a P-strategy on the dual game.

For (=), assuming given a winning P-strategy o on A*(T"), we build a winning O-strategy
T in A(T) The strategy 7 is built by induction on plays. To each play t of 7, we associate a
play s of o such that if ¢ leads to state g4, then s leads to state (g4, f). In the base case, both ¢
and s are the empty plays, and the invariant is respected. For the induction step, assume that
P plays u from ¢ in A(T). Let (f,F) be the move of ¢ from s. We then let 7 answer the pair
(F(u, f( ), f(u)) from s.u, and A goes to state ¢/,. In A*(T), we let O play the pair (f(u),u).
Then A% goes to state (¢ '+, T) and the invariant is respected. Since o is winning and At stays in
states of the form (_,f) the infinite sequence of states produced in A(T') is rejecting, as required.

For the converse direction (<), assuming given a winning O-strategy 7 on A(T), we build a
winning P-strategy o in A“(T). The strategy o is built by induction on plays as long as A*“
stays in states of the form (_, f) (if it switches to (_,t) then P trivially wins). So to each play s
of o which leads to state (g4, f), we associate a play ¢ of 7 which leads to state g4. The base
case is trivial. For the induction step, we build (f, F') from o as follows: to each u, o associates
(from t) a pair (x,d). We let F(u,-) := d and f(u) := z. Assume then that from s.(f, "), O
plays some (u,d). If d # f(u) then we are done. Otherwise, A" switches to (¢'y,f). We then
let P play u from ¢, so that by construction 7 answers (F(u,_),d), and A goes to state ¢/4. But
then, since 7 is winning for O, the sequence of A-states is rejecting, so that P wins in AJ‘( ),
as required. ]

5.4.1. Deduction Rules for L and A*. Since the fibre categories DialAuty are symmetric
monoidal closed, they are in particular dialogue categories in the sense of [Mell3], with as
exponentiating object any object of DialAuty. Hence, if as in Ex. 5.9 we extend the deduction
system of Fig. 5.9 with the realizable rules

A— L AL and At A — L
then we can derive the following rules for L and A*:

ABFL  AFB*  AFB* A+ B
AFBY  ABFL  BFAY  AFAM BtRAt AR gd

6. Quantifications

We now discuss quantifications in the fibration DialAut. We follow the categorical approach
outlined in §2.2, according to which existential and universal quantifications (also called simple
coproducts and products [JacOl, Chap. 1]) in a fibration p : E — B are given resp. by left
adjoints ]_[IJ : Erxg — Er and right adjoints HIJ : Erxg — Ej to the weakening functors
: Ef — Ejx s induced by B-projections 7 : I x J — I. The adjunctions ]_[I g A 411, . are
moreover required to satisfy some coherence conditions, called the Beck- Chevalley condltlons
which insure that they are preserved by substitution.
Having both (categorical) existential and universal quantifications greatly simplifies some
basic reasoning on games (see Cor. 6.5 and Ex. 6.10). Referring to Rem. 3.11, this also allows
a clearer connection with Gédel’s Dialectica interpretation (Ex. 6.4).
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We first present quantifications in DialAut (§6.1), from which we then derive quantifications
on automata (§6.2) and deduction rules for quantifications (§6.3).
6.1. Quantifications in DialAut

Quantifications in DialAut are induced by quantifications in DialZ, which are themselves based
on quantifications in simple fibrations. It is well-known (see e.g. [JacOl, Chap. 1]) that the
simple fibration s : s(B) — B always has simple coproducts, and has simple products iff B is
Cartesian closed. They are given by

[Tuxrx) = I, JxX) and J[dxJX) = (I,X7)
I1,J I,J

This directly extends to DialZ.

Proposition 6.1. The weakening functors [x]* : DialZ(¥) — DialZ(XxT") induced by projections
m: % x ['—= X have left and right adjoints given by

[[o.x)=@CxUX) and JJWU.X):=U"T xX)~ (T —pgz, (U,X))
o, »,T

Proof. Fix X, " and a projection 7 : ¥ x I' = X. According to [ML98, Thm. IV.1.2], we have
to show that for each DialZ(X x I')-object A, there are DialZ(X x I')-morphisms

na : A —opiz(sxr) [W]*(HA) and €4 : W*(HA) —oDialz(sxT) A
ST »,r

satisfying the following universal properties: for each DialZ(X)-object B and each DialZ(X x T')-
morphisms

o: A ~DialZ(ZxT") [7]*(B) and s [7"(B) ~°DialZ(2xT") A
there are unique DialZ(X)-morphisms

9 . HA _ODiaIZ(E) B and 19 : B _oDiaIZ(Z) HA
ST ,r

such that we have

A——"— [ (I A) [7]*(B) (34)
o o [+ (9) N
[7]*(B) [ (HsrA) —5——= A

Now, since [r]* is the identity on objects, writing A = (U, X), the maps n4 and €4 actually
have type:

na : (U7 X) —>Dia|Z(Z><F) ((F X U) ) X)
and €A : (UF7 I'x X) 7 DialZ(ExT) (U, X)
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(ExT)x U, X) ~opz, (TxU,X)
0] ((a,l;),u)
(b, u) P
(z,d) 0
P T
(ExD)xUY, T x X) ﬁoDZQ U, X)
0 (@@ 5),7)
f®) | P
(x,d) | O
P (b, x)

Figure 19: The DZgp-morphisms 774 and €4 in the proof of Prop. 6.1

They are induced from the DZg-morphisms

fa (ExT)xU,X) —opz, ([I'xU,X)
and a4 (ExD)xU', T'xX) —opz, (U, X)

depicted on Fig. 19 and themselves based on the monoidal closed structure of DZg.
The existence and unicity of § and ¥ satisfying (34) follow from the fact that comonoids have
a Cartesian structure and from the monoidal closure of DZy. ]

The Beck-Chevalley conditions amount, for L € T[A, ¥], to the equalities

r[Jux)y = [J@xidp)rwXx) fo[]e{[[ID

2, AT

which follow from the fact that substitution functors are identities on objects.
The extension to DialAut just requires to handle winning and acceptance.

Proposition 6.2. The fibration DialAut has existential and universal quantifications given by

[[U.x.Wa) == ©xUX,[[Wa) and [[U. X, Wa) = U T x X,[[Wa)
»,r 3, 3, 3,

where [ [ Wa is defined from W4 via associativity and [[Wa by pointwise function application
as ((ag, fr) - (br, ¥k, di))k € [T Wa iff ((ak, bk, fe(or)) - (2k, di))k € Wa.

Proof. Tt is easy to check that for A = (U, X,W,) over ¥ x I, the universal DialZ(X x I')-
morphisms 7y, x) and € x) induce DialAutsxp-morphisms, that is, according to Def. 4.7, that

their lifts L(?]?U X)) and L(ﬁ?U X)) are winning.
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The Beck-Chevalley conditions, which amount to

(T4 =] (& xTdr)*(4)  and  LXJJA) =[] (L x1dr)*(4)
»,r

AT T AT

are straightforward from the definitions. O

6.2. Quantifications on Uniform Automata

Similarly as with the monoidal closed structure, the quantifications on automata and their
deduction rules are obtained by direct adaptation of the quantifications of DialAut.

Definition 6.3. Given A : X x I with set of P-moves U and set of O-moves X, let

GrA:S) = (Qa,d4, T xU, X, 034, R4)
(VrA: %) = (Qa,q4.U", T x X, dya, Q)

where
aﬂpA(Qy a, (b’u)7 xz, d) = aA(Qv (avb)v u, T, d)
and Mpalgs a, f, (b,2),d) = 0alg, (a,b), f(b), z, d)

Quantifications on automata induce an 3V-structure which is reminiscent from Godel’s Dialectica
interpretation (see e.g. [AF98, Koh08]).

Example 6.4. Given A : Y% with set of P-moves U and set of O-moves X, let D be the deter-
ministic automaton

(D:¥xUxX) = (Qa,dy, 1,1, 0p, Q)
whose transition function
Op : Qax(ExUxX) — © — Qu
is obtained from 04 in the obvious way. In DialAutys we have A ~ IV xD.

Let us now discuss the connection between quantifications on automata and in DialAut. First,
given (A: ¥ x I'), we have, as DialAutg-objects,

CH[[A = ©F3A)  and  (EH[JA = (SFV2A)
»,r T

It then follows that the Beck-Chevalley conditions in DialAut imply

[er AMM x1dr) = M*[[apA) = (EGrA)(M)
[Ior AM x1dr) = M*(J[arA) = (VrA)(M

Thanks to the adjunctions [[ 4 #* 4[] in DialAut, we then have

S+ (3rA)(M) — B(N) Y xTFAM xIdr) — B(N o [rs))

SEB(N) — (VrA)(M) =~ SxTFB(Nolrs]) —o AM x Idp) (35)
It follows that P has winning strategies in
ExTF((VrA)ry] — A and ExT'FA —o (3rA)[rs] (36)

We thus get the following corollary to Prop. 6.2.
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Corollary 6.5. Given uniform automata A,B : X, the game ¥ = A — B is equivalent to a
reqular game on a finite graph. It is therefore decidable whether there exists a winning P-strategy
on X F A — B, and if there exists such a winning P-strategy, then there exists a finite-state
one, which is moreover effectively computable from A and B.

Proof. By (35) and (36), P has a winning strategy in ¥ - A —o B iff it has a winning strategy
in1FI; — Vg(A — B). But since in that game O can only play e in the component I,
similarly as in §3.5, it is equivalent to the acceptance game of the automaton Vy(A — B) : 1
on the unique tree 1 : ®* — 1.

Reasoning as in [Tho97, Ex. 6.12], the game 1  Vx(A —o B) is effectively equivalent to a
regular game on a finite graph. Then, by Biichi-Landweber Theorem [BLG69] (see also [Tho97,
Thm. 6.18]), one can decide which player has a winning strategy, and the winner always has a
finite-state winning strategy which is moreover effectively computable from the game graph. [

We also get from (36) that existential quantifications are complete in the following sense:
Corollary 6.6. Given A: % x T, we have mp(L(A)) C L(3rA).

The converse inclusion (the correctness of existential quantifications) only holds for non-
deterministic automata, and is detailed in §7. Dually, it follows from (36) that universal quan-
tifications are correct (but they are complete only on universal automata, see Def. 3.1).

Corollary 6.7. Given A : ¥ x T, if T € L(VpA), then for all T'-labeled tree T' we have
(T, Ty € L(A).

6.3. Deduction Rules for Quantifications

We now turn to deduction rules for quantification. It follows from the isos (35) that we can
extend the deduction system of Fig. 18 with the rules of Fig. 20 while preserving adequacy
(Prop. 5.6), Ex. 5.9 and compatibility with cut-elimination (in the sense of Rem. 5.7).

Proposition 6.8 (Adequacy with Quantifications). If the sequent M ; Ay,..., A, &+ B is
derivable using the rules of Fig. 18, Fig. 20 and of Ex. 5.9, then there is a winning P-strategy
in the game

A1 (M) ®pa - @pa An(M)  —o  B(M)

Note that the rules of Fig. 20 involve internalized substitutions of the form A[f] as defined
in Def. 3.7. The transfer rules (TRANS;) and (TRANS) allow to connect the internalized
substitutions of the form A[f] with the T-substitution.

