
HAL Id: hal-01261183
https://hal.science/hal-01261183v6

Preprint submitted on 29 Jan 2018 (v6), last revised 15 Oct 2019 (v10)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monoidal-Closed Categories of Tree Automata
Colin Riba

To cite this version:

Colin Riba. Monoidal-Closed Categories of Tree Automata. 2017. �hal-01261183v6�

https://hal.science/hal-01261183v6
https://hal.archives-ouvertes.fr


Monoidal-Closed Categories of Tree Automata

Colin Riba
ENS de Lyon, Université de Lyon, LIP∗

colin.riba@ens-lyon.fr

http://perso.ens-lyon.fr/colin.riba/

This paper surveys a new perspective on Rabin’s Tree Theorem, the decidability
of Monadic Second-Order Logic (MSO) on infinite trees, one of the most important
and difficult decidability theorems for mathematical theories. We show that the
operations on tree automata used in the translations of MSO-formulae to automata
underlying Rabin’s Tree Theorem can be organized in a deduction system based
on the multiplicative fragment of intuitionistic linear logic (ILL). We propose a
realizability semantics for automata on infinite trees, which interprets this deduction
system and which is based on categories of games built on usual simple games,
and generalizing usual acceptance games of tree automata. Our approach can be
summarized with the slogan “automata as objects, strategies as morphisms”.

Namely, we equip a variant of usual alternating tree automata (that we call uni-
form tree automata) with a fibred monoidal closed structure which in particular, via
game determinacy handles a linear complementation of alternating automata, as
well as deduction rules for existential and universal quantifications. This monoidal
structure is actually Cartesian on non-deterministic automata. Moreover, an adap-
tation of a usual construction for the simulation of alternating automata by non-
deterministic ones satisfies the deduction rules of the !(−) ILL-exponential modality.

Our realizability semantics satisfies an expected property of witness extraction
from proofs of existential statements. Moreover, it allows to combine realizers pro-
duced as interpretations of proofs with strategies witnessing (non-)emptiness of tree
automata, possibly obtained using external algorithms.

1. Introduction

Monadic Second-Order Logic (MSO) on infinite trees is a rich theory which contains non trivial
mathematical theories (see e.g. [Rab69, BGG97]), and which subsumes many logics, in particular
modal logics (see e.g. [BdRV02]) and modal logics for verification (see e.g. [VW08]). Rabin’s
Tree Theorem [Rab69], the decidability of MSO on infinite trees, “is one of the most important
and difficult decidability theorems for mathematical theories” according to [BGG97, §1.3, p. 11].

The original proof of [Rab69] relied on an effective translation of formulae to finite state
automata running on infinite trees. Since then, there have been considerable work on Rabin’s

∗UMR 5668 CNRS ENS Lyon UCBL INRIA

1

http://perso.ens-lyon.fr/colin.riba/


Tree Theorem, culminating in streamlined decidability proofs, as presented in e.g. [Tho97,
GTW02, PP04]. Most current approaches to MSO on infinite trees (but with the notable
exception of [Blu13]) are based on translations of MSO-formulae to automata.

We are interested in decomposing the translations of MSO-formulae to automata in a construc-
tive (actually linear) deduction system for tree automata, and in a compositional computational
interpretation of this deduction system along the lines of the Curry-Howard proofs-as-programs
correspondence (see e.g. [GLT89, SU06]). We follow the guidelines and axiomatizations pro-
vided by categorical logic and categorical approaches to the Curry-Howard correspondence (see
e.g. [Jac01, LS86] and [AC98]).

Our interpretation can be summarized with the slogan “automata as objects, strategies as
morphisms”. It consists in categories which are based on usual categories of two-player lin-
ear sequential games called simple games (see e.g. [Abr97, Hyl97]), which live in a denotational
model of Intuitionistic Linear Logic (ILL) [Gir87]1, and which generalize usual acceptance games
of tree automata. We refer to [Mel09] for a comprehensive presentation of categorical axioma-
tizations of models of (subsystems of) linear logic.

This work builds on [Rib15], which proposed monoidal fibrations of games and tree automata,
and extends it with a monoidal closed structure, based on a variant of alternating automata
(that we call uniform automata), and which allows a clearer connection of our model with ILL.

In the remaining of this Introduction, we survey the main aspects of our realizability approach
(§1.1-1.2 and §1.5) and outline the key ingredients of the decomposition of MSO in ILL (§1.3-1.4).

1.1. (Non-Deterministic) Tree Automata. Let us set some concepts and notations. Con-
catenation of sequences s, t is denoted either s.t or s · t, and ε is the empty sequence. We fix
throughout the paper a finite non-empty set D of tree directions. We are interested in label-
ings of the full D-ary tree D∗ over different alphabets. Alphabets (denoted Σ,Γ, etc) are finite
non-empty sets, and Σ-labeled D-ary trees are functions T : D∗ → Σ.

There are two families of automata involved in the interpretation of MSO-formulae: non-
deterministic tree automata and alternating tree automata2. The simplest notion is that of non-
deterministic automaton, and it is sufficient to introduce the basic motivations and methodology
of this work.

A tree automaton A consists of a finite set QA of states, with a distinguished3 initial state
qıA ∈ QA, an acceptance condition given by an ω-regular set ΩA ⊆ QωA, and a transition function
δA. A non-deterministic tree automaton A over Σ has a transition function of the form

δA : QA × Σ −→ P(D→ QA)

Acceptance for tree automata can equivalently be described by games or run trees. The
notion of run tree is simpler and sufficient at various places in this Introduction and §2. A run
tree of A on T : D∗ → Σ is a tree R : D∗ → QA such that R(ε) = qıA, and which respects
the transitions of A, in the sense that for each tree position p ∈ D∗, there exists a function
g : D → QA in δA(R(p), T (p)) such that R(p.d) = g(d) for all d ∈ D. The run R accepting if
all its infinite paths belong to ΩA. We say that T is accepted by A if there exists an accepting
run of A on T , and let L(A) be the set of trees accepted by A. We moreover write A(T ) for
the set of accepting runs of A on T .

1However, the ILL-structure underlying our model differs from the usual ILL-structure of simple games.
2Alternating automata are not always explicited (see e.g. [Tho97]).
3It is customary (and equivalent in terms of expressivity) to allow possibly different initial states.

2



1.2. Computational Interpretation of Proofs. Our deduction system manipulates sequents
of the form

T ; A1, . . . ,An ` B (1)

where T is an infinite tree labeled over (say) the alphabet Σ, andA1, . . . ,An,B are tree automata
over Σ. We see these sequents with two different levels of interpretation. The first level interprets
provability: if the sequent (1) is provable, then the automaton B accepts the tree T as soon
as the automata A1, . . . ,An all accept T . The second level is the traditional computational
interpretation of proofs of the Curry-Howard correspondence. This is best exemplified with
existential quantifications.

The existential quantifications of MSO are implemented by a projection operation on non-
deterministic automata. Consider a non-deterministic automaton A over the alphabet Γ×Σ. Its
projection ∃̃ΣA is the non-deterministic automaton over Γ defined as A but with the following
transition function

δ∃̃ΣA : QA × Γ −→ P(D→ QA)

(q, b) 7−→
⋃

a∈Σ δA(q, (b, a))

As expected, ∃̃ΣA accepts T : D∗ → Γ iff there exists U : D∗ → Σ such that A accepts
〈T,U〉 : D∗ → Γ× Σ.

Consider now a non-deterministic automaton B over the alphabet Σ ' 1×Σ, where 1 ' {•}
is a singleton set. By computational interpretation of proofs, we mean that from a formal proof
of the sequent

1 ; ` ∃̃ΣB

(where 1 stands for the unique 1-labeled tree) one should be able to extract a witness for
the existential quantification ∃̃ΣB, that is a Σ-labeled tree accepted by B. Such witnesses can
actually be extracted from the runs of ∃̃ΣB on 1. First note that a run R of a non-deterministic
automaton A on T defines a function p ∈ D∗ 7−→ g ∈ δA(R(p), T (p)). It follows that given an
accepting run R of ∃̃ΣB on 1, then from the induced function

p ∈ D∗ 7−→ g ∈
⋃
a∈Σ

δB(R(p), a)

one can get a Σ-labeled tree T such that R is an accepting run of B on T . In other words, runs
of automata convey the kind of information one is usually interested in with computational
interpretations of proofs.

One could formulate the aim of this work as proposing a deduction system together with an
interpretation of proofs as runs of automata. However, we will rather rely on the more complex
notions of acceptance games and strategies. There are two reasons for this choice. First, as
discussed in §1.3 below, games give a smooth treatment of complementation of tree automata.
The second reason, which we explain in more details in §2, is that games and strategies are
equipped with well-known categorical structures, which allow to easily define compositional
interpretations of proofs.

1.3. Games and Alternating Automata. The main difficulty when translating MSO-formulae
to tree automata is the interplay between negation and (existential) quantification. Histori-
cally, Rabin [Rab69] translated MSO-formulae to non-deterministic tree automata. The major
achievement of Rabin [Rab69] was to show that non-deterministic automata on infinite trees

3



are closed under complement. This means that for every non-deterministic automaton A one
can build a non-deterministic automaton ∼A which accepts exactly the trees rejected by A.

Rabin’s original construction [Rab69] of a complement ∼A from A has been considerably
simplified by Gurevich and Harrington [GH82] thanks to the notion of acceptance game. The
evaluation of an automaton A on an input tree T can be modeled by an infinite acceptance
game G(A, T ), played by two players P and O, and such that A accepts T when P has a winning
strategy in G(A, T ). A typical (infinite) play χ in G(A, T ) has the form:

· P−→ g0
O−→ (q1, d1)

P−→ g1
O−→ . . .

O−→ (qn+1, dn+1)
P−→ gn+1

O−→ . . .

where qk+1 = gk(dk+1), and gk ∈ δA(qk, T (d1 · . . . · dk)) with q0 := qıA. Then χ is winning for P
if the sequence of states qıA, q1, . . . belongs to ΩA, otherwise it is winning for O. Note that P
chooses transitions g : D→ QA while O chooses tree directions d ∈ D. Hence, there is a bijection
between accepting runs R ∈ A(T ) and winning P-strategies in G(A, T ). Since acceptance games
are determined, A does not accept T precisely when O has a winning strategy in G(A, T ).
Gurevich and Harrington [GH82] show that in acceptance games, winning strategies can always
be assumed to be finite state w.r.t. game positions of the form (p, q) ∈ D∗×QA, that is to only
depend on a finite memory in addition to the game positions in D∗×QA4. This allows to devise
an automaton ∼A which, using a usual projection operation, non-deterministically checks the
existence of winning O-strategies.

However, the construction of ∼A is still not trivial because the roles of P and O in acceptance
games are not symmetric, so that dualizing the acceptance game of a non-deterministic automa-
ton A does not directly give a non-deterministic automaton ∼A. Since [MS87, EJ91, MS95] it
is known that the construction of ∼A can be neatly decomposed using alternating automata.
Alternating automata generalize non-deterministic automata with (following the presentation
of [Wal02]), transition functions of the form

δA : QA × Σ −→ P(P(QA ×D)) (2)

A play in the acceptance game G(A, T ) with A alternating has the form

· P−→ γ0
O−→ (q1, d1)

P−→ γ1
O−→ . . .

O−→ (qn+1, dn+1)
P−→ γn+1

O−→ . . .

where (qk+1, dk+1) ∈ γk and γk ∈ δA(qk, T (d1. · · · .dk)) with q0 := qıA. Hence, P chooses relations
γk ∈ P(QA × D) instead of functions gn : D → QA, while O chooses pairs (qk+1, dk+1) ∈ γk
instead of just tree directions dk ∈ D. The main consequence is that O may now have to choose
between pairs (q′k+1, dk+1), (q′′k+1, dk+1) ∈ γk with different states q′k+1, q

′′
k+1 for the same tree

direction dk+1 ∈ D.
The extra possibility for O to choose states in addition to tree directions allows to define a

complement of A which (essentially) simulates A while reversing the roles of P and O. This
can be implemented with an alternating automaton5 A‚ having the same states as A. The
idea is that the double powerset P(P(QA×D)) in (2) represents disjunctive normal forms over
(QA×D), so that the transition function δA‚ of A‚ just takes (q, a) ∈ QA×Σ to a disjunctive
normal form representing the dual of δA(q, a). Then, if the acceptance condition of A‚ is the
complement of ΩA, it follows from game determinacy that L(A‚) is the complement of L(A).

On the other hand, every alternating automaton A can be simulated by a non-deterministic
automaton !A of exponential size (this is the Simulation Theorem [MS87, EJ91, MS95], see

4This is trivial for P-strategies but not for O-strategies.
5(−)‚ was noted ∼(−) in [Rib15].

4



also §7.2), while non-deterministic automata are linearly embedded into alternating automata
via the obvious mapping

g : D→ QA 7−→ {(g(d), d) | d ∈ D} ⊆ QA ×D (3)

The situation can be pictured as follows:

Non-Deterministic
Automata

Alternating
Automata

!(−)

∃̃(−) (−)‚

(4)

Accordingly, in most modern approaches to MSO on infinite trees, the complementation of
non-deterministic tree automata can be decomposed as

∼A = !(A‚) (5)

1.4. Toward Linear Logic. The model of [Rib15] consists in categories of two-player sequential
games generalizing the usual acceptance games of tree automata. Using the notion of uniform
automata (to be introduced in §3), the extension of [Rib15] proposed in this work shows that
the decomposition depicted in (4) of the translation of MSO-formulae to non-deterministic tree
automata via alternating automata corresponds to some extent to an ILL-structure:

• First, the usual direct synchronous product of alternating automata (which we denote
(−)⊗ (−)) has a symmetric monoidal structure. Moreover, thanks to the monoidal-closed
structure of (−)⊗ (−) on uniform automata, the set of morphisms interpreting a sequent
T ;A ` B is in bijection with the set of winning P-strategies in the acceptance game of an
automaton (A( B) over T . In particular, linear complements are obtained with

A‹ ' A( ‹
(where ‹ is a particular automaton accepting no tree), with as expected T ∈ L(A‹) iff
T /∈ L(A).

• Second, we show that the simulation operation !(−) satisfies the deduction rules of the
usual modality !(−) of ILL. Moreover, the symmetric monoidal product (−) ⊗ (−) is
Cartesian on non-deterministic automata, so that the picture (4) is similar to the usual
linear-non-linear adjunctions of models of ILL. Unfortunately, in our models the operation
!(−) is not a functor6.

Furthermore, following the methodology of categorical logic, the categories proposed here and
in [Rib15] are indexed (or fibred) over a base category T of trees, whose objects are alphabets
and whose morphisms from Σ to Γ induce functions from Σ-labeled trees to Γ-labeled trees.
In this setting, existential quantifications (in the categorical sense) are provided by a slight
modification (denoted ∃(−)) of the usual projection ∃̃(−) mentioned in §1.2.

6It does not preserves composition, because of issues with positionality of strategies. Possible workarounds,
leaved as future work, are discussed in §8.1.

5



1.5. Toward Realizability Interpretations of MSO. The ultimate motivation for the Curry-
Howard approach to automata on infinite trees proposed in this paper, together with the under-
lying decomposition of the translation of MSO-formulae to tree automata via ILL, is to provide
realizability interpretations of MSO (in the spirit of e.g. [SU06, Koh08]). We think that the
model presented here (consolidating [Rib15]) is a preliminary step toward this goal. Let us
briefly describe our main results in this direction.

Generalizing (1), our deduction system also manipulates sequents of the form

M ; A1, . . . ,An ` B (6)

(see §2.2) where M is a T-morphism, from say Σ to Γ and the automata A1, . . . ,An,B have
input alphabet Γ. In the case M is the identity T-map on Σ, the sequent (6) is written

Σ ; A1, · · · ,An ` B (7)

which in contrast with (1) and (6) does not mention any tree.
The symmetric monoidal closed structure, together with the categorical quantifiers and the

interpretation of simulation as an exponential modality !(−), allows to interpret proofs in the
deduction system made of the rules depicted on Fig. 24, Fig. 26 and Fig. 30. From a proof D of
a sequent (7), one can (compositionally w.r.t. the structure of D) extract a finite-state strategy
σ in an infinite game of the form

A1 ⊗ · · · ⊗ An −( B

in which A1 ⊗ · · · ⊗ An essentially evaluates the automata A1, . . . ,An in parallel, while the
linear arrow ( is a synchronous restriction of the usual linear arrow of simple games.

We think that extraction of such realizers σ from proofs can be interesting for instance in the
following contexts.

• First, in case (7) is of the form
1 ; ` ∃ΣN

with N non-deterministic, then σ is of the form 〈T, τ〉, where T is a Σ-labeled tree and
τ is a winning strategy on N (T ) (see §7.1.2), so that we indeed obtain a computational
interpretation of proofs in the sense of §1.2.

• Assuming (7) is of the form
Σ ; A ` B (8)

then a Σ-labeled tree T induces a substitution functor T ?, whose action on σ gives a
function T ?(σ) taking any winning P-strategy τ on A(T ) to a winning P-strategy T ?(σ)◦τ
on B(T ) (see Prop. 4.12).

In other words, realizers of sequents of the form (8) can be composed (via substitution)
with strategies τ on A(T ) obtained by any possible mean.

More generally, the methodology of our deduction system and its realizability interpretation
targets interactive proofs systems, allowing possible human simplifications or decompositions
of the goals given to automatic tools, and moreover to combine the corresponding witnessing
strategies. This principle may be interesting for instance in the following scenarios:

6



(a) If the automaton A in (8) is of the form ∃ΣC, then a finite-state strategy τ witnessing that
a regular tree T belongs to L(C)7 can be combined with T ?(σ).

(b) Thanks to the monoidal closed structure (§5.3), in case sequent (7) is of the form

Σ ; A1, . . . ,An, (A( C) ` B

then the realizer σ derived from D can be composed with a realizer τ : A( C which can
be obtained by any possible mean.

In particular, games of the form A( C are equivalent to ω-regular games on finite graphs,
so thanks to the Büchi-Landweber Theorem [BL69], one can decide if there is a strategy
τ realizing the implication A( C, and if such a strategy exists, then there exists a finite
state one, which is moreover effectively computable from A and C (see Cor. 6.5).

Such finite state strategies τ : A ( C, to be typically combined with realizers resulting
from proofs, can also be obtained in the following ways.

(i) If C = N‹, and A, N are non-deterministic such that L(A) ∩ L(N ) = ∅, then any
(finite-state) O-strategy witnessing L(A ⊗ N ) = ∅ can be lifted to a (finite-state)
realizer of A( N‹ (Prop. 7.7).

(ii) In particular, if L(Ã) ⊆ L(C̃) for Ã and C̃ not-necessarily non-deterministic, then any
(finite-state) O-strategy witnessing L(!Ã ⊗ !(C̃‹)) = ∅ can be lifted to a (finite-state)
realizer of !Ã( !(C̃‹)‹ (Prop. 7.16).

1.6. Outline. The paper is organized as follows. We begin in §2 with a semi-formal overview of
our approach and of [Rib15]. We then turn in §3 to our notion of uniform automata (motivated
by monoidal closure), and give the formal material on game semantics required for that setting.
Section 4 then deals with the fibred structure (which is essentially a refinement of [Rib15]),
§5 formally presents the monoidal closure and the corresponding deduction rules, while §6
deals with quantifications. Finally, in §7 we concentrate on the Cartesian structure of non-
deterministic automata and present the interpretation of the Simulation Theorem using the
deduction rules of usual !(−) ILL-exponential modalities. Further examples, showing that our
setting can handle constructions of [CL08, SA05], are presented in App. C.

2. Categories of Games and Automata

The purpose of this long Section is twofold. First, in §2.1–2.5, we expose with slightly more
details than in §1 the main ingredients and methodology of our approach, namely some simple
and basic aspects of categorical logic and (simple) game semantics. Second, in §2.6–2.10 we
briefly recall how this material is applied in [Rib15] in order to provide a partial fulfillment of the
program announced here and in §1. Besides, this framework already allows to sketch in §2.8–2.9
the connection between the interpretation of MSO in tree automata and ILL mentioned in §1.3
and §1.4.

2.1. Compositionality and Categorical Semantics. The method of categorical semantics of
proofs (see e.g. [LS86, AC98, Jac01, Mel09]) is to interpret proofs as morphisms of a category
C, such that C is equipped with some structure corresponding to the connectives and rules of

7With say T and τ computed from C by Rabin’s Tree Basis Theorem [Rab72], see e.g. [Tho97, Thm. 6.18].

7



the deduction system. For the moment, let us step back from acceptance games and rather
consider run trees. Our task is thus to devise categories whose objects include all sets of the
form A(T ), for A an automaton and T a tree, and such that the proofs of a sequent T ; A ` B
can be interpreted as morphisms from A(T ) to B(T ).

One characteristic of categorical semantics is that the very notion of category already imposes
interpretations to be compositional. Recall that the sets of morphisms of a (locally small)
category C come with associative composition operations

(−) ◦ (−) : C[B,C]× C[A,B] −→ C[A,C] for each C-objects A,B,C

and with identity morphisms idA ∈ C[A,A] which are neutral for composition:

f ◦ idA = f = idB ◦ f for every f ∈ C[A,B] (9)

Composition and identities provide the interpretations respectively of the following instances of
the usual cut and axiom rules:

(Cut0)
T ; A ` B T ; B ` C

T ; A ` C T ; A ` A
(Axiom)

The identity laws (9) imply for instance that the three derivations below must be interpreted
by the same morphism:

T ; A ` A
D

T ; A ` B
T ; A ` B

D
T ; A ` B

D
T ; A ` B T ; B ` B

T ; A ` B
(10)

2.2. Indexed Structure: Substitution and Quantification Rules. Our categories actually in-
volve a slight generalization of the usual notion of acceptance (either with run trees or games)
of automata. This generalization is induced by the axiomatization of quantification and substi-
tution in categorical logic (see e.g. [Jac01, LS86]).

Let us briefly discuss the usual setting of first-order logic over a multisorted individual lan-
guage. The categorical semantics of existential quantifications is given by an adjunction which
is usually represented as

∃xϕ(x) ` ψ
(x not free in ψ)

ϕ(x) ` ψ
(11)

This adjunction induces a bijection between (the interpretations of) proofs of the sequents
ϕ(x) ` ψ and ∃x.ϕ(x) ` ψ, that we informally denote

ϕ(x) ` ψ ' ∃xϕ(x) ` ψ

Now, in general the variable x will occur free in ϕ. As a consequence, in order to properly
formulate (11) one should be able to interpret sequents of the form ϕ(x) ` ψ with free variables.
More generally, the formulae ϕ and ψ should be allowed to contain free variables distinct from x.

The idea underlying the general method (but see e.g. [Jac01] for details), is to first devise
a base category B of individuals, whose objects interpret products of sorts of the individual
language, and whose maps from say ι1 × · · · × ιm to o1 × · · · × on represent n-tuples (t1, . . . , tn)
of terms ti of sort oi whose free variables are among xι1 , . . . , xιm (with xιj of sort ιj). Then, for
each object ι = ι1 × · · · × ιn of B, one devises a category Eι whose objects represent formulae

8



with free variables among xι1 , . . . , xιn , and whose morphisms interpret proofs. Furthermore,
B-morphisms

t = (t1, . . . , tn) : ι1 × · · · × ιm −→ o1 × · · · × on
induce substitution functors

t? : Eo1×···×on −→ Eι1×···×ιm

The functor t? takes (the interpretation of) a formula ϕ with free variables among yo1 , . . . , yon to
(the interpretation of) the formula ϕ[t1/yo1 , . . . , tn/yon ] with free variables among xι1 , . . . , xιm .
Its action on the morphisms of Eo1×···×on allows to interpret the substitution rule

ϕ ` ψ
ϕ[t1/yo1 , . . . , tn/yon ] ` ψ[t1/yo1 , . . . , tn/yon ]

In very good situations, the operation (−)? is itself functorial. Among the morphisms of B, one
usually requires the existence of projections, say

π : o× ι −→ o

Projections induce substitution functors, called weakening functors

π? : Eo −→ Eo×ι

which simply allow to see formula ψ(yo) with free variable yo as a formula ψ(yo, xι) with free
variables among yo, xι (but with no actual occurrence of xι). Then the proper formulation
of (11) is that existential quantification over xι is a functor

∃xι (−) : Eo×ι −→ Eo

which is left-adjoint to π?:
∃xι ϕ(xι, yo) ` ψ(yo)

ϕ(xι, yo) ` π?(ψ)(xι, yo)
(12)

(where xι does not occur free in ψ since ψ is assumed to be (interpreted as) an object of Eo, thus
replacing the usual side condition). Universal quantifications are dually axiomatized as right ad-
joints to weakening functors. In both cases, the adjunctions are subject to additional conditions
(called the Beck-Chevalley conditions) which ensure that they are preserved by substitution.

Returning to automata and infinite trees, we will take as base category the following category
T of trees.

Definition 2.1 (The Base Category T). The objects of T are alphabets, and its morphisms
from Σ to Γ, denoted M,N,L, . . . , are functions of the form⋃

n∈N

(
Σn+1 ×Dn

)
−→ Γ

T-morphisms are composed in the expected way (see §4.3 for details). Note that a map M ∈
T[Σ,Γ] takes for each n ∈ N a sequence of input characters a = a0 ·. . .·an ∈ Σn+1 and a sequence
of tree directions p = d1 ·. . .·dn ∈ Dn to an output character M(a, p) ∈ Γ. In particular, we have
T[1,Σ] ' (D∗ → Σ), so each Σ-labeled D-ary tree T corresponds to a morphism Ṫ ∈ T[1,Σ].
Moreover, (Σ→ Γ)-labeled trees M : D∗ → (Σ→ Γ) induce T-morphisms from Σ to Γ.8

8The morphisms from Σ to Γ of the base category of [Rib15] are restricted to (Σ→ Γ)-labeled trees.

9



We will therefore not devise a single category C, but a T-indexed collection of categories
EΣ, one for each alphabet Σ. Let us sketch the general idea with runs of non-deterministic
automata. Given a non-deterministic automaton A over Γ and a morphism M ∈ T[Σ,Γ], a
Σ-run of A on M is a tree

R : D∗ −→ Σ×QA
such that R(ε) = (a0, q

ı
A) for some a0 ∈ Σ, and which respects the transition function

δA : QA × Γ −→ P(D→ QA)

supplied with input characters b ∈ Γ computed by M from tree positions p = d1 · . . . · dn
and sequences of input characters a = a0 · . . . · an where ak is given by the Σ-component of
R(d1 · . . . · dk) ∈ Σ × QA. (So a0 is given by R(ε) and an is given by R(p).) Explicitly, R is a
Σ-run tree when for p and a as above, if R(p) is labeled with state q ∈ QA, then there exists
a function g ∈ δA(q, b) with b = M(a, p) and such that for all d ∈ D, R(p · d) is labeled with
state g(d). Such a Σ-run R is accepting if the QA-labeled tree

p ∈ D∗ 7−→ π(R(p)) ∈ QA

is accepting in the usual sense (where π : Σ×QA → QA is the second projection), that is if all
its infinite paths belong to ΩA. We let Σ ` A(M) be the set of accepting Σ-run trees of A on
M , and simply write A(M) for Σ ` A(M) when Σ is clear from the context.

Roughly speaking, for each Σ, the objects of the category EΣ will include all sets of the form
Σ ` A(M). Moreover, given L ∈ T[∆,Σ], the substitution functor

L? : EΣ −→ E∆

will take a EΣ-object Σ ` A(M) to the E∆-object ∆ ` A(M ◦ L), where the T-map L ◦M ∈
T[∆,Γ] is the T-composition of L and M (assuming M ∈ T[Σ,Γ] as above).

This will induce sequents generalizing (1). For instance, given M ∈ T[Σ,Γ], we have sequents
of the form

M ; A1, . . . ,An ` B (13)

where A1, . . . ,An and B are automata over Γ. Such sequents are to be thought about as our
version of “open sequents” or “sequents with free variables” (here of sort Σ), with the usual
implicit prenex universal quantification, and are to be interpreted in the category EΣ (the fibre
over Σ). Substitution functors such as L? : EΣ → E∆ above will act in the deduction system
via a substitution rule

(Subst)
M ; A1, . . .An ` B

M ◦ L ; A1, . . .An ` B
(where M ∈ T[Σ,Γ] and L ∈ T[∆,Σ]) (14)

Let us briefly sketch the most important instances of this construction.

(a) Consider a T-map Ṫ : T[1,Σ] representing a tree T : D∗ → Σ. Then the accepting runs of
A on T are in bijection with the accepting 1-run trees of A on Ṫ :

(1 ` A(Ṫ )) ' A(T )

Sequents of the form (13) thus indeed generalize sequents of the form

T ; A1 , . . . , An ` B

with T : D∗ → Σ (as depicted in (1)), which are to be interpreted in the category E1 (the
fibre over 1), and are to be thought about as representing closed statements.

10



(b) Given a non-deterministic automaton A over Σ, we write Σ ` A (or even just A when no
ambiguity arises) for Σ ` A(IdΣ) where the T-identity IdΣ ∈ T[Σ,Σ] is given by

IdΣ(a · a, p) := a

Consider now another automaton B also over Σ. Then we write

Σ ; A ` B (15)

(or even A ` B) for the sequent IdΣ ; A ` B. The provability interpretation of (15) will
be that if (15) is provable, then L(A) ⊆ L(B). The computational interpretation of (15)
will consist in a form of uniform simulation of A by B (generalizing the notion used with
the guidable automata of [CL08]). Moreover, given a Σ-labeled tree T seen as a morphism
Ṫ ∈ T[1,Σ], the interpretation of the substitution rule

Σ ; A ` B
Ṫ ; A ` B

will take a morphism σ ∈ EΣ[A,B] to a function Ṫ ?(σ) : A(T )→ B(T ).

(c) Any ordinary function f : Σ→ Γ induces a morphism [f] ∈ T[Σ,Γ] defined as

[f] : (a · a, p) 7−→ f(a)

The action of the substitution functor [f]? : EΓ → EΣ on EΓ-objects of the form Γ ` A can
be internalized in automata. We indeed have

[f]?(Γ ` A) = Σ ` A([f]) = Σ ` A[f]

where the automaton A[f] over Σ is defined as A but with transition function:

δA[f] : QA × Γ −→ P(D→ QA)

(q, b) 7−→ δA(q, f(b))

In particular:

(i) T-maps from Σ× Γ to Σ indeed include projections [π] : D∗ → (Σ× Γ→ Σ) induced
by Set-projections π : Σ× Γ→ Σ.

(ii) Consider automata A1, . . . ,An and B, with Ai over Σi and B over Γ. Consider fur-
thermore T-morphisms Mi ∈ T[∆,Σi] and L ∈ T[∆,Γ]. Then we write

∆ ; A1(M1) , . . . , An(Mn) ` B(L)

for the sequent
〈M1, . . . ,Mn, L〉 ; A1[π1] , . . . , An[πn] ` B[π]

where
〈M1, . . . ,Mn, L〉 ∈ T[∆, Σ1 × · · · × Σn × Γ]

is the T-tupling of M1, . . . ,Mn, L (see Cor. 4.7) and where the πi’s and π are suitable
projections:

πi : Σ1 × · · · × Σn × Γ −→ Σi

π : Σ1 × · · · × Σn × Γ −→ Γ

Unless otherwise stated, all the sequents seen up to now must from now on be thought about
as being of the more general form (15), that is a with a T-map M (of appropriate type) instead
of the labeled tree T .

11



2.3. Toward a Semantics for Implications. The provability interpretation of sequents tells us
that in sequents of the form

M ; A ` B (16)

the symbol ` is a form of implication. One of the main contribution of this work is that this
implication can be internalized in automata. This will lead us outside of non-deterministic
automata (see §3), but for the moment let us sketch some salient consequences this imposes to
the interpretation of the symbol ` in sequents of the form (16).

Assume that proofs of our deduction system are interpreted in categories E(−) indexed over
T. Then, internalizing ` in automata will imply that given automata A and B over Σ there is
an automaton (A( B) over Σ such that there is a bijection

EΣ[A, B] ' Σ ` (A( B)

that we informally write as

Σ ; A ` B ' Σ ` (A( B)

In other words, morphisms in the interpretation of Σ ; A ` B will correspond to the Σ-runs of
an automaton (A( B) (on IdΣ). This could suggest to interpret Σ ; A ` B as the Σ-runs of
an automaton of the form ∼A∨B, where ∼A is the complement of A (in the sense of §1.1) and
(−) ∨ (−) is a disjunction on automata. Let us rule out this possibility, at least for the natural
implementation of (−) ∨ (−) with an additive disjunction (−) ⊕ (−). Given automata A1 and
A2, both over Σ and with Ai = (QAi , q

ı
Ai , δAi ,ΩAi), the non-deterministic automaton A1 ⊕A2

over Σ is

A1 ⊕A2 := (QA1 +QA2 + 1 , • , δA1⊕A2 , ΩA1⊕A2)

where, via the embedding of QD
A1

+QD
A2

into (QA1 +QA2)D, we let

δA1⊕A2(q, a) :=

{
δA1(qıA1

, a) + δA2(qıA2
, a) if q = • ∈ 1

δAi(q, a) if q ∈ QAi

and where •, q1, q2, . . . ∈ ΩA1⊕A2 iff either qıA1
, q1, q2, . . . ∈ ΩA1 or qıA2

, q1, q2, . . . ∈ ΩA2 .
Note that in Set, for every M : D∗ → (Γ→ Σ) we have

(A1 ⊕A2)(M) ' A1(M) +A2(M)

so in particular
L(A1 ⊕A2) = L(A1) ∪ L(A2)

Assume now that we take for EΣ[A(M), B(N)] the set of Σ-runs of (∼A[π1] ⊕ B[π2]) on
〈M,N〉, that is the disjoint union ∼A(M) + B(N). Then one faces the following difficulties.

• We have to devise identity morphisms, say9

idA(M) ∈ ∼A(M) +A(M)

Assuming say M ∈ T[Σ,Γ], one may take for idA(M) either an accepting Σ-run of A on
M or an accepting Σ-run of ∼A on M . But this raises two problems. First, it may
be undecidable whether a possibly non-recursive tree is accepted or rejected by a given

9Note that A[πi](〈M,M〉) = A([πi] ◦ 〈M,M〉) = A(M).

12



automaton. So this precludes any general and effective computational interpretation of
the deduction system. Second, even if we restrict to trees T for which acceptance is known
to be decidable (e.g. trees generated by higher-order recursion schemes [Ong06]), there
seem to be no canonical choice of an actual accepting run idA(T ) ∈ (∼A)(T ) +A(T ).

• It is not clear how to define composition, say

(−) ◦ (−) : (∼B + C)× (∼A+ B) −→ ∼A+ C

Given run trees, say

RC ∈ C ⊆ ∼B + C and R∼A ∈ ∼A ⊆ ∼A+ B

there seems to be no obvious choice for RC ◦R∼A ∈ ∼A+ C. Both

RC ◦R∼A := RC and RC ◦R∼A := R∼A

may seem reasonable. But each of them breaks one of the equalities between the inter-
pretations of the derivations depicted in (10).

2.4. Simple Games. It therefore seems that the categorical structure should involve some
extra machinery. We use the technology of game semantics to devise categories generalizing the
usual acceptance games of tree automata.

Game semantics provide models of typed λ-calculi, and can thus be used, via the Curry-
Howard correspondence, to build compositional models of deduction systems. In game models,
types (and, via Curry-Howard, formulae, or in our context automata instantiated with trees or
T-maps) are interpreted by two-player sequential games where the Proponent P (∃löıse) and the
Opponent O (∀belard) play in turn moves, producing plays subject to specified rules. Originally,
game models where proposed because they provide fully complete models of various λ-calculi,
in the sense that finite P-strategies are definable by λ-terms. On the other hand, the notion
of strategy naturally encompasses infinite objects, and is thus well suited to deal with runs of
automata on infinite trees.

There are different families of game models. We use simple games (see e.g. [Abr97, Hyl97]),
which stem from Berry & Curien’s sequential data structures (see e.g. [AC98, Chap. 14], but
also [Mel05]).

Definition 2.2 (Simple Games).

• A simple game A has the form

A = (AP , AO , LA)

where AP is the set of P-moves, AO is the set of O-moves and LA ⊆ (AP + AO)∗ is a
non-empty prefix-closed set of legal plays.

We let s, t, . . . range of over plays and m,n, . . . range over moves.

• A simple game with winning is a simple game A equipped with a set of winning plays (or
winning condition) WA ⊆ (AP +AO)ω.

13



• The sets ℘P
A and ℘O

A of resp. positive and negative plays on A are

℘P
A := (AP ·AO)∗ + (AP ·AO)∗ ·AP

℘O
A := (AO ·AP)∗ + (AO ·AP)∗ ·AO

The game A is positive (resp. negative) if all its legal plays are positive (resp. negative),
that is if LA ⊆ ℘P

A (resp. LA ⊆ ℘O
A). So P starts in a positive game and O starts in a

negative one. A game is polarized if it is either positive or negative.

• A play for player ξ ∈ {P,O} (also called a ξ-play) is either the empty play or a non-empty
play in which ξ played last (i.e. which ends with a ξ-move).

In the case of a non-deterministic automaton A on a tree T , following the usual setting (see
e.g. [Tho97, GTW02, PP04]), the acceptance game G(A, T ) is defined as the positive simple
game with winning

G(A, T ) := (D→ QA, QA ×D, LA(T ), WA(M))

whose legal plays s ∈ LA(T ) are sequences of the form

s = g0 · (q1, d1) · g1 · . . . · (qn, dn)
or s = g0 · (q1, d1) · g1 · . . . · (qn, dn) · gn

where n ≥ 0, qk+1 = gk(dk+1) and gk ∈ δA(qk, T (d1 · . . . · dk)) with q0 := qıA. Note that O only
chooses the tree directions d1, . . . , dn ∈ D, while P chooses from each O-play

g0 · (q1, d1) · g1 · . . . · (qn, dn)

a function gn : D→ QA available in δA(qn, T (d1 · . . . · dn)).
The winning plays χ ∈ WA(T ) are generated from the acceptance condition ΩA in the expected

way. We let WA(T ) ⊆ ((D→ QA) · (QA ×D))ω consist of the infinite sequences

χ = g0 · (q1, d1) · g1 · . . . · (qn, dn) · . . .

such that (qk)k∈N ∈ ΩA (where q0 := qıA).
We now come to the definition of strategies in simple games. A strategy for player P or O

is what one expects. The formal definition of strategy below emphasizes P (strategies for O
are defined by duality), because in categories of games, composition and identities are only
defined for the strategies of the negative player P. Moreover, the manipulation of strategies
as morphisms is more convenient when strategies are presented as sets of plays rather than as
functions on plays.

Definition 2.3 (Strategies). A P-strategy on A is a non-empty set of legal P-plays σ ⊆ LA
which is

• P-prefix-closed: if s.t ∈ σ and s is a P-play then s ∈ σ, and

• P-deterministic: if s.n ∈ σ and s.m ∈ σ then n = m.

Consider now a polarized game with winning A. Given a P-strategy σ on A and an O-play
s ∈ LA, we say that s is an O-interrogation of σ if either s = ε and A is positive, or if s = t.m
for some t ∈ σ. We say that σ is total if for every O-interrogation s of σ, we have s.n ∈ σ for
some n. A winning (P-)strategy on A is a total strategy σ s.t. for all χ ∈ (AP +AO)ω, we have
χ ∈ WA whenever ∃∞k ∈ N. χ(0) · . . . · χ(k) ∈ σ.

14



The notion of (total, winning) O-strategy is defined by duality. Each game A has a dual
A = (AO, AP, LA), where we moreover letWA := (AP +AO)ω \WA if A is a game with winning.
Note that A is polarized iff A is polarized, and that A is positive (resp. negative) iff A is
negative (resp. positive). Then, we say that a (total, winning) O-strategy on A is a (total,
winning) P-strategy on A.

In the case of the acceptance game G(A, T ) described above, a P-strategy σ is therefore a
non-empty set of sequences of the form

s = g0 · (q1, d1) · g1 · . . . · (qn−1, dn−1) · gn−1

such that
s · (qn, dn) · gn ∈ σ =⇒ s ∈ σ

and
s · (qn, dn) · gn , s · (qn, dn) · g′n ∈ σ =⇒ gn = g′n

Moreover, σ is total iff for every

g0 · (q1, d1) · g1 · . . . · (qn, dn) · gn ∈ σ

and for every dn+1 ∈ D, there is some gn+1 such that

g0 · (q1, d1) · g1 · . . . · (qn, dn) · gn · (gn(dn+1), dn+1) · gn+1 ∈ σ

It follows that a total P-strategy σ on G(A, T ) is uniquely determined by a run tree R such that
R(ε) = qıA, and such that for every d1 · . . . · dn · dn+1 ∈ Dn+1,

R(d1 · . . . · dn · dn+1) = gn(dn+1)

where, for 0 ≤ k ≤ n, the gk are unique such that

g0 · (g0(d1), d1) · . . . · (gk−1(dk), dk) · gk ∈ σ

Hence (winning) total P-strategies in G(A, T ) are in bijection with (accepting) runs of A on T .
Moreover, the game G(A, T ) has the same winning strategies as the usual acceptance games
(see e.g. [Tho97, GTW02, PP04]).

Remark 2.4 (Tree Games v.s. Graph Games). The realm of game semantics was originally
mostly developed with games on trees, (such as simple games [Abr97, Hyl97], but also traditional
Hyland-Ong games [HO00]). However, more recent trends of game semantics based on graphs
also emerged, in particular in the work of Melliès (see e.g. [Mel05, Mel06, Mel12]). Wrt. the
context of this paper, one should in particular note the connection of [Mel06] between innocence
and a notion of positionality (but for games equipped with an asynchronous notion of monoidal
product).

On the other hand, the framework of [Rib15] was itself based on games on graphs, and games
on graphs will be considered in this paper in relation with positionality in §7.2.3. However, that
notion of positionality is not yet clearly connected with the notion of positionality of [Mel06],
most notably because of the synchronous nature of our games, and in particular of their monoidal
structure (see §2.8 and §4.1). Moreover, the main developments of this paper, based on the
category DZ of simple zig-zag games (see §3) are technically easier with games on trees, and
we adopt this setting for the categories of games considered here.

15



Consider now the more general case of a non-deterministic A over Γ instantiated with M ∈
T[Σ,Γ]. The substituted acceptance game Σ ` G(A,M) is the positive game with winning

Σ ` G(A,M) := (Σ× (D→ QA), QA ×D, LA(M), WA(M))

whose legal plays s ∈ LA(M) are sequences of the form

s = (a0, g0) · (q1, d1) · (a1, g1) · . . . · (qn, dn)
or s = (a0, g0) · (q1, d1) · (a1, g1) · . . . · (qn, dn) · (an, gn)

where n ≥ 0, qk+1 = gk(dk) and gk ∈ δA(qk,M(a0 · . . . · ak, d1 · . . . · dk) with q0 := qıA. We let
WA(M) ⊆ ((Σ× (D→ QA)) · (QA ×D))ω consist of the infinite sequences

(a0, g0) · (q1, d1) · (a1, g1) · . . . · (qn, dn) · . . .

such that (qk)k∈N ∈ ΩA (where q0 := qıA).
Now P chooses the input characters ak ∈ Σ in addition to the functions gk : D → QA. In a

P-play
(a0, g0) · (q1, d1) · (a1, g1) · . . . · (qn, dn) · (an, gn)

the sequence of input characters a0 · . . . · an chosen by P and the sequence of tree directions
d1 · . . . · dn chosen by O are given as input to M , which produces a character b ∈ Γ and the
function gn chosen by P must belong to δA(qn, b).

Games of the form Σ ` G(A,M) generalize usual acceptance games of the form A(T ). Given
a T-map Ṫ ∈ T[1,Σ] corresponding to a Σ-labeled tree T , the plays of the game 1 ` G(A, Ṫ )
are of the form

(•, g0) · (q1, d1) · (•, g1) · . . . · (qn, dn) · (•, gn)

and are thus in bijection with the plays of A(T ). More generally, total (winning) P-strategies
on Γ ` G(A,M) are in bijection with (accepting) Γ-runs of A on M .

Notation 2.5 (A(T ) and Γ ` A(M) as games). From now on, we will write Γ ` A(M) (resp.
A(T )) to denote indifferently a game Γ ` G(A,M) (resp. G(A, T )) or a set of run trees (in the
sense of §2.2).

2.5. Game Semantics: Linear Arrow Games and Copy-Cat. Recall from §2.3 that a sequent
M ; A ` B should be thought as a form of implication, but that the runs of the automaton
∼A⊕B seemed not to convey the right information. The first encountered difficulty concerned
the existence of canonical identities idA(M) ∈ EΣ[A(M),A(M)] if the homset EΣ[A(M),A(M)]
were to be the set of accepting runs or winning P-strategies (∼A)(M) +A(M). The solution of
game semantics is to devise, from component games A and B, an implication game A(SG B
in which:

(a) The set of moves of A(SG B is the disjoint union of the sets of moves of A and B, and
the components A and B can be interleaved in plays on A(SG B.

(b) O plays first in A(SG B, and then the plays in A(SG B alternate between P and O.

(c) The role of P and O are reversed in component A and are preserved in component B (i.e.
P in A(SG B plays as O in A and as P in B).

(d) In the case of simple games (see e.g. [Abr97, Hyl97]), P can switch between components at
any of its moves, but O must stay in the same component (this is the switching condition).

16



Definition 2.6 (Linear Arrow Games). Given polarized simple games A and B of the same
polarity, the linear arrow game A(SG B is the negative game

A(SG B := (AO +BP, AP +BO, LA(SGB)

where LA(SGB consists of those negative plays s such that s�A ∈ LA and s�B ∈ LB, where s�A
is the restriction of s to AP +AO, and similarly for s�B.

Let us check that A (SG B satisfies the switching condition (d) above (the other condi-
tions (a)-(c) are direct consequences of the definitions): given a legal O-play s = t · n · m,
either n,m are both in component A, or they are both in component B. Indeed, note that
since A(SG B is negative, its legal O-plays are odd-length. So if s is a legal O-play, then the
lengths of s�A and s�B cannot have the same parity. Assume now that s = t · n ·m with n and
m in different components. Since A and B are assumed to be of the same polarity, the moves
n and m are of different polarities w.r.t. A and B, so they are of the same polarity as moves of
A(SG B, contradicting the legality of s.

Simple games and (winning) strategies form a category SG(W), whose objects are simple
games (with winning), and whose morphisms from A to B are (winning) P-strategies σ : A(SG

B. We refer to [Abr97, Hyl97, AC98] for full treatments, and in particular to [Abr97, Hyl97]
for totality and winning. The general notion of winning in games of the form A (SG B is a
bit technical. In this paper, we only need to consider the case of infinite plays on A (SG B
whose projections on A and B are both infinite. We say that such a play is winning for P in
A(SG B iff its projection on B is winning for P whenever its projection on A is winning for
P (with the original polarities of A).

Consider now the definition of the identity strategy idA(M) in Σ ` A(M)(SG A(M). Since
O must begin in A(M) (SG A(M), but it is P who begins in the right component A(M), it
follows that O must begin in the left component A(M) (taking the role of P in that component).
It is then easy to define an identity “copy-cat” strategy for P, which always switches component
and copies the previous O-move from the other component. A play of this strategy is depicted
in Fig. 1 (where plays grow from top to bottom). Note that P plays in particular the same input
characters ak ∈ Σ and the same tree directions dk ∈ D as proposed by O. Formally, idA(M) is
the unique strategy in A(M)(SG A(M) such that

idA(M) = {s ∈ LA(M)0(SGA(M)1 | s�A(M)0 = s�A(M)1} (17)

(where we have written A(M)(SG A(M) as A(M)0 (SG A(M)1 in order to distinguish the
two copies of A(M)).

In particular, by construction of idA(M), the same sequences of states are produced in both
copies of A(M). But such sequences are either winning for P in A(M) or are winning for O in
A(M). So they are winning for P in A(M)(SG A(M).

2.6. Linear Synchronous Arrow Games. The morphisms of our categories of automata are
based on the linear synchronous arrow games of [Rib15] (adapted to the base category T).
Synchronous arrow games are restrictions of the linear arrow of simple games between substi-
tuted acceptance games, in which P has to play the same input characters a and the same tree
directions d as proposed by O.

Let A and B be non-deterministic automata over resp. Γ and ∆, and consider M ∈ T[Σ,Γ]
and N ∈ T[Σ,∆]. We will define the synchronous arrow game

Σ ` A(M)( B(N) (18)

17



A(M)
idA(M)

−( SG A(M)
(ε, ε, qıA) (ε, ε, qıA)

O (a0, g0)
... if g0 ∈ δA(qıA,M(a0, ε))

P
... (a0, g0)

O
... (q1, d1) if q1 = g0(d1)

P (q1, d1)
...

(d1, a0, q1) (d1, a0, q1)
...

...
(p, a, qn) (p, a, qn) where p = d1 · . . . · dn

O (an, gn)
... if gn ∈ δA(qn,M(a · an, p))

P
... (an, gn)

O
... (qn+1, dn+1) if qn+1 = gn(dn+1)

P (qn+1, dn+1)
...

(p · dn+1, a · an, qn+1) (p · dn+1, a · an, qn+1)
...

...

Figure 1: A play of the copy-cat identity strategy idA(M)

also noted A(M)( B(N) when Σ is clear from the context.
The game A(M) ( B(N) will be a subgame of A(M) (SG B(N). It can be seen as a

restriction of A(M)(SG B(N) to plays which are synchronous, in the sense that A and B are
evaluated along the same path in Dω, while M and N read the same input characters from Σ.
The synchronous plays of A(M)(SG B(N) are defined using the following notion of trace. Let

TrΣ := (Σ ·D)∗ + (Σ ·D)∗ · Σ

and define the trace function trA(M) : LA(M) −→ TrΣ inductively as follows

trA(M)(ε) := ε

trA(M)(s · (a, g)) := trA(M)(s) · a
trA(M)(s · (q, d)) := trA(M)(s) · d

We let the trace of a play s ∈ LA(M) be the sequence trA(M)(s). The trace function trB(N) :
LB(N) −→ TrΣ is defined similarly. Note that both trA(M) and trB(N) have the same codomain
TrΣ, which only depends on the input alphabet of M and N . Consider now a legal play s in
A(M)(SG B(N). We say that s is synchronous if

trA(M)(s�A(M)) = trB(N)(s�B(N))

Note that trace functions are length-preserving, so that the trace of a play s always has the
same length as s. Hence if s is a synchronous play in A(M) (SG B(N), then s�A(M) and
s�B(N) have the same length, so that s is even length. It follows that the synchronous plays of
A(M)(SG B(N) must be P-plays.

18



Σ A(M) −( B(N)
(ε, ε, qıA) (ε, ε, qıB)

...
...

(p, a, qA) (p, a, qB)

O (a, gA)
... if gA ∈ δA(qA,M(a · a, p))

P
... (a, gB) if gB ∈ δB(qB, N(a · a, p))

O
... (q′B, d) if q′B = gB(d)

P (q′A, d)
... if q′A = gA(d)

(p · d, a · a, q′A) (p · d, a · a, q′B)
...

...

Figure 2: A typical synchronous play over Σ

We define the game A(M)( B(N) as the game A(M)(SG B(N), but with as legal plays
the legal plays of A(M) (SG B(N) which are prefixes of synchronous plays. It follows that
a P-strategy σ : A(M) ( B(N) is a P-strategy σ : A(M) (SG B(N) whose plays are all
synchronous. We call such strategies synchronous. In particular, the identity copy-cat strategy
idA(M) : A(M)(SG A(M) is a synchronous strategy.

A typical synchronous play in A(M) ( B(N) is depicted in Fig. 2. Note that synchronous
plays must have the same zig-zag shape as the copy-cat plays, and moreover that O actually
chooses both the input characters a ∈ Σ and the tree directions d ∈ D. This follows from
the fact that in the game A(M)( B(N), O must begin in the component A(M), choosing in
particular some a ∈ Σ. Then, by synchronicity, P must switch to component B(N) and play a
move containing the same a ∈ Σ. Since O cannot switch component, its next move must be in
component B(N), and so in particular contain some d ∈ D. But then, again by synchronicity,
P must switch to component A(M) and play a move containing the same d ∈ D.

Synchronous arrow games are equipped with the winning conditions mentioned in §2.5. Given
an infinite play χ in A(M)( B(N) whose projections on A(M) and B(N) are both infinite, we
say that χ is winning for P if its projection on B(N) is winning for P whenever its projection
on A(M) is winning for P.

Synchronous arrow games generalize usual acceptance games. Given an automaton A over Σ
and a Σ-labeled tree T , we have seen that plays and total (winning) P-strategies in A(T ) are
in bijection with plays and total (winning) P-strategies in 1 ` A(Ṫ ). Plays and total (winning)
P-strategies in 1 ` A(T ) are in turn in bijection with plays and total (winning) P-strategies in
1 ` I(Ṫ ) ( A(Ṫ ). Here, I is a unit automaton over Σ, with state set 1 ' {•} (and thus •
initial), acceptance condition ΩI := 1ω, and transition function of the form

δI : (•, a) 7−→ {(d ∈ D 7→ •)}

A typical play of 1 ` I(Ṫ ) ( A(Ṫ ) is depicted on Fig. 4 (left). Note that in component
I(Ṫ ), there is always exactly one possible O-move since δI(•, ) is a singleton, and that by
synchronicity, the P-move (d, •) in completely determined by the d ∈ D chosen by O.

2.7. Game Semantics: Composition. We now briefly sketch the composition of synchronous
strategies. We refer to e.g. [Abr97, Hyl97] for a description of composition in SG, and to [Rib15]

19



Σ A(M)
σ
−( B(N)

(ε, qıA) (ε, qıB)
...

...
(p, qA) (p, qB)

O (a, gA)
...

P
... (a, gB)

O
... (q′B, d)

P (q′A, d)
...

(p.d, q′A) (p.d, q′B)
...

...

Σ B(N)
τ
−( C(L)

(ε, qıB) (ε, qıC)
...

...
(p, qB) (p, qC)

O (a, gB)
...

P
... (a, gC)

O
... (q′C , d)

P (q′B, d)
...

(p.d, q′B) (p.d, q′C)
...

...

Σ A(M)
σ
−( B(N)

τ
−( C(L)

(ε, qıA) (ε, qıB) (ε, qıC)
...

...
...

(p, qA) (p, qB) (p, qC)

O (a, gA)
...

... O
... (a, gB)

...

P
...

... (a, gC) P

O
...

... (q′C , d) O
... (q′B, d)

...

P (q′A, d)
...

... P

(p.d, q′A) (p.d, q′B) (p.d, q′C)
...

...
...

Figure 3: Interaction of strategies on non-deterministic automata

for the particular case of synchronous strategies. Composition of strategies for the precise
setting of this paper will be detailed in §3. Consider P-strategies σ : A(M) ( B(N) and
τ : B(N)( C(L) as in Fig. 3 (top). Their composite

τ ◦ σ : A(M) −( C(L)

is obtained by making σ and τ interact in their common component B(N), as depicted on
Fig. 3 (bottom). The crucial observation is that in an interaction of σ and τ in component
B(N), all the P-moves are played by σ and all the O-moves are played by τ . It follows that
the interactions of σ and τ in component B(N) are completely determined by σ and τ and
the O-moves in A(M) ( C(L). The composite strategy τ ◦ σ is then obtained by hiding the
interaction of σ and τ in their common component B(N) (see Fig. 4, right). It well-known that
τ ◦ σ is winning if τ and σ are both winning.

20



1 I(Ṫ ) −( A(Ṫ )
(ε, •) (ε, qıA)

...
...

(p, •) (p, qA)

O (•, (d 7→ •))
...

P
... (•, gA)

O
... (q′A, d)

P (•, d)
...

(p.d, •) (p.d, q′A)
...

...

Σ A(M)
τ◦σ
−( C(L)

(ε, qıA) (ε, qıC)
...

...
(p, qA) (p, qC)

O (a, gA)
...

P
... (a, gC)

O
... (q′C , d)

P (q′A, d)
...

(p.d, q′A) (p.d, q′C)
...

...

Figure 4: Lifting of acceptance games (left) and a composite strategy (right)

2.8. The (Synchronous) Direct Product of (Non-Deterministic) Automata. Returning to
the general case of sequents of the form

M ; A1, . . . ,An ` B

the provability interpretation tells us that the left commas correspond to a form of conjunc-
tion. A conjunction on non-deterministic automata can be implemented with a direct (syn-
chronous) product. The direct product A1 ⊗ A2 of the non-deterministic automata Ai =
(QAi , q

ı
Ai , δAi ,ΩAi), both over Σ, is the non-deterministic automaton over Σ

A1 ⊗A2 :=
(
QA1 ×QA2 , (qıA1

, qıA2
) , δA1⊗A2 , ΩA1⊗A2

)
with

δA1⊗A2((q1, q2), a) := {〈g1, g2〉 : D→ QA1 ×QA2 | gi ∈ δAi(qi, a) for i = 1, 2}

and where ΩA1⊗A2 is ΩA1 × ΩA2 modulo (QA1 × QA2)ω ' QωA1
× QωA2

. For every tree T ,
the (accepting) runs of A1 ⊗ A2 on T are exactly10 the pairs 〈R1, R2〉 : D∗ → QA1 × QA2 of
(accepting) runs of A1 and A2 over T . We therefore have, in the category Set

(A1 ⊗A2)(T ) ' A1(T )×A2(T ) (19)

from which we immediately get

L(A1 ⊗A2) = L(A1) ∩ L(A2)

In games, the product (−)⊗ (−) is actually Cartesian on total non-deterministic automata11.
We say that a non-deterministic automaton A is total if the empty set is not in the range of its
transition function δA, that is when

δA : QA × Σ −→ P(D→ QA) \ {∅}

10Because universal quantifications commute over conjunctions!
11See e.g. [Shu08] for notions of monoidal indexed categories and fibrations.

21



Σ (A1[π1]⊗A2[π2])〈M1,M2〉
$i
−( Ai(Mi)

(ε, (qıA1
, qıA2

)) (ε, qıAi)
...

...
(p, (q1, q2)) (p, qi)

O (a, (g1, g2))
...

P
... (a, gi)

O
... (gi(d), d)

P ((g1(d), g2(d)), d)
...

(p · d, (q′1, q′2)) (p · d, q′i) where q′1 = g1(d) and q′2 = g2(d)
...

...

Figure 5: The projection $i for A1 and A2 non-deterministic

Note that any non-deterministic automaton can be translated to a total one at the cost of
possibly adding one (rejecting) state. Consider now Σ ` A1(M1), Σ ` A2(M2) and Σ `
C(L), with A1,A2 and C total non-deterministic. Then there are canonical total (and winning)
projection strategies:

$i : (A1[π1]⊗A2[π2])〈M1,M2〉 −( Ai(Mi)

and total (winning) P-strategies

θ : C(L) −( (A1[π1]⊗A2[π2])〈M1,M2〉 (20)

are in bijection with pairs of total (winning) P-strategies

σ1 : C(L) −( A1(M1) and σ2 : C(L) −( A2(M2) (21)

A typical play of $i is depicted on Fig. 5. Note that since A1 and A2 are assumed to be non-
deterministic, synchronicity completely determines the move ((g1(d), g2(d)), d) of $i from the
O-move (gi(d), d) in component Ai(Mi). It follows that each strategy θ as in (20) determines
strategies σ1 and σ2 as in (21) with σi = $i ◦ θ.

On the other hand, given fixed σ1 and σ2 as in (21), a strategy θ such that σ1 = $1 ◦ θ and
σ2 = $2 ◦ θ is necessarily unique. As for existence of θ, consider plays s1 ∈ σ1 and s2 ∈ σ2 with
the same trace in TrΣ, as in Fig. 6. Note that if O plays “the same way” on C(L) in s1 and
s2, then s1�C(L) = s2�C(L). Indeed, if q1 = q2 and g1 = g2, then, since s1 and s2 have the same
trace, we have q′1 = g1(d) = g2(d) = q′2 for the same d ∈ D. It follows that s1 and s2 can be
merged in the play depicted on Fig. 6. This defines a total (winning) θ such that $i ◦ θ = σi.

Furthermore, the automaton I induces terminal objects: for every C(L) with C total non-
deterministic, there is a unique total (and winning) 1C(L) : C(L)( I(L), see Fig. 7.

The Cartesian structure of (⊗, I) on total non-deterministic automata imply that we can
equip total non-deterministic automata with deduction rules for a Cartesian product, such as
the following rules (where A denotes a sequence A1, . . . ,An):

(Left ⊗) M ; A, A, B, B ` C
M ; A, A⊗ B, B ` C

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B

(Right ⊗)

(Left I)
M ; A, B ` C
M ; A, I, B ` C M ; ` I

(Right I)

(22)

22



Σ C(L)
s1∈σ1

−( A1(M1)
(ε, qıC) (ε, qıA1

)
...

...
(p, q1) (p, qA1)

O (a, g1)
...

P
... (a, gA1)

O
... (q′A1

, d)

P (q′1, d)
...

(p.d, q′1) (p.d, q′A1
)

...
...

Σ C(L)
s2∈σ2

−( A2(M2)
(ε, qıC) (ε, qıA2

)
...

...
(p, q2) (p, qA2)

O (a, g2)
...

P
... (a, gA2)

O
... (q′A2

, d)

P (q′2, d)
...

(p.d, q′2) (p.d, q′A2
)

...
...

Σ C(L) −( (A1[π1]⊗A2[π2])〈M1,M2〉
(ε, qıC) (ε, (qıA1

, qıA2
))

...
...

(p, q1) (p, (qA1 , qA2))

O (a, g1)
...

P
... (a, (gA1 , gA2))

O
... ((q′A1

, q′A2
), d)

P (q′1, d)
...

(p.d, q′1) (p.d, (q′A1
, q′A2

))
...

...

Figure 6: Pairing on non-deterministic automata

Σ C(L)
1C(L)

−( I(L)
(ε, qıC) (ε, •)

...
...

(p, qC) (p, •)

O (a, gC)
...

P
... (a, ( 7→ •))

O
... (•, d)

P (gC(d), d)
...

(p.d, gC(d)) (p.d, •)
...

...

Figure 7: The terminal object on non-deterministic automata

23



together with the structural exchange rule

(Exchange)
M ; A, A, B, C ` C
M ; A, B, A, C ` C

(23)

as well as the structural weakening and contraction rules:

(Weak)
M ; A , B ` C

M ; A , A , B ` C
M ; A , A , A , B ` C
M ; A , A , B ` C

(Contr) (24)

and the following general (multiplicative) cut rule

(Cut)
M ; A ` A M ; B, A, C ` C

M ; B, A, C ` C
(25)

To summarize, with total non-deterministic automata, the left commas in sequents of the
form (1) can be internalized as a product (⊗, I), whose deduction rules are suggested by its
structure in the computational interpretation.

2.9. Alternating Automata and Linear Logic. With respect to the context of this paper,
the basic insight of linear logic [Gir87], is that having an explicit control on the weakening
and contraction structural rules depicted in (24) gives rise to a decomposition of the usual
intuitionistic connectives ∧,→ into more refined connectives (usually denoted ⊗,&, !,(), which
in a lot of cases allow, thanks to the Curry-Howard correspondence, refined constructions of
models of programming languages based on (typed) λ-calculi (see e.g. [AC98]).

In the case of conjunction, this can be phrased as follows. First, when suppressing the struc-
tural rules (Weak) and (Contr), the rules displayed in (22) and (23) do not specify anymore
a Cartesian structure for the product (⊗, I), but merely a symmetric monoidal structure (see
e.g. [Mel09] for definitions). This implies that in contrast with intuitionistic sequents, the left
commas in ILL-sequents, which have the same structure as (⊗, I), do not anymore behave as a
Cartesian product. Moreover, (⊗, I) is not anymore equivalent to the additive conjunction (usu-
ally denoted &, with unit >), which, as a logical connective, would be defined in ILL-sequents
by rules of the form12:

A1 , . . . , An ` B1 A1 , . . . , An ` B2

A1 , . . . , An ` B1 &B2 A1 , . . . , An ` >

A1 , . . . , Ai , . . . , An ` B
A1 , . . . , Ai & C , . . . , An ` B

A1 , . . . , Ai , . . . , An ` B
A1 , . . . , C &Ai , . . . , An ` B

Second, the structural rules (Weak) and (Contr) are restored but for a specific exponential
modality !(−):

A1 , . . . , . . . , An ` B
A1 , . . . , !Ai , . . . , An ` B

A1 , . . . , !Ai , !Ai , . . . An ` B
A1 , . . . , !Ai , . . . , An ` B

(26)

The modality !(−) is itself subject to specific introduction rules, called dereliction and promotion:

A1 , . . . , Ai , . . . , An ` B
A1 , . . . , !Ai , . . . , An ` B

!A1 , . . . , !An ` B
!A1 , . . . , !An ` !B

(27)

12We do not consider in this paper the usual additive conjunction on alternating automata, which would provide
an implementation of &, because its categorical properties would require a slight extension of our setting.

24



Then (but see also [Gir87, AC98, Mel09] for details), the categorical interpretation of proofs
gives an isomorphism

!A⊗ !B ' !(A&B) (28)

which implies that an intuitionistic sequent

A1 , . . . , An ` B

where the left commas behave as a Cartesian product, corresponds to the linear sequent

!A1 , . . . , !An ` B

where the left commas behave as a symmetric monoidal product (−)⊗ (−) which need not be
Cartesian.

The pertinence of intuitionistic linear logic in our context comes from the fact that the prod-
uct (−) ⊗ (−) defined in §2.8 on non-deterministic automata extends to (total13) alternating
automata, but induces a symmetric monoidal product which is not Cartesian (there is no bijec-
tion between (20) and (21), and moreover I is not terminal). Recall from §1.3 that an alternating
automaton A over Γ has a transition function of the form

δA : QA × Γ −→ P(P(QA ×D))

Given M ∈ T[Σ,Γ], the substituted acceptance game Σ ` G(A,M) is the positive game with
winning

Σ ` G(A,M) := (Σ× P(QA ×D), QA ×D, LA(M), WA(M))

whose legal plays s ∈ LA(M) are sequences of the form

s = (a0, γ0) · (q1, d1) · (a1, γ1) · . . . · (qn, dn)
or s = (a0, γ0) · (q1, d1) · (a1, γ1) · . . . · (qn, dn) · (an, γn)

where n ≥ 0, (qk+1, dk+1) ∈ γk and γk ∈ δA(qk,M(a0 · . . . · ak, d1 · . . . · dk)) with q0 := qıA. The
winning plays χ ∈ WA(M) are generated from the acceptance condition ΩA in the expected way,

and we say that A accepts T (i.e. T ∈ L(A)) when P has a winning strategy in 1 ` A(Ṫ ).
Alternating automata induce synchronous arrow games in the same way as non-deterministic

automata (see [Rib15]). Trace functions extend to alternating automata (replacing g’s by γ’s),
and we can let Σ ` A(M)( B(N) be G(A,M)(SG G(B, N) restricted to (the prefixes of) its
legal synchronous plays. A typical play is depicted on Fig. 8.