Example 6.9. Using the transfer rule (TRANS|), we can derive the following specific rules of
substitution for T-maps induced by functions £ : 3 — I':

Idr ; AFA MxIdr; AFA
Idy ; A[f] - Alf] M x Idy, ; Afid x £f] - A[id x £]
Indeed, since we have (as T-morphisms)
Idro[f] = [f]oldy and (M xIdr)ofid x f] = (idx £f)o (M x Idy)
it follows that we can derive
Idr ; A-A M xIdr; AFA
Idro[f]; AF A and (M xIdr)ofidxf]; AFA
Idy ; A[f] - Alf] M x Idy ; Afid x £f] - A[id x £]
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M; AFA

(SuBsT) —
MoM ; A A
(TRANS)) ] O]\LX'_ 5 M, HEBM (TRANS})

YoM A - B [floM; AFB !

(Lerr 3) M x Idr ; Alr], B+ Alr] MxN; AFA (RiaT 3)
M A 3rBF A M x N ; A+ (3pA)[x]

(Lerr V) MxN; A BFA M xIdr ; A[r]F A (Ricir )

M x N ; A, (VrB)[x]F A M ; AFVrA

Figure 20: Substitution and quantification rules for uniform automata (where M, M’ are com-
posable, 7 is a suitable projection and f is a function on alphabets)

Example 6.10. Continuing Fx. 5.9, we can extend the deduction system with the rule

LIA:1)#0
- A

This rule actually subsumes Ex. 5.9. Indeed, following the same reasoning as for Cor. 6.5,
assuming that

Y, AR A, FB

is realizable we get (leaving implicit some structural and cut rules)

LVs(A @ @A, —B))#0
1; FVe(A41®---® A, —B)
Y FAR®---A, oB
Y A4AR-- A, FB
i A,..., A, F B

7. Non-Deterministic Automata

This final Section focuses on structural properties of non-deterministic automata, on their role in
Rabin’s Theorem [Rab69] (namely in the complementation of non-deterministic tree automata),
and on their relation with IMELL [Gir87] (see §1.2, §1.3 and §2.5).

We first detail in §7.1 the Cartesian structure of non-deterministic automata announced in §1.3
(see also §2.4 and §5.3). Technically, this Cartesian structure follows from the simple fact that
non-deterministic automata generate comonoids in the fibres of DialAut (by a direct extension
of Prop. 4.4, §4.3). As a consequence, we show that our model has the witnessing properties
asked to computational interpretations of proofs (in the sense of §1.4), and moreover that it
allows to combine strategies obtained from proofs with witnessing strategies computed by usual
emptiness checking algorithms (see §1.5).

Second, we show that a powerset construction for the Simulation Theorem [MS87, EJI1,
MS95] satisfies the usual deduction rules of the exponential modality ! of IMELL. This com-
pletes the picture sketched in §1.3, §1.5, §2.4 and §2.5, and moreover allows to obtain a deduction
system which is complete w.r.t. intuitionistic and classical deduction (via usual translations).
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Furthermore, App. C details how two constructions from resp. [CLO8] and [SA05] can be refor-
mulated in our setting.

7.1. The Cartesian Structure of Non-Deterministic Automata

Similarly as with usual (total) non-deterministic automata (see §2.4), the monoidal product
of uniform automata is Cartesian on non-deterministic automata. Recall from Def. 3.1 that a
uniform automaton is non-deterministic if its set of O-moves is ~ 1.

Consider a DialAutsg-object N (L) with A non-deterministic and with set of P-moves U.
Hence, the underlying DialZ(X)-object of N(L) is of the form (U,I) with I ~ 1. As we have
seen in §5.3, we thus get canonical realizers for

N@L) —o NL)@N(L) and  N(L) —o I (37)

As we shall see now, these canonical realizer equip N (L) with the structure of a comonoid®®.
Thanks to well-known results (see e.g. [Mel09, Cor. 18, §6.5]), this implies that the monoidal
structure of uniform automata is Cartesian on non-deterministic automata.

Recall from Prop. 4.2 that objects of the form (K, I) with I ~ 1 are comonoids in DZ, and
from Prop. 4.4 that such objects are also comonoids in DZ5. On the other hand, we have seen
that DialZ(X) is a Kleisli category of comonoid indexing in DZg, whose symmetric monoidal
structure is given be the extension of Prop. 4.4 to comonoid indexing given by Prop 5.2. Actually,
the lifting of comonoids given by Prop. 4.4 also extends to the case of comonoid indexing:

Proposition 7.1. Given a comonoid C in a symmetric monoidal category (C,®,I), each
comonoid (K,d,e) in C induces a comonoid (K, do €%, eo€?) in the Kleisli category K1(C)
of indexing with C. In the case of DialZ(X), the structure maps dx and éx of the comonoid
induced by K = (K, 1) can be depicted as on Fig. 22 (where we omitted some e-moves).

The extension of Prop. 7.1 to the DialAuty-objects induced by non-deterministic automata
is direct. Moreover, DialAuts-morphisms between non-deterministic automata are comonoid
morphisms.

Proposition 7.2. For each alphabet ¥, objects of the form ¥ = N (L), where N is non-
deterministic, are comonoids in DialAuty. Moreover, DialAuty-morphisms between such objects
are comonotid morphisms.

Proof. Counsider first a DialAuty-object V(L) with N non-deterministic and with set of P-moves
U and set of O-moves I ~ 1. Hence (U, I) is a comonoid in DialZ(X) by Prop. 7.1. Moreover, the
comonoid structure maps play as the maps depicted on Fig. 22 (replacing (K,1) with (U, 1)),
and winning is trivial.

Consider now a DialAuty-morphism o : N (L) —o (L), where A" and K are non-deterministic,
with sets of P-moves resp. U and V', and sets of O-moves resp. I and J (where I ~ J ~1). We
show that ¢ is a comonoid map by reasoning similarly as in Prop. 4.5 for the base category T.
Writing dys and éxr (resp. dx and éx) for the comonoid structure maps of N'(L) (resp. K(L')),
we have to show that the following equations hold in DialAuty:

(c@0)ody = dcoo and EN = €éxoo

Assuming that o plays as in Fig. 21 (top left). The first equation follows from the fact that
di o o plays as in Fig. 21 (middle), while (6 ® o) o daq plays as in Fig. 21 (bottom). The second
equation follows from the fact that éx o o plays as in Fig. 21 (top right). O
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i NL) Lo k)| kw) 2o
N(L) — K() : :
: O (a,u)
0 (a,u) v | (av)
P v o | P
0 d d|o
P ° d °
. P °
NI o K(I) | K(I) o k(L) @K
O | (a,u)
v (a,v)
(v,v) P
d 0
d °
P °
NI 2o ML) eNEL) | NL) oNEL) 2% K)o kW)
O (a,u)
(u,u) (a, (u,u))
(v,v) P
d 0
d .
P °

Figure 21: DialAutyg-maps on non-det. automata as comonoids maps in Prop. 7.2
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Y@K —opz, K®K SOK —opzy I
O (ak) O (a,k)
(k,k) | P o | P
d |0 d|o
P ° P °

Figure 22: Structure maps in DialZ(X) for the comonoid K = (K, 1)

Since the category of comonoids of a symmetric monoidal category has finite products (see
e.g. [Mel09, Cor. 18, §6.5]), we thus have the expected result that non-deterministic automata
are equipped with a Cartesian structure.

Corollary 7.3. For each alphabet 3, the full subcategory DiaIAutgD of DialAuty, whose objects
are of the form (U,1,W) with I ~ 1, is Cartesian.

7.1.1. Application: Deduction Rules for Non-Deterministic Automata. Similarly as with
usual (total) non-deterministic automata (see §2.4), Cor. 7.3 allows to extend adequacy (Prop. 5.6
and Prop. 6.8) to the following restriction of the structural weakening and contraction rules:

M; A, B-C M; AN, N,B-C

WEAK — — — L
( ND) M: A ,N,BFC M: A, N,BFC

(CONTRND) (38)

where A is required to be non-deterministic (while A, B and C can be arbitrary). On the other
hand, recall that the full weakening rule is actually derivable in the setting of Ex. 5.9, but with
non-canonical realizers of A —o I when A is not non-deterministic.

7.1.2. Application: Existential Quantifications and Extraction. A nice consequence of the
Cartesian structure of DiaIAutN_D) is the fact that existential quantifications behave similarly as
the usual sum types of Type Theory (see e.g. [JacOl, Chap. 10]). Consider a non-deterministic
automaton A : ¥ xI' with set of P-moves U, and let T be a 3-labeled tree (so that T': ©* — X).
It directly follows from Def. 3.9 that a winning P-strategy in 1 + I —o (3p.A)(T) is given by a
function

U 2" — TI'xU

neN

hence by a pair of functions
(U@” o r) x <U©" — U>
neN neN

and therefore by a tree T : ©* — T' together with a winning P-strategy in 1 - I — A(T,T").
We thus have shown

16Recall from §4.2 that in this paper, by (co)monoid we always mean commutative (co)monoid
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Proposition 7.4. Given a non-deterministic automaton N : X x I', a winning P-strategy
o:1 — 3N is of the form o = (T, 7) where T is a X-labeled tree and T is a winning P-strategy
in 1 — N(T) (so in particular T € L(N)).

In particular, we get the following fact, which completes Cor. 6.6 and mirrors the well-known
situation with usual non-deterministic automata.

Corollary 7.5. If N': ¥ x ' is non-deterministic then £(IrN) = 7p(L(N)).

Moreover, it follows from Prop. 7.4 that our computational interpretation allows to effectively
extract witnesses from (interpretations of) proofs, in the sense of §1.4 and §1.5. Let N : ¥ be
non-deterministic with set of P-moves U, and consider a derivation & of the sequent

1; F3IgN

using the rules of Fig. 18, Fig. 20, Ex. 5.9 and (38). Then adequacy (Prop. 5.6 and Prop. 6.8)
gives a strategy
c I — FIsN

(effectively computed by induction on Z), and which by Prop. 7.4 is of the form

(r,7) 0 Upen®* — X xU
where T I — N(T)

7.1.3. Application: Effective Realizers from Witnesses of Non-Emptiness. Similarly as with
usual non-deterministic automata (see e.g. [Tho97]), thanks to the Biichi-Landweber Theo-
rem [BL69], Cor. 7.5 implies the decidability of emptiness for non-deterministic automata as
well as the Rabin Basis Theorem [RabT72], stating that if L(N') # 0, then its contains a regular
tree T and a finite state winning P-strategy on N (T') (both effectively definable from N).

Corollary 7.6. Given a non-deterministic automaton N : ¥, one can decide whether L(N) is
empty. Moreover, if LIN') # () then one can effectively build from N a regular tree T € L(N)
together with a finite state winning P-strategy on I — N(T).

Proof. Tt follows from Cor. 7.5 that £(A) is not empty iff the automaton (IpN) : 1 accepts the
unique 1-labeled tree 1. We then proceed similarly as in the proof of for Cor. 6.5: reasoning as
in [Tho97, Ex. 6.12], the game 1 - s is effectively equivalent to a regular game on a finite
graph. Then, by Biichi-Landweber Theorem [BL69] (see also [Tho97, Thm. 6.18]), one can
decide which player has a winning strategy, and the winner always has a finite-state winning
strategy which is moreover effectively computable from the game graph. Now, this strategy can
be lifted to a finite state winning strategy on 1 + 3z A/, and we can then conclude thanks to
Prop. 7.4. O

More generally, strategies witnessing (non-)emptiness obtained via Cor. 7.5 can be lifted to
winning strategies in games of the form A — C. Consider the case (mentioned in §1.5.(2))
of C = B* and with A,B : ¥ non-deterministic. If £(A) N £L(B) = (), then an O-strategy
witnessing £(A ® B) = (), which corresponds via Prop. 5.12!7 to a P-strategy witnessing 1 €
L((Fs(A® B))*), can be lifted to a winning P-strategy in A — B*.

"More precisely, this is direction (<) in the proof of Prop. 5.12.
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Proposition 7.7. Given non-deterministic A, B : X, if L(A)NL(B) = 0, then there are winning
P-strategies in A @ B —o L and A — B*. Moreover, these P-strategies can be assumed to be
finite state and can be effectively obtained from A and B.

Proof. Since L(A) N L(B) = 0, we have L(A ® B) = 0 by Prop. 5.10. Since A and B are
non-deterministic, so is A ® B. It then follows from Cor. 7.5 that £(3x(A ® B)) = 0, hence,
by Prop. 5.12 that the automaton (Ix(A ® B))* : 1 accepts the unique tree 1 : ®* — 1. But
winning P-strategies in (Ix(.A ® B))*(1) can be lifted to winning P-strategies in

1 F L(l) — (Gs(A4eB)H(1)
But note that since (I5(A ® B))* : 1, that game is actually the same as
1 - I} — (3g(AeB)*
It then follows from monoidal closure (Prop. 5.4) that there is a winning P-strategy in the game
1 - IAB) — L

and therefore by Prop. 6.2 (in the form of (35)) that there is a winning P-strategy on AQB —o L
and therefore also in A — B*.

Moreover, it follows from Cor. 7.6 that there is a finite-state winning P-strategy in the game
1+ (3g(A® B))*(1) which is easily seen to be lifted to finite state P-strategies in A ® B —o L
and A — B*. O

Proposition 7.7, together with Ex. 5.9.(ii), implies the following extension of Ex. 5.9.(i).

Corollary 7.8. If A, B : ¥ are non-deterministic and such that L(A)NL(B) = 0, then L(A) C
L(B— A) C L(B*).

Proof. The inclusion £(A) C £(B — A) was shown in Ex. 5.9.(i). For the inclusion £(B —o
A) C L(B*Y), by Ex. 5.9.(ii) we can derive the sequent

Bo(B—-AFA®B
and it follows from adequacy (in the form of Prop. 5.6) that there is a winning P-strategy
o : BB—oA) — ARB
But now, since L(A) N L(B) = 0, it follows from Prop. 7.7 that there is a winning P-strategy
T : A®B — 4L

so that
Toog : B®B-—-A) — 4L

It then follows from Prop. 5.4 (monoidal closure) that there is a winning P-strategy in
(B—-A) —o B*

and we conclude by Prop. 4.11. a
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7.2. Simulation and the Exponential Modality of IMELL

Recall that similarly as in the usual setting, uniform automata have linear complements (§5.4),
and that non-deterministic automata have correct existential quantifications (§7.5). On the
other hand, we mentioned in §1.2 that in the usual setting, the Simulation Theorem [MS87,
EJ91, MS95] says that each alternating automaton A can be simulated by a non-deterministic
automaton A (of exponential size) with L(1A) = L(A).

We show here that in our setting, an easy adaptation of the construction used in [Wal02] gives
a similar simulation operation !(—), taking a uniform automaton A4 : ¥ to a non-deterministic
automaton A : ¥ with £(IA) = L(A), thus completing the picture (3) of §1.2 for our notion of
uniform automata:

Uniform
Automata

Non-Deterministic
Uniform Automata

Moreover, we show that the operation !(—) satisfies the deduction rules of the exponential
modality ! of IMELL:

M;1AFA M; A BFA M, AFA M A B 'BFA

— — — — 40
M VAF1A M; A 'BFEA M; A 'BFEA M; A 'BFEA (40)

It follows that the exponential ! allows to define, using Girard’s decomposition, an intuitionistic
implication (—) = (—) as A —» B:=14 — B.

The rules (40) are an obvious adaptation to our context of the rules displayed in (25) and (26)
of §2.5. The last two rules (weakening and contraction) actually follow from the rules (WEAKND)
and (CONTRnp) displayed in (38). The second rule (DERELICTION) will easily follow from the
construction of lLA. The most difficult rule is the first one (PROMOTION), which is moreover
not compatible with cut-elimination (in the sense of Rem. 5.7).

The difficulty with the (PROMOTION) rule can be explained as follows. We have seen in §7.1
above that the symmetric monoidal structure of DialAuty is Cartesian on non-deterministic
automata, in other words that non-deterministic automata have a canonical comonoid struc-
ture (37). It follows that similarly as with usual IMELL-exponentials (see §2.5 but also [Mel09]),
the simulation operation !(—) adds to an arbitrary automaton A the structure allowing !A to
be equipped with canonical maps:

4 — AlA and A4 —o 1

On the other hand, recall from §5.3 that for a uniform automaton A with set of O-moves X,
realizers of

A —0 ARA

may not exist because O can play two different (x,2') € X x X in the right component A ® A,
that P may not be able to merge into a single 2/ € X in the left component A.

Usual solutions to this merging problem for IMELL-exponentials (see e.g. [Mel09, AC98,
Mel04]) amount to equip objects of the form !A with some duplication and memory abilities,
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essentially allowing !A to run several copies of A in parallel. However (and this is via (4) §1.2,
the crux of Rabin’s Theorem [Rab69]), such recipes can not (at least in an obvious way) be
applied to automata on infinite trees, because !4 must be a finite-state automaton, while plays
in acceptance games (which are infinite) would require an infinite memory.

Phrased in modern terms, the solution is given by the existence of positional (i.e. memo-
ryless) winning strategies in w-regular games equipped with parity acceptance conditions (see
e.g. [Tho97, GTW02]). In our case, we rely for the (PROMOTION) rule on the stronger fact
that in an w-regular game whose winning condition is given by a disjunction of parity condi-
tions (also called a Rabin condition), winning P-strategies can always be assumed to be posi-
tional [Kla94, KK95, Jut97, Zie98]. Unfortunately, positionality is not preserved by composi-
tion, and the interpretation of the (PROMOTION) rule is not preserved by cut-elimination (in
the sense of Rem. 5.7).

Remark 7.9. In (39), we have only displayed existential quantifications 3 for non-deterministic
automata, because as in the usual setting, they are correct (in the sense of Cor. 7.5) only on
non-deterministic automata. Similarly, we did not displayed universal quantifications because
they are only complete on universal automata (see Def. 3.1).

Note that on the other hand, the categorical properties of quantifications (Prop. 6.2) and thus
the deduction rules of Fig. 20, hold on general uniform automata.

7.2.1. Parity Automata. Similarly as in the usual setting, we say that A is a parity automaton
if Q4 is generated from a map c4 : @4 — N as the set of sequences (g ) such that the maximal
number occurring infinitely often in (c4(qx))x is even.

Proposition 7.10. For every automaton A : %, there is a parity automaton A’ : ¥ such that
At ~ A in DialAuts..

Note that A ~ AT implies £(A) = L(A") by Prop. 4.11.

Proof of Prop. 7.10. Recall (from e.g. [Tho97, GTW02, PP04]) that every w-regular language
L can be recognized by a deterministic w-word parity automaton (Qr,q},0r,cr). Follow-
ing [Wal02], given A : ¥ with set of P-moves U and set of O-moves X, let

AT = (QaxQr, (¢4, dh), U, X, 04, Qat)

where L is the w-regular language €24, the acceptance condition €2 4+ is generated from ¢y, via
second projection, and the transition function 04+ is given by:

aAT(<QA,QL),a,U,CC,d) = (q_IA7 8L(QL7Q£4))
with ¢y == 04(q4,a,u,z,d). Note that A and AT have the same P and O-moves, so that identity

strategies provide an isomorphism A ~ AT, O

7.2.2. An Exponential Construction on Uniform Automata. Our exponential construction
I(—) is an adaptation of the one used in [Wal02]. Given a parity automaton A : ¥ with set of
P-moves U and set of O-moves X, we let

A = (Qua, gia, U4, 1,004, Qua)

where Qa 1= P(Qa X Qa), ¢4 = {(¢'4,d4)} and 04 is defined as follows: Given a € X,
feUla de® and m(S)={¢ | ¢ (¢,¢) € S} = {q1,...,qn}, let

a(S,a, f,ed) = TyU---UT,

61



where, for each k € {1,...,n},

Ty = {(Qkaq) | dr € X. q= aA(q]Ca a, f(Qk),ﬂi',d)}

Let a trace in an infinite sequence (S,), € Q4 be a sequence (gn)n such that for all n,
(Gn, @n+1) € Sn+1. We let Qg be the set of sequences (Sy,), whose traces all belong to € 4.
Note that €4 is w-regular since € 4 is w-regular (see [Wal02, §4]).

Remark 7.11. Note that Q14 = P(Q x Q) contains a “true” state ) € Qy4, so the map
da 1 Qux¥ — U? — (®—Qu
s always total.

For a uniform automaton A whose acceptance condition is not a parity condition, let |4 := !(A'),
where A is obtained from Prop. 7.10.
It is easy to show the adequacy of the dereliction rule. This amounts to provide co-unit-like
winning P-strategies
e : lAM) — AM)

Proposition 7.12. Given A: %, there is a winning P-strategy € in X+ LA(M) — A(M).

Proof. By Prop. 7.10, we can assume A to be a parity automaton. Using the injectivity of HS
(Lem. A.11), we define HS(¢) by induction on plays as follows, with the following invariant: for
each (s,t) € HS(e), with s,t of even length, writing ¢ for the state of ¢ and S for the state of s,
we have ¢ € ma(S5).

The base case is trivial. Let (s,t) € HS(e) with s and ¢ even-length, and with ¢ in state ¢
and s in state S. Given an O-move (a, h), we let (s.(a, h), t.h(q)) € HS(e€), and for all (z,d) we
further let (s.(a, h).(e,d), t.h(q).(z,d)) € HS(¢). Then the invariant is insured by def. of |.A.

The strategy € is winning since the sequence of states produced in A is a trace in the sequence
of states produced in !A. O

7.2.3. Game Graphs and Positionality. We now turn to the (PROMOTION) rule. Its adequacy
relies on well-known but non-trivial results on the existence of winning positional P-strategies for
Rabin games, which are games whose winning conditions are disjunctions of parity conditions.
The notion of positional strategy makes sense for games whose moves and winning condition
are induced in an appropriate way by a given graph.