Given alternating automata A and B over Σ, the automaton A ⊗ B over Σ has state set
QA × QB, and evaluates A and B along the same trace in TrΣ (see [Rib15] for details). Now,
recall that with alternating automata, O can choose states in addition to tree directions. Hence,
given a P-strategy on (A⊗B)(Ṫ ) (for T : D∗ → Σ), and given a branch of this strategy following
a given path p ∈ D∗, it is possible for P to make different choices according to previous O-moves.
In particular, some choice of P in component A may depend on previous O-moves in B. (Note
that this was not possible with non-deterministic automata, since p ∈ D∗ determines uniquely
the previous O-moves.) So a P-strategy on (A ⊗ B)(Ṫ ) may not uniquely determine a pair of
strategies in A(Ṫ )×B(Ṫ ). It follows that in general there is no bijection between (20) and (21).

On the other hand, in any model of intuitionistic linear logic, the isomorphism (28) implies
that every object of the form !A is a commutative commonoid w.r.t. (⊗, I) (see e.g. [Mel09]),

13Total alternating automata were called complete in [Rib15].

25



Σ A(M) −( B(N)
(ε, qıA) (ε, qıB)

...
...

(p, qA) (p, qB)

O (a, γA)
... if γA ∈ δA(qA,M(p)(a))

P
... (a, γB) if γB ∈ δB(qB, N(p)(a))

O
... (q′B, d) if (q′B, d) ∈ γB

P (q′A, d)
... if (q′A, d) ∈ γA

(p.d, q′A) (p.d, q′B)
...

...

Figure 8: A typical synchronous play with alternating automata

which essentially means that (⊗, I) has a Cartesian structure w.r.t. objects of the form !A.
This indicates that non-deterministic automata behave as objects of the form !A, and it turns
out that to some extent, the powerset construction translating an alternating automaton to an
equivalent non-deterministic one (the Simulation Theorem [MS87, EJ91, MS95]), corresponds
to an !(−)-modality of intuitionistic linear logic. In particular, all the !(−)-rules (26) and (27)
can be interpreted in our categories14. But unfortunately, this interpretation is not compatible
with usual cut-elimination, because the operation !(−) fails to be a functor.

2.10. Realizability and Compositionality in [Rib15]. As with have seen in this Section, a
substantial part of the program announced in §1 was already completed in [Rib15].

The framework of [Rib15] consists in symmetric monoidal fibred categories of (usual) tree
automata. Although [Rib15] does not explicitly mention any deduction system, it actually
provides, for total alternating automata, a realizability interpretation (in the sense of §1.2
and §1.5) of the deduction system made of the rules displayed in (22), (23) and (25), as well as
the (Axiom) rule of §2.1, the (Weak) rule displayed in (24), and the (Contr) rule displayed
in (24) (with A total non-deterministic). The fibred structure of [Rib15] amounts to the fact
that T-maps L ∈ T[∆,Σ] induce substitution functors L? taking a strategy

Σ ` σ : A(M) −( B(N)

to a strategy
∆ ` L?(σ) : A(M ◦ L) −( B(N ◦ L) (29)

(see Rem. 4.1, §4). This gives an interpretation of the substitution rule (14). Furthermore,
this fibred structure is equipped with existential quantifications in the spirit of §2.2 and in
the technical sense of simple coproducts (see e.g. [Jac01, §1.9]). Finally, a simulation operation
!(−) was already shown to satisfy the weak completeness property mentioned in 1.5.(bii) (with
instead of (−)‹, a usual notion of linear complement (−)‚, see §1.3).

Besides providing a detailed account of a fibred structure on tree automata, this paper ex-
tends [Rib15] with an explicit deduction system (whose rules are depicted on Fig. 24, Fig. 26

14(Weak) actually holds (in a non-canonical way) for total alternating automata (i.e. the ! is not strictly
necessary in the conclusion).

26



and Fig. 30), and gives an explicit account of simulation as satisfying the (obvious adaptation
to our context of the) deduction rules (26) of the usual exponential modality !(−) of ILL (see
also §1.4 and §7). Yet, the main contribution of this paper is to provide a monoidal-closed
structure on automata. This involves variants of usual of alternating automata, that we call
uniform automata (§3).

Usual alternating automata seem to not have enough structure to induce categories equipped
with a monoidal-closed structure while providing a computational interpretation of proofs in the
sense of §1.2. As usual (see [Mel13] and also §3.2 and §5.4), a monoidal closed structure (⊗, I,()
provides for each object R a contravariant functor (−)R := (−) ( R, which automatically
validates deduction rules of the form

A, B ` R
A ` BR

A ` BR

A, B ` R
A ` BR

B ` AR A ` ARR

A ` B
BR ` AR ARRR ` AR

In the case of usual alternating automata, it is not difficult to have a linear complementation
(−)‚ which satisfies similar rules15. Given an alternating automaton A, following [Wal02] it is
natural to let A‚ have the same states as A, and to take for δA‚(q, a) a dual of the disjunctive
formula represented by δA(q, a) ∈ P(P(QA × D)), that is, to let δA‚(q, a) be the set of all
γ‚ ⊆ ⋃ δA(q, a) such that γ‚ ∩ γ 6= ∅ for all γ ∈ δA(q, a). Then, it is not difficult to validate a
rule of the form

Σ ; A ` B
Σ ; B‚ ` A‚ (30)

However, as detailed in App. A, it is not obvious how to obtain an operation (−)‚ with a
functorial action of strategies, in particular which preserves composition.

3. Uniform Automata and Zig-Zag Games

This Section presents the notion of automata (called uniform automata) on which this paper
relies (§3.2 and §3.3). Uniform automata are motivated by the extension of usual alternating
automata with a monoidal closed structure (§3.1, see also §1.5 and §2.10). Working with uniform
automata instead of usual automata allows, w.r.t. [Rib15], a considerable simplification of the
underlying technology of game semantics. We rely on a very simple category DZ of (total) zig-
zag games (§3.4 and §3.6), on top of which the counterpart on uniform automata of synchronous
arrows games is built (§3.5 and §3.7).

3.1. Toward Monoidal Closure. The main contribution of this paper w.r.t. [Rib15] is that
we propose a variant of usual alternating automata which is equipped with a closed structure
w.r.t. the symmetric monoidal product (⊗, I). This means that from automata B and C, we can
define an automaton (B( C) such that for every automaton A, we have an isomorphism

A⊗ B −( C ' A −( (B( C)

(subject to some naturality condition). This implies that we can extend our deduction system
with rules for the linear implication connective ( of ILL:

(Left ()
M ; A ` A M ; B, B, C ` C

M ; B, A, A( B, C ` C
M ; A, B ` C
M ; A ` B( C

(Right () (31)

15Modulo some burden caused by totality, see [Rib15].

27



and that these rules are compatible with cut-elimination (see e.g. [Mel09], but also Rem. 5.7),
in the sense that the following two derivations are interpreted by the same strategy:

D1

A ` B
I ` A( B

D2

I ` A B ` B
A( B ` B

I ` B

...
D1[D2/A]

I ` B
(32)

Assume given alternating automata A and B over Σ, and let us see how to construct an
automaton (A( B) over Σ such that total (winning) P-strategies in the game Σ ` I −( (A(
B) are in bijection with total (winning) P-strategies in the game Σ ` A −( B. Given a play of
σ leading to a position ((p, qA), (p, qB)) in the game Σ ` A −( B, the next moves of σ induce
maps

f : γA 7−→ γB

F : (γA , (q′B, d) ∈ f(γA)) 7−→ (q′A, d) ∈ γA
where

Σ A
σ
−( B

(p, qA) (p, qB)

O (a, γA)
...

P
... (a, γB) f(γA) = γB

O
... (q′B, d)

P (q′A, d)
... F (γA, (q′B, d)) = (q′A, d)

The main idea toward the definition of the automaton (A ( B) is to let the P-moves in its
transitions be given by pairs of maps

f : P(QA ×D) −→ P(QB ×D) F : P(QA ×D)× (QB ×D) −→ QA ×D (33)

Note that the functions f and F do not explicitly depend from the input characters a ∈ Σ,
since input characters are played in the component I of Σ ` I −( (A( B), prior to the choice
of f and F .

3.2. Uniform Automata. In order to obtain the required categorical properties of a monoidal
closed structure, we devise a “uniform” variant of usual alternating automata, whose transitions
are given by explicit arbitrary non-empty finite sets of P and O-moves.

Definition 3.1 (Uniform Tree Automata). A uniform tree automaton A over Σ (notation
A : Σ) has the form

A = (QA , q
ı
A , U , X , δA , ΩA) (34)

where QA is the finite set of states, qıA ∈ QA is the initial state, U and X are finite non-empty
sets of resp. P and O-moves, the acceptance condition ΩA is an ω-regular subset of QωA, and
the transition function δA has the form

δA : QA × Σ −→ U ×X −→ (D −→ QA) (35)

Following the usual terminology, an automaton A as in (34) is non-deterministic if X ' 1,
universal if U ' 1, and deterministic if U ' X ' 1.

28



Example 3.2. (i) The unit automaton IΣ : Σ is the unique uniform deterministic automaton
over Σ with state set 1 (with • initial) and acceptance condition 1ω. Explicitly,

IΣ := (1, •,1,1, δ1,1ω)

where δ1 is the unique function

δ1 : 1× Σ −→ 1× 1 −→ (D −→ 1)

We write I for IΣ when Σ is clear from the context.

(ii) Each alternating automaton A can be translated to a uniform automaton Â. The automa-
ton Â simulates A as long as P and O respect the transition function of A, and switches
to an accepting (resp. rejecting) state as soon as O (resp. P) plays a move not allowed by
A. Assuming

δA : QA × Σ −→ P(P(QA ×D))

we let Â be the uniform automaton

(Â : Σ) := (QA + B , qıA , P(QA ×D) , QA , δÂ , ΩÂ)

where B := {t, f}, with transitions given by δÂ(b, a, , , ) := b if b ∈ B and for q ∈ QA:

δÂ(q, a, γ, q′, d) :=


q′ if γ ∈ δA(q, a) and (q′, d) ∈ γ
t if γ ∈ δA(q, a) and (q′, d) /∈ γ
f if γ /∈ δA(q, a)

and with ΩÂ := ΩA +Q∗A.t
ω.

Given two uniform automata A and B over Σ, it is easy to define a linear implication au-
tomaton (A( B) following the idea of (33).

Definition 3.3 (Linear Implication of Uniform Automata). Assume A is as in (34) and let

B = (QB , q
ı
B , V , Y , δB , ΩB)

so that
δA : QA × Σ −→ U ×X −→ (D −→ QA)

and δB : QB × Σ −→ V × Y −→ (D −→ QB)

We let (A( B) be the automaton over Σ defined as

(A( B) := (QA ×QB , (qıA, q
ı
B) , V U ×XU×Y×D , U × Y , δA(B , ΩA(B)

with
δA(B((qA, qB) , a , (f, F ) , (u, y) , d) := (q′A , q

′
B)

where

q′A = δA(qA , a , u , F (u, y, d) , d) and q′B = δB(qB , a , f(v) , y , d)

and with ((qn, q
′
n))n ∈ ΩA(B iff ((qn)n ∈ ΩA =⇒ (q′n)n ∈ ΩB). Note that ΩA(B is ω-regular

since ΩA and ΩB are both assumed to be ω-regular.

Definition 3.3 will be justified in §5. We obtain a notion of linear complement with

A‹ := A( ‹
where ‹ is a particular automaton accepting no tree (see §5.4), and it follows from monoidal
closure that (−)‹ is a contravariant functor taking a total (winning) P-strategy σ : A(M) (
B(N) to a total (winning) σ‹ : B‹(N)( A‹(M).

29



3.3. Full Positive Games and Acceptance for Uniform Automata. The shape (35) of the
transition functions of uniform automata allows their (substituted) acceptance games to be
defined without using the notion of legal play. This leads to a slightly simpler setting than for
usual automata.

Definition 3.4 (Full Postitive Game). A full positive game (with winning) is a positive game
A (with winning) such that all its positive plays are legal, that is such that

LA = ℘P
A = (AP ·AO)∗ + (AP ·AO)∗ ·AP

Note that a full positive game A is completely characterized by its set of P and O-moves. We
write A = (U,X) to denote the full positive game A with P-moves AP = U and O-moves
AO = X. We say that A = (U,X) is total if U and X are non-empty.

Consider a uniform automaton A : Γ as in (34), and a morphism M ∈ T[Σ,Γ]. The uniform
substituted acceptance game Σ ` A(M) is the full positive game with P-moves Σ × U and
O-moves X ×D. So a play in Σ ` A(M) has the form

· P−→ (a0, u0)
O−→ (x0, d0)

P−→ (a1, u1)
O−→ . . .

O−→ (xn, dn)
P−→ (an+1, un+1)

O−→ . . .

Similarly as in a substituted acceptance game for a usual non-deterministic or alternating au-
tomaton, P chooses input characters and O chooses tree directions. Note that because the sets
of P and O-moves of a uniform automaton are always assumed to be non-empty (in this sense
uniform automata are always total), there is no maximal finite play in the game A(M).

We now equip Σ ` A(M) with a winning condition WA(M) ⊆ ((Σ × U) · (X × D))ω. Each
infinite play χ = ((ak, uk) · (xk, dk))k ∈ ((Σ × U) · (X ×D))ω generates an infinite sequence of
states (qk)k ∈ QωA as follows. We let q0 := qıA and

qk+1 := δA(qk , bk , uk , xk , dk)
where bk := M(a0 · . . . · ak , d0 · . . . · dk−1)

Then χ is winning (i.e. χ ∈ WA(M)) iff (qk)k is accepting (i.e. (qk)k ∈ ΩA).
Let us set some notations. We write Γ ` A (or simply A) for the game Γ ` A(IdΓ). Moreover,

we extend the notation A[f] of §2.2 to uniform automata.

Definition 3.5. Given an ordinary function f : Σ→ Γ and a uniform automaton A : Γ, we let
A[f] : Σ be the uniform automaton defined as A, but with

δA[f](q, a, u, x, d) := δA(q, f(a), u, x, d)

Similarly as in §2.2, the game Σ ` A([f]) is the same as the game Σ ` A[f].

Example 3.6. Continuing Ex. 3.2.(ii), given a usual alternating automaton A over Γ and
some M ∈ T[Σ,Γ], P has a winning strategy in A(M) if and only if P has a winning strategy
in Â(M).

Consider a uniform automatonA : Σ and a Σ-labeled tree T . The game 1 ` A(Ṫ ) (also written
A(T )) is similar to usual acceptance games (see §2.4). A typical play of A(T ) is depicted on
Fig. 9 (left). Note that the input alphabet of A(T ) is 1, so that P only plays moves in U .

Definition 3.7. Given a uniform automaton A : Σ and a Σ-labeled tree T , we say that A
accepts T if P has a winning strategy in A(T ), and we let L(A) be the set of Σ-labeled trees
which are accepted by A. Moreover, a set L of Σ-labeled trees is regular if there is an automaton
A : Σ such that L = L(A).

30



1 A(T )

(ε, qıA)
...

(p, qA)

P u
O (x, d)

(p.d, q′A)

P u′

O (x′, d′)

(p.d.d′, q′′A)
...

Σ A −( B
...

...

O (a, u)
(a, v) P
(y, d) O

P (x, d)
...

...

Σ A(M) −( B(N)

(ε, qıA) (ε, qıB)
...

...
(p, qA) (p, qB)

O (a, u)
(a, v) P
(y, d) O

P (x, d)

(p.d, q′A) (p.d, q′B)
...

...

Figure 9: Uniform automata and games

3.4. Zig-Zag Games. We will equip uniform automata with synchronous arrow games re-
sulting from the obvious adaptation of [Rib15]. However, the presentation of the categorical
structure will differ from [Rib15], and will rely on a very simple subcategory of the usual cate-
gory SG of simple games consisting of (total) zig-zag strategies. As we shall see in §4 and §5,
this will give us a decomposition of the indexed structure of synchronous arrow games allowing
a smooth treatment of monoidal closure.

Consider substituted acceptance games Σ ` A(M) and Σ ` B(N), where A and B are usual
automata. Recall that the synchronicity constraint of [Rib15] presented in §2.6 imposes a legal
P-play s in A(M)( B(N) to satisfy

trA(M)(s�A(M)) = trB(N)(s�B(N))

Since the functions trA(M) and trB(N) are length-preserving, this imposes in particular s�A(M)

and s�B(N) to have the same length. On the other hand, given simple games A and B of the
same polarity, and a play s in A(SG B, if

length(s�A) = length(s�B) (36)

then in s, each P-move must switch component w.r.t. the previous O-move. Let us discuss the
case where (say) A = (U,X) and B = (V, Y ) are full positive games. Recall that O begins in
A(SG B and must play in component A since A and B are positive. In order to maintain (36),
P must then switch to component B. After the P-move in B, the switching condition imposes
O to stay in B, and then P has to switch to A, again to maintain (36). It follows that s must
have the zig-zag shape depicted in Fig. 10.

31



A −(DZ B
...

...

O u
v P
y O

P x
...

...

Figure 10: A typical zig-zag play with A = (U,X) and B = (V, Y ) full positive games

Definition 3.8 (Zig-Zag Plays and Strategies). Given simple games A and B of the same
polarity, a play s in A(SG B is a zig-zag play if

length(s�A) = length(s�B)

A P-strategy σ : A(SG B is a zig-zag strategy if all its plays are zig-zag plays.
We write A (DZ B for the game obtained by restricting A (SG B to (prefixes of) its

legal zig-zag plays (so the P-strategies on A (DZ B are exactly the zig-zag P-strategies on
A(SG B).

Consider now games with winning A and B. Note that if σ : A (DZ B is total, then for
every χ ∈ ((AP +BO) · (AO +BP))ω, if χ has infinitely many finite prefixes in σ, then χ�A and
χ�B are both infinite. We therefore let WA(B ⊆ ((AP +BO) · (AO +BP))ω be the set of infinite
sequences χ such that (χ�A ∈ WA =⇒ χ�B ∈ WB).

Full positive games (with winning) and total (winning) P-strategies form a category DZ(W)

(to be defined in §3.6), which is the backbone of our categories of uniform automata. As we shall
see in §4 and §5, with uniform automata, the synchronicity constraints of [Rib15] (see §2.6) have
a decomposition in DZ which will turn out to be useful for the fibred monoidal-closed structure.

3.5. Uniform Linear Synchronous Arrow Games. The notion of linear synchronous arrow
game of [Rib15] (see §2.6) readily extends to uniform automata. It is however convenient to
work with a slight generalization.

Fix an alphabet Σ and consider full positive games A = (Σ × U,X × D,WA) and B =
(Σ× V, Y ×D,WB). Note that A and B are not required to be substituted acceptance games.
We define the uniform linear synchronous arrow game

Σ ` A( B

(also noted A( B when Σ is clear from the context) similarly as the synchronous arrow game
of [Rib15], but with the obvious adaptation of the notion of trace. Given a full positive game
A = (Σ× U,X ×D,WA) as above, define

trA : LA −→ TrΣ

inductively as follows:
trA(ε) := ε

trA(s · (a, u)) := trA(s) · a
trA(s · (x, d)) := trA(s) · d

32



By directly adapting [Rib15], we say that a legal play s in A(SG B is synchronous if

trA(s�A) = trB(s�B)

Then, we let A ( B be the restriction of A (SG B to the prefixes of its synchronous legal
plays and call a P-strategy on A(SG B synchronous if all its plays are synchronous. A typical
play in A( B is depicted on Fig. 9 (top right). As expected, P has to play the same a ∈ Σ and
tree directions d ∈ D as chosen by O. Moreover, similarly as with usual automata in §3.4, since
the trace functions trA and trB are length-preserving, the (synchronous) plays in A ( B are
zig-zag, and A( B is a subgame of A(DZ B. We therefore equip A( B with the winning
condition WA(B of Def. 3.8, so that an infinite play of the form

χ = ((ak, uk) · (ak, vk) · (yk, dk) · (xk, dk))k

is winning if and only if

((ak, uk) · (xk, dk))k ∈ WA =⇒ ((ak, vk) · (yk, dk))k ∈ WB

Notation 3.9. We write Σ ` A(M)( B(N) (or simply A(M)( B(N) when Σ is clear from
the context) for the uniform linear synchronous arrow game Σ ` A( B where the full positive
games A = (Σ×U,X×D,WA) and B = (Σ×V, Y ×D,WB) are induced by uniform substituted
acceptance games as A = (Σ ` A(M)) and B = (Σ ` B(N)).

A typical play of A(M)( B(N) is depicted on Fig. 9 (bottom right). We write Σ ` A( B
for the game A(IdΣ)( B(IdΣ) where A,B : Σ. Note that transitions do not depend anymore
from the history of tree positions p ∈ D∗ since q′A = δA(qA, a, u, x, d) (and similarly for q′B).

Example 3.10. Similarly as with usual automata (see §2.6), given a uniform A : Σ and a
Σ-labeled tree T , P has a winning strategy in A(T ) (i.e. T ∈ L(A)) iff P has a winning strategy
in 1 ` I1 ( A(Ṫ ).

3.6. The Category DZ(W) of Zig-Zag Games and Total (Winning) Strategies. We now
discuss composition and identities for total (winning) zig-zag strategies.

Let us step back to some well-known facts on simple games from [HS99]. There is a faithful
functor HS : SG −→ Rel (the category of sets and relations) taking a simple game A to its set
of legal plays LA, and a strategy σ : A(SG B to

HS(σ) := {(s�A, s�B) | s ∈ σ} ⊆ LA × LB

We can therefore faithfully represent strategies σ : A( B as spans

HS(σ)
π1

uu
π2

))
LA LB

(37)

and moreover, composition and identities of simple game can be seen as being induced from
composition and identities on relations. Explicitly HS(idA) is identity relation on LA (as sug-
gested by (17)), and given strategies σ : A(SG B and τ : B(SG C, the strategy τ ◦ σ is the
unique strategy such that HS(τ ◦ σ) is the relation HS(τ) ◦HS(σ).

In other words, the category SG of simple games can be obtained from the category Rel
thanks to the injectivity of HS seen as function from strategies to relations. In the case of total

33



zig-strategies, composition and identities can be obtained along this scheme, but with much
simpler combinatorics than with SG.

First, note that the map (that we still denote HS)

HS : s ∈ LA(SGB 7−→ (s�A, s�B) ∈ LA × LB

is injective on zig-zag plays: given (t, t′) ∈ LA × LB, there is at most one zig-zag play s such
that HS(s) = (t, t′). This immediately gives the injectivity of HS on zig-zag strategies.

Lemma 3.11. (i) Given zig-zag plays s, t in A(DZ B, if HS(s) = HS(t) then s = t.

(ii) The map HS is injective on zig-zag strategies: HS(σ) = HS(τ) implies σ = τ .

Second, total zig-zag strategies admit a very simple functional representation.

Proposition 3.12. Consider full positive games A = (U,X) and B = (V, Y ). Total zig-zag
strategies σ : A(DZ B are in bijection with pairs of functions (f, F ) where

f :
⋃
n∈N

(
Un+1 × Y n

)
−→ V

F :
⋃
n∈N

(
Un+1 × Y n+1

)
−→ X

(38)

Given pairs of maps (f, F ) as in (38), for each n > 0, we write fn and Fn for the induced maps

fn : Un × Y n−1 −→ V n and Fn : Un × Y n −→ Xn

Note that for each full positive game A = (U,X), there is a bijection (were ℘even
A denotes the

set of even-length plays of A):

∂ = 〈∂U , ∂X〉 : ℘even
A −→ ∪n∈N(Un ×Xn)

defined as ∂(ε) := (ε, ε) and ∂(s.u.x) = (∂U (s).u, ∂X(s).x).

Proof of Prop. 3.12. Fix A = (U,X) and B = (V, Y ) and consider a total zig-zag strategy
σ : A(DZ B. By induction on n ∈ N, it is easy to see that for all (u, y) ∈ Un × Y n, there is
a unique (s, t) ∈ HS(σ) such that u = ∂U (s) and y = ∂Y (t). The property vacuously holds for
n = 0. Assuming it for n, given (u.u, y.y) ∈ Un+1 × Y n+1, by induction hypothesis, there is a
unique (s, t) ∈ HS(σ) such that u = ∂U (s) and y = ∂Y (t). Now, since σ is total and zig-zag,
there is a unique v ∈ V such that (s.u, t.v) ∈ HS(σ). Similarly, there is a unique x ∈ X such
that (s.u.x, t.v.y) ∈ HS(σ), and the property follows. Furthermore, since u.u and y uniquely
determine v = ∂V (t) and v, and since u.u and y.y uniquely determine x = ∂X(s) and x, we
obtain a pair of functions (f, F ) as in (38) defined as

f(u.u, y) := v and F (y.y, u.u) := x

Conversely, each pair (f, F ) as in (38) uniquely determines a total zig-zag strategy σ, with,
for all u.u ∈ Un+1, and all y ∈ Y n,

(∂−1(u, x).u , ∂−1(v, y).v) ∈ HS(σ)

where v.v = fn+1(u.u, y) and x = Fn(u, y); and moreover for all y,

(∂−1(u, x).u.x , ∂−1(v, y).v.y) ∈ HS(σ)

where x = F (u.u, y.y).

34



The representation of strategies as pairs of maps (f, F ) of the form (38) provides an easy
way to compose total zig-zag strategies. Given total zig-zag strategies σ : A (DZ B and
τ : B (DZ C, we are looking for a composite τ ◦ σ. By injectivity of HS, it is sufficient to
show that there exists a strategy θ such that HS(θ) = HS(τ)◦HS(σ). But thanks to Prop. 3.12,
given pairs of maps (f, F ) and (g,G) representing resp. σ and τ , this amounts to provide a pair
(h,H) representing θ. Write A = (U,X), B = (V, Y ) and C = (W,Z). The relational composite
HS(τ) ◦HS(σ) is such that (∂−1(u, x), ∂−1(w, z)) ∈ HS(τ) ◦HS(σ) if and only if there are (v, y)
such that

(∂−1(u, x) , ∂−1(v, y)) ∈ HS(σ) and (∂−1(v, y) , ∂−1(w, z)) ∈ HS(τ)

But by Prop. 3.12 this is possible if and only if the following equations are satisfied:

v = fn(u, Iy) w = gn(v, Iz)
x = Fn(u, y) y = Gn(v, z)

(39)

(where Iε := ε and Iy.y := y). The derived equation

y = Gn(fn(u, Iy) , z) (40)

determines y = y(u, z) = y1. . . . .yn uniquely from u = u1. . . . .un and z = z1. . . . .zn, as

yk = G(fk(u1. . . . .uk, y1. . . . .yk−1) , z1. . . . .zk) (41)

We can thus define a pair of maps

h :
⋃
n∈N

(
Un+1 × Zn

)
−→ W

H :
⋃
n∈N

(
Un+1 × Zn+1

)
−→ X

as follows
h(uu, z) := g(fn+1(uu, y(u, z))) , z)

H(uu, zz) := F (uu, y(uu, zz))

Then, by construction of (h,H), the total strategy θ : A (DZ C it represents is such that
HS(θ) = HS(τ) ◦HS(σ), so that we can let τ ◦ σ := θ.

Note that the strategy τ ◦ σ is total. Hence, totality is preserved by composition of zig-zag
strategies, while on the other hand, it is well-known that totality is not preserved by composition
of arbitrary SG-strategies (see e.g. [Abr97]).

In §2.7, we alluded to the usual method to compose SG-strategies σ : A (SG B and τ :
B (SG C, which proceeds by letting σ and τ interact in their common component B, and
then hiding this interaction (see e.g. [Abr97, Hyl97] for details). This relies on the usual zipping
property, stating that the interactions of σ and τ in component B are completely determined
by the O-moves in components A and C (with the polarities of A (SG C). In our case, the
zipping property follows from the definitions of y from u and z by (41), and of v and x from u
and y in (39). We have in particular the following relational version of zipping (which actually
holds for the full SG [HS99]):

Lemma 3.13 (Relational Zipping). Given total zig-zag σ : A(DZ B and τ : B (DZ C, and
given (tA, tC) ∈ HS(τ)◦HS(σ), there is exactly one legal play tB ∈ LB such that (tA, tB) ∈ HS(σ)
and (tB, tC) ∈ HS(τ).

35



From the relational zipping Lemma 3.13 one gets the usual and expected fact that if σ :
A (DZ B and τ : B (DZ C are both total and winning, then τ ◦ σ is total and winning.
Indeed, given an infinite play χ ∈ ((AO + CP) · (AP + CO))ω of τ ◦ σ (that is such that ∃∞k ∈
N. χ(0) · . . . · χ(k) ∈ τ ◦ σ), it follows from Lem. 3.13 that there are infinite plays χσ and χτ of
resp. σ and τ such that

(χσ)�A = χ�A and (χσ)�B = (χτ )�B and (χτ )�C = χ�C

from which we get

(χ�A ∈ WA) =⇒ ((χσ)�B = (χτ )�B ∈ WB) =⇒ (χ�C ∈ WC)

Definition 3.14 (The Categories DZ and DZW). The category DZ(W) has total full positive
games (with winning) as objects (see Def. 3.4). Maps from A to B are total (winning) zig-zag
strategies σ : A(DZ B.

Note that the identity and associativity laws for composition of strategies are lifted from the
corresponding laws in Rel by the injectivity of HS. On the one hand, we have

idB ◦ σ = σ = σ ◦ idA

since HS(idA) (resp. HS(idB))) is the identity relation on LA (resp. LB) and since

HS(idB) ◦HS(σ) = HS(σ) = HS(σ) ◦HS(idA)

On the other hand, the associativity of composition (that is θ ◦ (τ ◦σ) = (θ ◦ τ)◦σ) follows from
the fact that HS(θ) ◦ (HS(τ) ◦HS(σ)) = (HS(θ) ◦HS(τ)) ◦HS(σ).

3.7. Categories of Uniform Synchronous Arrow Games. We now define, for each alphabet Σ,

categories SAG
(W)
Σ of uniform synchronous arrow games (with winning) over Σ. Composition

and identities are based on DZ(W), and on the representation of strategies as spans (37).
Consider a uniform synchronous arrow game Σ ` A( B. Then, a P-strategy σ on A(SG B

is synchronous if and only the following diagram commutes:

HS(σ)
π1

uu
π2

))
LA

trA ))

LB

trBuu
TrΣ

(42)

Hence, if σ is synchronous, then given a further P-strategy τ on Σ ` B( C, we have

HS(τ) ◦HS(σ)

ss ++
HS(σ)

π1

tt
π2

++

HS(τ)
π1

ss
π2

**
LA

trA
,,

LB

trB
��

LC

trC
rrTrΣ

(where by Lem. 3.13 top diamond is a pullback). Since HS(τ ◦ σ) = HS(τ) ◦ HS(σ), it follows
that τ ◦ σ is synchronous. We thus get the following categories of uniform synchronous arrow
games (recall from §2.6 that identity strategies are synchronous).

36



Definition 3.15 (The Categories SAG
(W)
Σ ). The objects of SAGΣ are pairs (U,X) of non-

empty sets. The maps from (U,X) to (V, Y ) are total P-strategies on Σ ` (Σ× U,X ×D) −(
(Σ× V, Y ×D).

The objects of SAGW
Σ have the form (U,X,WA), where U,X are non-empty sets and where

WA ⊆ ((Σ×U) · (X ×D))ω. SAGW
Σ -maps from (U,X,WA) to (V, Y,WB) winning P-strategies

on Σ ` (Σ× U,X ×D,WA) −( (Σ× V, Y ×D,WB).

Given a uniform substituted acceptance game A = (Σ ` A(M)) with A as in (34), write A for

the SAG
(W)
Σ -object (U,X) (resp. (U,X,WA)).

4. Fibrations of Tree Automata

In this Section we present an indexed structure for uniform synchronous linear arrow games,
in which morphisms L ∈ T[∆,Σ] induce substitution functors, and such that the operation
(−)? is itself functorial (see §2.2 and [Jac01, Chap. 1]). While substitution in [Rib15] was
defined directly at the level of synchronous arrow games (via the representation of strategies
as relations), we devise here an indexed structure induced by a reformulation of synchronicity
using monoid and comonoid indexing (and inspired from [HS99, HS03]) on zig-zag games, and
which allows a smooth treatment of monoidal closure and universal quantifications. This will
lead us to a category DialAut, fibred over T, and whose fibre over Σ is isomorphic to SAGW

Σ .
The material of this section relies on the symmetric monoidal structure of DZ.

Remark 4.1 (On Substitution in [Rib15]). Looking at (42) (§3.7), synchronous strategies in

SAG
(W)
Σ can be seen as relations in the slice category Set/TrΣ. Actually, in [Rib15], substitu-

tion functors (see (29), §2.10) are similar to substitution in the usual codomain fibrations (see
e.g. [Jac01, Chap. 1]). We actually get a strict indexed structure since in contrast with the
usual codomain fibrations, substitution in [Rib15] is given by chosen pullbacks.

4.1. Symmetric Monoidal Structure of DZ

The category DZ has a particularly simple symmetric monoidal structure, but which differs
from the usual ones in game semantics.

Proposition 4.2. The category DZ is symmetric monoidal with unit I := (1,1) and with
A⊗B := (U × V,X × Y ) for A = (U,X) and B = (V, Y ).

The action of the tensor ⊗ on strategies σi : Ai (DZ Bi (for i = 1, 2, Ai = (Ui, Xi) and
Bi = (Vi, Yi)) is depicted on Fig. 11. If the σi are represented via Prop. 3.12 by pairs of functions
(fi, Fi) where

fi :
⋃
n∈N

(
Un+1
i × Y n

i

)
−→ Vi

Fi :
⋃
n∈N

(
Un+1
i × Y n+1

i

)
−→ Xi

then σ1 ⊗ σ2 is represented by (h,H) where

h :
⋃
n∈N

(
(U1 × U2)n+1 × (Y1 × Y2)n

)
−→ V1 × V2

H :
⋃
n∈N

(
(U1 × U2)n+1 × (Y1 × Y2)n+1

)
−→ X1 ×X2

are defined as
h((u1, u2) , (y1, y2)) := (f1(u1, y1) , f2(u2, y2))
H((u1, u2) , (y1, y2)) := (F1(u1, y1) , F2(u2, y2))

The natural structure isomorphisms of DZ are depicted on Fig. 12. This structure obviously
lifts to DZW, but we shall not directly use this fact.

37



Ai
σi
−(DZ Bi

...
...

O ui
vi P
yi O

P xi
...

...

A1 ⊗A2

σ1⊗σ2

−( DZ B1 ⊗B2
...

...

O (u1, u2)
(v1, v2) P
(y1, y2) O

P (x1, x2)
...

...

Figure 11: Action of ⊗ on σi : Ai(DZ Bi.

(A⊗B)⊗ C
αA,B,C
−(DZ A⊗ (B ⊗ C)

...
...

O ((u, v), w)
(u, (v, w)) P
(x, (y, z)) O

P ((x, y), z)
...

...

I⊗A
λA
−( A

...
...

O (•, u)
u P
x O

P (•, x)
...

...

A⊗B
γA,B
−(DZ B ⊗A

...
...

O (u, v)
(v, u) P
(y, x) O

P (x, y)
...

...

A⊗ I
ρA
−( A

...
...

O (u, •)
u P
x O

P (x, •)
...

...

Figure 12: The structure maps of DZ, for A = (U,X), B = (V, Y ) and C = (W,Z)

38



Σ⊗A −(DZ B ⊗D
...

...

O (a, u)
v P

(y, d) O
P x

...
...

Figure 13: A typical play in Σ⊗A(DZ B ⊗D

4.2. Monoid and Comonoid Indexing in DZ

Fix an alphabet Σ. For each SAGΣ-object A = (U,X), there is a DZ-isomorphism

ιA : (Σ× U, X ×D)
'
−(DZ (Σ,1)⊗ ((U,X)⊗ (1,D)) (43)

Let us write D for the DZ-object (1,D) and Σ for (Σ,1), and consider the zig-zag game
Σ⊗A(DZ B⊗D, as depicted on Fig. 13. We shall now see that there is a category DialZ(Σ),
whose objects are full positive games, whose maps from A to B are DZ-maps

σ : Σ⊗A −(DZ B ⊗D

and which is isomorphic to SAGΣ.
First, SAGΣ is isomorphic to the category SAG•Σ whose objects are full positive games

A = (U,X) and whose maps fromA toB = (V, Y ) are DZ-maps σ : Σ⊗(A⊗D)(DZ Σ⊗(B⊗D)
such that the composite

ι(σ) := ι−1
B ◦ σ ◦ ιA : (Σ× U,X ×D) −(DZ (Σ× V, Y ×D)

is synchronous.
Second, the category SAG•Σ is isomorphic to DialZ(Σ). This relies on some algebraic struc-

ture. Objects of the form (1,M) (resp. (K,1)) are actually (commutative) monoids (resp.
comonoids) in DZ. Recall from e.g. [Mel09] that a commutative monoid in a symmetric
monoidal category (C,⊗, I) is an object M equipped with structure maps m : M⊗M →M and
u : I→M subject to coherence conditions depicted on Fig. 14. A (commutative) comonoid in C
is a (commutative) monoid in Cop. In this paper, by (co)monoid we always mean commutative
(co)monoid. Write Comon(C) for the category of comonoids in C. Maps from (K, d, e) to
(K ′, d′, e′) are C-maps f : K → K ′ which commute with the comonoid structure:

(f ⊗ f) ◦ d = d′ ◦ f and e = e′ ◦ f (44)

It is well-known that the symmetric monoidal structure of C induces a Cartesian product on
Comon(C) (see e.g. [Mel09, Cor. 18, §6.5]), and conversely that if (C,⊗, I) is Cartesian, then
every C-object has a canonical comonoid structure. Moreover, note that any set I ' 1 is a
monoid in Set.

Proposition 4.3. If M,K are non-empty sets and I ' 1, then M := (I,M) is a monoid and
K := (K, I) is a comonoid in DZ. Structure maps are depicted on Fig. 15 (in the case of
I = 1).

39



(M ⊗M)⊗M α //

m⊗idM
��

M ⊗ (M ⊗M)
idM⊗m //M ⊗M

m

��
M ⊗M m

//M

I⊗M

λ
''

u⊗idM //M ⊗M
m
��

M ⊗ I

ρ
ww

idM⊗uoo

M

M ⊗M γ //

m

##

M ⊗M
m

{{
M

Figure 14: Coherence for a monoid (M,m, u) (where α, λ, ρ and γ are symmetric monoidal
structure maps)

M ⊗M
mM
−(DZ M

...
...

O (•, •)
• P
m O

P (m,m)
...

...

I
uM
−(DZ M

...
...

O •
• P
m O

P •
...

...

K
dK
−(DZ K ⊗K

...
...

O k
(k, k) P
(•, •) O

P •
...

...

K
eK
−(DZ I

...
...

O k
• P
• O

P •
...

...

Figure 15: Structure maps for the monoid M = (1,M) and the comonoid K = (K,1)

40



It is well-known (see e.g. [HS99, HS03]) that a monoid M (resp. a comonoid K) in a symmetric
monoidal category (C,⊗, I) induces a monad (−) ⊗M of indexing with M (resp. a comonad
K ⊗ (−) of indexing with K).

Proposition 4.4. Let (C,⊗, I) be a symmetric monoidal category.

(a) A monoid (M,m, u) in C induces a (lax symmetric monoidal) monad ((−)⊗M,µ, η). The
functor (−)⊗M takes an object A to A⊗M and a map f : A→ B to f ⊗ idM : A⊗M →
B ⊗M . The natural maps µ and η are given by

µA := (idA ⊗m) ◦ α : (A⊗M)⊗M −→ A⊗M
ηA := (idA ⊗ u) ◦ ρ−1 : A −→ A⊗M

(b) Dually, a comonoid K = (K, d, e) in C induces an (oplax symmetric monoidal) comonad
(K ⊗ (−), δ, ε), where

δA := α ◦ (d⊗ idA) : K ⊗A −→ K ⊗ (K ⊗A)
εA := λ ◦ (e⊗ idA) : K ⊗A −→ A

The maps ρ, α and λ above are structural isomorphisms of (C,⊗, I).

Moreover, the comonad K ⊗ (−) is related to the monad (−) ⊗M via a distributive law.
A distributive law Λ of a comonad (G, δ, ε) over a monad (T, µ, η) on C is a natural map
Λ : G ◦ T ⇒ T ◦G subject to some coherence conditions (see e.g. [HHM07]), which ensure that
we have a category Kl(Λ) with the same objects as C and with homsets

Kl(Λ)[A, B] := C[GA, TB]

and that there is a lifting functor (−)↑ : Kl(Λ)→ C taking f : GA→ TB to

f↑ := G(µB ◦ Tf ◦ ΛA) ◦ δTA : GTA −→ GTB

In the case of comonoid and monoid indexing, a distributive law of K ⊗ (−) over (−)⊗M is
given by the natural associativity maps:

Φ(−) := α−1
K,(−),M : K ⊗ ((−)⊗M) =⇒ (K ⊗ (−))⊗M

Returning to our case, we let
DialZ(Σ) := Kl(Φ)

where Φ is the distributive law of the comonad of indexing with the comonoid Σ over the monad
of indexing with the monoid D in the category DZ. The lifting functor

(−)↑ : DialZ(Σ) −→ DZ

takes a total zig-zag strategy

σ : Σ⊗A −(DZ B ⊗D

to a total SAG•Σ-map from A to B, that is to a total zig-zag strategy

σ↑ : Σ⊗ (A⊗D) −(DZ Σ⊗ (B ⊗D)

41



Σ⊗A⊗D
σ⊗idD

−( DZ B ⊗D⊗D
idB⊗mD

−( DZ B ⊗D
...

...
...

O (a, u)
v

v P
(y, d) O

(y, d, d)
P (x, d)

...
...

...

Σ⊗A⊗D
dΣ⊗idA⊗D

−( DZ Σ⊗ Σ⊗A⊗D
idΣ⊗σ̇
−( DZ Σ⊗B ⊗D

...
...

...

O (a, u)
(a, a, u)

(a, v) P
(y, d) O

(x, d)
P (x, d)

...
...

...

Figure 16: Decomposition of σ↑

such that composition with the isomorphisms (43) gives a synchronous strategy

ι(σ↑) : (Σ× U, X ×D) −( (Σ× V, Y ×D)

Modulo associativity, the strategy σ↑ is given by

(idΣ ⊗ ((idB ⊗mD) ◦ (σ ⊗ idD))) ◦ (dΣ ⊗ idA⊗D) : Σ⊗A⊗D −(DZ Σ⊗B ⊗D

Note that if σ plays as in Fig. 13, then the strategy

σ̇ := (idB ⊗mD) ◦ (σ ⊗ idD) : Σ⊗A⊗D −(DZ B ⊗D

plays as in Fig. 16 (top). It follows that σ↑ = (idΣ ⊗ σ̇) ◦ (dΣ ⊗ idA⊗D) plays as in Fig. 16
(bottom), so that the strategy ι(σ↑) induced by (43) plays as in Fig. 9 (top right).

In the other direction, consider the map which takes a SAG•Σ-map σ from A to B to to the
composite

σ̊ := Σ⊗A
idΣ⊗ηA
−( DZ Σ⊗ (A⊗D)

σ
−(DZ Σ⊗ (B ⊗D)

ΦB
−(DZ (Σ⊗B)⊗D

εB⊗idD

−( DZ B ⊗D

Note that we have σ = (̊σ)↑. Since (−)↑ is injective, it follows that ˚(−) is functorial.

42



4.3. The Indexed Structure of DialZ(−) and the Base Category T

We therefore have for each alphabet Σ a category DialZ(Σ) which is isomorphic to SAGΣ. We
now discuss an indexed structure on the categories DialZ(−), based on pattern similar to the
simple fibration s : s(B) → B over a category B with finite products (see e.g. [Jac01, Chap.
1] but also [Hyl02, Hof11]). The objects of s(B) are pairs (I,X) of B-objects. The morphisms
(I,X)→ (J, Y ) are pairs (f0, f) with f0 : I → J and f : I×X → Y . The functor s : s(B)→ B is
the first projection, and the fibre over I is the Kleiseli category of indexing with the comonoid I
(see e.g. [Jac01, Ex. 1.3.4]).

A similar construction can be done if instead of a category B with finite products, one starts
from a symmetric monoidal category C, and take as base the category Comon(C). The fibre over
the comonoid K is the Kleisli category Kl(K) of indexing with K, and a comonoid morphism
u : K → L induces a functor u? : Kl(L)→ Kl(K) acting as the identity on objects and taking
f : L ⊗ A → B to f ◦ (u ⊗ idA) : K ⊗ A → B. It readily follows that id?K = idKl(K) and
that (u ◦ v)? = v? ◦ u?. In other words, we have a functor CI(C) : Comon(C)op → Cat. Its
Grothendieck completion

∫
CI(C) (see e.g. [Jac01, Chap. 1]) is the category whose objects are

pairs (K,A) of an object K of Comon(C) and an object A of C, and whose morphisms from
(K,A) to (L,B) are pairs (u, f) where u : K → L is a comonoid morphism and f : K⊗A→ B.
The category

∫
CI(C) is fibred over Comon(C) via the first projection, that we denote

sCI(C) :

∫
CI(C) −→ Comon(C)

Returning to our case, recall that DialZ(Σ) = Kl(Φ) where Φ is the distributive law of Σ⊗(−)
over (−) ⊗ D. The category DialZ(Σ) can alternatively be obtained as a Kleiseli category of
indexing with comonoids over a symmetric monoidal category. Let DZD be the Kleisli category
of indexing with the DZ-monoid D. The objects of DZD are full positive games, and maps
from A to B are DZ-maps from A to B ⊗D.

Let us spell out composition in DZD. First recall that for a monad (T, µ, η) on a category C,
composition in the Kleisli category Kl(T ) is given by

g ◦Kl(T ) f := A
f−→ TB

Tg−→ TTC
µC−→ TC

for f : A → TB and g : B → TC. In the case of DZD-morphisms σ : A (DZ B ⊗ D and
τ : B (DZ C ⊗ D (where A = (U,X), B = (V, Y ) and C = (W,Z)) as depicted on Fig. 17
(top), their composite τ ◦DZD

σ is depicted (modulo associativity) on Fig. 17 (bottom).
Since DZD is the Kleisli category of a lax symmetric monoidal monad on DZ, it is symmetric

monoidal with structure induced by that of DZ (see e.g. [Mel09]).

Proposition 4.5. (a) Consider a monoid M in a symmetric monoidal category (C,⊗, I). The
Kleisli category Kl(M) is symmetric monoidal with A ⊗Kl(M) B := A ⊗ B on objects and
unit I.

Moreover, each comonoid (K, d, e) in C induces a comonoid (K, ηMK⊗K◦d, ηMI ◦e) in Kl(M).

(b) In the case of DZD = Kl(D), the action of ⊗DZD
on maps σi : Ai −(DZ Bi ⊗ D (for

i = 1, 2, Ai = (Ui, Xi) and Bi = (Vi, Yi)) is depicted on Fig. 18. If the σi are represented
via Prop. 3.12 by pairs of functions (fi, Fi) where

fi :
⋃
n∈N

(
Un+1
i × Y n

i ×Dn
)

−→ Vi
Fi :

⋃
n∈N

(
Un+1
i × Y n+1

i ×Dn+1
)
−→ Xi

43



A
σ
−(DZ B ⊗D

...
...

O u
v P

(y, d) O
P x

...
...

B
τ
−(DZ C ⊗D

...
...

O v
w P

(z, d) O
P y

...
...

A
σ
−(DZ B ⊗D

τ⊗idD

−( DZ C ⊗D⊗D
µDC
−(DZ C ⊗D

...
...

...
...

O u
v

w
w P

(z, d) O
(z, d, d)

(y, d)
P x

...
...

...
...

Figure 17: Composition in DZD = Kl(D)

44



Ai
σi
−(DZ Bi ⊗D

...
...

O ui
vi P

(yi, d) O
P xi

...
...

A1 ⊗A2

σ1⊗DZD
σ2

−( DZ (B1 ⊗B2)⊗D
...

...

O (u1, u2)
(v1, v2) P

((y1, y2), d) O
P (x1, x2)

...
...

Figure 18: Action of ⊗DZD
on σi : Ai(DZD

Bi

then σ1 ⊗DZD
σ2 is represented by (h,H) where

h :
⋃
n∈N

(
(U1 × U2)n+1 × (Y1 × Y2)n ×Dn

)
−→ V1 × V2

H :
⋃
n∈N

(
(U1 × U2)n+1 × (Y1 × Y2)n+1 ×Dn+1

)
−→ X1 ×X2

are defined as

h((u1, u2) , (y1, y2) , p) := (f1(u1, y1, p) , f2(u2, y2, p))
H((u1, u2) , (y1, y2) , p) := (F1(u1, y1, p) , F2(u2, y2, p))

Moreover, the DZD-structure maps d̃Σ and ẽΣ of the comonoid induced by Σ can be depicted
as in Fig. 20.

It follows from Prop. 4.5 and the fact that Φ is a distributive law, that each category DialZ(Σ)
is the Kleisli category of indexing with Σ in DZD. We can therefore index DialZ(−) with the
comonoids of DZD. We will actually index DialZ(−) over the base category T (of Def. 2.1),
which is isomorphic to a subcategory of Comon(DZD). First, it directly follows from the
representation of DZ-maps given by Prop. 3.12 that T-strategies from Σ to Γ in the sense of
Def. 2.1 correspond exactly to total zig-zag strategies from (Σ,1) to (Γ,D), that is to DZD-
maps from Σ to Γ. Hence T is isomorphic to a subcategory of DZD. Second, T-maps induce
comonoid maps.

Proposition 4.6. The category T embeds in Comon(DZD) via the functor ET which takes an
alphabet Σ to the comonoid (Σ, d̃Σ, ẽΣ) and a morphism M : T[Γ,Σ] to the DZD-morphism

M̃ := Σ ◦M : (Γ,1) −(DZ (Σ,1)⊗ (1,D)

induced by the DZ-iso Σ : (Σ,D)
'
−(DZ (Σ,1)⊗ (1,D).

Proof. We have to check that T-morphisms induce Comon(DZD)-morphisms, that is that the
equations (44) hold in DZD:

(M̃ ⊗ M̃) ◦ d̃Γ = d̃Σ ◦ M̃ and ẽΓ = ẽΣ ◦ M̃

Assume that M̃ plays as in Fig. 19 (top left). The first equation follows from the fact that
d̃Σ ◦ M̃ plays as in Fig. 19 (middle), while (M̃ ⊗ M̃) ◦ d̃Γ plays as in Fig. 19 (bottom). The
second equation follows from the fact that ẽΣ ◦ M̃ plays as in Fig. 19 (top right).

45



Γ
M̃
−(DZD

Σ
...

...

O b

a P
d O

P •
...

...

Γ
M̃
−(DZD

Σ Σ
ẽΣ
−(DZD

I
...

...
...

...

O b

a a

• P
d O

d •
P •

...
...

...
...

Γ
M̃
−(DZD

Σ Σ
d̃Σ

−(DZD
Σ⊗ Σ

...
...

...
...

O b

a a

(a, a) P
d O

d •
P •

...
...

...
...

Γ
d̃Γ

−(DZD
Γ⊗ Γ Γ⊗ Γ

M̃⊗M̃
−( DZD

Σ⊗ Σ
...

...
...

...

O b

(b, b) (b, b)
(a, a) P
d O

d •
P •

...
...

...
...

Figure 19: T-maps as comonoids morphisms in the proof of Prop. 4.6

46



Σ
d̃Σ

−(DZD
Σ⊗ Σ

...
...

O a

(a, a) P
d O

P •
...

...

Σ
ẽΣ
−(DZD

I
...

...

O a

• P
d O

P •
...

...

Figure 20: Structure maps for the comonoid Σ = (Σ,1)

We thus get an indexed category

DialZ := CI(DZD) ◦ ET : Top −→ Cat

We already mentioned the well-known fact that the symmetric monoidal structure of a cate-
gory induces a Cartesian structure on its category of comonoids (see e.g. [Mel09, Cor. 18, §6.5]).
By Prop. 4.6, this gives a Cartesian structure on T.

Corollary 4.7. The category T is Cartesian, with on objects the Cartesian product of alphabets,
and with unit 1.

4.4. The Fibred Category DialAut

We thus have a category DialZ indexed over T, and whose fibre over Σ is the category DialZ(Σ),
which is isomorphic to SAGΣ. We will now define a fibration da : DialAut → T of uniform
substituted acceptance games, which essentially extends DialZ with winning (and acceptance).
The fibration da : DialAut→ T is obtained by Grothendieck completion of an indexed category
(−)? : Top → Cat, which takes an alphabet Σ to a category DialAutΣ equivalent to SAGW

Σ .
The action of (−)? on T-maps is based on the indexed category DialZ.

Definition 4.8 (The Category DialAutΣ). For each alphabet Σ, the category DialAutΣ has the
same objects as SAGW

Σ , namely tuples (U,X,WA) where U and X are non-empty sets and
where WA ⊆ ((Σ× U) · (X ×D))ω.

The DialAutΣ-morphisms from (U,X,WA) to (V, Y,WB) are total zig-zag strategies σ : Σ ⊗
(U,X) (DZ (V, Y ) ⊗ D, that is DialZ(Σ)-morphisms from (U,X) to (V, Y ), whose lift ι(σ↑)
are SAGW

Σ -strategies from (U,X,WA) to (V, Y,WB), that is winning synchronous strategies on
(Σ× U,X ×D,WA) −( (Σ× V, Y ×D,WB).

Composition and identities of DialAutΣ are induced by composition and identities of DialZ(Σ)
(using the functoriality of (−)↑ for winning). Note that DialAutΣ is isomorphic to SAGW

Σ . In
particular, given a uniform automaton A : ∆ and M ∈ T[Σ,∆], we still write Σ ` A(M) for
the DialAutΣ-object induced by the uniform substituted acceptance game Σ ` A(M) of §3.5.

We now turn to substitution and indexing. Morphisms L ∈ T[Γ,Σ] induce functors

L? : DialAutΣ −→ DialAutΓ

defined as follows. Given a DialAutΣ-object A = (U,X,WA), we let L?(A) be the DialAutΓ-
object (U,X,L?(WA)), where

((bk, uk) · (xk, dk))k ∈ L?(WA) iff ((L(b0. · · · .bk, d0. · · · .dk−1), uk) · (xk, dk))k ∈ WA

47



When the DialAutΣ-object A is induced by a uniform substituted acceptance game Σ ` A(M),
we have the expected result that L?(A) is induced by the uniform substituted acceptance game
Γ ` A(M ◦ L) (see §2.2).

Lemma 4.9. Given a uniform substituted acceptance game Σ ` A(M) and L ∈ T[Γ,Σ], we
have

L?(Σ ` A(M)) = Γ ` A(M ◦ L)

Proof. Recall from §3.3 thatWA(M) ⊆ ((Σ×U) · (X×D))ω is the set of infinite plays ((ak, uk) ·
(xk, dk))k ∈ ((Σ× U) · (X ×D))ω such that (qk)k ∈ ΩA, where q0 = qıA and

qk+1 = δA(qk , M(a0. · · · .ak , d0. · · · .dk−1) , uk , xk , dk)

Now, we have ((bk, uk) · (xk, dk))k ∈ L?(WA(M)) if and only if

((L(b0. · · · .bk, d0. · · · .dk−1), uk) · (xk, dk))k ∈ WA(M)

that is, if and only if (qk)k ∈ ΩA for the sequence of states (qk)k with q0 = qıA and

qk+1 := δA(qk , M(a0. · · · .ak , d0. · · · .dk−1) , uk , xk , dk)
where a` := L(b0. · · · .b` , d0. · · · .d`−1)

But for a0. · · · .ak with
a` = L(b0. · · · .b` , d0. · · · .d`−1)

we have

M(a0 · . . . · ak , d0 · . . . · dk−1) = (M ◦ L)(b0 · . . . · bk , d0 · . . . · dk−1)

so that the sequence of state (qk)k actually satisfies

qk+1 = δA(qk , (M ◦ L)(b0 · . . . · ak , d0 · . . . · dk−1) , uk , xk , dk)

We thus get

((bk, uk) · (xk, dk))k ∈ L?(WA(M)) iff ((bk, uk) · (xk, dk))k ∈ WA(M◦L)

The action of L? on maps is induced by CI(DZD)(L) : DialZ(Σ) → DialZ(Γ), so that for
σ ∈ DialAutΣ[A,B], we let

L?(σ) := σ ◦ (L⊗ idA)

(where ◦, ⊗ and idA are taken in DZD).

Proposition 4.10. Let L ∈ T[Γ,Σ] and consider DialAutΣ-objects A = (U,X,WA) and B =
(V, Y,WB). Given a total strategy σ : Σ ⊗ (U,X) −(DZ (V, Y ) ⊗ D, if the strategy ι(σ↑) is
winning on

(Σ× U,X ×D,WA) −( (Σ× V, Y ×D,WB)

then the strategy ι(L?(σ)↑) is winning on

(Γ× U,X ×D, L?(WA)) −( (Γ× V, Y ×D, L?(WB))

48



Proof. First note that for an arbitrary total zig-zag strategy τ : C (DZ D (for full positive
games C and D), every infinite play χ such that ∃∞k.χ(0). · · · .χ(k) ∈ τ is uniquely determined
by χ�C and χ�D. In the following, we write χ = (χ�C , χ�D).

Assume that σ plays as in Fig. 13, so that (reasoning as in §4.2) ι(σ↑) plays as in Fig. 9 (top
right). Hence, if L ∈ T[Γ,Σ] is represented by the strategy depicted on Fig. 21 (top left), then
modulo associativity L?(σ) plays as in Fig. 21 (bottom) so that ι(L?(σ)↑) plays as in Fig. 21
(top right).

Consider now an infinite play χ of ι(L?(σ)↑), that is an infinite play χ on

(Γ× U,X ×D) −( (Γ× V, Y ×D)

such that ∃∞k.χ(0). · · · .χ(k) ∈ ι(L?(σ)↑). Write

χ = (((bk, uk) · (xk, dk))k , ((bk, vk) · (yk, dk))k)

so that (((bk, uk) · xk)k , (vk · (yk, dk))k) is an infinite play of L?(σ) and

(((L(b0. · · · .bk, d0. · · · .dk−1), uk) · xk)k , (vk · (yk, dk))k)

is an infinite play of σ. But it follows that

((L(b0. · · · .bk, d0. · · · .dk−1), uk) · (xk, dk))k ∈ WA =⇒
((L(b0. · · · .bk, d0. · · · .dk−1), vk) · (yk, dk))k ∈ WB

and by definition of the action of L? on DialAutΣ-objects, we thus get

((bk, uk) · (xk, dk))k ∈ L?(WA) =⇒ ((bk, vk) · (yk, dk))k ∈ L?(WB)

We thus obtain an indexed category (−)? : Top → Cat since (−)? is itself functorial. We let
da : DialAut→ T be its Grothendieck completion.

Definition 4.11 (The Fibred Category DialAut). The objects of DialAut are pairs (Σ, A) where
A is an object of DialAutΣ. Maps from (Σ, A) to (Γ, B) are pairs (L, σ) of a T-map L : Σ→ Γ
and a DialAutΣ-map σ from A to L?(B).

The fibration
da : DialAut −→ T

is the first projection, so that da(Σ, A) := A and da(L, σ) := L.

4.5. Substitution and Language Inclusion

We now check that DialAutΣ (and SAGW
Σ ) is correct w.r.t. language inclusion. First, it follows

from Lem. 4.9 that given
σ : A(M) −( B(N)

and L ∈ T[Γ,Σ], we have

L?(σ) : A(M ◦ L) −( B(N ◦ L)

Hence, DialAut interprets all instances of the (Subst) rule (14) of the form

M ; A ` B
M ◦ L ; A ` B

(where M ∈ T[Σ,∆] and L ∈ T[Γ,Σ])

49



Γ
L
−(DZD

Σ
...

...

O b

a P
d O

P •
...

...

(Γ× U,X ×D)
ι(L?(σ)↑)
−( (Γ× V, Y ×D)

...
...

O (b, u)
(b, v) P
(y, d) O

P (x, d)
...

...

Γ⊗A
L⊗DZD

id
DZD
A

−( DZ Σ⊗A⊗D
(idB⊗m)◦(σ⊗idD)

−( DZ B ⊗D
...

...
...

O (b, u)
(a, u)

v P
(y, d) O

(x, d)
P x

...
...

...

Figure 21: The strategies L, L?(σ) and ι(L?(σ)↑) of the proof of Prop. 4.10

50



In particular, given A,B : Σ, for all Σ-labeled tree T (and using the notation of §2.2.(b)) we
have

Σ ; A ` B
Ṫ ; A ` B

Now, given σ : A( B, if T ∈ L(A), then there is some τ : I1 ( A(T ), so that Ṫ ?(σ)◦ τ : I1 (
B(T ) and T ∈ L(B). In other words, σ : A( B and T induce a function

τ : I( A(T ) 7−→ T ?(σ) ◦ τ : I( B(T )

and we have shown:

Proposition 4.12. If P has a winning strategy in Σ ` A( B, then L(A) ⊆ L(B).

5. Symmetric Monoidal Closed Structure

We show here that the notion of linear implication of uniform automata presented in Def. 3.3
indeed corresponds to a (fibrewise, symmetric) monoidal closed structure in DialAut. This
monoidal closed structure is actually induced from a monoidal closed structure in the category
DZ of full positive games and total zig-zag strategies.

We first discuss the closed structure of DZ (§5.1). We then show how the symmetric monoidal
closed structure of DZ lifts to DialAut uniform tree automata (§5.2). This provides a realizability
interpretation of a propositional linear (multiplicative) deduction system (§5.3). We finally show
how the closed structure gives a (functorial) notion of linear complement (§5.4).

Recall from e.g. [Mel09] that a symmetric monoidal category (C,⊗, I) is closed if for every
object A, the functor A ⊗ (−) has a right adjoint (−)A. According to [ML98, Thm. IV.1.2] it
is sufficient to show that for every object C there is an object CA and map

evalC : A⊗ CA −→ C

such that for every f : A⊗B → C there is a unique Λ(f) : B → CA such that

A⊗ CA evalC // C

A⊗B
f

88

idA⊗Λ(f)

OO

5.1. The Symmetric Monoidal Closure of DZ

The monoidal closed structure of DZ follows the pattern of §3.1 and Def. 3.3, and can actually
be read off from the representation of DZ-strategies as pairs of functions in Prop. 3.12.

Let us see how to define a linear exponent full positive game BA = (A (DZ B) from full
positive games A = (U,X) and B = (V, Y ), such that a strategy σ : A −(DZ B induces
(modulo A ' A⊗ I) a strategy Λ(σ) : I −(DZ (A(DZ B). Assume that σ plays as in Fig. 10.
From each play s ∈ σ, the responses v ∈ V of σ to O-moves u ∈ U define a function

fs : U −→ V

and the responses x ∈ X of σ to further O-moves y ∈ Y define a function

Fs : U × Y −→ X

51



In the context of Prop. 3.12, recalling that HS(s) = (∂−1(u, x) , ∂−1(v, y)) where x and v are
completely determined by σ from u and y, this amounts to describe σ by a pair of maps

f :
⋃
n∈N (Un × Y n) −→ (U −→ V )

F :
⋃
n∈N (Un × Y n) −→ (U × Y −→ X)

(45)

Proposition 5.1. The category DZ is symmetric monoidal closed. The linear exponent of
A = (U,X) and B = (V, Y ) is A(DZ B := (V U ×XU×Y , U × Y ).

The monoidal closed structure of DZ departs from traditional game semantics since the natural
isomorphism A⊗B −(DZ C ' B −(DZ (A(DZ C) relates only strategies, but not plays.

Proof of Prop. 5.1. We use notations introduced in the proof of Prop. 3.12. Let A = (U,X),
B = (V, Y ) and C = (W,Z), so that A(DZ C is the game (WU ×XU×Z , U × Z). The total
zig-zag strategy evalC is defined as follows:

A⊗ (A(DZ C)
evalC
−(DZ C

...
...

O (u, (f, F ))
f(u) P
z O

P (F (u, z), (u, z))
...

...

Consider first the unicity requirement of monoidal closure. Given any total

τ ′ : B −(DZ (A(DZ C)

the composite evalC ◦ (idA ⊗ τ ′) plays as in Fig. 22. It follows that τ ′ = τ ′′ whenever evalC ◦
(idA⊗τ ′) = evalC ◦ (idA⊗τ ′′), since any distinct pairs (f ′, F ′) and (f ′′, F ′′) can be distinguished
with O-moves u ∈ U and z ∈ Z.

Fix now some total zig-zag σ : A⊗B −(DZ C. We define

τ = Λ(σ) : B −(DZ (A(DZ C)

by induction on plays. To each (s, t) ∈ HS(τ), with s and t even-length, we associate (s′, t′) ∈
HS(σ), with s′ and t′ of the same length, and such that, for (v, y) = ∂(s) and ((f, F ), (u, z)) =
∂(t), we have ∂(s′) = ((u, v), (F (u, z), y)) and ∂(t′) = (f(u), z), where we take the pointwise
application of sequences of functions.

• For the base case, we put (ε, ε) ∈ HS(τ), and associate it to (ε, ε) ∈ HS(σ).

• Assume now (s, t) ∈ HS(τ), associated to (s′, t′) ∈ HS(σ). For each v ∈ V , we de-
fine the functions fv : U → W and Fv : U × Z → X as follows: given u ∈ U , let
w such that (s′.(u, v), t′.w) ∈ HS(σ), and for each z ∈ Z, let x and yu,z such that
(s′.(u, v).(x, yu,z), t

′.w.z) ∈ HS(σ). We then let fv(u) := w and Fv(u, z) := x. We
now let (s.v.yu,z, t.(fv, Fv).(u, z)) ∈ HS(τ), and associate it to (s′.(u, v).(x, yu,z), t

′.w.z) =
(s′.(u, v).(Fv(u, z), yu,z), t

′.fv(u).z) so that the invariant is satisfied.

52



A⊗B
idA⊗τ ′
−( DZ A⊗ (A(DZ C)

evalC
−(DZ C

...
...

...

O (u, v)
(u, (f ′, F ′))

f ′(u) P
z O

(F ′(u, z), (u, z))
P (F ′(u, z), y′)

...
...

...

Figure 22: The composite evalC ◦ (idA ⊗ τ ′) in the proof of Prop. 5.1

It then follows from the invariant that we indeed have evalC ◦ idA ⊗ τ = σ. First note that the
map (s, t) ∈ HS(τ) 7→ (s′, t′) ∈ HS(σ) is surjective. The property then follows from the fact
that (s, t) ∈ HS(τ) iff (s′, t′) ∈ HS(evalC ◦ (idA ⊗ τ)). This is shown by induction on pairs of
plays (s, t) ∈ ℘even

B × ℘even
A(DZC

. The base case is trivial. For the induction step, given

(s · v · yu,z , t · (fv, Fv) · (u, z)) ∈ ℘even
B × ℘even

A(DZC

we have (s · v · yu,z , t · (fv, Fv) · (u, z)) ∈ HS(τ) if and only if

(s′ · (u, v) · (Fv(u, z), yu,z) , t′ · fv(u) · z) ∈ HS(evalC ◦ (idA ⊗ τ))

and we are done.