Consider uniform substituted acceptance games ¥ - A(M) and ¥ F+ B(N), where A (resp.
B) has set of P-moves U (resp. V) and set of O-moves X (resp. Y). The game graph of
Y+ A(M) — B(N) is the graph G with vertices:

(AP X Bp) + (Ao X BP) + (Ao X Bo)

where
Ap = @*XE*XQA Ao = @*XE*XQAXU
Bp = D*x¥X*xQp Bo = D" xY¥X*xQxV

and with edges depicted in Fig. 23, where ¢4 := 04(q4, M (a.a, p),u, x,d) (for some z € X) and
qg = 0p(gs, N(a.a,p),v,y,d) (for some y € Y'). Write pos for the graph morphism from the set
of plays of ¥ F A(M) — B(N) (seen as a tree) to G. We say that a strategy o is positional if
it agrees on plays with the same position, i.e. if s.m € o, t.m’ € o with pos(s) = pos(t) implies
m=m'.
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((p,a,qu) , (p,3a,q8) | ApxDBp
0 {
((p,aa,qa,u) , (p,a,qs)) | Aox Bp
P {
(p,aa,qa,u) , (p,aa,qs,v))| Ao x Bo
0 {
((pu E'aa qA, U) ’ (pd7 5.&, ng)) AO X BP
P {
((pd,aa,qy) , (pd,aa,qg) | Ap x Bp

Figure 23: The edges of the graph G for ¥+ A(M) — B(N)

Consider now parity automata Aj,..., A, and B. The winning condition of a game of the
form Ay (M) ®...® A, (My) — B(N) is a disjunction of parity conditions, also called a Rabin
condition, which is induced by colorings depending only on the vertices of its game graph G.
It has been shown in [Kla94, KK95, Jut97, Zie98| that if P has a winning strategy o in such a
game, then it has a winning positional strategy (w.r.t. G), which according to [Zie98] is recursive
in o.

The existence of winning positional P-strategies allows us to show the adequacy of the
(PROMOTION) rule. The proof is deferred to App. B.

Proposition 7.13. Given N, A : ¥ with N' non-deterministic, if there is a winning P-strategy
in X+ N(L) — A(M), then there is a winning P-strategy in ¥+ N (L) —o VA(M).

7.2.4. Applications. This paragraph gathers consequences of Props. 7.12 and 7.13, thus mir-
roring §7.1.1-7.1.3 and completing the picture announced in §1.3, §1.5 and §2.5. Furthermore,
App. C details how two constructions from [CLO8| and [SA05] can be reformulated in our setting.

First, Prop. 7.12 implies that £(!.A) C £(.A), while Prop. 7.13 gives the converse inclusion
L(A) C L(IA). We thus have, as expected:

Corollary 7.14. L(A) = L(1A).
Corollary 7.14 gives the extension of Cor. 7.6 to general uniform automata.

Corollary 7.15. Given a uniform automaton A, one can decide whether L(A) is empty. More-
over, if L(A) # 0 then one can effectively build from A a regular tree T' € L(A) together with a
finite state winning P-strategy on 1+ 1 — A(T).

We also obtain the lifting property of §1.5.(3), extending Prop. 7.7. Let 2?4 := (1A*)*,

Proposition 7.16 (Weak Completeness). Given automata A, B : X, if L(A) C L(B) then there
is an effective winning P-strategy in X F 1A —o 7.

Proof. By Prop. 5.12 and Cor. 7.14, if £L(A) C £(B) then L(!A)NL(!(B*)) = 0, and we conclude
by Prop. 7.7. 0

On the other hand, Props. 7.12 and 7.13 give adequacy for the rules displayed in (40).

Proposition 7.17 (Adequacy (Thm. 1.3 (9))). If the sequent M ; Ay, ..., A, F B is derivable
using the rules of Fig. 18, Fig. 20 Fig. 24 and of Ex. 5.9, then there is a winning P-strategy in
the game

A1 (M) ®pa -+ @pa A (M)  —o  B(M)
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M;: A, A, B-C M, NFA
(DERELICTION) — — — (PROMOTION)
M; A VA, BEC M; NH!A
M; A B-C M; A, N,N,BrC
WEA = e CONTR
(WEARND) T N B C M AN, BrC ND)

Figure 24: Exponential rules (where A" and A are non-deterministic)

As an example of use of the exponential rules, we mention a negative translation of the law
of Peirce (A — B) — A) — A. The law of Peirce gives full classical logic when added to
intuitionistic logic. Recall that A — B :=14 — B.

Example 7.18. The law of Peirce (A — ?B) — 7A) — ?A can be derived thanks to the
exponential rules.

Proof. We can derive
AY, 24 L
so that (since 7B = (1B*)*)
LAY, ?AF 78
from which it follows that
((7A = 7B) = 2A), A F 74
and thus
((7A = 7B) = 2A), IAY F L
and we are done since 2.4 = (IA*)*. O

Finally, returning to MSO and IMELL (in the sense of §1.1 and §1.3), we obtain Prop. 1.1.(a).
As in §1.3, we assume given an automaton A(«) for each atomic formula a € At.

Proposition 7.19 (Prop. 1.1.(a)). Consider a closed MSO-formulae ¢ as in §1.1, and let (=)
be either (—)"4 or (=)F. Then ¢ is true (in the standard model) if and only if A(¢') accepts
the unique 1-labeled tree.

Proof. Given an MSO-formula ¢ with free variables among Xi,...,X,, for T : ®* — 2P, we
have
TEy = T € L(A(e") (modulo (D* — 2P) ~ (D* — 2)P)

The proof is by induction on ¢, and follows from Prop. 5.10, Prop. 5.12, Cor. 7.5 and Cor. 7.14.
O

8. Conclusion

We have presented preliminary results toward a Curry-Howard approach to automata on infinite
trees. Our contributions concern mainly two related directions.

First, we have shown that the operations on tree automata used in the translations of MSO-
formulae to automata underlying Rabin’s Theorem [Rab69] correspond to the connectives of
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IMELL [Gir87]. Namely, we equipped a variant of usual alternating tree automata (that we
called uniform tree automata, §3) with a fibred monoidal closed structure (§4 and §5), which
in particular handles a conjunction and, via game determinacy, a linear complementation of al-
ternating automata, as well as deduction rules for existential and universal quantifications (§6).
Moreover, we have shown in §7 that this monoidal structure is Cartesian on non-deterministic
automata, and in particular that (an adaptation of) a usual powerset construction for the Sim-
ulation Theorem [MS87, EJ91, MS95] satisfies the deduction rules of an !(—) IMELL-exponential
modality.

Second, our approach is based on a realizability semantics for a linear constructive deduction
system on tree automata, in which, thanks to the monoidal-closed structure, realizers are win-
ning strategies in a generalization of acceptance games. Our realizability semantics satisfies an
expected property of witness extraction from proofs of existential statements. Moreover, this
realizability semantics is compositional and allows to combine realizers produced as interpreta-
tions of proofs with strategies witnessing (non-)emptiness of tree automata, possibly obtained
using external algorithms.

We believe that this can provide a basis for semi-automatic approaches to MSO on infinite
trees'®, in which, similarly as with interactive proof systems, decision algorithms can be com-
bined with human-produced proofs or proof-search techniques. The author and P. Pradic have
recently obtained preliminary results in this direction for MSO on w-words [PR17, PR18].

Furthermore, as shown in Ex. 6.4 (see also Rem. 3.11), our interpretation shares a formal
similarity with Godel’s Dialectica interpretation (see e.g. [AF98, Koh08]). Actually, the cat-
egory DZ can be constructed (via a distributive law) from a category of simple self dualiza-
tion [HS99, HS03] (over the topos of trees, see e.g. [BMSS12]), which can be seen as a skeleton
of Dialectica-like categories [dP91], and the category DialZ has a shape similar to Dialectica
fibrations (see [Hyl02, Hofll] but also [Jac0l, Ex. 1.10.11]). We do not know yet how far
this connection can go, but it seems that it can provide, similarly as with the usual Dialectica
interpretation, realizers for linear variants of Markov and choice rules'?.

Moreover, we show in App. C that our setting easily handles known constructions from [CLOS]
and [SA05] for language reduction and separation.

8.1. Further Works. We plan to continue the line of research initiated here and in [Rib15]
along different directions. A central point w.r.t. most of them concerns the (PROMOTION) rule.

The interpretation of Simulation as an !(—) IMELL-exponential modality in §7.2 is interesting
because it shows that an IMELL-like exponential arises precisely where there is a semantic diffi-
culty (positionality) together with a non-trivial exponential construction on automata. However,
we find the interpretation of the (PROMOTION) rule in §7.2 not completely satisfactory for the
following reasons.

(1) We have to rely on the external result that winning P-strategies can always be assumed to
be positional in Rabin games [Kla94, KK95, Jut97, Zie98|. There seems to be essentially
two ways to apply this result: (a) one could try to extract the positional strategy realizing
the conclusion of (PROMOTION) from the realizer of the premise, or (b) one could obtain
the strategy for the conclusion from an algorithm solving w-regular games (that is from the
Biichi-Landweber Theorem [BL69], see also e.g. [Tho97, Thm. 6.16]).

8Fven if there are numerous implementations of decision algorithms on tree automata, we are aware of no
working implementation of decision procedures for the full language of MSO on infinite trees.

9The reader aware that choice is not expressible in the language of MSO on infinite trees (see e.g. [CL07]) may
be surprised by this suggestion. Actually, choice rules in constructive arithmetics turn V3-statements into IV
ones, but do not necessarily induce wellorderings.
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However, in both cases this amounts to apply a non-trivial external algorithm, and there
seem to be no obvious structural relation between the realizer of the conclusion and the
realizer of the premise.

(2) This interpretation of the (PROMOTION) rule is not compatible with cut-elimination (in the
sense of Rem. 5.7), because the notion of positionality required for (PROMOTION) is not
preserved by composition, so that !(—) is not a functor.

It is unclear to us whether this is a true drawback, because we can still compose realizers
and extract witnesses for existentials (§7.1.2). The only point is that two derivations which
are equal modulo cut-elimination may be interpreted by two different strategies. But still,
the non-functoriality of !(—) is somehow uncomfortable from a semantic perspective.

First, we plan to pursue some work on the category DZ of zig-zag games in order to get a better
picture of its usual game semantics exponentials. According to the discussion of §7.2, such
exponentials would involve some infinite memory, because plays are infinite in DZ. Moreover,
it seems reasonable to target some relaxation of DZ with finite limits (typically by allowing
games to be equipped with a notion of legal plays).

(1) Taking inspiration from [MTT09], We plan to investigate the existence of free exponentials
in suitable xtensions of DZ.

(2) Moreover, there seem to be a natural exponential, in which P essentially plays strategies,
but which in the context of automata would lead to infinite state automata.