5.2. The Symmetric Monoidal Closed Structure of DialAut and Tree Automata

The symmetric monoidal closed structure of DialAut and of tree automata is induced by the
symmetric monoidal closed structure of DialZ, which is itself lifted from DZ.

5.2.1. The Symmetric Monoidal Structure of DialZ. We have seen in Prop. 4.5 that the
symmetric monoidal structure of DZ lifts via monoid indexing to give a symmetric monoidal
structure to DZD. The same scheme actually applies to DialZ, which is symmetric monoidal
with structure induced by comonoid indexing in DZD.

Proposition 5.2. (a) Consider a comonoid K in a symmetric monoidal category C. The
Kleisli category Kl(K) is symmetric monoidal with A ⊗Kl(K) B := A ⊗ B on objects and
unit I.

(b) In the case of DialZ(Σ) = Kl(Σ), the action of the tensor ⊗DialZ(Σ) on strategies σi :
Σ⊗Ai −(DZD

Bi (for i = 1, 2, Ai = (Ui, Xi) and Bi = (Vi, Yi)) is depicted on Fig. 23. If
the σi are represented via Prop. 3.12 by pairs of functions (fi, Fi) where

fi :
⋃
n∈N

(
Σn+1 × Un+1

i × Y n
i ×Dn

)
−→ Vi

Fi :
⋃
n∈N

(
Σn+1 × Un+1

i × Y n+1
i ×Dn+1

)
−→ Xi

53



Σ⊗Ai
σi
−(DZD

Bi
...

...

O (a, ui)
P vi
O (yi, d)
P xi

...
...

Σ⊗ (A1 ⊗A2)
τ
−(DZD

B1 ⊗B2
...

...

O (a, (u1, u2))
(v1, v2) P

((y1, y2), d) O
P (x1, x2)

...
...

Figure 23: Action of ⊗DialZ(Σ) on σi : Ai(DialZ(Σ) Bi, where τ := σ1 ⊗DialZ(Σ) σ2

then σ1 ⊗DialZ(Σ) σ2 is represented by (h,H) where

h :
⋃
n∈N

(
Σn+1 × (U1 × U2)n+1 × (Y1 × Y2)n ×Dn

)
−→ V1 × V2

H :
⋃
n∈N

(
Σn+1 × (U1 × U2)n+1 × (Y1 × Y2)n+1 ×Dn+1

)
−→ X1 ×X2

are defined as

h(a , (u1, u2) , (y1, y2) , p) := (f1(a, u1, y1, p) , f2(a, u2, y2, p))
H(a , (u1, u2) , (y1, y2) , p) := (F1(a, u1, y1, p) , F2(a, u2, y2, p))

5.2.2. The Symmetric Monoidal Closure of DZD and DialZ. The monoidal closed structure
of DZ lifts to DZD and to the fibers of DialZ. In the case of DZD, since

DZD[A⊗B , C] = DZ[A⊗B , C ⊗D] ' DZ[A , (B(DZ C ⊗D)]

we should have (A(DZD
B)⊗D ' (A(DZ B ⊗D). Given A = (U,X) and B = (V, Y ) this

leads to (A(DZD
B) = (W,Z) with

(W,Z ×D) ' (V U ×XU×Y×D , U × Y ×D)

We therefore let

(U,X)(DZD
(V, Y ) := (V U ×XU×Y×D , U × Y )

The closed structure of DZD directly lifts to DialZ(Σ) since

DialZ(Σ)[A⊗B , C] = DZD[Σ⊗ (A⊗B) , C] ' DZD[Σ⊗A , B(DZD
C]

Proposition 5.3. DZD and DialZ(Σ) are symmetric monoidal closed.

5.2.3. The Symmetric Monoidal Closed Structure of DialAut. The symmetric monoidal
closed structure of DialZ gives the fibrewise symmetric monoidal closed structure of DialAut
(in the sense of [Jac01, §1.8]). The unit over Σ is IΣ := (1,1,1ω). Given DialAutΣ-objects
A = (U,X,WA) and B = (V, Y,WB), let

A⊗DA B := (U × V , X × Y , WA uWB)
A(DA B := (V U ×XU×Y×D , U × Y , WA AWB)

54



with
$ ∈ WA uWB iff

(
$�(Σ×U)+(X×D) ∈ WA and $�(Σ×V )+(Y×D) ∈ WB

)
and

((ak , (fk, Fk)) · ((uk, yk) , dk))k ∈ WA AWB iff (α ∈ WA =⇒ β ∈ WB)

where α and β are obtained by pointwise application:

α := ((ak , uk) · (Fk(uk, yk, dk) , dk))k
β := ((ak , fk(uk)) · (yk , dk))k

In the notations A⊗DAB and A(DA B we omit the subscript DA and write A⊗B and A( B
whenever possible.

Proposition 5.4. The fibration DialAut is fibrewise monoidal closed.

5.2.4. The Symmetric Monoidal Closed Structure of Uniform Automata. We now turn to
uniform automata. The symmetric monoidal structure of DialAutΣ gives a monoidal product
on uniform automata. Moreover, linear implication automata in the sense of Def. 3.3 indeed
correspond to the monoidal closure of DialAutΣ.

Definition 5.5 (Monoidal Product of Uniform Automata). Assume A is as in (34) and

B = (QB , q
ı
B , V , Y , δB , ΩB)

so that
δA : QA × Σ −→ U ×X −→ (D −→ QA)

and δB : QB × Σ −→ V × Y −→ (D −→ QB)

We let A⊗ B be the automaton over Σ defined as

A⊗ B := (QA ×QB , (qıA, q
ı
B) , U × V , X × Y , δA⊗B , ΩA⊗B)

with
δA⊗B((qA, qB) , a , (u, v) , (x, y) , d) := (q′A , q

′
B)

where
q′A := δA(qA , a , u , x , d) and q′B := δB(qB , a , v , y , d)

and with ((qn, q
′
n))n ∈ ΩA⊗B iff ((qn)n ∈ ΩA and (q′n)n ∈ ΩB). Note that ΩA⊗B is ω-regular

since ΩA and ΩB are both assumed to be ω-regular.

Note that A⊗ B is non-deterministic (resp. universal, deterministic) if both A and B are non-
deterministic (resp. universal, deterministic). Moreover, assuming A,B : Γ and M ∈ T[Σ,Γ],
we have, as DialAutΣ-objects,

Σ ` (A(M)(DA B(M)) ' Σ ` (A( B)(M)
and Σ ` (A(M)⊗DA B(M)) ' Σ ` (A⊗ B)(M)

55



5.3. Deduction, Adequacy and Correctness

Let us now return to the deduction system for automata outlined in §2. First, the monoidal
structure of DialAutΣ allows to interpret sequents of the form (13):

M ; A1, . . . ,An ` B (13)

where M ∈ T[Σ,Γ] and A1, . . . ,An,B are uniform automata over Γ. The sequent (13) is
interpreted as the homset

DialAutΣ[A1(M)⊗DA · · · ⊗DA An(M) , B(M)]

Moreover, the monoidal closed structure implies that (13) can equivalently be interpreted as
the set of winning P-strategies in the uniform substituted acceptance game

Σ ` (A1 ⊗ · · · ⊗ An( B)(M)

Second, the symmetric monoidal closed structure allows to interpret deduction rules for the
multiplicative fragment of ILL. Such rules were displayed in (22), (23), (25) and (31). We gather
them on Fig. 24. Using the notations of §2.2, we write A1, . . . ,An ` B to denote the sequent
Id ; A1, . . . ,An ` B. Our model is sound w.r.t. this deduction system.

Proposition 5.6 (Adequacy). If the sequent M ; A1, . . . ,An ` B is derivable using the rules
of Fig. 24, then there is a winning P-strategy σ in

A1(M)⊗DA · · · ⊗DA An(M) −( B(M)

In particular, if A ` B is derivable, then by combining Prop. 5.6 with Prop. 4.12, we obtain
a strategy witnessing that L(A) ⊆ L(B).

Proof of Prop. 5.6. The strategy σ is built (as usual) by induction on the derivation D of the
sequent M ; A1, . . . ,An ` B, and using the categorical combinator corresponding to the last
applied rule.

• If D ends with the (Axiom) rule, then σ is the identity (copy-cat) strategy.

• If D ends with the (Cut) rule, then σ is obtained (using symmetric monoidal structure) by
composing the strategies obtained by induction hypothesis for the left and right premises.

• If D ends either with the (Exchange) rule, or a rule for ⊗ or I, then σ is obtained using
the fibrewise symmetric monoidal structure of DialAut.

• If D ends with a rule for (, then σ is obtained from the induction hypothesis using the
fibrewise monoidal closure of DialAut.

Note that the strategy σ is obtained from the derivation D in a purely compositional way.
Moreover, all the rules of Fig. 24 are compatible cut-elimination.

Remark 5.7 (On Cut-Elimination). It follows from the fact that we have monoidal closed cat-
egories (Prop. 5.4), that the interpretation of derivations as strategies for the rules of Fig. 24 is
compatible with cut-elimination, in the sense that if a derivation D ′ is obtained from a deriva-
tion D by applying the proof transformation steps described in e.g. [Mel09, §3.3], then D and D ′

are interpreted by the same strategy. This in particular applies to the two derivations displayed
in (32), §3.1.

56



(Exchange)
M ; A, A, B, C ` C
M ; A, B, A, C ` C

(Cut)
M ; A ` A M ; B, A, C ` C

M ; B, A, C ` C M ; A ` A
(Axiom)

(Left ⊗) M ; A, A, B, B ` C
M ; A, A⊗ B, B ` C

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B

(Right ⊗)

(Left I)
M ; A, B ` C
M ; A, I, B ` C M ; ` I

(Right I)

(Left ()
M ; A ` A M ; B, B, C ` C

M ; B, A, A( B, C ` C
M ; A, B ` C
M ; A ` B( C

(Right ()

Figure 24: Rules of the multiplicative fragment of ILL for uniform automata

Example 5.8. Proposition 5.6 yields a winning P-strategy in

B ⊗ B ⊗ (B( A) −( A⊗ B

obtained from the proof tree

B ` B A ` A
B,B( A ` A B ` B
B, (B( A),B ` A⊗ B
B,B, (B( A) ` A⊗ B

Note that in Fig. 24 we omitted the weakening and contraction rules (24):

(Weak)
M ; A , B ` C

M ; A , A , B ` C
M ; A , A , A , B ` C
M ; A , A , B ` C

(Contr)

Similarly as with usual automata, the contraction rule can be interpreted on non-deterministic
uniform automata but not on general uniform automata. This rule amounts to provide winning
P-strategies for the game

A −( A⊗A (46)

If A is non-deterministic (and with P-moves U), then a winning P-strategy in (46) simply takes
an O-move u ∈ U in component A to the pair (u, u) ∈ U × U in component A⊗A. Note that
such strategy may not exist when A is a general uniform automaton, that is when it is equipped
with a set of O-moves X 6' 1, since O can play two different (x, x′) ∈ X ×X in the component
A⊗A, that P may not be able to merge into a single x′′ ∈ X in the left component A.

On the other hand, the weakening rule, which asks for a winning P-strategy in

A −( I

can always be realized (since we required the set of P and O-moves to be always non-empty),
but in a non-canonical way for general uniform automata. More generally, given A and B over

57



the same input alphabet, there is always a winning P-strategy in

A⊗ B −( A (47)

Assuming A and B are as in Def. 5.5, such a strategy takes (u, v) ∈ U × V to u ∈ U and takes
x ∈ X to (x, y) ∈ X × Y , where y is an arbitrarily chosen element of Y .

We shall come back on the connection between non-deterministic automata, the interpretation
of the (Weak) and (Contr) rules and ILL in §7.

Example 5.9. Proposition 5.6 actually holds for any extension of the deduction system of
Fig. 24 with realizable rules, that is with rules

A ` B

such that there is a winning P-strategy in A −( B. In particular:

(i) We can extend the system with the following generalization of (47):

A1 ⊗ . . .⊗An ` Ai

We thus get

A ` A B ` B
A,B ` A⊗B A⊗ B ` A

A,B ` A
A ` B( A

So there is a winning P-strategy on

A −( (B( A)

and by Prop. 4.12 we have
L(A) ⊆ L(B( A)

(ii) For B non-deterministic, we can extend the system with the following generalizations
of (46):

B ` B ⊗ . . .⊗ B

Continuing Ex. 5.8 with B non-deterministic, we thus have

B ` B ⊗ B

...
B,B, (B( A) ` A⊗ B
B ⊗ B, (B( A) ` A⊗ B

B, (B( A) ` A⊗ B

The monoidal structure together with (47) imply that ⊗ indeed implements a conjunction on
automata.

Proposition 5.10. Given A,B : Σ, we have L(A⊗ B) = L(A) ∩ L(B).

Proof. The inclusion (⊆) is given by winning strategies in A⊗ B( A and A⊗ B( B.
For the other direction, using Prop. 5.4, tensor σ winning on I1 ( A(T ) with τ winning on

I1 ( B(T ) and then precompose with a monoidal unit map.

58



5.4. Falsity and Complementation

We have already seen in §1.3 and §2.10 that usual alternating automata are equipped with a
complementation construction (−)‚ linear in the number of states (see e.g. [MS87]). Using the
monoidal closed structure, a similar construction can be done with uniform automata.

Definition 5.11 (Falsity Uniform Automaton). For each alphabet Σ, the falsity uniform au-
tomaton ‹ over Σ is

‹ := (B , f , D , 1 , δ‹ , Ω‹)

where Ω‹ := B∗ · tω and where

δ‹(b , , d′ , • , d) :=

{
f if b = f and d = d′

t otherwise

Note that in the game Σ ` ‹, O looses as soon as it does not play the same tree direction
as proposed by P. On the other hand, ‹ accepts no tree since in an acceptance game ‹(T ), O
can always play the same d as P.

Consider a uniform automaton A : Σ with set of P-moves U and set of O-moves X. The
automaton (A( ‹) is isomorphic (via XU×D ' XU×1×D) to the automaton A‹ defined as

A‹ := (QA × B , (qıA, f) , D
U ×XU×D , U , δA‹ , ΩA‹)

where
(qk,bk)k ∈ ΩA‹ iff ((qk)k ∈ ΩA =⇒ (bk)k ∈ B∗ · tω)

and where

δA‹(a , (qA,b) , (f, F ) , u , d) :=

{
(q′A , f) if b = f and d = f(u)
(q′A , t) otherwise

with q′A := δA(a, qA, u, F (u, d), d). Hence O looses as soon as it does not follow the direction
proposed by P via f .

Thanks to the determinacy of ω-regular games (see e.g. [Tho97, PP04]), we get:

Proposition 5.12. Given A : Σ, we have L(A‹) = ΣD∗ \ L(A).

Proof. The argument is an adaptation of the one given in [Wal02]. By determinacy of ω-regular
games, it is equivalent to show that:

P wins the game 1 ` A‹(Ṫ ) ⇐⇒ O wins the game 1 ` A(Ṫ )

where, using the notions of §2.4, an O-strategy is just a P-strategy on the dual game.
For (⇒), assuming given a winning P-strategy σ on A‹(Ṫ ), we build a winning O-strategy

τ in A(Ṫ ). The strategy τ is built by induction on plays. To each play t of τ , we associate a
play s of σ such that if t leads to state qA, then s leads to state (qA, f). In the base case, both t
and s are the empty plays, and the invariant is respected. For the induction step, assume that
P plays u from t in A(Ṫ ). Let (f, F ) be the move of σ from s. We then let τ answer the pair
(F (u, f(u)), f(u)) from s.u, and A goes to state q′A. In A‹(Ṫ ), we let O play the pair (f(u), u).
Then A‹ goes to state (q′A, f) and the invariant is respected. Since σ is winning and A‹ stays in
states of the form ( , f) the infinite sequence of states produced in A(Ṫ ) is rejecting, as required.

For the converse direction (⇐), assuming given a winning O-strategy τ on A(Ṫ ), we build a
winning P-strategy σ in A‹(Ṫ ). The strategy σ is built by induction on plays as long as A‹
stays in states of the form ( , f) (if it switches to ( , t) then P trivially wins). So to each play s

59



of σ which leads to state (qA, f), we associate a play t of τ which leads to state qA. The base
case is trivial. For the induction step, we build (f, F ) from σ as follows: to each u, σ associates
(from t) a pair (x, d). We let F (u, ) := d and f(u) := x. Assume then that from s.(f, F ), O
plays some (u, d). If d 6= f(u) then we are done. Otherwise, A‹ switches to (q′A, f). We then
let P play u from t, so that by construction τ answers (F (u, ), d), and A goes to state q′A. But
then, since τ is winning for O, the sequence of A-states is rejecting, so that P wins in A‹(Ṫ ),
as required.

5.4.1. Deduction Rules for ‹ and A‹. Since the fibre categories DialAutΣ are symmetric
monoidal closed, they are in particular dialogue categories in the sense of [Mel13], with as
exponentiating object any object of DialAutΣ. Hence, if as in Ex. 5.9 we extend the deduction
system of Fig. 5.9 with the realizable rules

A( ‹ ` A‹ and A‹ ` A( ‹
then we can derive the following rules for ‹ and A‹:

A, B ` ‹
A ` B‹

A ` B‹
A, B ` ‹

A ` B‹
B ` A‹ A ` A‹‹

A ` B
B‹ ` A‹ A‹‹‹ ` A‹

6. Quantifications

We now discuss quantifications in the fibration DialAut. We follow the categorical approach
outlined in §2.2, according to which existential and universal quantifications (also called simple
coproducts and products [Jac01, Chap. 1]) in a fibration p : E → B are given resp. by left
adjoints

∐
I,J : EI×J → EI and right adjoints

∏
I,J : EI×J → EI to the weakening functors

π? : EI → EI×J induced by B-projections π : I × J → I. The adjunctions
∐
I,J a π? a

∏
I,J are

moreover required to satisfy some coherence conditions, called the Beck-Chevalley conditions,
which insure that they are preserved by substitution.

We first present quantifications in DialAut (§6.1), from which we then derive quantifications
on automata (§6.2) and deduction rules for quantifications (§6.3).

6.1. Quantifications in DialAut

Quantifications in DialAut are induced by quantifications in DialZ, which are themselves based
on quantifications in simple fibrations. It is well-known (see e.g. [Jac01, Chap. 1]) that the
simple fibration s : s(B) → B always has simple coproducts, and has simple products iff B is
Cartesian closed. They are given by∐

I,J

(I × J,X) := (I, J ×X) and
∏
I,J

(I × J,X) := (I,XJ)

This directly extends to DialZ.

Proposition 6.1. The weakening functors [π]? : DialZ(Σ)→ DialZ(Σ×Γ) induced by projections
π : Σ× Γ→ Σ have left and right adjoints given by∐

Σ,Γ

(U,X) := (Γ× U,X) and
∏
Σ,Γ

(U,X) := (UΓ,Γ×X) ' (Γ(DZD
(U,X))

60



Proof. Fix Σ, Γ and a projection π : Σ × Γ → Σ. According to [ML98, Thm. IV.1.2], we have
to show that for each DialZ(Σ× Γ)-object A, there are DialZ(Σ× Γ)-morphisms

ηA : A −(DialZ(Σ×Γ) [π]?(
∐
Σ,Γ

A) and εA : [π]?(
∏
Σ,Γ

A) −(DialZ(Σ×Γ) A

satisfying the following universal properties: for each DialZ(Σ)-object B and each DialZ(Σ×Γ)-
morphisms

σ : A −(DialZ(Σ×Γ) [π]?(B) and ς : [π]?(B) −(DialZ(Σ×Γ) A

there are unique DialZ(Σ)-morphisms

θ :
∐
Σ,Γ

A −(DialZ(Σ) B and ϑ : B −(DialZ(Σ)

∏
Σ,Γ

A

such that we have

A
ηA //

σ

��

[π]?(
∐

Σ,ΓA)

[π]?(θ)

yy
[π]?(B)

[π]?(B)

[π]?(ϑ)

��

ς

%%
[π]?(

∐
Σ,ΓA) εA

// A

(48)

Now, since [π]? is the identity on objects, writing A = (U,X), the maps ηA and εA actually
have type:

ηA : (U , X) −→DialZ(Σ×Γ) ((Γ× U) , X)

and εA : (UΓ , Γ×X) −→DialZ(Σ×Γ) (U , X)

They are induced from the DZD-morphisms

η̃A : ((Σ× Γ)× U , X) −(DZD
(Γ× U , X)

and ε̃A : ((Σ× Γ)× UΓ , Γ×X) −(DZD
(U , X)

depicted on Fig. 25 and themselves based on the monoidal closed structure of DZD.
The existence and unicity of θ and ϑ satisfying (48) follow from the fact that comonoids have

a Cartesian structure and from the monoidal closure of DZD.

The Beck-Chevalley conditions amount, for L ∈ T[∆,Σ], to the equalities

L?(
m

Σ,Γ

(U,X)) =
m

∆,Γ

(L× IdΓ)?(U,X) for
m
∈ {
∐
,
∏
}

which follow from the fact that substitution functors are identities on objects.
The extension to DialAut just requires to handle winning and acceptance.

Proposition 6.2. The fibration DialAut has existential and universal quantifications given by∐
Σ,Γ

(U,X,WA) := (Γ× U,X,
∐
Σ,Γ

WA) and
∏
Σ,Γ

(U,X,WA) := (UΓ,Γ×X,
∏
Σ,Γ

WA)

where
∐
WA is defined from WA via associativity and

∏
WA by pointwise function application

as ((ak, fk) · (bk, xk, dk))k ∈
∏

Σ,ΓWA iff ((ak, bk, fk(bk)) · (xk, dk))k ∈ WA.

61



((Σ× Γ)× U , X)
η̃A
−(DZD

(Γ× U , X)
...

...

O ((a, b), u)
(b, u) P
(x, d) O

P x
...

...

((Σ× Γ)× UΓ , Γ×X)
ε̃A
−(DZD

(U , X)
...

...

O ((a, b), f)
f(b) P
(x, d) O

P (b, x)
...

...

Figure 25: The DZD-morphisms η̃A and ε̃A in the proof of Prop. 6.1

Proof. It is easy to check that for A = (U,X,WA) over Σ × Γ, the universal DialZ(Σ × Γ)-
morphisms η(U,X) and ε(U,X) induce DialAutΣ×Γ-morphisms, that is, according to Def. 4.8, that

their lifts ι(η↑(U,X)) and ι(ε↑(U,X)) are winning.
The Beck-Chevalley conditions, which amount to

L?(
∐
Σ,Γ

A) =
∐
∆,Γ

(L× IdΓ)?(A) and L?(
∏
Σ,Γ

A) =
∏
∆,Γ

(L× IdΓ)?(A)

are straightforward from the definitions.

6.2. Quantifications on Uniform Automata

Similarly as with the monoidal closed structure, the quantifications on automata and their
deduction rules are obtained by direct adaptation of the quantifications of DialAut.

Definition 6.3. Given A : Σ× Γ with set of P-moves U and set of O-moves X, let

(∃ΓA : Σ) := (QA , q
ı
A , Γ× U , X , δ∃ΓA , ΩA)

(∀ΓA : Σ) := (QA , q
ı
A , U

Γ , Γ×X , δ∀ΓA , ΩA)

where
δ∃ΓA(q, a, (b, u), x, d) := δA(q, (a, b), u, x, d)

and δ∀ΓA(q, a, f, (b, x), d) := δA(q, (a, b), f(b), x, d)

Quantifications on automata induce an ∃∀-structure which is reminiscent from Gödel’s Dialectica
interpretation (see e.g. [AF98, Koh08]).

62



Example 6.4. Given A : Σ with set of P-moves U and set of O-moves X, let D be the deter-
ministic automaton

(D : Σ× U ×X) := (QA, q
ı
A, 1, 1, δD, ΩA)

whose transition function

δD : QA × (Σ× U ×X) −→ D −→ QA

is obtained from δA in the obvious way. In DialAutΣ we have A ' ∃U∀XD.

Let us now discuss the connection between quantifications on automata and in DialAut. First,
given (A : Σ× Γ), we have, as DialAutΣ-objects,

(Σ `
∐
Σ,Γ

A) = (Σ ` ∃ΣA) and (Σ `
∏
Σ,Γ

A) = (Σ ` ∀ΣA)

It then follows that the Beck-Chevalley conditions in DialAut imply∐
Σ,ΓA(M × IdΓ) = M?(

∐
∆,ΓA) = (∃ΓA)(M)∏

Σ,ΓA(M × IdΓ) = M?(
∏

∆,ΓA) = (∀ΓA)(M)

Thanks to the adjunctions
∐
a π? a

∏
in DialAut, we then have

Σ ` (∃ΓA)(M) ( B(N) ' Σ× Γ ` A(M × IdΓ) ( B(N ◦ [πΣ])
Σ ` B(N) ( (∀ΓA)(M) ' Σ× Γ ` B(N ◦ [πΣ]) ( A(M × IdΓ)

(49)

It follows that P has winning strategies in

Σ× Γ ` (∀ΓA)[πΣ] −( A and Σ× Γ ` A −( (∃ΓA)[πΣ] (50)

We thus get the following corollary to Prop. 6.2.

Corollary 6.5. Given uniform automata A,B : Σ, the game Σ ` A ( B is equivalent to a
regular game on a finite graph. It is therefore decidable whether there exists a winning P-strategy
on Σ ` A ( B, and if there exists such a winning P-strategy, then there exists a finite-state
one, which is moreover effectively computable from A and B.

Proof. By (49) and (50), P has a winning strategy in Σ ` A( B iff it has a winning strategy in
1 ` I1 ( ∀Σ(A( B). But since in that game O can only play • in the component I1, similarly
as in Ex. 3.10, it is equivalent to the acceptance game of the automaton ∀Σ(A( B) : 1 on the
unique tree 1 : D∗ → 1.

Reasoning as in [Tho97, Ex. 6.12], the game 1 ` ∀Σ(A ( B) is effectively equivalent to a
regular game on a finite graph. Then, by Büchi-Landweber Theorem [BL69] (see also [Tho97,
Thm. 6.18]), one can decide which player has a winning strategy, and the winner always has a
finite-state winning strategy which is moreover effectively computable from the game graph.

We also get from (50) that existential quantifications are complete in the following sense:

Corollary 6.6. Given A : Σ× Γ, we have πΓ(L(A)) ⊆ L(∃ΓA).

The converse inclusion (the correctness of existential quantifications) only holds for non-
deterministic automata, and is detailed in §7. Dually, it follows from (50) that universal quan-
tifications are correct (but they are complete only on universal automata, see Def. 3.1).

Corollary 6.7. Given A : Σ × Γ, if T ∈ L(∀ΓA), then for all Γ-labeled tree T ′ we have
〈T, T ′〉 ∈ L(A).

63



(Subst)
M ; A ` A

M ◦N ; A ` A

(Trans↓)
[f] ◦M ; A ` B
M ; A[f] ` B[f]

M ; A[f] ` B[f]

[f] ◦M ; A ` B
(Trans↑)

(Left ∃) M × IdΓ ; A[π], B ` A[π]

M ; A, ∃ΓB ` A
M ×N ; A ` A

M ×N ; A ` (∃ΓA)[π]
(Right ∃)

(Left ∀) M ×N ; A, B ` A
M ×N ; A, (∀ΓB)[π] ` A

M × IdΓ ; A[π] ` A
M ; A ` ∀ΓA

(Right ∀)

Figure 26: Substitution and quantification rules for uniform automata (where M,N are com-
posable, π is a suitable projection and f is a function on alphabets)

6.3. Deduction Rules for Quantifications

We now turn to deduction rules for quantification. It follows from (49) that we can extend the
deduction system of Fig. 24 with the rules of Fig. 26 while preserving adequacy (Prop. 5.6),
Ex. 5.9 and compatibility with cut-elimination (in the sense of Rem. 5.7).

Proposition 6.8 (Adequacy with Quantifications). If the sequent M ; A1, . . . ,An ` B is
derivable using the rules of Fig. 24, Fig. 26 and of Ex. 5.9, then there is a winning P-strategy
in the game

A1(M)⊗DA · · · ⊗DA An(M) −( B(M)

Note that the rules of Fig. 26 involve internalized substitutions of the form A[f] as defined
in Def. 3.5. The tranfert rules (Trans↑) and (Trans↓) allow to connect the internalized
substitutions of the form A[f] with the T-substitution.

Example 6.9. Using the transfert rule (Trans↓), we can derive the following specific rules of
substitution for T-maps induced by functions f : Σ→ Γ:

IdΓ ; A ` A
IdΣ ; A[f] ` A[f]

M × IdΓ ; A ` A
M × IdΣ ; A[id× f] ` A[id× f]

Indeed, since we have (as T-morphisms)

IdΓ ◦ [f] = [f] ◦ IdΣ and (M × IdΓ) ◦ [id× f] = (id× f) ◦ (M × IdΣ)

it follows that we can derive

IdΓ ; A ` A
IdΓ ◦ [f] ; A ` A
IdΣ ; A[f] ` A[f]

and

M × IdΓ ; A ` A
(M × IdΓ) ◦ [id× f] ; A ` A

M × IdΣ ; A[id× f] ` A[id× f]

64



7. Non-Deterministic Automata

This final Section focuses on structural properties of non-deterministic automata, on their role in
Rabin’s Theorem [Rab69], namely in the complementation of non-deterministic tree automata,
and on their relation with Intuitionistic Linear Logic (ILL) [Gir87] (see §1.3, §1.4 and §2.9).

We first detail in §7.1 the Cartesian structure of non-deterministic automata announced
in §1.4 and §2.8. Technically, this Cartesian follows from the simple fact that non-deterministic
automata generate comonoids in DialAut(−) (by a direct extension of Prop. 4.5, §4.3). As a
consequence, we show that our model has the witnessing properties asked to computational
interpretations of proofs (in the sense of §1.2), and moreover that it allows to combine strate-
gies obtained from proofs with witnessing strategies computed by usual emptiness checking
algorithms (see §1.5).

Second, we show that a powerset construction for the Simulation Theorem [MS87, EJ91,
MS95] satisfies the usual deduction rules of the exponential modality ! of ILL. This completes the
picture sketched in §1.4, §1.5 and §2.9, and moreover allows to obtain a deduction system which
is complete w.r.t. intuitionistic and classical deduction (via usual translations). Furthermore,
App. C details how two constructions from resp. [CL08] and [SA05] can be reformulated in our
setting.

7.1. The Cartesian Structure of Non-Deterministic Automata

Similarly as with usual (total) non-deterministic automata in §2.8, the monoidal product of
uniform automata is Cartesian on non-deterministic automata. Recall from Def. 3.1 that a
uniform automaton is non-deterministic if its set of O-moves is ' 1.

Consider a DialAutΣ-object N (L) with N non-deterministic and with set of P-moves U .
Hence, the underlying DialZ(Σ)-object of N (L) is of the form (U, I) with I ' 1. As we have
seen in §5.3, we thus get canonical realizers for

N (L) −( N (L)⊗N (L) and N (L) −( I (51)

As we shall see now, these canonical realizer equip N (L) with the structure of a comonoid16.
Thanks to well-known results (see e.g. [Mel09, Cor. 18, §6.5]), this implies that the monoidal
structure of uniform automata is Cartesian on non-deterministic automata.

Recall from Prop. 4.3 that objects of the form (K, I) with I ' 1 are comonoids in DZ, and
from Prop. 4.5 that such objects are also comonoids in DZD. On the other hand, we have seen
that DialZ(Σ) is a Kleisli category of comonoid indexing in DZD, whose symmetric monoidal
structure is given be the extension of Prop. 4.5 to comonoid indexing given by Prop 5.2. Actually,
the lifting of comonoids given by Prop. 4.5 also extends to the case of comonoid indexing:

Proposition 7.1. Given a comonoid C in a symmetric monoidal category (C,⊗, I), each
comonoid (K, d, e) in C induces a comonoid (K, d ◦ εCK , e ◦ εCK) in the Kleisli category Kl(C)
of indexing with C. In the case of DialZ(Σ), the structure maps d̃K and ẽK of the comonoid
induced by K = (K,1) can be depicted as on Fig. 28 (where we omitted some •-moves).

The extension of Prop. 7.1 to the DialAutΣ-objects induced by non-deterministic automata
is direct. Moreover, DialAutΣ-morphisms between non-deterministic automata are comonoid
morphisms.

16Recall from §4.2 that in this paper, by (co)monoid we always mean commutative (co)monoid

65



Proposition 7.2. For each alphabet Σ, objects of the form Σ ` N (L), where N is non-
deterministic, are comonoids in DialAutΣ. Moreover, DialAutΣ-morphisms between such objects
are comonoid morphisms.

Proof. Consider first a DialAutΣ-object N (L) with N non-deterministic and with set of P-moves
U and set of O-moves I ' 1. Hence (U, I) is a comonoid in DialZ(Σ) by Prop. 7.1. Moreover, the
comonoid structure maps play as the maps depicted on Fig. 28 (replacing (K,1) with (U, I)),
and winning is trivial.

Consider now a DialAutΣ-morphism σ : N (L)( K(L′), whereN and K are non-deterministic,
with sets of P-moves resp. U and V , and sets of O-moves resp. I and J (where I ' J ' 1). We
show that σ is a comonoid map by reasoning similarly as in Prop. 4.6 for the base category T.
Writing d̃N and ẽN (resp. d̃K and ẽK) for the comonoid structure maps of N (L) (resp. K(L′)),
we have to show that the following equations hold in DialAutΣ:

(σ ⊗ σ) ◦ d̃N = d̃K ◦ σ and ẽN = ẽK ◦ σ

Assuming that σ plays as in Fig. 27 (top left). The first equation follows from the fact that
d̃K ◦σ plays as in Fig. 27 (middle), while (σ⊗σ) ◦ d̃M plays as in Fig. 27 (bottom). The second
equation follows from the fact that ẽK ◦ σ plays as in Fig. 27 (top right).

Since the category of comonoids of a symmetric monoidal category has finite products (see
e.g. [Mel09, Cor. 18, §6.5]), we thus have the expected result that non-deterministic automata
are equipped with a Cartesian structure.

Corollary 7.3. For each alphabet Σ, the full subcategory DialAutND
Σ of DialAutΣ, whose objects

are of the form (U, I,W) with I ' 1, is Cartesian.

7.1.1. Application: Deduction Rules for Non-Deterministic Automata. Similarly as with
usual (total) non-deterministic automata in §2.8, Cor. 7.3 allows to extend adequacy (Prop. 5.6
and Prop. 6.8) to the following restriction of the structural weakening and contraction rules:

(WeakND)
M ; A , B ` C

M ; A , N , B ` C
M ; A , N , N , B ` C
M ; A , N , B ` C

(ContrND) (52)

where N is required to be non-deterministic (while A, B and C can be arbitrary). Note that
the full weakening rule is actually derivable in the setting of Ex. 5.9, but with non-canonical
realizers of A( I when A is not non-deterministic.

7.1.2. Application: Existential Quantifications and Extraction. A nice consequence of the
Cartesian structure of DialAutND

(−) is the fact that existential quantifications behave similarly as
the usual sum types of Type Theory (see e.g. [Jac01, Chap. 10]). Consider a non-deterministic
automaton N : Σ×Γ with set of P-moves U , and let T be a Σ-labeled tree (so that T : D∗ → Σ).
It follows from the representation of DZ-strategies given by Prop. 3.12 that a winning P-strategy
in 1 ` I( (∃ΓA)(Ṫ ) is given by a function⋃

n∈N

Dn −→ Γ× U

hence by a pair of functions(⋃
n∈N

Dn −→ Γ

)
×

(⋃
n∈N

Dn −→ U

)

66



N (L)
σ
−( K(L′)

...
...

O (a, u)
P v
O d
P •

...
...

N (L)
σ
−( K(L′) K(L′)

ẽK
−( I

...
...

...
...

O (a, u)
v (a, v)

• P
d O

d •
P •

...
...

...
...

N (L)
σ
−( K(L′) K(L′)

d̃K
−( K(L′)⊗K(L′)

...
...

...
...

O (a, u)
v (a, v)

(v, v) P
d O

d •
P •

...
...

...
...

N (L)
d̃N
−( N (L)⊗N (L) N (L)⊗N (L)

σ⊗σ
−( K(L′)⊗K(L′)

...
...

...
...

O (a, u)
(u, u) (a, (u, u))

(v, v) P
d O

d •
P •

...
...

...
...

Figure 27: DialAutΣ-maps on non-det. automata as comonoids maps in Prop. 7.2

67



Σ⊗K
d̃K
−(DZD

K ⊗K
...

...

O (a, k)
(k, k) P
d O

P •
...

...

Σ⊗K
ẽK
−(DZD

I
...

...

O (a, k)
• P
d O

P •
...

...

Figure 28: Structure maps in DialZ(Σ) for the comonoid K = (K,1)

and therefore by a tree T ′ : D∗ → Γ and a winning P-strategy in 1 ` I( A〈Ṫ , Ṫ ′〉.

Proposition 7.4. Given a non-deterministic automaton N : Σ × Γ, a winning P-strategy
σ : 1( ∃ΣN is of the form σ = 〈T, τ〉 where T is a Σ-labeled tree and τ is a winning P-strategy
in 1( N (T ) (so in particular T ∈ L(N )).

In particular, we get the following fact, which completes Cor. 6.6 and mirrors the well-known
situation with usual non-deterministic automata.

Corollary 7.5. If N : Σ× Γ is non-deterministic then L(∃ΓN ) = πΓ(L(N )).

Moreover, it follows from Prop. 7.4 that our computational interpretation allows to effectively
extract witnesses from (interpretations of) proofs, in the sense of §1.2 and §1.5. Let N : Σ be
non-deterministic with set of P-moves U , and consider a derivation D of the sequent

1 ; ` ∃ΣN

using the rules of Fig. 24, Fig. 26, Ex. 5.9 and (52). Then adequacy (Prop. 5.6 and Prop. 6.8)
gives a strategy

σ : I −( ∃ΣN

(effectively computed by induction on D), and which by Prop. 7.4 is of the form

〈T, τ〉 :
⋃
n∈N Dn −→ Σ× U

where τ : I −( N (T )

7.1.3. Application: Effective Realizers from Witnesses of Non-Emptiness. Similarly as with
usual non-deterministic automata (see e.g. [Tho97]), thanks to the Büchi-Landweber Theo-
rem [BL69], Cor. 7.5 implies the decidability of emptiness for non-deterministic automata as
well as the Rabin Basis Theorem [Rab72], stating that if L(N ) 6= ∅, then its contains a regular
tree T and a finite state winning P-strategy on N (T ) (both effectively definable from N ).

Corollary 7.6. Given a non-deterministic automaton N : Σ, one can decide whether L(N ) is
empty. Moreover, if L(N ) 6= ∅ then one can effectively build from N a regular tree T ∈ L(N )
together with a finite state winning P-strategy on I( N (T ).

Proof. It follows from Cor. 7.5 that L(N ) is not empty iff the automaton (∃ΣN ) : 1 accepts the
unique 1-labeled tree 1. We then proceed similarly as in the proof of for Cor. 6.5: reasoning as
in [Tho97, Ex. 6.12], the game 1 ` ∃ΣN is effectively equivalent to a regular game on a finite

68



graph. Then, by Büchi-Landweber Theorem [BL69] (see also [Tho97, Thm. 6.18]), one can
decide which player has a winning strategy, and the winner always has a finite-state winning
strategy which is moreover effectively computable from the game graph. Now, this strategy can
be lifted to a finite state winning strategy on 1 ` ∃ΣN , and we can then conclude thanks to
Prop. 7.4.

More generally, strategies witnessing (non-)emptiness obtained via Cor. 7.5 can be lifted to
winning strategies in games of the form A ( C. Consider the case (mentioned in §1.5.(bi))
of C = B‹ and with A,B : Σ non-deterministic. If L(A) ∩ L(B) = ∅, then an O-strategy
witnessing L(A ⊗ B) = ∅, which corresponds via Prop. 5.1217 to a P-strategy witnessing 1 ∈
L((∃Σ(A⊗ B))‹), can be lifted to a winning P-strategy in A( B‹.

Proposition 7.7. Given non-deterministic A,B : Σ, if L(A)∩L(B) = ∅, then there are winning
P-strategies in A ⊗ B ( ‹ and A ( B‹. Moreover, these P-strategies can be assumed to be
finite state and can be effectively obtained from A and B.

Proof. Since L(A) ∩ L(B) = ∅, we have L(A ⊗ B) = ∅ by Prop. 5.10. Since A and B are
non-deterministic, so is A ⊗ B. It then follows from Cor. 7.5 that L(∃Σ(A ⊗ B)) = ∅, hence,
by Prop. 5.12 that the automaton (∃Σ(A ⊗ B))‹ : 1 accepts the unique tree 1 : D∗ → 1. But
winning P-strategies in (∃Σ(A⊗ B))‹(1) can be lifted to winning P-strategies in

1 ` I1(1) −( (∃Σ(A⊗ B))‹(1)

But note that since (∃Σ(A⊗ B))‹ : 1, that game is actually the same as

1 ` I1 −( (∃Σ(A⊗ B))‹

It then follows from monoidal closure (Prop. 5.4) that there is a winning P-strategy in the game

1 ` ∃Σ(A⊗ B) −( ‹
and therefore by Prop. 6.2 (in the form of (49)) that there is a winning P-strategy on A⊗B( ‹
and therefore also in A( B‹.

Moreover, it follows from Cor. 7.6 that there is a finite-state winning P-strategy in the game
1 ` (∃Σ(A⊗B))‹(1) which is easily seen to be lifted to finite state P-strategies in A⊗B( ‹
and A( B‹.

Proposition 7.7, together with Ex. 5.9.(ii), implies the following extension of Ex. 5.9.(i).

Corollary 7.8. If A,B : Σ are non-deterministic and such that L(A)∩L(B) = ∅, then L(A) ⊆
L(B( A) ⊆ L(B‹).

Proof. The inclusion L(A) ⊆ L(B ( A) was shown in Ex. 5.9.(i). For the inclusion L(B (
A) ⊆ L(B‹), by Ex. 5.9.(ii) we can derive the sequent

B ⊗ (B( A) ` A⊗ B

and it follows from adequacy (in the form of Prop. 5.6) that there is a winning P-strategy

σ : B ⊗ (B( A) −( A⊗ B

17More precisely, this is direction (⇐) in the proof of Prop. 5.12.

69



But now, since L(A) ∩ L(B) = ∅, it follows from Prop. 7.7 that there is a winning P-strategy

τ : A⊗ B −( ‹
so that

τ ◦ σ : B ⊗ (B( A) −( ‹
It then follows from Prop. 5.4 (monoidal closure) that there is a winning P-strategy in

(B( A) −( B‹

and we conclude by Prop. 4.12.

7.2. Simulation and the Exponential Modality of ILL

Recall that similarly as in the usual setting, uniform automata have linear complements (§5.4),
and that non-deterministic automata have correct existential quantifications (§7.5). On the
other hand, we mentioned in §1.3 that in the usual setting, the Simulation Theorem [MS87,
EJ91, MS95] says that each alternating automaton A can be simulated by a non-deterministic
automaton !A (of exponential size) with L(!A) = L(A).

We show here that in our setting, an easy adaptation of the construction used in [Wal02] gives
a similar simulation operation !(−), taking a uniform automaton A : Σ to an non-deterministic
automaton !A : Σ with L(!A) = L(A), thus completing the picture (4) of §1.3 for our notion of
uniform automata:

Non-Deterministic
Uniform Automata

Uniform
Automata

!(−)

∃(−) (−)⊗ (−) (−)‹(−)⊗ (−)

(53)

Moreover, we show that the operation !(−) satisfies the deduction rules of the exponential
modality ! of ILL:

M ; !A ` A
M ; !A ` !A

M ; A, B ` A
M ; A, !B ` A

M ; A, ` A
M ; A, !B ` A

M ; A, !B, !B ` A
M ; A, !B ` A

(54)

It follows that the exponential ! allows to define, using Girard’s decomposition, an intuitionistic
implication → as A → B := !A( B.

The rules (54) are an obvious adaptation to our context of the rules displayed in (26) and (27)
of §2.9. The last two rules (weakening and contraction) actually follow from the rules (WeakND)
and (ContrND) displayed in (52). The second rule (Dereliction) will easily follow from the
construction of !A. The most difficult rule is the first one (Promotion), which is moreover
not compatible with cut-elimination (see Rem. 5.7).

The difficulty with the (Promotion) rule can be explained as follows. We have seen in §7.1
above that the symmetric monoidal structure of DialAutΣ is Cartesian on non-deterministic
automata, in other words that non-deterministic automata have a canonical comonoid struc-
ture (51). It follows that similarly as with usual ILL-exponentials (see §2.9 but also [Mel09]),

70



the simulation operation !(−) adds to an arbitrary automaton A the structure allowing !A to
be equipped with canonical maps:

!A −( !A⊗ !A and !A −( I

On the other hand, recall from §5.3 that for a uniform automaton A with set of O-moves X,
realizers of

A −( A⊗A
may not exist because O can play two different (x, x′) ∈ X ×X in the right component A⊗A,
that P may not be able to merge into a single x′′ ∈ X in the left component A.

Usual solutions for ILL-exponentials (see e.g. [Mel09, AC98, Mel04]) amount to equip objects
of the form !A with some duplication and memory abilities, essentially allowing !A to run several
copies of A in parallel. However (and this is via (5) §1.3, the crux of Rabin’s Theorem [Rab69]),
such recipes can not (at least in an obvious way) be applied to automata on infinite trees, because
!A must be a finite-state automaton, while plays in acceptance games (which are infinite) would
require an infinite memory.

Phrased in modern terms, the solution is given by the existence of positional (i.e. memo-
ryless) winning strategies in ω-regular games equipped with parity acceptance conditions (see
e.g. [Tho97, GTW02]). In our case, we rely for the (Promotion) rule on the stronger fact
that in an ω-regular game whose winning condition is given by a disjunction of parity condi-
tions (also called a Rabin condition), winning P-strategies can always be assumed to be posi-
tional [Kla94, KK95, Jut97, Zie98]. Unfortunately, positionality is not preserved by composi-
tion, and the interpretation of the (Promotion) rule is not preserved by cut-elimination (in
the sense of Rem. 5.7).

Remark 7.9. In (53), we have only displayed existential quantifications ∃ for non-deterministic
automata, because as in the usual setting, they are correct (in the sense of Cor. 7.5) only on
non-deterministic automata. Similarly, we did not displayed universal quantifications because
they are only complete on universal automata (see Def. 3.1).

Note that on the other hand, the categorical properties of quantifications (Prop. 6.2) and thus
the deduction rules of Fig. 26, hold on general uniform automata.

7.2.1. Parity Automata. Similarly as in the usual setting, we say that A is a parity automaton
if ΩA is generated from a map cA : QA → N as the set of sequences (qk)k such that the maximal
number occurring infinitely often in (cA(qk))k is even.

Proposition 7.10. For every automaton A : Σ, there is a parity automaton A† : Σ such that
A† ' A in DialAutΣ.

Note that A ' A† implies L(A) = L(A†) by Prop. 4.12.

Proof of Prop. 7.10. Recall (from e.g. [Tho97, GTW02, PP04]) that every ω-regular language
L can be recognized by a deterministic ω-word parity automaton (QL, q

ı
L, δL, cL). Follow-

ing [Wal02], given A : Σ with set of P-moves U and set of O-moves X, let

A† := (QA ×QL , (qıA, q
ı
L) , U , X , δA† , ΩA†)

where L is the ω-regular language ΩA, the acceptance condition ΩA† is generated from cL via
second projection, and the transition function δA† is given by:

δA†((qA, qL), a, u, x, d) := (q′A , δL(qL, q
′
A))

with q′A := δA(qA, a, u, x, d). Note that A and A† have the same P and O-moves, so that identity
strategies provide an isomorphism A ' A†.

71



7.2.2. An Exponential Construction on Uniform Automata. Our exponential construction
!(−) is an adaptation of the one used in [Wal02]. Given a parity automaton A : Σ with set of
P-moves U and set of O-moves X, we let

!A := (Q!A , q
ı
!A , U

QA , 1 , δ!A , Ω!A)

where Q!A := P(QA × QA), qı!A := {(qıA, qıA)} and δ!A is defined as follows: Given a ∈ Σ,
f ∈ UQA , d ∈ D and π2(S) = {q′ | ∃q. (q, q′) ∈ S} = {q1, . . . , qn}, let

δ!A(S, a, f, •, d) := T1 ∪ · · · ∪ Tn

where, for each k ∈ {1, . . . , n},

Tk := {(qk, q) | ∃x ∈ X. q = δA(qk, a, f(qk), x, d)}

Let a trace in an infinite sequence (Sn)n ∈ Qω!A be a sequence (qn)n such that for all n,
(qn, qn+1) ∈ Sn+1. We let Ω!A be the set of sequences (Sn)n whose traces all belong to ΩA.
Note that Ω!A is ω-regular since ΩA is ω-regular (see e.g. [§4][Wal02]).

Remark 7.11. Note that Q!A = P(Q×Q) contains a “true” state ∅ ∈ Q!A, so the map

δ̃!A : Q!A × Σ −→ UQ −→ (D −→ Q!A)

is always total.

For a uniform automatonA whose acceptance condition is not a parity condition, let !A := !(A†),
where A† is obtained from Prop. 7.10.

It is easy to show the adequacy of the dereliction rule. This amounts to provide co-unit-like
winning P-strategies

ε : !A(M) −( A(M)

Proposition 7.12. Given A : Σ, there is a winning P-strategy ε in Σ ` !A(M)( A(M).

Proof. By Prop. 7.10, we can assume A to be a parity automaton. Using the injectivity of HS
(Lem. 3.11), we define HS(ε) by induction on plays as follows, with the following invariant: for
each (s, t) ∈ HS(ε), with s, t of even length, writing q for the state of t and S for the state of s,
we have q ∈ π2(S).

The base case is trivial. Let (s, t) ∈ HS(ε) with s and t even-length, and with t in state q
and s in state S. Given an O-move (a, h), we let (s.(a, h) , t.h(q)) ∈ HS(ε), and for all (x, d) we
further let (s.(a, h).(•, d) , t.h(q).(x, d)) ∈ HS(ε). Then the invariant is insured by def. of !A.

The strategy ε is winning since the sequence of states produced in A is a trace in the sequence
of states produced in !A.

7.2.3. Game Graphs and Positionality. We now turn to the (Promotion) rule. Its adequacy
relies on well-known but non-trivial results on the existence of winning positional P-strategies for
Rabin games, which are games whose winning conditions are disjunctions of parity conditions.
The notion of positional strategy makes sense for games whose moves and winning condition
are induced in an appropriate way by a given graph.

Consider uniform substituted acceptance games Σ ` A(M) and Σ ` B(N), where A (resp.
B) has set of P-moves U (resp. V ) and set of O-moves X (resp. Y ). The game graph of
Σ ` A(M)( B(N) is the graph G with vertices:

(AP ×BP) + (AO ×BP) + (AO ×BO)

72



((p , a , qA) , (p , a , qB)) AP ×BP

O ↓
((p , a.a , qA , u) , (p , a , qB)) AO ×BP

P ↓
((p , a.a , qA , u) , (p , a.a , qB , v)) AO ×BO

O ↓
((p , a.a , qA , u) , (p.d , a.a , q′B)) AO ×BP

P ↓
((p.d , a.a , q′A) , (p.d , a.a , q′B)) AP ×BP

Figure 29: The edges of the graph G for Σ ` A(M)( B(N)

where
AP := D∗ × Σ∗ ×QA
BP := D∗ × Σ∗ ×QB

AO := D∗ × Σ∗ ×QA × U
BO := D∗ × Σ∗ ×QB × V

and with edges depicted in Fig. 29, where q′A := δA(qA,M(a.a, p), u, x, d) (for some x ∈ X) and
q′B := δB(qB, N(a.a, p), v, y, d) (for some y ∈ Y ). Write pos for the graph morphism from the set
of plays of Σ ` A(M)( B(N) (seen as a tree) to G. We say that a strategy σ is positional if
it agrees on plays with the same position, i.e. if s.m ∈ σ, t.m′ ∈ σ with pos(s) = pos(t) implies
m = m′.

Consider now parity automata A1, . . . ,An and B. The winning condition of a game of the
form A1(M1)⊗ . . .⊗An(Mn)( B(N) is a disjunction of parity conditions, also called a Rabin
condition, which is induced by colorings depending only on the vertices of its game graph G.
It has been shown in [Kla94, KK95, Jut97, Zie98] that if P has a winning strategy σ in such a
game, then it has a winning positional strategy (w.r.t. G), which according to [Zie98] is recursive
in σ.

The existence of winning positional P-strategies allows us to show the adequacy of the
(Promotion) rule. The proof is deferred to App. B.

Proposition 7.13. Given N ,A : Σ with N non-deterministic, if there is a winning P-strategy
in Σ ` N (L)( A(M), then there is a winning P-strategy in the game Σ ` N (L)( !A(M).

7.2.4. Applications. This paragraph gathers consequences of Props. 7.12 and 7.13, thus mir-
roring §7.1.1-7.1.3 and completing the picture announced in §1.4, §1.5 and §2.9. Furthermore,
App. C details how two constructions from [CL08] and [SA05] can be reformulated in our setting.

First, Prop. 7.12 implies that L(!A) ⊆ L(A), while Prop. 7.13 gives the converse inclusion
L(A) ⊆ L(!A). We thus have, as expected:

Corollary 7.14. L(A) = L(!A).

Corollary 7.14 gives the extension of Cor. 7.6 to general uniform automata.

Corollary 7.15. Given a uniform automaton A, one can decide whether L(A) is empty. More-
over, if L(A) 6= ∅ then one can effectively build from A a regular tree T ∈ L(A) together with a
finite state winning P-strategy on 1 ` I( A(Ṫ ).

We also obtain the lifting property of §1.5.(bii), extending Prop. 7.7.

Proposition 7.16 (Weak Completeness). Given automata A,B : Σ, if L(A) ⊆ L(B) then there
is an effective winning P-strategy in Σ ` !A( (!(B‹))‹.

73



(Dereliction)
M ; A , A , B ` C
M ; A , !A , B ` C

M ; N ` A
M ; N ` !A

(Promotion)

(WeakND)
M ; A , B ` C

M ; A , N , B ` C
M ; A , N , N , B ` C
M ; A , N , B ` C

(ContrND)

Figure 30: Exponential rules (where N and N are non-deterministic)

Proof. By Prop. 5.12 and Cor. 7.14, if L(A) ⊆ L(B) then L(!A)∩L(!(B‹)) = ∅, and we conclude
by Prop. 7.7.

On the other hand, Props. 7.12 and 7.13 give adequacy for the rules displayed in (54).

Proposition 7.17 (Adequacy). If the sequent M ; A1, . . . ,An ` B is derivable using the rules
of Fig. 24, Fig. 26 Fig. 30 and of Ex. 5.9, then there is a winning P-strategy in the game

A1(M)⊗DA · · · ⊗DA An(M) −( B(M)

As an example of use of the exponential rules, we mention a negative translation of the law
of Peirce ((A ⇒ B) ⇒ A) ⇒ A. The law of Peirce gives full classical logic when added to
intuitionistic logic.

Example 7.18. The law of Peirce !((?A → ?B)→ ?A) ` ?A (where ?A := (!(A‹))‹ and where
A → B := !A( B), can be derived using the exponential rules.

Proof. We can derive
!A‹ , ?A ` ‹

so that (since ?B = (!B‹)‹)
!A‹ , ?A ` ?B

from which it follows that
!((?A → ?B)→ ?A) , !A‹ ` ?A

and thus
!((?A → ?B)→ ?A) , !A‹ ` ‹

and we are done since ?A = (!A‹)‹.

8. Conclusion

We have presented preliminary results toward a Curry-Howard approach to automata on infinite
trees. Our contributions concern mainly two related directions.

First, we have shown that the operations on tree automata used in the translations of MSO-
formulae to automata underlying Rabin’s Theorem [Rab69] can be organized in a deduction
system based on intuitionistic linear logic (ILL) [Gir87]. Namely, we equipped a variant of usual
alternating tree automata (that we called uniform tree automata, §3) with a fibred monoidal
closed structure (§4 and §5), which in particular handles a conjunction and, via game determi-
nacy, a linear complementation of alternating automata, as well as deduction rules for existential

74



and universal quantifications (§6). Moreover, we have shown in §7 that this monoidal structure
is Cartesian on non-deterministic automata, and in particular that (an adaptation of) a usual
powerset construction for the Simulation Theorem [MS87, EJ91, MS95] satisfies the deduction
rules of an !(−) ILL-exponential modality.

Second, our approach is based on a realizability semantics for our deduction system on tree
automata, in which, thanks to the monoidal-closed structure, realizers are winning strategies
in (almost usual) acceptance games. Our realizability semantics satisfies an expected property
of witness extraction from proofs of existential statements. Moreover, this realizability se-
mantics is compositional and allows to combine realizers produced as interpretations of proofs
with strategies witnessing (non-)emptiness of tree automata, possibly obtained using external
algorithms.

We believe that this can provide a basis for semi-automatic approaches to MSO on infinite
trees18, in which, similarly as with interactive proof systems, decision algorithms can be com-
bined with human-produced proofs or proof-search techniques. The author and P. Pradic have
recently obtained preliminary results in this direction for MSO on ω-words [PR17].

Furthermore, as shown in Ex. 6.4, our interpretation shares a formal similarity with Gödel’s
Dialectica interpretation (see e.g. [AF98, Koh08]). Actually, the category DZ can be constructed
(via a distributive law) from a category of simple self dualization [HS99, HS03] (over the topos
of trees, see e.g. [BMSS12]), which can be seen as a skeleton of Dialectica-like categories [dP91],
and the category DialZ has a shape similar to Dialectica fibrations (see [Hyl02, Hof11] but
also [Jac01, Ex. 1.10.11]). We do not know yet how far this connection can go, but it seems that
it can provide, similarly as with the usual Dialectica interpretation, realizers for linear variants
of Markov and choice rules19.

Moreover, we show in App. C that our setting easily handles known constructions from [CL08]
and [SA05] for language reduction and separation.

8.1. Further Works. We plan to continue the line of research initiated here and in [Rib15]
along different directions. A central point w.r.t. most of them concerns the (Promotion) rule.

The interpretation of Simulation as an !(−) ILL-exponential modality in §7.2 is interesting
because it shows that an ILL-like exponential arises precisely where there is a semantic difficulty
(positionality) together with a non-trivial exponential construction on automata. However, we
find the interpretation of the (Promotion) rule in §7.2 not completely satisfactory for the
following reasons.

(1) We have to rely on the external result that winning P-strategies can always be assumed to
be positional in Rabin games [Kla94, KK95, Jut97, Zie98]. There seems to be essentially
two ways to apply this result: (a) one could try to extract the positional strategy realizing
the conclusion of (Promotion) from the realizer of the premise, or (b) one could obtain
the strategy for the conclusion from an algorithm solving ω-regular games (that is from the
Büchi-Landweber Theorem [BL69], see also e.g. [Tho97, Thm. 6.16]).

However, in both cases this amounts to apply a non-trivial external algorithm, and there
seem to be no obvious structural relation between the realizer of the conclusion and the
realizer of the premise.

18Even if there are numerous implementations of decision algorithms on tree automata, we are aware of no
working implementation of decision procedures for the full language of MSO on infinite trees.

19The reader aware that choice is not expressible in the language of MSO on infinite trees (see e.g. [CL07]) may
be surprised by this suggestion. Actually, choice rules in constructive arithmetics turn ∀∃-statements into ∃∀
ones, but do not necessarily induce wellorderings.

75



(2) This interpretation of the (Promotion) rule is not compatible with cut-elimination (in the
sense of Rem. 5.7), because the notion of positionality required for (Promotion) is not
preserved by composition, so that !(−) is not a functor.

It is unclear to us whether this is a true drawback, because we can still compose realizers
and extract witnesses for existentials (§7.1.2). The only point is that two derivations which
are equal modulo cut-elimination may be interpreted by two different strategies. But still,
the non-functoriality of !(−) is somehow uncomfortable from a semantic perspective.

First, we plan to pursue some work on the category DZ of zig-zag games in order to get a better
picture of its usual game semantics exponentials. According to the discussion of §7.2, such
exponentials would involve some infinite memory, because plays are infinite in DZ. Moreover,
it seems reasonable to target some relaxation of DZ with finite limits (typically by allowing
games to be equipped with a notion of legal plays).

(1) Following the recipe of [MTT09], we plan the investigate the existence of free exponentials.

(2) Moreover, there seem to be a natural exponential, in which P essentially plays strategies,
but which in the context of automata would lead to infinite state automata. Using iteration
theorems such as e.g. Muchnik’s Theorem (see e.g. [Wal02], but also [BCL08]) it may be
possible to obtain a hierarchy (in the sense of the hierarchy of simple types) of possibly
infinite state automata, but with decidable emptiness checking.

(3) We also plan to look at non-synchronous exponentials, such as the Curien-Lamarche ex-
ponential of sequential data structures (see e.g. [AC98, Chap. 14], but also [Mel05]), in
particular because of its backtracking abilities. We suspect that this could allow to han-
dle known results and constructions for reduction and separation properties, in the vein
of [Arn99, AN07, FMS13]. However, we do not know yet if this can provide new results.

Second, an important direction of future work is to get a better semantic account of the
notion of positionality used in the interpretation of the (Promotion) rule. In the realm of
game semantics, it has been shown by Melliès [Mel06] that the notion of Innocence (originally
introduced by [HO00] via a notion of pointers on moves), which characterizes a form of func-
tional (state-free) behavior, corresponds to some notion of positionality. Innocence is actually a
strong form of positionality, which is preserved by composition. It is possible to equip DialAut-
games with an obvious notion of pointers, representing applications of the transition function
of automata as unfoldings of fixpoints. This leads via innocence to a notion of positionality
which seems to be equipped with a monoidal-closed structure (w.r.t. to the synchronous direct
product of automata), but which seems too restrictive to handle strategies obtained (via Büchi-
Lambweber Theorem) from emptiness checking in the sense of Cor. 6.5, §7.1.3, Cor. 7.15, and
Prop. 7.16. On the other hand, the notion of positionality used in §7.2.3 may be preserved
by composition for non-deterministic innocent strategies, in the vein of [HP12, TO15]. We do
not know yet how such notions of non-deterministic strategies behave w.r.t. the construction of
positional winning P-strategies for Rabin games as in e.g. [Zie98].

Finally, our main target is the construction of realizability models for MSO. In the case of
ω-words (that is taking D = 1 in this paper), and in the context of Church’s synthesis, the
aforementioned results of [PR17] suggest that, together with the results of this paper, it is
possible and pertinent to devise refinements of MSO based on ILL. We also already mentioned
above the connection with Gödel’s Dialectica interpretation, which suggests that it may be
possible to realize linear variants of Markov and choice rules. Furthermore, this paper indicates
that working in a linear deduction system for MSO allows to obtain a fibred monoidal closed

76



structure, with in particular deduction rules for existential and universal quantifications. We
think that this can provide a good basis to handle some axioms of MSO, and moreover that
ILL can provide classes of formulae with improved translations to automata w.r.t. the known
non-elementary lower bound (see e.g. [GTW02, Chap. 13]).

Moreover, in devising realizability models for MSO, and in particular following the approach
of this paper which decomposes the translation of formulae to automata using linear logic, a
crucial role is played by the logical interpretation of the (Promotion) rule. Following [Möl02],
it seems that (Promotion) may be seen as a form of reflection scheme. Similarly as in the
complementation construction of [Tho97, Thm. 6.9], such reflection scheme would simply say
that, because they can be assumed to be positional, realizers can be seen as labeled D-ary trees.
This would simply amount to the fact that predicates of the form ∃σ(σ : A( B) are definable
in MSO.