(3) We also plan to look at non-synchronous exponentials, such as the Curien-Lamarche ex-
ponential of sequential data structures (see e.g. [AC98, Chap. 14], but also [Mel05]), in
particular because of its backtracking abilities. We suspect that this could allow to han-
dle known results and constructions for reduction and separation properties, in the vein
of [Arn99, AN07, FMS13]. However, we do not know yet if this can provide new results.

Second, an important direction of future work is to get a better semantic account of the
notion of positionality used in the interpretation of the (PROMOTION) rule. In the realm of
game semantics, it has been shown by Mellies [Mel06] that the notion of Innocence (originally
introduced by [HOO00] via a notion of pointers on moves), which characterizes a form of func-
tional (state-free) behavior, corresponds to some notion of positionality. Innocence is actually a
strong form of positionality, which is preserved by composition. It is possible to equip DialAut-
games with an obvious notion of pointers, representing applications of the transition function
of automata as unfoldings of fixpoints. This leads via innocence to a notion of positionality
which seems to be equipped with a monoidal-closed structure (w.r.t. to the synchronous di-
rect product of automata), but which seems too restrictive to handle strategies obtained (via
Biichi-Landweber Theorem) from emptiness checking in the sense of Cor. 6.5, §7.1.3, Cor. 7.15,
and Prop. 7.16. On the other hand, the notion of positionality used in §7.2.3 may be preserved
by composition for non-deterministic innocent strategies, in the vein of [HP12, TO15]. We do
not know yet how such notions of non-deterministic strategies behave w.r.t. the construction of
positional winning P-strategies for Rabin games as in e.g. [Zie98§].

Finally, our main target is the construction of realizability models for MSO. In the case of
w-words (that is taking © = 1 in this paper), and in the context of Church’s synthesis, the
aforementioned results of [PR17, PR18| suggest that, together with the results of this paper,
it is possible and pertinent to devise refinements of MSO based on Intuitionistic Linear Logic
(ILL). We also already mentioned above the connection with Gédel’s Dialectica interpretation,
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which suggests that it may be possible to realize linear variants of Markov and choice rules.
Furthermore, this paper indicates that working in a linear deduction system for MSO allows to
obtain a fibred monoidal closed structure, with in particular deduction rules for existential and
universal quantifications. We think that this can provide a good basis to handle some axioms
of MSO, and moreover that ILL can provide classes of formulae with improved translations to
automata w.r.t. the known non-elementary lower bound (see e.g. [GTWO02, Chap. 13]).

Moreover, in devising realizability models for MSO, and in particular following the approach
of this paper which decomposes the translation of formulae to automata using linear logic, a
crucial role is played by the logical interpretation of the (PROMOTION) rule. Following [M&102],
it seems that (PROMOTION) may be seen as a form of reflection scheme. Similarly as in the
complementation construction of [Tho97, Thm. 6.9], such reflection scheme would simply say
that, because they can be assumed to be positional, realizers can be seen as labeled ®-ary trees.
This would simply amount to the fact that predicates of the form Jo (o : A —o B) are definable
in MSO.
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A. Linear Synchronous Arrow Games

This Appendix relates our categories to [Rib15] and to standard concepts in game semantics.
We also prove that DZ and DZW are categories.

A.1. Simple Games. Game semantics provide models of typed A-calculi, and can thus be used,
via the Curry-Howard correspondence, to build compositional models of deduction systems. In
game models, types (and, via Curry-Howard, formulae, or in our context automata instantiated
with trees or T-maps) are interpreted by two-player sequential games where the Proponent P
(Jloise) and the Opponent O (Vbelard) play in turn moves, producing plays subject to specified
rules. Originally, game models where proposed because they provide fully complete models of
various A-calculi, in the sense that finite P-strategies are definable by A-terms. On the other
hand, the notion of strategy naturally encompasses infinite objects, and is thus well suited to
deal with runs of automata on infinite trees.

There are different families of game models. We use simple games (see e.g. [Abr97, Hyl97]),
which stem from Berry & Curien’s sequential data structures (see e.g. [AC98, Chap. 14|, but
also [Mel05]).

Definition A.1 (Simple Games).

e A simple game A has the form
A = (4Ap, Ao, La)

where Ap is the set of P-moves, Ag is the set of O-moves and Ly C (Ap + Ao)* is a
non-empty prefiz-closed set of legal plays.

We let s,t,... range of over plays and m,n,... range over mouves.

e A simple game with winning is a simple game A equipped with a set of winning plays (or
winning condition) W4 C (Ap + Ap)“.

o The sets gaz and pg of resp. positive and negative plays on A are
o = (Ap-Ao)* + (Ap-Ao)* - Ap
3 = (Ao-Ap)"+ (Ao~ Ap)*- Ao

The game A is positive (resp. negative) if all its legal plays are positive (resp. negative),

that is if Ly C pz (resp. Ly C pg) So P starts in a positive game and O starts in a
negative one. A game is polarized if it is either positive or negative.

o A play for player & € {P,0} (also called a &-play) is either the empty play or a non-empty
play in which & played last (i.e. which ends with a {-move).

Example A.2 (Full Postitive Games (Def. 3.3)). In the setting of Def. A.1, the full positive
games of Def. 3.3 are positives games A whose positive plays are all legal, that is such that

La = 9% = (Ap-Ag)" + (Ap-Ao)" - Ap

Hence, as in Def. 3.3, a full positive game A is completely characterized by its set of P and
O-movwes.
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Example A.3. In the case of a non-deterministic automaton A on a tree T, following the
usual setting (see e.g. [Tho97, GTW02, PP04]), the acceptance game G(A,T) is defined as the
positive simple game with winning

g(Aa T) = (33 — QA7 Q.A X9, LA(T)v WA(M))

whose legal plays s € L g1y are sequences of the form

S = gO(Qlydl)gl(den)
or s = go-(q,d1) g - (G dn) 8gn
where n > 0, qp41 = gr(drt1) and gi, € 0a(qr, T(dy - ... - dy)) with qo := ¢*4. Note that O only
chooses the tree directions dy,...,d, € D, while P chooses from each O-play

go- (q1,d1) g1+ ... (qn,dn)

a function g, : © — Q.4 available in 0a(qn,T(d1 ... dy)).
The winning plays x € W) are generated from the acceptance condition §)4 in the expected
way. We let Wy € (D — Qa) - (Qa x D))* consist of the infinite sequences

X = gO(Qladl)gl(andn)
such that (qx)ren € Qa (where qo := qy).

We now come to the definition of strategies in simple games. A strategy for player P or O
is what one expects. The formal definition of strategy below emphasizes P (strategies for O
are defined by duality), because in categories of games, composition and identities are only
defined for the strategies of the negative player P. Moreover, the manipulation of strategies
as morphisms is more convenient when strategies are presented as sets of plays rather than as
functions on plays.

Definition A.4 (Strategies). A P-strategy on A is a non-empty set of legal P-plays 0 C L4
which s

e P-prefiz-closed: if st € o and s is a P-play then s € o, and
e P-deterministic: if ssn € o0 and s.m € o then n = m.

Consider now a polarized game with winning A. Given a P-strategy o on A and an O-play
s € L, we say that s is an O-interrogation of o if either s = ¢ and A is positive, or if s = t.m
for some t € 0. We say that o is total if for every O-interrogation s of o, we have s.n € o for
some n. A winning (P-)strategy on A is a total strategy o s.t. for all x € (Ap + Ao)¥, we have
X € Wa whenever 3k € N. x(0) - ... x(k) € 0.

The notion of (total, winning) O-strategy is defined by duality. Each game A has a dual

A = (Ao, Ap, L4), where we moreover let Wr := (Ap + Ao)“ \ Wa if A is a game with winning.

Note that A is polarized iff A is polarized, and that A is positive (resp. negative) iff A is
negative (resp. positive). Then, we say that a (total, winning) O-strategy on A is a (total,

winning) P-strategy on A.
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Example A.5 (Strategies in Full Postitive Games (Def. 3.4)). Consider a total full positive
game A = (U, X). In the setting of Def. A.}, a P-strategy o in A is a non-empty set of
sequences of the form
S = ug-Tr1-Ulp ... Tp-1-Unp-1
such that
S Tp-U, € O — SE€O
and

!/

/
§ Ty Up, § Tp U, € 0 == Up=1u,

Hence, as expected, in a play

U T1- UL oo Ty~ Uy € O
the moves wu; are uniquely determined by the O-moves x1,...,x;_1. Moreover, o is total iff for
every

Uy L1 UL e Ty~ Up € T

and for every O-move xp11, there is some upy1 such that
U X1 UL oo Ty~ Up " Tpt1 Unt+l € O

In other words, total P-strategies in a total full positive game A = (U, X) are indeed given by
functions X* — U, as in Def. 3.4.

Example A.6. In the case of the acceptance game G(A,T) described above, a P-strategy o is
therefore a non-empty set of sequences of the form

s = go-(qi,d1) g1 (Gn-1,dn-1) - 8n—1

such that
s (qn,dpn) - gn € 0 = s€o

and
5'((]n7dn)‘gna 5'(Qnadn)'g;7, c o = gn:g;z
Moreover, o is total iff for every
go-(q1,d1) g1 - (qn,dn) - gn € 0O

and for every dn+1 € D, there is some gny1 such that

£o - (ql')dl) 81 (den) *8n - (gn(dn—l—l)vdn—i-l) “gntl € O
It follows that a total P-strategy o on G(A,T) is uniquely determined by a run tree R such that
R(e) = ¢y, and such that for every dy - ... dy - dny1 € Dl
R(d1 ot dn . dn+1) = gn(dn—H)

where, for 0 < k <mn, the g are unique such that

go - (go(d1),d1) ... (gk—1(dr),di) - gx € 0

Hence (winning) total P-strategies in G(A,T) are in bijection with (accepting) runs of A on T.
Moreover, the game G(A,T') has the same winning strategies as the usual acceptance games (see

e.g. [Tho97, GTW02, PP04]).
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Remark A.7 (Tree Games v.s. Graph Games). The realm of game semantics was originally
mostly developed with games on trees, (such as simple games [Abr97, Hyl97], but also traditional
Hyland-Ong games [HO00]). However, more recent trends of game semantics based on graphs
also emerged, in particular in the work of Melliés (see e.g. [Mel05, Mel06, Mell2]). Wrt. the
context of this paper, one should in particular note the connection of [Mel06] between innocence
and a notion of positionality (but for games equipped with an asynchronous notion of monoidal
product).

On the other hand, the framework of [Rib15] was itself based on games on graphs, and games
on graphs will be considered in this paper in relation with positionality in §7.2.53. However, that
notion of positionality is not yet clearly connected with the notion of positionality of [Mel06],
most notably because of the synchronous nature of our games, and in particular of their monoidal
structure (see §4.1). Moreover, the main developments of this paper, based on the category DZ
of simple zig-zag games (see §3) are technically easier with games on trees, and we adopt this
setting for the categories of games considered here.