References

[Abr97] S. Abramsky. Semantics of Interaction. In A. M. Pitts and P. Dybjer, editors,
Semantics and Logics of Computation, volume 14 of Publications of the Newton
Institute, page 1. Cambridge University Press, 1997. 2, 13, 15, 16, 17, 19, 35

[AC98] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998. 2, 7, 13, 17,
24, 25, 71, 76

[AF98] J. Avigad and S. Feferman. Gödel’s functional (”Dialectica”) interpretation. In
S. Buss, editor, Handbook Proof Theory, volume 137 of Studies in Logic and the
Foundations of Mathematics, pages 337–405. Elsevier, 1998. 62, 75

[AN07] A. Arnold and D. Niwinski. Continuous Separation of Game Languages. Fundam.
Inform., 81(1-3):19–28, 2007. 76

[Arn99] A. Arnold. The µ-calculus alternation-depth hierarchy is strict on binary trees. ITA,
33(4/5):329–340, 1999. 76

[BCL08] A. Blumensath, T. Colcombet, and C. Löding. Logical theories and compatible
operations. In Logic and Automata: History and Perspectives [in Honor of Wolf-
gang Thomas]., volume 2 of Texts in Logic and Games, pages 73–106. Amsterdam
University Press, 2008. 76

[BdRV02] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2002. 1

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997. 1

[BL69] J. R. Büchi and L. H. Landweber. Solving Sequential Conditions by Finite-State
Strategies. Transation of the American Mathematical Society, 138:367–378, 1969. 7,
63, 68, 69, 75

[Blu13] A. Blumensath. An algebraic proof of rabin’s tree theorem. Theor. Comput. Sci.,
478:1–21, 2013. 2

77



[BMSS12] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. First steps
in synthetic guarded domain theory: step-indexing in the topos of trees. Logical
Methods in Computer Science, 8(4), 2012. 75, 116, 118

[CL07] A. Carayol and C. Löding. MSO on the Infinite Binary Tree: Choice and Order. In
CSL, volume 4646 of Lecture Notes in Computer Science, pages 161–176. Springer,
2007. 75

[CL08] T. Colcombet and C. Löding. The Non-deterministic Mostowski Hierarchy and
Distance-Parity Automata. In ICALP 2008, volume 5126 of Lecture Notes in Com-
puter Science, pages 398–409. Springer, 2008. 7, 11, 65, 73, 75, 86, 87

[dP91] V. de Paiva. The Dialectica categories. Technical Report 213, University of Cam-
bridge Computer Laboratory, January 1991. 75, 112, 113

[EJ91] E. A. Emerson and C. S. Jutla. Tree Automata, Mu-Calculus and Determinacy
(Extended Abstract). In FOCS, pages 368–377. IEEE Computer Society, 1991. 4,
26, 65, 70, 75

[FMS13] A. Facchini, F. Murlak, and M. Skrzypczak. Rabin-Mostowski Index Problem: A
Step beyond Deterministic Automata. In LICS, pages 499–508. IEEE Computer
Society, 2013. 76

[GH82] Y. Gurevich and L. Harrington. Trees, Automata, and Games. In STOC, pages
60–65. ACM, 1982. 4

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987. 2, 24,
25, 65, 74

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989. 2

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002. 2, 14,
15, 71, 77

[HHM07] R. Harmer, M Hyland, and P.-A. Melliès. Categorical combinatorics for innocent
strategies. In LICS 2007, pages 379–388, 2007. 41, 96, 127

[HNPR06] M Hyland, M. Nagayama, J. Power, and G. Rosolini. A Category Theoretic For-
mulation for Engeler-style Models of the Untyped λ-Calculus. Electronic Notes in
Theoretical Computer Science, 161:43 – 57, 2006. Proceedings of the Third Irish
Conference on the Mathematical Foundations of Computer Science and Information
Technology (MFCSIT 2004). 97

[HO00] J. M. E. Hyland and C.-H. Ong. On Full Abstraction for PCF: I, II, and III.
Information and Computation, 163(2):285–408, 2000. 15, 76

[Hof11] P. J. W. Hofstra. The dialectica monad and its cousins. In M. Makkai and B.T.
Hart, editors, Models, Logics, and Higher-dimensional Categories: A Tribute to the
Work of Mihály Makkai, CRM proceedings & lecture notes. American Mathematical
Society, 2011. 43, 75

78



[HP12] T. Hirschowitz and D. Pous. Innocent Strategies as Presheaves and Interactive
Equivalences for CCS. Sci. Ann. Comp. Sci., 22(1):147–199, 2012. 76

[HS99] J. M. E. Hyland and A. Schalk. Abstract Games for Linear Logic. Electr. Notes
Theor. Comput. Sci., 29:127–150, 1999. 33, 35, 37, 41, 75

[HS03] J. M. E. Hyland and A. Schalk. Glueing and orthogonality for models of linear logic.
Theoretical Computer Science, 294(1/2):183–231, 2003. 37, 41, 75, 106, 108, 112,
113, 115

[Hyl97] J. M. E. Hyland. Game Semantics. In A. M. Pitts and P. Dybjer, editors, Semantics
and Logics of Computation, volume 14 of Publications of the Newton Institute, page
131. Cambridge University Press, 1997. 2, 13, 15, 16, 17, 19, 35

[Hyl02] J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Logic, 114(1-3):43–
78, 2002. 43, 75, 113

[Jac01] B. Jacobs. Categorical Logic and Type Theory. Studies in logic and the foundations
of mathematics. Elsevier, 2001. 2, 7, 8, 26, 37, 43, 54, 60, 66, 75

[Jut97] C. S. Jutla. Determinization and Memoryless Winning Strategies. Inf. Comput.,
133(2):117–134, 1997. 71, 73, 75, 84

[KK95] N. Klarlund and D. Kozen. Rabin Measures. Chicago J. Theor. Comput. Sci., 1995,
1995. 71, 73, 75, 84

[Kla94] N. Klarlund. Progress measures, immediate determinacy, and a subset construction
for tree automata. Annals of Pure and Applied Logic, 69(2-3):243–268, 1994. 71, 73,
75, 84

[Koh08] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Math-
ematics. Springer Monographs in Mathematics. Springer, 2008. 6, 62, 75

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. CUP,
1986. 2, 7, 8

[Mel04] P.-A. Melliès. Comparing hierarchies of types in models of linear logic. Inf. Comput.,
189(2):202–234, 2004. 71

[Mel05] P.-A. Melliès. Sequential algorithms and strongly stable functions. Theoretical Com-
puter Science, 343(1-2):237–281, 2005. 13, 15, 76

[Mel06] P.-A. Melliès. Asynchronous games 2: The true concurrency of innocence. Theor.
Comput. Sci., 358(2-3):200–228, 2006. 15, 76

[Mel09] P.-A. Melliès. Categorical semantics of linear logic. In Interactive models of compu-
tation and program behaviour, volume 27 of Panoramas et Synthèses. SMF, 2009. 2,
7, 24, 25, 28, 39, 43, 47, 51, 56, 65, 66, 70, 71, 90, 91, 92, 93, 95, 102, 106, 108, 111,
114, 121

[Mel12] P.-A. Melliès. Game Semantics in String Diagrams. In LICS, pages 481–490. IEEE,
2012. 15

79



[Mel13] P.-A. Melliès. On dialogue games and coherent strategies. In CSL, volume 23 of
LIPIcs, pages 540–562. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
27, 60

[ML98] S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition,
1998. 51, 61, 90

[MLM92] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: A first introduction
to topos theory. Springer, 1992. 116

[Möl02] M. Möllerfeld. Generalized Inductive Definitions - The µ-calculus and
Π1

2-comprehension. PhD thesis, Westfälischen Wilhelms-Universität
Münster, 2002. Available at https://miami.uni-muenster.de/Record/

9dfa74b6-186b-4e95-a51f-9965d7e1e508. 77

[MS87] D. E. Muller and P. E. Schupp. Alternating Automata on Infinite Trees. Theor.
Comput. Sci., 54:267–276, 1987. 4, 26, 59, 65, 70, 75

[MS95] D. E. Muller and P. E Schupp. Simulating Alternating Tree Automata by Non-
deterministic Automata: New Results and New Proofs of the Theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci., 141(1&2):69–107, 1995. 4, 26, 65, 70,
75

[MTT09] P.-A. Melliès, N. Tabareau, and C. Tasson. An Explicit Formula for the Free Ex-
ponential Modality of Linear Logic. In Proceedings of ICALP’09, volume 5556 of
Lecture Notes in Computer Science, pages 247–260. Springer, 2009. 76

[Ong06] C.-H. L. Ong. On Model-Checking Trees Generated by Higher-Order Recursion
Schemes. In Proceedings of LICS’06, pages 81–90. IEEE Computer Society, 2006.
13

[PP04] D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic and Games.
Pure and Applied Mathematics. Elsevier, 2004. 2, 14, 15, 59, 71

[PR17] P. Pradic and C. Riba. A Curry-Howard Approach to Church’s Synthesis. Submitted,
2017. 75, 76

[Rab69] M. O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.
Transactions of the American Mathematical Society, 141:1–35, 1969. 1, 3, 4, 65, 71,
74

[Rab72] M. O. Rabin. Automata on infinite objects and Church’s Problem. Amer. Math.
Soc., 1972. 7, 68

[Rib15] C. Riba. Fibrations of tree automata. In TLCA, volume 38 of LIPIcs, pages 302–
316. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. 2, 4, 5, 6, 7, 9, 15,
17, 19, 25, 26, 27, 31, 32, 33, 37, 75, 136

[SA05] L. Santocanale and A. Arnold. Ambiguous classes in mu-calculi hierarchies. Theor.
Comput. Sci., 333(1-2):265–296, 2005. 7, 65, 73, 75, 86, 88, 137

[Shu08] M. Shulman. Framed bicategories and monoidal fibrations. Theory and Applications
of Categories, 20(18):650–738, 2008. 21

80

https://miami.uni-muenster.de/Record/9dfa74b6-186b-4e95-a51f-9965d7e1e508
https://miami.uni-muenster.de/Record/9dfa74b6-186b-4e95-a51f-9965d7e1e508


[SU06] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism,
volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier Science
Inc., 2006. 2, 6

[Tho97] W. Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume III, pages 389–455. Springer, 1997.
2, 7, 14, 15, 59, 63, 68, 69, 71, 75, 77, 87

[TO15] T. Tsukada and C.-H. L. Ong. Nondeterminism in Game Semantics via Sheaves.
In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, July 6-10, 2015, pages 220–231. IEEE Computer Society, 2015. 76

[VW08] M. Y. Vardi and T. Wilke. Automata: from logics to algorithms. In Logic and
Automata, volume 2 of Texts in Logic and Games, pages 629–736. Amsterdam Uni-
versity Press, 2008. 1

[Wal02] I. Walukiewicz. Monadic second-order logic on tree-like structures. Theor. Comput.
Sci., 275(1-2):311–346, 2002. 4, 27, 59, 70, 71, 72, 76, 84

[Zie98] Z. Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. 71, 73, 75,
76, 84

81



A. Non-Functoriality of the Usual Linear Negation of Alternating
Automata

In this Appendix, we explain why it is not obvious to turn the usual linear complementation
(−)‚ of alternating automata (defined in §2.10).

Recall that for a usual alternating automaton A, we let A‚ have the same states as A, and
to take for δA‚(q, a) the set of all γ‚ ⊆ ⋃ δA(q, a) such that γ‚ ∩ γ 6= ∅ for all γ ∈ δA(q, a). It
is then not difficult to validate the rule (30)

Σ ; A ` B
Σ ; B‚ ` A‚

but it is not clear how to turn (−)‚ into a functor.
The difficulty resides in the preservation of composition. Consider a total (winning) P-strategy

σ : A( B playing as in Fig. 8, and let us see how to directly define a total (winning) strategy
σ‚ : B‚( A‚. The plays of σ‚ should have the following shape:

Σ B‚ −( A‚
(ε, qıB) (ε, qıA)

...
...

(p, qB) (p, qA)

O (a, γB‚)
... if γB‚ ∈ δB‚(qB, a)

P
... (a, γA‚) if γA‚ ∈ δA‚(qA, a)

O
... (q′A, d) if (q′A, d) ∈ γA‚

P (q′B, d)
... if (q′B, d) ∈ γB‚

(p.d, q′B) (p.d, q′A)
...

...

Let us see how to directly define σ‚ from σ. Assume we are in position ((p, qB), (p, qA)) as above.
Fix a and γB‚ . We have to choose some γA‚ such that γA‚ ∩γA 6= ∅ for all γA ∈ δA(qA, a), and
moreover, for each (q′A, d) ∈ γA‚ , we must choose some (q′B, d) from γB‚ . The only canonical
way to do this seems to use the fact that from position ((p, qA), (p, qB)), the strategy σ induces
maps

f : γA 7−→ γB

F : (γA , (q′B, d) ∈ f(γA)) 7−→ (q′A, d) ∈ γA
as in §3.1, where

Σ A
σ
−( B

(p, qA) (p, qB)

O (a, γA)
...

P
... (a, γB) f(γA) = γB

O
... (q′B, d)

P (q′A, d)
... F (γA, (q′B, d)) = (q′A, d)

82



Then we can let

γA‚ := {F (γA, (q
′
B, d)) | γA ∈ δA(qA, a) and (q′B, d) ∈ γB‚ ∩ f(γA)}

Moreover, for each (q′A, d) ∈ γA‚ , there are some γA and some (q′B, d) ∈ γB‚ ∩ f(γA) such that
(q′A, d) = F (γA, (q

′
B, d)). The difficulty here is that σ may play the same (q′A, d) from one γA but

distinct (q′B, d), (q′′B, d) ∈ γB‚ ∩f(γA), and it is not clear how to choose one. A possibility would
be to impose a linear order on states, and to always take the least available state. But then
it is not clear how to preserve composition, because σ may be precomposed with a strategy
τ : B ( C where C is defined as B but its states have a different order, and τ plays as the
identity, but does not preserve the order of states. So we may have q′B < q′′B, and q′′C < q′C with
τ taking q′C to q′′B and q′′C to q′B:

Σ B
τ
−( C

(ε, qıB) (ε, qıC)
...

...
(p, qB) (p, qC)

O (a, γB)
...

P
... (a, γC)

O
... (q̃C , d) q̃C ∈ {q′C , q′′C}

P (q̃B, d)
... q̃B := q′B if q̃C = q′C , and q̃B := q′′B if q̃C = q′′C

But σ‚ should select q′B (since q′B < q′′B), which imposes σ‚ ◦ τ‚ to select q′C . On the other
hand, (τ ◦ σ)‚ should select q′′C (since q′′C < q′C). It follows that σ‚ ◦ τ‚ and (τ ◦ σ)‚ differ in
the following plays (which have the same O-moves):

Σ C‚ σ‚◦τ‚
−( A‚

(ε, qıC) (ε, qıA)
...

...
(p, qC) (p, qA)

O (a, γC‚)
...

P
... (a, γA‚)

O
... (q′A, d)

P (q′C , d)
...

Σ C‚
(τ◦σ)‚
−( A‚

(ε, qıC) (ε, qıA)
...

...
(p, qC) (p, qA)

O (a, γC‚)
...

P
... (a, γA‚)

O
... (q′A, d)

P (q′′C , d)
...

On the other hand, identity is preserved. Assume that A(M) = B(N) and σ is the identity,
so that σ‚ must be the identity as well. Since σ is the identity, one should take for the
move γPA‚ of σ‚ the set of all (q′A, d) such that (q′A, d) ∈ γOA‚ ∩ γOA for some γOA. Since

γOA‚ ⊆
⋃
δA(qA,M(p)(a)), this leads to put γPA‚ = γOA‚ . Moreover, for each γOA, the map FγOA

is

the identity, so given (q′A, d) ∈ γPA‚ (played by O in the right component of A‚(M)( A‚(M)),

we have that (q′A, d) ∈ γOA‚ ∩ γOA is unique such that σ played (q′A, d) from O’s move (q′A, d) in

the right component of A(M)( A(M), and it follows that (idA(M))
‚ = idA‚(M).

83



B. Proof of Adequacy of the Promotion Rule (Prop. 7.13)

We give here a detailed proof of Prop. 7.13. The argument is essentially the same as that
of [Wal02], with the obvious adaptations to our (slightly more complicated) setting.

Proposition B.1 (Prop. 7.13). Given N ,A : Σ with N non-deterministic, if there is a winning
P-strategy in Σ ` N (L)( A(M) then there is a winning P-strategy in Σ ` N (L)( !A(M).

Proof. Write I = {∗} for the set of O-moves of N . By Prop. 7.10, we can assume N and
A to be parity automata. Write G for the game graph of Σ ` N (L) ( A(M). Thanks
to [Kla94, KK95, Jut97, Zie98], there is a positional (w.r.t. G) winning P-strategy σ in Σ `
N (L)( A(M).

We build a winning P-strategy τ on N (L) ( !A(M) such that the following invariant is
satisfied:

• to each play t of τ with pos(t) = ((p, a, qN ) , (p, a, S)) and π2(S) = {q1, . . . , qn}, we
associate a set E(t) = {s1, . . . , sn} of plays of σ, with pos(si) = ((p, a, qN ), (p, a, qi)) for
each 1 ≤ i ≤ n.

• and if moreover t′ extends t and is such that pos(t′) = ((p.d, a.a, q′N ) , (p.d, a.a, S′)) then
for all s′ ∈ E(t′) there is some s ∈ E(t) such that s′ extends s.

The strategy τ is built by induction on plays as follows:

• For the base case (initial position ε), we have by definition S = {(qıA, qıA)} and E(ε) =
{qıA}.

• For the inductive step, let t with pos(t) = ((p, a, qN ) , (p, a, S)) and let O play from t some
(a, v) in component N (L) of N (L)( !A.

For si ∈ E(t), let ui be the move of σ from position ((p, a.a, qN , v) , (p, a, qi)), thus going
to position ((p, a.a, qN , v) , (p, a.a, qi, ui)). This defines a function

ht.(a,v) : QA −→ U

qi 7−→ ui

(the value of ht.(a,v) on irrelevant q’s is arbitrary). We then let τ play ht.(a,v) in the
component !A(M) of N (L)( !A(M), thus going to position

((p, a.a, qN , v) , (p, a.a, S, ht.(a,v)))

Then O answers some d ∈ D in the component !A(M), and we let P play ∗ in the
component N (L). The current position in N (L)( !A(M) becomes

((p.d, a.a, q′N ) , (p.d, a.a, S′))

where
q′N := δN (qN , L(a.a, p), v, ∗, d)

and S′ := δ!A(S,M(a.a, p), ht.(a,v), •, d)

Let
t′ := t · (a, v) · ht.(a,v) · d · ∗

84



and write π2(S′) = {q′1, . . . , q′m}. By definition of the transition function of !A, each q′j
is equal to δA(qij ,M(a.a, p), uij , xj , d) for some ij and some xj (note that there might
be several such ij and xj , but we select one). For each j, we let O play (xj , d) in the
component A(M) of N (L) ( A(M) from position ((p, a.a, qN , v) , (p, a.a, qij , uij )) thus
going to position ((p, a.a, qN , v) , (p.d, a.a, q′j)). We then let P answer ∗ in the component
N (L), thus leading to position

((p.d, a.a, q′N ) , (p.d, a.a, q′j))

We finally put

E(t′) := {si0 .(a, v).ui0 .(x0, d).• , · · · , sim .(a, v).uim .(xm, d).•}

This completes the definition of τ .
We now show that τ is winning. Consider an infinite play (tn)n∈N of τ , and let (qn, Sn)n∈N

be the associated sequence of states in (QN × Q!A)ω. Assume that we have (qn)n ∈ ΩN . We
show that (Sn)n ∈ Ω!A. Let (q′n)n be a trace in (Sn)n, so that (q′n, q

′
n+1) ∈ Sn+1. We have to

show that (q′n)n ∈ ΩA. To this end, we show that (q′n)n is generated by the projection on A(M)
of an infinite play of σ.

Note that for all n ∈ N,

pos(t4n) = ((pn, an, qn) , (pn, an, Sn))

By construction, for each n ∈ N there are sn ∈ E(t4n) and s′n ∈ E(t4(n+1)), such that

pos(sn) = ((pn, an, qn) , (pn, an, q
′
n))

and such that s′n extends sn:

s′n = sn · (an, vn) · un · dn · ∗

and such that moreover

pos(s′n) = ((pn+1, an+1, qn+1) , (pn+1, an+1, q
′
n+1))

where an+1 = an.an and pn+1 = pn.dn. Note that pos(sn) is completely determined from pn, an,
which are induced by (tn)n, together with the states qn and q′n. It follows that for all n ∈ N we
have

pos(s′n) = pos(sn+1)

Since σ is positional, it follows that the infinite sequence

χ := ε.(a0, v0).u0.d0. · · · .pn.(an, vn).un.dn. · · ·

is an infinite play of σ. Since χ produces the sequence of states (qn, q
′
n)n ∈ (QN ×QA)ω, we get

(q′n)n ∈ ΩA since (qn)n ∈ ΩN by assumption.

85



(qA , qB) AP ×BP

O ↓
((a , qA , u) , qB) AO ×BP

P ↓
(a , qA , u) , (a , qB , v)) AO ×BO

O ↓ where q′B := δB(qB, a, v, d)
((a , qA , u) , (q′B , d) AO × (BP ×D)

P ↓ where q′A := δA(qA, a, u, d)
(q′A , q′B) AP ×BP

Figure 31: The edges of the graph G̃ for Σ ` A( B

C. Further Examples

This Appendix is devoted to detailed accounts of two known results on non-deterministic au-
tomata, which can be reformulated in our setting. The first result is the following uniform
formulation of [CL08, Thm. 1].

Proposition C.1. For each regular language L ⊆ ΣD∗, there is a non-deterministic automaton
B with L(B) = L, and such that for every non-deterministic parity automaton A with L(A) ⊆ L,
there is a winning P-strategy in Σ ` A( B induced by a function g : QA ×QB × Σ× U → V ,
where A (resp. B) has set of P-moves U (resp. V ).

Our proof of Prop. C.1 relies on the existence of positional winning P-strategies in games of the
form Σ ` A⊗B( ‹, for non-deterministic parity automata A,B : Σ such that L(A)∩L(B) = ∅.
Second, we show in §C.4 that such strategies, when combined with our internalized linear
implication, can handle a construction for the separation property of [SA05, Thm. 2.7].

C.1. On Positional Strategies. Consider non-deterministic parity automata A,B : Σ. It
follows from §7.2.3 that if P has a winning strategy in Σ ` A ( B, then P has a positional
winning strategy. But the game graph of Σ ` A( B is equivalent to the graph G̃ with vertices:

(AP ×BP) + (AO ×BP) + (AO ×BO) + (AO × (BP ×D))

where
AP := QA AO := Σ×QA × U BP := QB BO := Σ×QB × V

and with edges depicted on Fig. 31.
Since a positional P-strategy in G̃ is given by a function

g : QA ×QB × Σ× U −→ V

we thus have:

Lemma C.2. Given non-deterministic parity automata A,B : Σ, if P has a winning strategy
in Σ ` A( B, then P has a winning strategy induced by a function QA ×QB × Σ× U → V .

86



C.2. On Positional Strategies for Separation. Consider now non-deterministic parity au-
tomata A,B : Σ such that L(A)∩L(B) = ∅. Then by Prop. 7.7 there is a winning P-strategy in
Σ ` A⊗ B( ‹. It follows from Lem. C.2 that P has winning strategy induced by a function

g : QA ×QB × B× Σ× U × V −→ D

The game Σ ` A ⊗ B ( ‹ is won by P if ‹ goes to state t, since it can not switch back to f.
It follows that it is sufficient to have the values of g above with ‹ in state f. It follows that P
has a winning strategy in Σ ` A⊗ B( ‹ induced by a map of the form

h : QA ×QB × Σ× U × V −→ D

C.3. Proof of Prop. C.1. The proof of Prop. C.1 follows the lines of [CL08], itself based on
the complementation construction used in [Tho97, Proof of Thm. 6.9].

Fix a regular L ⊆ ΣD∗ , and consider a non-deterministic parity C = (QC , q
ı
C ,W, δC ,ΩC)

recognizing the complement of L. Using the closure properties of ω-regular languages, there is
a deterministic parity ω-word automaton D : Σ× V ×D where

V := (QC ×W −→ D)

such that D accepts (ak, fk, dk)k iff for all (uk)k ∈ Uω and all (qk)k ∈ QωC , we have (qk)k /∈ ΩC
whenever q0 := qıC , qk+1 := δC(qk, ak, uk, fk(qk, ak, uk)), and dk = fk(qk, ak, uk).

Write D := (QD, q
ı
D,ΩD). Let now B : Σ be a parity non-deterministic automaton with

P-moves V and such that an infinite play ((ak, fk) · dk)k is winning iff (ak, fk, dk)k is accepted
by D. Explicitly, we let

B = (QD, q
ı
D, V, δB,ΩD)

where
δB(q, a, f, d) := δD(q, (a, f, d))

Lemma C.3 ([Tho97]). L(B) = L.

Proof of the Lemma. We show that L(B) = L(C‹). Let T : D∗ → Σ. Assume first that
T ∈ L(C‹), so that P has winning strategy in C‹(T ). Since C is a parity automaton, this strategy
can be assumed to be positional, hence to be determined by a function D∗ → (QC ×W → D).
But this determines a P-strategy in B(T ), which is winning by definition of B. Conversely,
assume that T ∈ L(B). Since B is non-deterministic, a winning P-strategy in B(T ) is given by
a function D∗ → V = D∗ → (QC ×W → D).

Going back to the proof of Prop. C.1, consider a non-deterministic parity A : Σ with L(A) ⊆
L. Since L(A) ∩ L(C) = ∅, it follows from §C.2 that there is a function

g : QA ×QC × Σ× U ×W −→ D

which generates a winning P-strategy in Σ ` A⊗ C ( ‹. But g can be seen as a map

QA × Σ× U −→ V

and this map generates a winning P-strategy in Σ ` A( B.

87



C.4. A Separation Property from [SA05]. Our internalized linear arrow can handle a con-
struction for the separation property of [SA05, Thm. 2.7].

Consider non-deterministic parity automata A,B : Σ such that L(A) ∩ L(B) = ∅. Assume
moreover that both A and B are parity with colorings of range {0, . . . , n} for some even n.
Theorem 2.7 of [SA05] say that there is a parity automaton C such that L(A) ⊆ L(C) ⊆ L(B‹)
and such that ΩC is generated by a coloring cB : QC → N of range ⊆ {0, . . . , n} and such that in
each reachable strongly connected component of C (for q → q′ iff q′ = δC(q, a, f, v, d) for some
a, f, v, d), cC has range either {1, . . . , n} or {0, . . . , n− 1}.

We build C by restricting B ( A along a winning strategy in Σ ` A ⊗ B ( ‹. By §C.2,
there is a function

g : QA ×QB × Σ× U × V −→ D

which generates a winning P-strategy in Σ ` A⊗ B( ‹.
We restrict the automaton B ( A : Σ along g as follows. Recall that QB(A = QB × QA.

Define C : Σ as follows:

C := (QB(A + {t}, qıB(A, UV , V, δC ,ΩC)

where δC(t, , , , ) := t, and

δC((qB, qA), a, f, v, d) :=

{
t if g(qA, qB, a, f(v), v) 6= d
δB(A((qA, qB), a, f, v, d) otherwise

The coloring cC of C is then defined as in [SA05, §2.2.2]. We define it explicitly as follows.
Consider a reachable strongly connected component C of C. Note that if C contains t, then
C = {t}, and we put cC(t) := n. Otherwise, C contains only states of B ( A, that is states
in QB × QA. Assume that C is non-trivial and contains two states ( , qA) and (qB, ) with
cA(qA) = cB(qB) = n. By definition of δC , the set of states

{(q′A, q′B, f) | (q′B, q
′
A) ∈ C}

is reached infinitely often in an infinite play of the strategy in Σ ` A ⊗ B ( ‹ induced by g.
But this contradicts the fact that this strategy is winning. It follows that either (a) cA never
takes the value n in C or (b) cB never takes the value n in C. In the case (a), for each state
(qB, qA) of C we put cC(qB, qA) := cA(qA), and in the case (b) we put cC(qB, qA) := cB(qB) + 1.

Consider now an infinite sequence of the form ρ := (q′k, qk)k ∈ QωB(A and let C be a strongly
connected component of C such that Infk(q

′
k, qk) ⊆ C. Let m = max(InfkcC(q

′
k, qk)).

Claim. If m is even, then ρ ∈ ΩB(A

Proof of the Claim. In case (a) above, we have m = max(InfkcA(qk)) hence (qk)k ∈ ΩA
and ρ ∈ ΩB(A. In case (b), m = max((InfkcB(q′k) + 1)), hence max(InfkcB(q′k)) is odd, so
that (q′k)k /∈ ΩB and ρ ∈ ΩB(A.

Lemma C.4. L(C) ⊆ L(B‹).

Proof. Consider a winning P-strategy σ in C(T ). Recall that the P-moves of B‹ are DV and
that its O-moves are V , and that the P-moves of C are UV and that its O-moves are V . Let τ
be the winning P-strategy τ on A ⊗ B ( ‹ (whose P-moves are D and O-moves are U × V )
induced by g. We define a P-strategy θ by combining σ and τ as follows: modulo Currying, θ
plays from v ∈ V the tree direction d ∈ D proposed by T ?(τ) from v and the u ∈ U given by σ

88



on v. Hence the strategies σ and θ play the same moves in B (provided by O). So the sequences
of QB-states produced by σ and θ are the same, unless O plays in B‹ a tree direction d ∈ D
different from the one proposed by θ, i.e. different from the one proposed by τ . In this case,
the play on B‹(T ) is P-winning and we are done. Assume now that the sequences of QB-states
agree. We show that they can not be in ΩB. Assume toward a contradiction that they are.
By the claim above, since σ is winning, the sequence of states in C belongs to ΩB(A The play
respects σ, so the sequence of QA-states must belong to ΩA since σ is winning. But the play
also respects T ?(τ), which is winning in A(T ) ⊗ B(T ) ( ‹, so the sequence of QA-states can
not belong to ΩA. It follows that the sequence of QB-states can not belong to ΩB, and we are
done since the play in B‹(T ) is then P-winning.

In order to complete the proof of the separation property, it remains to show the following

Lemma C.5. L(A) ⊆ L(C).

Proof. Let T : D∗ → Σ such that T ∈ L(A). Consider a winning positional P-strategy τ in
A(T ) induced by a function D∗ → (QA → U). This gives a function D∗ → (QC × V → U)
which induces a strategy σ in C(T ). Consider an infinite play $ of σ induced by an infinite
play $τ of τ . Let ρ ∈ QωC be the sequence of states produced by $. If ρ contains t, then
ρ ∈ Q∗B(A.tω ⊆ ΩC and we are done. Otherwise, let ρ = (q′k, qk)k ∈ QB(A. If we are in case
(a) above, then max(Infk(cC(ρ))) = max(Infk(cA(qk))), hence ρ ∈ ΩC . Assume that we are in
case (b), so that max(Infk(cC(ρ))) = max(Infk(cB(q′k)) + 1). Let θ be the winning P-strategy in
Σ ` A ⊗ B( ‹ induced by g. Then, by combining $τ and $�B, we obtain an infinite play $′

of θ. Note that in this play, ‹ never switches to t since we assumed ρ ∈ ΩB(A. It follows that
$′ produces the same sequence of states (q′k)k ∈ QB as $, and we must have (q′k)k /∈ ΩB since
(qk)k ∈ ΩA. It follows that max(Infk(cC(ρ))) = max(Infk(cB(q′k)) + 1) is even.

89



D. Monoids, Monads and Monoidal Categories

This appendix gathers easy and possibly well-known facts about monoidal categories. We refer
to [Mel09, ML98] for missing details.

D.1. Monads and Comonads

D.1.1. Monads. A monad on a category C is a triple T = (T, µ, η) consisting of a functor
T : C→ C and two natural transformations µA : TTA→ TA and ηA : A→ TA satisfying:

TTTA
µTA //

TµA

��

TTA

µA

��
TTA µA

// TA

and TA
ηTA // TTA

µA

��

TA
TηAoo

TA

The Kleisli category Kl(T ) = CT of T has the same objects as C and Kl(T )[A,B] := C[A, TB].
The categories C and Kl(T ) = CT are related by an adjunction

C

FT

77
> Kl(T ) = CT

UT

yy

where:

• The right adjoint UT : Kl(T ) → C maps objects A of Kl(T ) to TA and takes f ∈
Kl(T )[A,B] = C[A, TB] to

µB ◦ T (f) ∈ C[UTA,UTB] = C[TA, TB]

• The left adjoint FT : C → Kl(T ) is the identity on objects and takes f ∈ C[A,B] to
FT (f) := ηB ◦ f ∈ Kl(T )[A,B] = C[A, TB].

The category CT of Eilenberg-Moore algebras has, as objects, T -algebras h : TA→ A such that

TTA
µA //

Th

��

TA

h

��
TA

h
// A

and TA

h

��
A

ηA

DD

A

and as morphisms from h : TA→ A to k : TB → B, maps f : A→ B such that

TA
Tf //

h

��

TB

k

��
A

f
// B

90



The categories C and CT are related by an adjunction

C

FT

;;> CT

UT

{{

where:

• The forgetful functor UT : CT → C maps h : TA → A to A and f : (A, h) → (B, k) to
f : A→ B.

• The free functor FT : C→ CT maps A to (TA, µA) and f : A→ B to Tf : TA→ TB.

D.1.2. Comonads. Dually a comonad on C is a monad on Cop. It is therefore given by a triple
G = (G, δ, ε) where the functor G : C → C and the natural transformations δA : GA → GGA
and εA : GA→ A satisfy:

GA
δA //

δA

��

GGA

δGA

��
GGA

GδA
// GGGA

and GA GGA
εGAoo GεA // GA

GA

δA

OO

The Kleisli category Kl(G) = CG of G has the same objects as C and Kl(G)[A,B] :=
C[GA,B]. The categories C and Kl(G) = CG are related by an adjunction

Kl(G) = CG

UG

99> C

FG

ww

where:

• The left adjoint UG : Kl(G) → C maps objects A of Kl(G) to GA and takes f ∈
Kl(G)[A,B] = C[GA,B] to

G(f) ◦ δA ∈ C[UGA,UGB] = C[GA,GB]

• The right adjoint FG : C → Kl(G) is the identity on objects and takes f ∈ C[A,B] to
FG(f) := f ◦ εA ∈ Kl(G)[A,B] = C[GA,B].

D.2. (Lax) (Symmetric) Monoidal Monads.

There are different notions of monoidal functor (see e.g. [Mel09]). Here we use lax monoidal
functors (as the functor part of lax monoidal monads), and the dual notion of oplax monoidal
functor (as the functor part of oplax monoidal comonads).

91



D.2.1. (Lax) Symmetric Monoidal Functors. A (lax) symmetric monoidal functor on a sym-
metric monoidal category (C,⊗, I) is a functor F equipped with natural transformations

m2
A,B : FA⊗ FB → F (A⊗B) and m0 : I→ F (I)

making the following diagrams commute:

(FA⊗ FB)⊗ FC
αFA,FB,FC //

m2
A,B⊗idFC

��

FA⊗ (FB ⊗ FC)

idFA⊗m2
B,C

��
F (A⊗B)⊗ FC

m2
A⊗B,C

��

FA⊗ F (B ⊗ C)

m2
A,B⊗C

��
F ((A⊗B)⊗ C)

F (αA,B,C)
// F (A⊗ (B ⊗ C))

I⊗ FA λFA //

m0⊗idFA
��

FA

F I⊗ FA
m2

I,A

// F (I⊗A)

F (λA)

OO FA⊗ I
ρFA //

idFA⊗m0

��

FA

FA⊗ F I
m2
A,I

// F (A⊗ I)

F (ρA)

OO

FA⊗ FB
γFA,FB //

m2
A,B
��

FB ⊗ FA
m2
B,A

��
F (A⊗B)

F (γA,B)
// F (B ⊗A)

D.2.2. (Lax) Monoidal Natural Transformations. A monoidal natural transformation be-
tween (lax) monoidal functors θ : (F,m2,m0) =⇒ (G,n2, n0) is a natural transformation
θ : F =⇒ G making the following diagrams commute:

FA⊗ FB θA⊗θB //

m2
A,B
��

GA⊗GB
n2
A,B
��

F (A⊗B)
θA⊗B

// G(A⊗B)

and I
m0

~~

n0

  
F I

θI
// GI

The following is [Mel09, Prop. 10]:

Proposition D.1. Symmetric monoidal categories, (lax) symmetric monoidal functors, and
monoidal natural transformations form a 2-category SymMonCat.

Proof.

• The identity functor IdC : C → C is monoidal (actually strict monoidal), with m2
A,B =

idA⊗B and m0 = idI.