A.2. Game Semantics: Linear Arrow Games and Copy-Cat. We now present the usual
notion of morphism of simple games (see e.g. [Abr97, Hyl97]), on which are based the morphisms
of [Rib15] as well as those of the categories of the present paper. Our motivation to rely on this
notion is to solve the problem of §2.3. Recall from §2.3 that a sequent M ; A+ B (for A, B
usual non-deterministic automata) should be thought as a form of implication, but that the runs
of the automaton ~A @ B seemed not to convey the right information. The first encountered
difficulty concerned the existence of canonical identities id 4(ar) € Es[A(M), A(M)] if the homset
Ex[A(M), A(M)] were to be the set of accepting runs or winning P-strategies (~A)(M)+.A(M).
The solution of game semantics is to devise, from component games A and B, an implication
game A —ogg B in which the games A and B are interleaved. More precisely:

(a) The set of moves of A —ogg B is the disjoint union of the sets of moves of A and B, and
the components A and B can be interleaved in plays on A —oga B.

(b) O plays first in A —og@ B, and then the plays in A —ogg B alternate between P and O.

(¢) The role of P and O are reversed in component A and are preserved in component B (i.e.
Pin A —ogg B plays as O in A and as P in B).

(d) In the case of simple games, P can switch between components at any of its moves, but O
must stay in the same component (this is the switching condition).

Definition A.8 (Linear Arrow Games). Given polarized simple games A and B of the same
polarity, the linear arrow game A —gg B is the negative game

A—gg B = (Ao+ Bp, Ap + Bo, LA «seB)

where La_.go B consists of those negative plays s such that sjy € Ly and s;p € Lp, where sj4
is the restriction of s to Ap + Ao, and similarly for s|p.

Let us check that A —ogg B satisfies the switching condition (d) above (the other condi-
tions (a)-(c) are direct consequences of the definitions): given a legal O-play s = t - n - m,
either n,m are both in component A, or they are both in component B. Indeed, note that
since A —ogg B is negative, its legal O-plays are odd-length. So if s is a legal O-play, then the
lengths of s;4 and s;p cannot have the same parity. Assume now that s =¢-n-m with n and
m in different components. Since A and B are assumed to be of the same polarity, the moves
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id 4
A —ogg A

Figure 25: A play of the copy-cat identity strategy id

n and m are of different polarities w.r.t. A and B, so they are of the same polarity as moves of
A —og@ B, contradicting the legality of s.

Simple games and (winning) strategies form a category SG'"/ | whose objects are simple
games (with winning), and whose morphisms from A to B are (winning) P-strategies o : A —ogg
B. We refer to [Abr97, Hyl97, AC98] for full treatments, and in particular to [Abr97, Hyl97]
for totality and winning. The general notion of winning in games of the form A —gg B is a
bit technical. In this paper, we only need to consider the case of infinite plays on A —gg B
whose projections on A and B are both infinite. We say that such a play is winning for P in
A —ogq B iff its projection on B is winning for P whenever its projection on A is winning for
P (with the original polarities of A).

Consider now the definition of the identity strategy id4 in A —ogg A for A = (U, X) a full
positive game. Since O must begin in A —ogg A, but it is P who begins in the right component
A, it follows that O must begin in the left component A (taking the role of P in that component).
It is then easy to define an identity “copy-cat’ strategy for P, which always switches component
and copies the previous O-move from the other component. A play of this strategy is depicted
in Fig. 25 (where plays grow from top to bottom). Formally, id4 is the unique strategy in
A —ogqg A such that

(W)

idg = {SGLAOwsc;Al | SrAOZSWAl} (41)

(where we have written A —ogg A as A? —ogg Al in order to distinguish the two copies of A).

In particular the same sequences of moves are produced by id 4 in both copies of A. Assuming

that A is equipped with a winning condition W4, such sequences are either winning for P in A
or are winning for O in A. So they are winning for P in A —ogg A.

A.3. Uniform Linear Synchronous Arrow Games. We now present the notion of linear syn-
chronous arrow games of [Rib15] adapted to uniform automata (Def. 3.1). Althrough we do
not formally need this notion of games in this paper, it actually underlies the morphisms of the
categories DialZ(—) and DialAut of §4, and motivates our use of zig-zag games.

Synchronous arrow games formalize the constraint on plays of Fig. 4 (left) in §3.5. They are
restrictions of the linear arrow of simple games between substituted acceptance games, in which
P has to play the same input characters a and the same tree directions d as proposed by O.

Consider substituted acceptance games ¥ - A(M), B(N) (in the sense of §3.3) with A as
in (28) and

B = (QBy(I;’)”V’YvaB)QB)

We define the synchronous arrow game

S F A(M) —o B(N) (42)
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also noted A(M) — B(N) when ¥ is clear from the context.

The game A(M) — B(N) will be a subgame of A(M) —ogg B(N). It can be seen as a
restriction of A(M) —gg B(NN) to plays which are synchronous, in the sense that A and B are
evaluated along the same path in ®%, while M and N read the same input characters from 3.
The synchronous plays of A(M) —ogg B(N) are defined using the following notion of trace. Let

Try = (2-9)"4+(£-9)"-%

and define the trace function trgnp) @ Lar) — Try inductively as follows

tr 4 M)( €) = €
traoan(s-(a,u)) = traan(s)-a
trA(M)( Sz, d)) = traon(s) - d

We let the trace of a play s € L4 be the sequence trA(M)(s). The trace function trg(y) :
Lp(ny — Try is defined similarly. Note that both tr 457 and trpy) have the same codomain
Try;, which only depends on the input alphabet of M and N. Consider now a legal play s in
A(M) —ogg B(N). We say that s is synchronous if

traon (Staan) = e (518(v))

Note that trace functions are length-preserving, so that the trace of a play s always has the
same length as s. Hence if s is a synchronous play in A(M) —osg B(N), then s;4(pn and
s1p(n) have the same length, so that s is even length. It follows that the synchronous plays of
A(M) —oga B(N) must be P-plays.

We define the game A(M) — B(N) as the game A(M) —ogg B(IV), but with as legal plays
the legal plays of A(M) —ogg B(N) which are prefixes of synchronous plays. It follows that
a P-strategy o : A(M) — B(N) is a P-strategy o : A(M) —ogg B(IN) whose plays are all
synchronous. We call such strategies synchronous. In particular, the identity copy-cat strategy
id gy : A(M) —osq A(M) is a synchronous strategy.

A typical synchronous play in A(M) — B(N) is depicted in Fig. 26. Note that synchronous
plays must have the same zig-zag shape as the copy-cat plays, and moreover that O actually
chooses both the input characters a € ¥ and the tree directions d € ©. This follows from
the fact that in the game A(M) — B(N), O must begin in the component A(M), choosing in
particular some a € 3. Then, by synchronicity, P must switch to component B(N) and play a
move containing the same a € 3. Since O cannot switch component, its next move must be in
component B(N), and so in particular contain some d € ©. But then, again by synchronicity,
P must switch to component A(M) and play a move containing the same d € D.

Synchronous arrow games can be equipped with the winning conditions mentioned in §A.2.
Given an infinite play x in A(M) — B(N) whose projections on A(M) and B(N) are both
infinite, we say that x is winning for P if its projection on B(NV) is winning for P whenever its
projection on A(M) is winning for P.

A.4. Zig-Zag Games. We now discuss the zig-zag games of §3.4 in the context of simple
games, and explain how they arise from the synchronous arrow games presented in §A.3.

Consider substituted acceptance games ¥ + A(M),B(N) as in §A.3. Recall that the syn-
chronicity constraint of §A.3 imposes a legal P-play s in A(M) — B(N) to satisfy

traon) (Spaon) = tramn(SiBav))
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5 A(M) — B(N)
(,6,44) (g,€,q5)
(p,a,q4) (p,3,qB)

0 (a, u)

(a,v) P
(y,d) O

P x,d)

(p-d.a-a,qy) (p-d,a-a, qp)

Figure 26: A typical synchronous play over X

A —opz B
O|lu
v | P
y | O
Pl z

Figure 27: A typical zig-zag play with A = (U, X) and B = (V,Y) full positive games

Since the functions tr 47y and trp(y) are length-preserving, this imposes in particular s 4(a)
and s;z(n) to have the same length. On the other hand, given simple games A and B of the
same polarity, and a play s in A —ogq B, if

length(s;4) = length(s;p) (43)

then in s, each P-move must switch component w.r.t. the previous O-move. Let us discuss the
case where (say) A = (U, X) and B = (V,Y) are full positive games. Recall that O begins in
A —og@ B and must play in component A since A and B are positive. In order to maintain (43),
P must then switch to component B. After the P-move in B, the switching condition imposes
O to stay in B, and then P has to switch to A, again to maintain (43). It follows that s must
have the zig-zag shape depicted in Fig. 27.

This leads to the followoing notion of zig-zag strategies in the setting of simple games.

Definition A.9 (Zig-Zag Plays and Strategies). Given simple games A and B of the same
polarity, a play s in A —ogq B is a zig-zag play if

length(s;a) = length(s;p)
A P-strategy o : A —ogq B is a zig-zag strategy if all its plays are zig-zag plays.
We write A —opgz B for the game obtained by restricting A —ogg B to (prefizes of) its

legal zig-zag plays (so the P-strategies on A —opz B are exactly the zig-zag P-strategies on
A —ogg B).
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Consider now games with winning A and B. Note that if 0 : A —opz B is total, then for
every x € ((Ap + Bo) - (Ao + Bp))*, if x has infinitely many finite prefizes in o, then xja and
XiB are both infinite. We therefore let Wa_.p C ((Ap + Bo) - (Ao + Bp))¥ be the set of infinite
sequences X such that (x;a € Wa = xiB € Wh).

For full positives games, total zig-zag strategies in the sense of Def. A.9 correspond exactly
to those of Def. 3.9.

Proposition A.10. Consider full positive games A = (U, X) and B = (V,Y). Total zig-zag
strategies o : A —opgz B are in bijection with pairs of functions (f, F') where

Foo Upen (U Xy 0 — W

F i Upen (Ut xynt)y  — X (44)

Given pairs of maps (f, F') as in (44), for each n > 0, we write f,, and F, for the induced maps
fn : UxY"™ — V*® and F, : U"xY" — X"

Note that for each full positive game A = (U, X), there is a bijection (were p$'*" denotes the
set of even-length plays of A):

0 = <8U,6)(> : pi’en — UnEN(Un X Xn>
defined as d(¢) := (g,¢) and d(s.u.z) = (Oy(s).u, Ox(s).x).

Proof of Prop. A.10. Fix A = (U,X) and B = (V,Y) and consider a total zig-zag strategy
o : A —opz B. By induction on n € N, it is easy to see that for all (u,y) € U™ x Y™, there is
a unique (s,t) € HS(o) such that © = 9y (s) and § = dy (t). The property vacuously holds for
n = 0. Assuming it for n, given (w.u,7.y) € U x Y"1 by induction hypothesis, there is a
unique (s,t) € HS(o) such that @ = 9y (s) and § = dy (t). Now, since o is total and zig-zag,
there is a unique v € V such that (s.u,t.v) € HS(o). Similarly, there is a unique x € X such
that (s.u.z,t.v.y) € HS(o), and the property follows. Furthermore, since w.u and § uniquely
determine 7 = 9y (t) and v, and since u.u and 7.y uniquely determine T = dx(s) and z, we
obtain a pair of functions (f, F') as in (44) defined as

f@u,g) = v and F(g.y,uu) = =z

Conversely, each pair (f, F') as in (44) uniquely determines a total zig-zag strategy o, with,
for all wu € U™, and all j € Y,

(0~ (w,z).u, 0 '(v,7).v) € HS(0)
where 1.0 = f41(v.u,y) and T = F,(u,y); and moreover for all y,
O (@ 7)ux, 97 (3,7).vy) € HS(0)

where x = F(u.u,q.y). O
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A.5. The Category DZM) of Zig-Zag Games and Total (Winning) Strategies. We now
discuss composition and identities for total (winning) zig-zag strategies. This will lead us to
prove Prop. 3.10, namely that DZ and DZ"W are categories.

Let us begin by informally discussing composition of zig-zag strategies as presented in Def. A.9,
and following the usual intuitions of game semantics. We refer to e.g. [Abr97, Hyl97] for a de-
scription of composition in SG, and to [Rib15] for the particular case of synchronous strategies.
Consider full positive games A = (U, X), B = (V,Y) and C = (W, Z). Consider also P-strategies
0:A —opyz Band 7: B —opgz C as in Fig. 28 (top). Their composite

Too : A —opz C

is obtained by making ¢ and 7 interact in their common component B, as depicted on Fig. 28
(middle). The crucial observation is that in an interaction of o and 7 in component B, all the
P-moves are played by o and all the O-moves are played by 7. It follows that the interactions of
o and 7 in component B are completely determined by ¢ and 7 and the O-moves in A —opz C.
The composite strategy 7 o o is then obtained by hiding the interaction of ¢ and 7 in their
common component B (see Fig. 28, bottom).

We now come to the formal treatment of composition and identities in DZMW). Let us
step back to some well-known facts on simple games from [HS99]. There is a faithful functor
HS : SG — Rel (the category of sets and relations) taking a simple game A to its set of legal
plays L4, and a strategy o : A —ogq B to

HS(o) := A{(sja,s;B)|s€o} C LaxLp
We can therefore faithfully represent strategies o : A —o B as spans

o HS(0) . (45)
La — T~ Lp
and moreover, composition and identities of simple game can be seen as being induced from
composition and identities on relations. Explicitly HS(id4) is identity relation on L4 as sug-
gested by (41)), and given strategies 0 : A —ogg B and 7 : B —ogg C, the strategy 7 o ¢ is the
unique strategy such that HS(7 o o) is the relation HS(7) o HS(o).

In other words, the category SG of simple games can be obtained from the category Rel
thanks to the injectivity of HS seen as function from strategies to relations. In the case of total
zig-zag strategies, composition and identities can be obtained along this scheme, but with much
simpler combinatorics than with SG.

First, note that the map (that we still denote HS)

HS SELA_OSGB — (SFA,S[B)ELAXLB

is injective on zig-zag plays: given (¢,t') € Ly x Lp, there is at most one zig-zag play s such
that HS(s) = (¢,t'). This immediately gives the injectivity of HS on zig-zag strategies.

Lemma A.11. (i) Given zig-zag plays s,t in A —pz B, if HS(s) = HS(t) then s = t.
(ii) The map HS is injective on zig-zag strategies: HS(o) = HS(1) implies o = 7.

Second, the representation of strategies as pairs of maps (f, F') of the form (44) provides an
easy way to compose total zig-zag strategies. Given total zig-zag strategies o : A —opz B and
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Figure 28: Interaction of zig-zag strategies on full positive games
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7 : B —opgz C, we are looking for a composite 7 o o. By injectivity of HS, it is sufficient to show
that there exists a strategy € such that HS(#) = HS(7) o HS(o). But thanks to Prop. A.10,
given pairs of maps (f, F) and (g, G) representing resp. o and 7, this amounts to provide a pair
(h, H) representing 6. Write A = (U, X), B = (V,Y) and C = (W, Z). The relational composite
HS(7) o HS(0) is such that (071 (u, =), 0~ (w, z)) € HS(7) o HS(0) if and only if there are (,7)
such that

(0~ Y@, z), 07 (v,7)) € HS(¢) and (07 (7,7), 0 '(w,%)) € HS(7)

But by Prop. A.10 this is possible if and only if the following equations are satisfied:

TS D) T = ) )
T = Fy(u,y) gy = Gy, 2)
(where »e := ¢ and »y.y := 7). The derived equation
7 = Gulfu(u, »y),2) (47)
determines § = y(u,2z) = y1.. ... Yp uniquely from @ = u;..... Up and Z = 2z7..... Zn, as
ye = G(fr(uq..... Uky Yl - - Yk—1)y Z1----- 2k) (48)

H ne
as follows
h(uu, 2) = g(far1(au, y(T,%))), 2)
H(uu, zz) := F(uu, y(uu,zz))

Then, by construction of (h, H), the total strategy 6 : A —opz C' it represents is such that
HS(0) = HS(7) o HS(c), so that we can let 700 := 6.

Note that the strategy 7 o o is total. Hence, totality is preserved by composition of zig-zag
strategies, while on the other hand, it is well-known that totality is not preserved by composition
of arbitrary SG-strategies (see e.g. [Abr97]).

We alluded to the usual method to compose SG-strategies 0 : A —ogg B and 7: B —ogg C,
which proceeds by letting o and 7 interact in their common component B, and then hiding this
interaction (see e.g. [Abr97, Hyl97] for details). This relies on the usual zipping property, stating
that the interactions of ¢ and 7 in component B are completely determined by the O-moves
in components A and C (with the polarities of A —ogg C). In our case, the zipping property
follows from the definitions of i from u and Z by (48), and of v and 7 from w and ¥ in (46). We
have in particular the following relational version of zipping (which actually holds for the full
SG [HS99]):

Lemma A.12 (Relational Zipping). Given total zig-zag o : A —opgz B and 7 : B —opz C, and
given (ta,tc) € HS(1)oHS(0), there is exactly one legal play tp € Lp such that (ta,tp) € HS(o)
and (tp,tc) € HS(7).

From the relational zipping Lemma A.12 one gets the usual and expected fact that if o :
A —opz B and 7 : B —opgz C are both total and winning, then 7 o ¢ is total and winning.
Indeed, given an infinite play x € ((Ao + Cp) - (Ap + Co))¥ of 7 o o (that is such that Ik €
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N. x(0)-...-x(k) € Too), it follows from Lem. A.12 that there are infinite plays x, and x, of
resp. 0 and 7 such that

(Xe)ia = xa and  (xo);B = (Xr);p  and  (xs)ic = Xjc

from which we get

(xia €Wa) = ((xo)iB = (X2)iB € WB) = (xj¢ € Wc)
We thus have

Proposition A.13 (Prop. 3.10). Full positive games (with winning) and (winning) total zig-zag

strategies form a category DZMW).

Note that the identity and associativity laws for composition of strategies are lifted from the
corresponding laws in Rel by the injectivity of HS. On the one hand, we have

idpoo = o = ooidy
since HS(id4) (resp. HS(idp))) is the identity relation on L4 (resp. Lp) and since
HS(idg)oHS(c) = HS(oc) = HS(0)oHS(ida)
On the other hand, the associativity of composition (that is fo(To0) = (fo7)o0) follows from

the fact that HS(0) o (HS(7) o HS(¢)) = (HS(#) o HS(7)) o HS(0).

B. Proof of Adequacy of the Promotion Rule (Prop. 7.13)

We give here a detailed proof of Prop. 7.13. The argument is essentially the same as that
of [Wal02], with the obvious adaptations to our (slightly more complicated) setting.

Proposition B.1 (Prop. 7.13). Given N, A : > with N' non-deterministic, if there is a winning
P-strategy in ¥ = N (L) — A(M) then there is a winning P-strategy in ¥+ N (L) — \A(M).

Proof. Write I = {x} for the set of O-moves of N. By Prop. 7.10, we can assume N and
A to be parity automata. Write G for the game graph of ¥ + N(L) — A(M). Thanks
to [Kla94, KK95, Jut97, Zie98], there is a positional (w.r.t. G) winning P-strategy o in ¥ F
N (L) — A(M).

We build a winning P-strategy 7 on N(L) — lA(M) such that the following invariant is
satisfied:

e to each play t of 7 with pos(t) = ((p,a,qn), (p,a,S)) and m(S) = {q1,...,qn}, we
associate a set E(t) = {s1,...,s,} of plays of o, with pos(s;) = ((p,a,qn), (p,a,q;)) for
each 1 <7< n.

e and if moreover ¢’ extends t and is such that pos(t') = ((p.d,a.a, q)y), (p.d,a.a,S")) then
for all s’ € E(t') there is some s € E(t) such that s’ extends s.

The strategy 7 is built by induction on plays as follows:

e For the base case (initial position €), we have by definition S = {(¢%,¢%)} and E(e) =

{a4}-
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e For the inductive step, let ¢ with pos(t) = ((p,a, qn), (p,7,S)) and let O play from ¢ some
(a,v) in component N(L) of N(L) —o ! A.

For s; € E(t), let u; be the move of o from position ((p,a.a,qn,v), (p,a,q;)), thus going
to position ((p,a.a,qn,v), (p,a.a, ¢, u;)). This defines a function

ht.(a,v) : QA — U
4G = U

(the value of hi (aw) On irrelevant ¢’s is arbitrary). We then let 7 play hi (aw) n the
component 'A(M) of N(L) — A(M), thus going to position

((p, 2.2, qv,v), (P, 22,5, hy (a)))

Then O answers some d € © in the component |lA(M), and we let P play x in the
component N'(L). The current position in N (L) —o L A(M) becomes

((p.d,a.a,qy), (p.d,a.a,s"))

where
dy = Onlav,L(=ap),v,xd)
and  S" = (S, M(@.a,p), (s, e d)
Let
th =t (a,0) By(an) - d-*

and write m2(S") = {¢},...,q,}. By definition of the transition function of !4, each q;»
is equal to d4(qi;, M(a.a,p),u;;,zj,d) for some i; and some z; (note that there might
be several such i; and z;, but we select one). For each j, we let O play (x;,d) in the
component A(M) of N(L) — A(M) from position ((p,a.a,qn,v), (p,a.a,q;,,ui;)) thus
going to position ((p,a.a, qnr,v), (p.d,a.a, q;)) We then let P answer * in the component
N (L), thus leading to position

((p.d,a.a,qy), (p.d,aa, q;))
We finally put
E{t) = {si-(a,v).uy.(z0,d).e, - -, s (a,v).u;, (Tm,d).e}

This completes the definition of 7.

We now show that 7 is winning. Consider an infinite play (¢,)nen of 7, and let (g, Sn)nen
be the associated sequence of states in (Qa X Q14)¥. Assume that we have (g,)n € Qnr. We
show that (Sn)n € Q4. Let (q,)n be a trace in (Sy),, so that (¢;,,¢,41) € Sny1. We have to
show that (q},)n € Q4. To this end, we show that (q,), is generated by the projection on A(M)
of an infinite play of o.

Note that for all n € N,

pos(tan) = ((Pn,8nsqn), (Pn>an, Sn))

By construction, for each n € N there are s,, € E(t4,) and s}, € E(t4(;41), such that

pos(sn) = ((Pns@nsqn), (Pns2n.q)))
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and such that s/, extends s:
/
Sp = Sn- (anavn) “Up + dpy ¥
and such that moreover

pos(s,) = ((Pnt18nt1,n+1) > (Pnti> Bnsls Gy))

where &,,11 = d,.2, and p,4+1 = pp.d,. Note that pos(s,) is completely determined from p,,, &,,
which are induced by (ty,)n, together with the states g, and ¢,. It follows that for all n € N we
have

pos(s,) = pos(sni1)

Since o is positional, it follows that the infinite sequence
X = e.(ap,v0).ug.-do. pp-(an, vp) Up.dy. -

is an infinite play of o. Since x produces the sequence of states (gn, q},)n € (Qn X Q4)%, we get
(ql)n € Q4 since (gn)n € Qnr by assumption. O

C. Further Examples

This Appendix is devoted to detailed accounts of two known results on non-deterministic au-
tomata, which can be reformulated in our setting. The first result is the following uniform
formulation of [CL0O8, Thm. 1].

Proposition C.1. For each reqular language £L C X°", there is a non-deterministic automaton
B with L(B) = L, and such that for every non-deterministic parity automaton A with L(A) C L,
there is a winning P-strateqy in X+ A —o B induced by a function ¢ : Q4 X Qg x X x U =V,
where A (resp. B) has set of P-moves U (resp. V).

Our proof of Prop. C.1 relies on the existence of positional winning P-strategies in games of the
form ¥ - A®B — L, for non-deterministic parity automata A, B : 3 such that L(A)NL(B) = 0.
Second, we show in §C.4 that such strategies, when combined with our internalized linear
implication, can handle a construction for the separation property of [SA05, Thm. 2.7].

C.1. On Positional Strategies. Consider non-deterministic parity automata A,B : X. It
follows from §7.2.3 that if P has a winning strategy in ¥ = A —o B, then P has a positional
winning strategy. But the game graph of 3+ A —o B is equivalent to the graph G with vertices:

(Ap x Bp) + (Ao x Bp) + (Ao X Bo) + (Ao x (Bp x D))

where

AP::Q.A Ao:ZEXQAXU BP:ZQB Bo:ZEXQBXV

and with edges depicted on Fig. 29.
Since a positional P-strategy in G is given by a function

g  QaxQpx¥XxU — V
we thus have:

Lemma C.2. Given non-deterministic parity automata A,B : X, if P has a winning strategy
in X FA— B, then P has a winning strategy induced by a function Qq X Qg x X x U = V.
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(Q.A 3 QB) AP X Bp
@ \
((a7 a4, U) ) QB) AO X Bp
P \
(a,qa,u) , (a,q5,v))| Ao x Bo
] l where gj := 05(qs,2a,v,d)
((a7 a4, u) ) (qu, d) AO X (Bp X @)
P i} where ¢4 := 04(qa,a,u,d)
(¢4 : %) Ap x Bp

Figure 29: The edges of the graph GforSHA—B

C.2. On Positional Strategies for Separation. Consider now non-deterministic parity au-
tomata A, B : ¥ such that £L(A)NL(B) = 0. Then by Prop. 7.7 there is a winning P-strategy in
YFA®B — L. It follows from Lem. C.2 that P has winning strategy induced by a function

g  QaxQpxBxYxUxV — D

The game X - A® B — AL is won by P if L goes to state t, since it can not switch back to f.
It follows that it is sufficient to have the values of g above with L in state f. It follows that P
has a winning strategy in ¥ - A ® B — L induced by a map of the form

h @ QaxQ@QpxxUxV — D

C.3. Proof of Prop. C.1. The proof of Prop. C.1 follows the lines of [CLO08], itself based on
the complementation construction used in [Tho97, Proof of Thm. 6.9].

Fix a regular £ C ¥®", and consider a non-deterministic parity C = (Qc,qps W, 0c, )
recognizing the complement of £. Using the closure properties of w-regular languages, there is
a deterministic parity w-word automaton D : 3 x V x ® where

Vo o= (Qc xW — CD)

such that D accepts (a, fi, di)i iff for all (ug)r € UY and all (qi)r € QF, we have (qi)r ¢ Qc
whenever qo := g4, i1 := 9c(qk, ak, Uk, fr(qk, ak, ur)), and dy = fr.(qx, ax, uz).

Write D := (Qp,¢p,2p). Let now B : ¥ be a parity non-deterministic automaton with
P-moves V' and such that an infinite play ((a, fx) - dk)x is winning iff (ag, fi, dk)x is accepted
by D. Explicitly, we let

B = (Qp,qp,V,08,0p)
where

ds(q,a, f,d) = 0pl(q,(a, [, d))
Lemma C.3 ([Tho97]). L(B) = L.

Proof of the Lemma. We show that £(B) = L£(C*). Let T : ® — X. Assume first that
T € £(C"), so that P has winning strategy in C*(T'). Since C is a parity automaton, this strategy
can be assumed to be positional, hence to be determined by a function D* — (Q¢ x W — D).
But this determines a P-strategy in B(T'), which is winning by definition of B. Conversely,
assume that 7' € L(B). Since B is non-deterministic, a winning P-strategy in B(T') is given by
a function ®* -V =90* — (Qc x W — D). O
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Going back to the proof of Prop. C.1, consider a non-deterministic parity A : ¥ with £(.A) C
L. Since L(A)NL(C) =0, it follows from §C.2 that there is a function

g 1 QAXQexXYxUxW — 2D
which generates a winning P-strategy in X - A ® C — L. But g can be seen as a map
Q.A x 2 xU — 1%

and this map generates a winning P-strategy in X - A — B. O

C.4. A Separation Property from [SA05]. Our internalized linear arrow can handle a con-
struction for the separation property of [SA05, Thm. 2.7].

Consider non-deterministic parity automata A, B : ¥ such that £(A) N L(B) = 0. Assume
moreover that both A4 and B are parity with colorings of range {0,...,n} for some even n.
Theorem 2.7 of [SA05] say that there is a parity automaton C such that £(A) C L(C) C L(B*)
and such that Q¢ is generated by a coloring cg : Q¢ — N of range C {0,...,n} and such that in
each reachable strongly connected component of C (for ¢ — ¢’ iff ¢ = 0¢(q, 2, f,v,d) for some
a, f,v,d), cc has range either {1,...,n} or {0,...,n — 1}.

We build C by restricting B — A along a winning strategy in ¥ - A® B — L. By §C.2,
there is a function

g @ QaxQpxXLxUxV — D

which generates a winning P-strategy in ¥ - A® B — L.
We restrict the automaton B — A : ¥ along g as follows. Recall that Qp_.4 = @ X Q4.
Define C : ¥ as follows:

C = (QB‘O.A + {t}7 Q%wA, UV: V7 8C7 QC)

where O¢(t, _, -, _,_) :=t, and

L t ifg(QA7QB7a7f(U)7U) #d
(a5, qa):2, frv.d) = { Op—A((qa,q8), 2, f,v,d)  otherwise

The coloring c¢¢ of C is then defined as in [SA05, §2.2.2]. We define it explicitly as follows.
Consider a reachable strongly connected component C of C. Note that if C' contains t, then
C = {t}, and we put c¢(t) := n. Otherwise, C contains only states of B — A, that is states
in Qp X Q4. Assume that C is non-trivial and contains two states (., q4) and (gg,-) with
ca(qa) = cg(gp) = n. By definition of 0, the set of states

{(ds: a5.%) | (a5, da) € C}

is reached infinitely often in an infinite play of the strategy in ¥ - A ® B — AL induced by g.
But this contradicts the fact that this strategy is winning. It follows that either (a) c4 never
takes the value n in C or (b) c¢g never takes the value n in C. In the case (a), for each state
(a8,qa4) of C we put cc(gs,qa) = ca(qa), and in the case (b) we put cc(gs,q4) := cp(gn) + 1.

Consider now an infinite sequence of the form p := (q;,, gr)r € Qp_. 4 and let C be a strongly
connected component of C such that Inf(q),qr) € C. Let m = max(Infyce(q),, qr))-

Claim. If m is even, then p € Q3 .4
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Proof of the Claim. In case (a) above, we have m = max(Infic4(gx)) hence (qr)r € Qa
and p € Q3 _.4. In case (b), m = max((Infrcp(g),) + 1)), hence max(Infrcp(q;,)) is odd, so
that (¢;,)r ¢ Q5 and p € Qp_a. O

Lemma C.4. £(C) C L(BY).

Proof. Consider a winning P-strategy o in C(T). Recall that the P-moves of B* are ®V and
that its O-moves are V, and that the P-moves of C are U and that its O-moves are V. Let 7
be the winning P-strategy 7 on A ® B —o L (whose P-moves are © and O-moves are U x V)
induced by g. We define a P-strategy 6 by combining o and 7 as follows: modulo Currying,
plays from v € V' the tree direction d € ® proposed by T*(7) from v and the u € U given by o
on v. Hence the strategies o and 6 play the same moves in B (provided by O). So the sequences
of Qp-states produced by ¢ and 6 are the same, unless O plays in B a tree direction d € ©
different from the one proposed by 6, i.e. different from the one proposed by 7. In this case,
the play on B*(T) is P-winning and we are done. Assume now that the sequences of Qp-states
agree. We show that they can not be in Q3. Assume toward a contradiction that they are.
By the claim above, since ¢ is winning, the sequence of states in C belongs to 5.4 The play
respects o, so the sequence of () 4-states must belong to {24 since o is winning. But the play
also respects T*(7), which is winning in A(T) ® B(T) — A, so the sequence of () 4-states can
not belong to 4. It follows that the sequence of (Jp-states can not belong to {25, and we are
done since the play in B*(T) is then P-winning. O

In order to complete the proof of the separation property, it remains to show the following
Lemma C.5. L(A) C L(C).

Proof. Let T : ©* — X such that T' € £(A). Consider a winning positional P-strategy 7 in
A(T) induced by a function ©* — (Q4 — U). This gives a function ©* — (Q¢ x V. — U)
which induces a strategy o in C(7"). Consider an infinite play w of ¢ induced by an infinite
play @, of 7. Let p € Q¢ be the sequence of states produced by w. If p contains t, then
p € Qi 4t C Qc and we are done. Otherwise, let p = (¢}, qx)r € QB—a. If we are in case
(a) above, then max(Infy(cc(p))) = max(Infi(ca(qr))), hence p € Qc. Assume that we are in
case (b), so that max(Infy(cc(p))) = max(Infy(cs(gy)) +1). Let 6 be the winning P-strategy in
Y F A®B — L induced by g. Then, by combining w, and @z, we obtain an infinite play =’
of 6. Note that in this play, L never switches to t since we assumed p € Qp_. 4. It follows that
@’ produces the same sequence of states (¢;)r € @B as w, and we must have (g, ) ¢ {25 since
(gr)r € Q4. It follows that max(Infy(ce(p))) = max(Infy(c(g,)) + 1) is even. O
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