• If (F,m2,m0) and (G,n2, n0) are lax monoidal, then so is FG, with structure maps

F (n2
A,B) ◦m2

GA,GB : FGA⊗ FGB → F (GA⊗GB)→ FG(A⊗B)

F (n0) ◦m0 : I→ F I→ FGI

92



D.2.3. (Lax) (Symmetric) Monoidal Monads. A (lax) symmetric monoidal monad on a
monoidal category C is a monad (T, µ, η) such that T is a (lax) symmetric monoidal func-
tor and the transformations µ, η are monoidal (see e.g. [Mel09]). It then follows from [Mel09,
§6.10] that:

Proposition D.2. If T = (T, µ, η) is a (lax) symmetric monoidal monad on (C,⊗, I) then its
Kleisely category Kl(T ) = CT is symmetric monoidal. Moreover, the functor FT : C→ Kl(T ) =
CT is strict and the adjunction

C

FT

77
> Kl(T ) = CT

UT

yy

is (lax) symmetric monoidal (i.e. is an adjunction in SymMonCat).

Proof.

• The monoidal product ⊗Kl of Kl(T ) is on objects the same as that of C and has the same
unit I. On morphisms, given f ∈ Kl(T )[A0, B0] = C[A0, TB0] and g ∈ Kl(T )[A1, B1] =
C[A1, TB1], we let f ⊗Kl g be the composite

A0 ⊗A1
f⊗g−→ TB0 ⊗ TB1

m2
B0,B1−→ T (B0 ⊗B1)

where m2 is the binary strength of T .

• The functor FT is strict, since its strength is given by:

f2
A,B := idKl

A⊗B = ηA⊗B ∈ Kl(T )[A⊗KlB , A⊗KlB] = C[A⊗B , T (A⊗B)]

and
f0 := idKl

I = ηI ∈ Kl(T )[I , I] = C[I , T I]

• The functor UT is lax symmetric monoidal. Its strength is given by:

u2
A,B := m2

A,B ∈ C[UTA⊗ UTB , UT (A⊗B)] = C[TA⊗ TB , T (A⊗B)]

and
u0 := m0 ∈ C[I , UT I] = C[I , T I]

where m2, m0 is the strength of T .

• The structure maps of Kl(T ) are taken to be the image under FT of the structure maps
of C. It thus directly follows that the coherence conditions are met on C.

• It remains to check the naturality of the structural maps of Kl(T ), which amounts to the
following diagrams:

– For the associativity structure map α(−),(−),(−):

(A⊗B)⊗ C
(f⊗g)⊗h //

ηA⊗(B⊗C)◦αA,B,C
��

(A′ ⊗B′)⊗ C ′

ηA′⊗(B′⊗C′)◦αA′,B′,C′
��

T (A⊗ (B ⊗ C))
T (f⊗(g⊗h))// T (A′ ⊗ (B′ ⊗ C ′))

93



Proof. By naturality of η and α, we have

ηA′⊗(B′⊗C′) ◦ αA′,B′,C′ ◦ ((f ⊗ g)⊗ h) = T (f ⊗ (g ⊗ h)) ◦ ηA⊗(B⊗C) ◦ αA,B,C
and we are done.

– For the unit structure maps λ(−) and ρ(−):

I⊗A idI⊗f //

ηA◦λA
��

I⊗A′

ηA′◦λA′
��

TA
T (f) // TA′

and A⊗ I
f⊗idI //

ηA◦ρA
��

A′ ⊗ I

ηA′◦ρA′
��

TA
T (f) // TA′

Proof. By naturality of η, λ and ρ we have

ηA′◦λA′◦(idI⊗f) = T (f)◦ηA◦λA and ηA′◦λA′◦(f⊗idI) = T (f)◦ηA◦λA
and we are done.

– For the symmetry structure map γ(−),(−):

A⊗B f⊗g //

ηB⊗A◦γA,B
��

A′ ⊗B′

ηB′⊗A′◦γA′,B′
��

T (B ⊗A)
T (g⊗f) // T (B′ ⊗A′)

Proof. By naturality of η and γ, we have

ηB′⊗A′ ◦ γA′,B′ ◦ (f ⊗ g) = T (g ⊗ f) ◦ ηB⊗A ◦ γA,B
and we are done.

D.3. Oplax (Symmetric) Monoidal Comonads.

We sketch the dual notion of oplax (symmetric) monoidal comonad. All constructions and
results follow by duality from the case of lax monads.

D.3.1. Oplax Monoidal Functors. An oplax symmetric monoidal functor F on a symmetric
monoidal category (C,⊗, I) is equipped with natural transformations

m2
A,B : F (A⊗B)→ FA⊗ FB and m0 : F (I)→ I

making the following diagrams commute:

(FA⊗ FB)⊗ FC
αFA,FB,FC // FA⊗ (FB ⊗ FC)

F (A⊗B)⊗ FC

m2
A,B⊗idFC

OO

FA⊗ F (B ⊗ C)

idFA⊗m2
B,C

OO

F ((A⊗B)⊗ C)

m2
A⊗B,C

OO

F (αA,B,C)
// F (A⊗ (B ⊗ C))

m2
A,B⊗C

OO

94



I⊗ FA λFA //

m0⊗idFA
��

FA

F I⊗ FA F (I⊗A)

F (λA)

OO

m2
I,A

oo

FA⊗ I
ρFA //

idFA⊗m0

��

FA

FA⊗ F I F (A⊗ I)
m2
A,I

oo

F (ρA)

OO

FA⊗ FB
γFA,FB // FB ⊗ FA

F (A⊗B)

m2
A,B

OO

F (γA,B)
// F (B ⊗A)

m2
B,A

OO

D.3.2. (Oplax) Monoidal Natural Transformations. A monoidal natural transformation be-
tween oplax monoidal functors θ : (F,m2,m0) =⇒ (G,n2, n0) is a natural transformation
θ : F =⇒ G making the following diagrams commute:

FA⊗ FB θA⊗θB // GA⊗GB

F (A⊗B)
θA⊗B

//

m2
A,B

OO

G(A⊗B)

n2
A,B

OO and I

F I
θI

//

m0

>>

GI

n0

``

The following is [Mel09, Prop. 11]:

Proposition D.3. Symmetric monoidal categories, oplax symmetric monoidal functors, and
monoidal natural transformations form a 2-category SymOplaxMonCat.

D.3.3. Oplax Monoidal Comonads. An oplax monoidal comonad on a monoidal category C
is a comonad (G, δ, ε) such that G is an oplax monoidal functor and the transformations δ, ε
are monoidal (see e.g. [Mel09]). It then follows from [Mel09, §6.10] that:

Proposition D.4. If G = (G, δ, ε) is an oplax symmetric monoidal comonad on C then the
Kleisely category Kl(G) = CG is symmetric monoidal. Moreover, the functor FG : C→ Kl(G) =
CG is strict and and the adjunction

Kl(G) = CG

FG

99> C

UT

ww

is oplax symmetric monoidal (i.e. is an adjunction in SymOplaxMonCat).

Proof. By Prop. D.2, since an oplax comonad on C is a lax monad on Cop, and since Cop is
symmetric monoidal iff C is symmetric monoidal.

We record for future use the monoidal structure of Kl(G):

• The monoidal product ⊗Kl of Kl(G) is on objects the same as that of C and has the same
unit I. On morphisms, given f ∈ Kl(G)[A0, B0] = C[GA0, B0] and g ∈ Kl(G)[A1, B1] =
C[GA1, B1], we let f ⊗Kl g be the composite

G(A0 ⊗A1)
g2
A0,A1−→ GA0 ⊗GA1

f⊗g−→ B0 ⊗B1

where g2 is the binary strength of G.

95



• The functor FG is strict, since its strength is given by:

f2
A,B := idKl

A⊗B = εA⊗B ∈ Kl(G)[A⊗KlB , A⊗KlB] = C[G(A⊗B) , A⊗B]

and
f0 := idKl

I = εI ∈ Kl(G)[I , I] = C[GI , I]

• The functor UG is oplax symmetric monoidal. Its strength is given by:

u2
A,B := g2

A,B ∈ C[UG(A⊗B) , UGA⊗ UGB)] = C[G(A⊗B) , GA⊗GB]

and
u0 := g0 ∈ C[UGI , I] = C[GI , I]

where g2, g0 is the oplax strength of G.

• The structure maps of Kl(G) are taken to be the image under FG of the structure maps
of C.

D.4. Distributive Laws of a Comonad over a Monad

Consider a category C equipped with a comonad (G, δ, ε) and monad (T, µ, η).
A distributive law of G over T is a natural tranformation

Λ : G ◦ T =⇒ T ◦G

such that the following diagrams commute (see e.g. [HHM07]):

TGA
TδA

**
GTA

ΛA

44

δTA %%

TGGA

GGTA
GΛA

// GTGA
ΛGA

88

(55)

GTA
ΛA

**
GTTA

GµA

44

ΛTA %%

TGA

TGTA
TΛA

// TTGA

µGA

99

(56)

TGA
TεA

##
GTA

ΛA

::

εTA
// TA

(57)

GTA
ΛA

$$
GA

GηA
;;

ηGA
// TGA

(58)

96



D.4.1. The Kleisli Category Kl(Λ).

The category Kl(Λ) has the same objects as C, and its morphisms are given by Kl(Λ)[A,B] :=
C[GA, TB]. Identity and composition laws follow from that of C using the monad T and
comonad G and the coherence properties of Λ : GT ⇒ TG.

D.4.2. Lifting of a Comonad to the Kleiseli Category of a Monad.

Given a distributive law Λ : GT ⇒ TG as above, the comonad (G, δ, ε) on C lifts to a comonad
(GT , δT , εT ) on CT = Kl(T ), where:

• GT (A) := G(A) and given f ∈ Kl(T )[A,B] = C[A, TB],

GT (f) := ΛB ◦G(f) ∈ Kl(T )[GTA,GTB] = C[GA, TGB]

• δT,A := FT (δA) ∈ Kl(T )[GA,GGA] = C[GA, TGGA] is explictitely given by

δT,A := ηGGA ◦ δA

• εT,A := FT (εA) ∈ Kl(T )[GA,A] = C[GA, TA] is explicitely given by

εT,A := ηA ◦ εA

Proposition D.5. The category Kl(Λ) is equivalent to the Kleisli category Kl(GT ).

Of course, one may alternatively consider the equivalent dual operation of lifting the monad T
to the Kleiseli category Kl(G).

Remark D.6. The above definition of the lift GT of G to Kl(T ) satisfies the properties asked
in [HNPR06, Def. 3.10].

D.4.3. (Oplax) Monoidal Lifting.

Assume now thatG is an oplax (symmetric) monoidal comonad and that T is a (lax) (symmetric)
monoidal monad on a symmetric monoidal category C. It follows from Prop. D.2 that the Kleiseli
category Kl(T ) is symmetric monoidal. Moreover,

Proposition D.7. If Λ : GT ⇒ TG is monoidal, in the sense that

G(TA⊗ TB)

g2
TA,TB

��

G(m2
A,B)

// GT (A⊗B)

ΛA⊗B
��

GTA⊗GTB

ΛA⊗ΛB
��

TG(A⊗B)

T (g2
A,B)

��
TGA⊗ TGB

m2
GA,GB

// T (GA⊗GB)

(59)

where (m2,m0) is the strength of T and (g2, g0) is the strength of G, then (GT , δT , εT ) is an
oplax (symmetric) monoidal comonad on Kl(T ). The oplax monoidal strength of GT is given
by

g2
T,A,B := FT (g2

A,B) = ηGA⊗GB ◦ g2
A,B ∈ Kl(T )[GT (A⊗Kl B) , GTA⊗Kl GTB]

(= C[G(A⊗B) , T (GA⊗GB)])

97



and
g0
T := FT (g0) = ηI ◦ g0 ∈ Kl(T )[GT I , I] = C[GI , T I]

where
g2
A,B : G(A⊗B)→ GA⊗GB and g0 : GI→ I

since g2, g0 is an oplax monoidal strength.

By applying now Prop. D.4 together with Prop. D.7, we thus get:

Corollary D.8. With the same assumptions, Kl(Λ) is symmetric monoidal.

Proof. We record for future use the monoidal structure of Kl(Λ) = Kl(GT ):

• The monoidal product ⊗Kl of Kl(Λ) is on objects the same as that of C and has the same
unit I.

On morphisms, given

f ∈ Kl(Λ)[A0, B0] = Kl(GT )[A0, B0] = Kl(T )[GA0, B0] = C[GA0, TB0]

and g ∈ Kl(Λ)[A1, B1] = C[GA1, TB1]

we let f ⊗Kl g be the composite

G(A0 ⊗A1)
g2
A0,A1−→ GA0 ⊗GA1

f⊗g−→ TB0 ⊗ TB1

m2
B0,B1−→ T (B0 ⊗B1)

where g2 is the binary strength of G and m2 that of T . Note that we could equivalently
have taken the following composite (corresponding to composition in Kl(T )):

G(A0⊗A1)
g2
T,A0,A1−→ T (GA0⊗GA1)

T (f⊗Kl(T )g)−→ TT (B0⊗B1)
µB0⊗B1−→ T (B0⊗B1)

since g2
T,A0,A1

= ηGA0,GA1 ◦ g2
A0,A1

and by the monad laws:

µB ◦ T (h) ◦ ηA = µB ◦ ηB ◦ h = h

• The structure maps of Kl(Λ) are taken to be the image under FGT of the structure maps
of Kl(T ), itself beeing the image under FT of the structure maps of C. Note that on maps,

FGT (FT (h)) = ηB ◦ h ◦ εA for h : A→ B

D.5. Proof of Proposition D.7.

D.5.1. Naturality of g2
T,A,B. The naturality of g2

T,A,B, that is, in Kl(T ):

GT (A⊗Kl B)
GT (f⊗Klg) //

g2
T,A,B

��

GT (A′ ⊗Kl B
′)

g2
T,A′,B′
��

GTA⊗Kl GTB
GT (f)⊗KlGT (g)

// GTA
′ ⊗Kl GTB

′

98



(where f ∈ Kl(T )[A,B] = C[A, TB] and g ∈ Kl(T )[A′, B′] = C[A′, TB′]), amounts to, in C:

G(A⊗B)
ΛA′⊗B′◦G(m2

A′,B′◦(f⊗g)) //

ηGA⊗GB◦g2
A,B

��

TG(A′ ⊗B′)

µGA′⊗GB′◦T (ηGA′⊗GB′◦g2
A′,B′ )

��
T (GA⊗GB)

µGA′⊗GB′◦T (m2
GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g))))

// T (GA′ ⊗GB′)

By naturality of η, we have

µGA′⊗GB′ ◦ T (m2
GA′,GB′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))) ◦ ηGA⊗GB =

µGA′⊗GB′ ◦ ηT (GA′⊗GB′) ◦m2
GA′,GB′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))

and by the unit monad law, we get:

µGA′⊗GB′◦T (m2
GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g))))◦ηGA⊗GB = m2

GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g)))

and therefore (by bifunctoriality of ⊗):

µGA′⊗GB′◦T (m2
A′,B′◦((ΛA′◦G(f))⊗(ΛB′◦G(g))))◦ηGA⊗GB = m2

GA′,GB′◦(ΛA′⊗ΛB′)◦(G(f)⊗G(g))

From which it follows (by naturality of g2) that

µGA′⊗GB′ ◦ T (m2
A′,B′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))) ◦ ηGA⊗GB ◦ g2

A,B =

m2
GA′,GB′ ◦ (ΛA′ ⊗ ΛB′) ◦ g2

TA′,TB′ ◦G(f ⊗ g)

On the other hand, also using the unit monad law we get:

µGA′⊗GB′ ◦ T (ηGA′⊗GB′ ◦ g2
A′,B′) = µGA′⊗GB′ ◦ T (ηGA′⊗GB′) ◦ T (g2

A′,B′) = T (g2
A′,B′)

We are therefore finally left with

m2
GA′,GB′ ◦ (ΛA′ ⊗ ΛB′) ◦ g2

TA′,TB′ = T (g2
A′,B′) ◦ ΛA′⊗B′ ◦G(m2

A′,B′)

which follows from (59).
Note that

G(TA′⊗TB′)
g2
TA′,TB′−→ GTA′⊗GTB′

ΛA′⊗ΛB′−→ TGA′⊗TGB′
m2
GA′,GB′−→ T (GA′⊗GB′)

and

G(TA′ ⊗ TB′)
G(m2

A′,B′ )−→ GT (A′ ⊗B′)
ΛA′⊗B′−→ TG(A′ ⊗B′)

T (g2
A′,B′ )−→ T (GA′ ⊗GB′)

D.5.2. Oplax Symmetric Monoidal Coherence of g2
T and g0

T . The coherence of g2
T and g0

T

amount to the following diagrams.

99



• The associativity diagram:

(GTA⊗Kl GTB)⊗Kl GTC
αKl
GTA,GTB,GTC // GTA⊗Kl (GTB ⊗Kl GTC)

GT (A⊗Kl B)⊗Kl GTC

g2
T,A,B⊗Klid

Kl
GTC

OO

GTA⊗Kl GT (B ⊗Kl C)

idKl
GTA

⊗Klg
2
T,B,C

OO

GT ((A⊗Kl B)⊗Kl C)

g2
T,A⊗KlB,C

OO

GT (αKl
A,B,C)

// GT (A⊗Kl (B ⊗Kl C))

g2
T,A,B⊗KlC

OO

(60)

First, recall that g2
T,A,B = FT (g2

A,B) by definition and that on objects GTA = GA, and

also FT (A) = A and A⊗Kl B = A⊗B. Moreover, αKl
A,B,C = FT (αA,B,C) and idKl

A = ηA =
FT (idA). Also, since η(−) is monoidal, given C-maps f and g we have

(ηA◦f)⊗Kl (ηB ◦g) = m2
A,B ◦((ηA◦f)⊗(ηB ◦g)) = ηA⊗B ◦(f⊗g) = FT (f⊗g)

Finally, thanks to the coherence diagram (58) of distributive laws, for the bottom hori-
zontal map we have

GT (αKl
A,B,C) = ΛA⊗(B⊗C) ◦G(ηA⊗(B⊗C)) ◦G(αA,B,C)

= ηG(A⊗(B⊗C)) ◦G(αA,B,C) = FT (G(αA,B,C))

It follows that (60) amounts to the following diagram in Kl(T ):

(GA⊗GB)⊗GC
FT (αGA,GB,GC)

// GA⊗ (GB ⊗GC)

G(A⊗B)⊗GC

FT (g2
A,B⊗idGC)

OO

GA⊗G(B ⊗ C)

FT (idGA⊗g2
B,C)

OO

G((A⊗B)⊗ C)

FT (g2
A⊗B,C)

OO

FT (G(αA,B,C))
// G(A⊗ (B ⊗ C))

FT (g2
A,B⊗C)

OO

Now we are done since the above diagram is the image under the functor FT of the
associativity coherence diagram of oplax the monoidal functor G.

• The coherence diagrams for units and symmetry are:

I⊗Kl GTA
λKl
GTA //

g0
T⊗KlidGTA

��

GTA

GT I⊗Kl GTA GT (I⊗Kl A)

GT (λKl
A )

OO

g2
T,I,A

oo

GTA⊗Kl I
ρKl
GTA //

idGTA⊗Klg
0
T

��

GTA

GTA⊗Kl GT I GT (A⊗Kl I)
g2
T,A,I

oo

GT (ρKl
A )

OO

GTA⊗Kl GTB
γKl
GTA,GTB// GTB ⊗Kl GTA

GT (A⊗Kl B)

g2
T,A,B

OO

GT (γKl
A,B)

// GT (B ⊗Kl A)

g2
T,B,A

OO

100



They are dealt-with similarly. We only detail the case of the unit λKl. First, as above,
we have g2

T,I,A = FT (g2
A,B) and g0

T = FT (g0), and on objects: GT (A) = A, FT (A) = A and

A ⊗Kl B = A ⊗ B. Moreover, λKl
A = FT (λA) and idKl

A = FT (idA). Again by monoidality
of η(−) we have

g0
T ⊗Kl idKl

GTA
= m2

I,A ◦ (FT (g0)⊗ FT (idGA)) = m2
I,A ◦ ((ηI ◦ g0)⊗ (ηGA ◦ idGA))

= ηI⊗GA ◦ (g0 ⊗ idGA) = FT (g0 ⊗ idGA)

Again by the coherence diagram (58) of distributive laws, we have

GT (λKl
A ) = ΛA ◦G(ηA) ◦G(λA) = ηGA ◦G(λA) = FT (λA)

Then, as for the associativity coherence law above, we are done since we get the image
under the functor FT of the corresponding unit coherence diagram for the oplax strength
of G in C.

D.5.3. The natural map εT,A is monoidal. The corresponding diagrams are:

GTA⊗Kl GTB
εT,A⊗KlεT,B // A⊗Kl B

GT (A⊗Kl B)

g2
T,A,B

OO

εT,A⊗KlB

// A⊗Kl B

and I

GT I

g0
T

==

εT,I
// I

Reasonning as above (and in part. using the lax monoidality of η(−)), these diagrams are quiv-
alent to

GA⊗GB
FT (εA⊗εB) // A⊗B

G(A⊗B)

FT (g2
A,B)

OO

FT (εA⊗B)
// A⊗Kl B

and I

GI

FT (g0)
>>

F(εI)
// I

Now we are done since recalling that FT is the identity on objects, the above diagrams are the
image under FT of the oplax monoidal coherence digrams of ε(−).

D.5.4. The natural map δT,A is monoidal.

GTA⊗Kl GTB
δT,A⊗KlδT,B // GTGTA⊗Kl GTGTB

GT (A⊗Kl B)

g2
T,A,B

OO

δT,A⊗KlB

// GTGT (A⊗Kl B)

GT (g2
T,A,B)◦g2

T,GTA,GTB

OO

and
I

GT (g0
T )◦g0

T

##
GT I

g0
T

==

δI
// GTGT I

Reasonning as above, using coherence diagram (58) of distributive laws, we have

GT (g2
T,A,B) = ΛGA⊗GB ◦G(ηGA⊗GB) ◦ g2

A,B = ηG(GA⊗GB) ◦G(g2
A,B) = FT (g2

A,B)

and we then conclude as in the case of ε(−) above.

101



D.6. Monoids and Comonoids

D.6.1. Monoids.

Recall from e.g. [Mel09] that a commutative monoid in an SMC (C,⊗, I) is a triple M =
(M,u,m) where M is an object of C and u and m are morphisms

I
u−→ M

m←− M ⊗M

subject to the following coherence diagrams:

(M ⊗M)⊗M α //

m⊗idM
��

M ⊗ (M ⊗M)
idM⊗m //M ⊗M

m

��
M ⊗M m

//M

(61)

I⊗M

λ
''

u⊗idM //M ⊗M
m
��

M ⊗ I

ρ
ww

idM⊗uoo

M

(62)

M ⊗M γ //

m

&&

M ⊗M
m

xx
M

(63)

It is well-known (see e.g. [Mel09, Prop. 2]) that we always have λI = ρI in a monoidal category.

Proposition D.9. If M = (M,u,m) is a monoid object in C, then

I⊗ I
u⊗u //

ρI=λI
��

M ⊗M
m
��

I u
//M

Proof. By bifunctoriality of ⊗, it is equivalent to show

I⊗ I
idI⊗u//

λI
��

I ⊗M u⊗idM//M ⊗M
m
��

I u
//M

But m ◦ (u⊗ idM ) = λM by the unit law (62), and we are done since by naturality of λ we have

λM ◦ (idI ⊗ u) = u ◦ λI

102



D.6.2. The Category Mon(C) of Commutative Monoids.

The category Mon(C) of commutative monoids of C has monoids as objects, and as morphisms
from (M,u,m) to (M ′, u′,m′), C-morphisms f : M → M ′ making the following two diagrams
commute:

M ⊗M f⊗f //

m
��

M ′ ⊗M ′

m′

��
M

f
//M ′

and I
u

�� u′   
M

f
//M ′

D.6.3. Comonoids.

Dually, a commutative monoid in C is a triple K = (K, e, d) where

I
e←− K

d−→ M ⊗M

subject to the following coherence diagrams:

K
d //

d
��

K ⊗K

d⊗idK
��

K ⊗K idK⊗d // K ⊗ (K ⊗K) (K ⊗K)⊗Kαoo

(64)

I⊗K

λ
''

K ⊗K
(e⊗idK)oo (idK⊗e) // K ⊗ I

ρ
ww

K

d

OO (65)

K
d

xx

d

&&
K ⊗K γ // K ⊗K

(66)

We record the following simple fact.

Proposition D.10. Given symmetric monoidal categories C, D, an oplax symmetric monoidal
functor G : C→ D, and a commutative comonoid (K, e, d) of C, then (GK, g0 ◦Ge, g2

K,K ◦Gd)

is a commutative comonoid in D, where (g0, g2) is the oplax strength of G.

Proof. We check the required diagrams.
Diagram (64) unfolds to:

GK
g2
K,K◦Gd //

g2
K,K◦Gd

��

GK ⊗GK

g2◦Gd⊗idGK
��

GK ⊗GK idGK⊗g2◦Gd // GK ⊗ (GK ⊗GK) (GK ⊗GK)⊗GKαoo

Note that since (K, e, d) is a comonoid in C, and since G is a functor, we have

GK
Gd //

Gd
��

G(K ⊗K)

G(d⊗idK)

��
G(K ⊗K)

G(idK⊗d) // G(K ⊗ (K ⊗K)) ((K ⊗K)⊗K)
Gαoo

103



By naturality of g2, we have

((g2◦Gd)⊗idGK)◦g2
K,K = (g2⊗idGK)◦(Gd⊗G(idK))◦g2

K,K = (g2⊗idGK)◦g2
K⊗K,K◦G(d⊗idK)

From which it follows by oplax monoidality of G that

α ◦ ((g2 ◦Gd)⊗ idGK) ◦ g2
K,K ◦Gd = (idGK ⊗ g2) ◦ g2

K,K⊗K ◦G(α) ◦G(d⊗ idK) ◦Gd

But by functoriality of G, since (K, e, d) is a comonoid in C we have

G(α) ◦G(d⊗ idK) ◦Gd = G(idK ⊗ d) ◦Gd

so that

α ◦ ((g2 ◦Gd)⊗ idGK) ◦ g2
K,K ◦Gd = (idGK ⊗ g2) ◦ g2

K,K⊗K ◦G(idK ⊗ d) ◦Gd

The other diagrams are dealt-with similarly.

D.6.4. The Category Comon(C) of Commutative Comonoids.

The category Comon(C) of commutative comonoids of C has comonoids as objects, and as
morphisms from (K, e, d) to (K ′, e′, d′), C-morphisms f : K → K ′ making the following two
diagrams commute:

K
f //

d
��

K ′

d′

��
K ⊗K

f⊗f
// K ′ ⊗K ′

and K
f //

e
��

K ′

e′��
I

D.6.5. Lifting of Monoids and Comonoids to Kleiseli Categories.

We note here the following proposition, to be used in §F (together with Prop. H.1).

Proposition D.11. Let C be a symmetric monoidal category.

(a) Let T = (T, µ, η) be a (lax) symmetric monoidal monad on C.

(i) If (M,u,m) is a commutative monoid in C, then (M,FT (u),FT (m)) is a commutative
monoid in Kl(T ).

(ii) If (K, e, d) is a commutative comonoid in C, then (K,FT (e),FT (d)) is a commutative
comonoid in Kl(T ).

(b) Let G = (G, δ, ε) be an oplax symmetric monoidal comonad on C.

(i) If (M,u,m) is a commutative monoid in C, then (M,FG(u),FG(m)) is a commutative
monoid in Kl(G).

(ii) If (K, e, d) is a commutative comonoid in C, then (K,FG(e),FG(d)) is a commutative
comonoid in Kl(G).

We only prove Prop. D.11.(a) since the case D.11.(b) follows by duality.

104



D.6.6. Proof of Proposition D.11.(ai). Write (t2, t0) for the (lax) strength of T . Thanks to
Prop. D.2, the coherence diagrams of (M,FT (u),FT (m)) amount to the following in Kl(T ).

• Coherence w.r.t. associativity amounts in Kl(T ) to:

(M ⊗M)⊗M
FT (α) //

FT (m)⊗Klid
Kl
M
��

M ⊗ (M ⊗M)
idKl
M ⊗KlFT (m)

//M ⊗M

FT (m)

��
M ⊗M

FT (m)
//M

Note that

FT (m) ◦Kl (FT (m)⊗Kl idKl
M ) = µM ◦ T (ηM⊗M ) ◦ T (m) ◦ t2M,M ◦ ((ηM ◦m)⊗ (ηM ))

Reasonning similarly as in the proof of Prop. D.7, we have

FT (m)◦Kl (FT (m)⊗Kl idKl
M ) = T (m)◦ηM⊗M ◦ (m⊗ idM ) = ηM ◦m◦ (m⊗ idM )

= FT (m ◦ (m⊗ idM ))

We similarly obtain

FT (m) ◦Kl (idK lM ⊗Kl FT (m)) = FT (m ◦ (idM ⊗m))

and we are done using the functoriality of FT and the associativity coherence diagram (61)
of monoids.

• Coherence w.r.t. units amounts in Kl(T ) to:

I⊗M

FT (λ)
**

FT (u)⊗Klid
Kl
M //M ⊗M

FT (m)
��

M ⊗ I

FT (ρ)
tt

idKl
M ⊗KlFT (u)

oo

M

Reasonning as above, we obtain:

FT (m) ◦Kl (FT (u)⊗Kl idKl
M ) = FT (m ◦ (u⊗ idM ))

and FT (m) ◦Kl (idKl
M ⊗Kl FT (u)) = FT (m ◦ (idM ⊗ u))

and we are done using the units cohrence diagram (62)

• Coherence w.r.t. symmetry amounts in Kl(T ) to:

M ⊗M
FT (γ) //

FT (m)

**

M ⊗M
FT (m)

uu
M

and follows directly from diagram (63).

105



D.6.7. Proof of Proposition D.11.(aii). We proceed similarly as in the case (ai). We only
detail the case of coherence w.r.t. associativity, which amounts in Kl(T ) to:

K
FT (d) //

FT (d)

��

K ⊗K

FT (d)⊗KlidK
��

K ⊗K
idKl
K ⊗KlFT (d)

// K ⊗ (K ⊗K) (K ⊗K)⊗K
FT (α)oo

Note that

(idKl
K ⊗Kl FT (d)) ◦Kl FT (d) = µK⊗(K⊗K) ◦ T (idKl

K ⊗Kl FT (d)) ◦ ηK⊗K ◦ d

= µK⊗(K⊗K) ◦ ηT (K⊗(K⊗K)) ◦ (idKl
K ⊗Kl FT (d)) ◦ ◦d

= (idKl
K ⊗Kl FT (d)) ◦ d

= ηK⊗(K⊗K) ◦ (idK ⊗ d) ◦ d

= FT ((idK ⊗ d) ◦ d)

We similarly obtain

(FT (d)⊗Kl idKl
K ) ◦Kl FT (d) = FT ((d⊗ idK) ◦ d)

and we conclude using the functoriality of FT and the associativity coherence diagram (64) of
comonoids.

D.7. The Monad of Monoid Indexing

Following [HS03, §2.5], a monoid (M,u,m) in a monoidal category C gives rise to a monad
T = (T, µ, η) where T (−) := (−)⊗M ,

ηA := (idA ⊗ u) ◦ ρ−1
A : A −→ A⊗M

and µA := (idA ⊗m) ◦ αA,M,M : (A⊗M)⊗M −→ A⊗M

It is well-known (see e.g. [HS03, §2.5] or [Mel09, §6.6]) that (T, µ, η) is a monad. We check here
that T is actually a (lax) monoidal monad. The strength of T is

m2
A,B : (A⊗M)⊗ (B ⊗M)→ (A⊗B)⊗M and m0 : I→ I⊗M

where m2
A,B is the composite

(A⊗M)⊗ (B ⊗M)
θA,B−→ (A⊗B)⊗ (M ⊗M)

id⊗m−→ (A⊗B)⊗M

where θA,B is a natural map made of identities and structure maps of C, and where m0 is the
composite

I
λ−1
I−→ I⊗ I

idI⊗u−→ I⊗M
The map θA,B is explicitely defined as the following composite:

(A⊗M)⊗ (B ⊗M)
α−→ A⊗ (M ⊗ (B ⊗M))

idA⊗γ−→ A⊗ ((B ⊗M)⊗M)
idA⊗α−→

A⊗ (B ⊗ (M ⊗M))
α−1

−→ (A⊗B)⊗ (M ⊗M)

Note that (T, µ, η) is only a lax monad, since the structure maps of monoid objects are in general
not isos.

106



Proposition D.12 (Prop. 4.4.(a)). (T, µ, η) is a (lax) symmetric monoidal monad.

By applying Prop. D.2 to Prop. D.12 we thus get:

Corollary D.13 (Prop. 4.5.(a)). Kl(T ) is symmetric monoidal.

D.8. Proof of Proposition D.12.

D.8.1. T (−) = (−)⊗M is a (strong) symmetric monoidal functor. The diagrams to check
amount to the following:

((A⊗M)⊗ (B ⊗M))⊗ (C ⊗M)
αTA,TB,TC //

((idA⊗B⊗m)◦θA,B)⊗idC⊗M
��

(A⊗M)⊗ ((B ⊗M)⊗ (C ⊗M))

idA⊗M⊗((idA⊗B⊗m)◦θB,C)

��
((A⊗B)⊗M)⊗ (C ⊗M)

(idA⊗B⊗m)◦θA⊗B,C
��

(A⊗M)⊗ ((B ⊗ C)⊗M)

(idA⊗B⊗m)◦θA,B⊗C
��

((A⊗B)⊗ C)⊗M
αA,B,C⊗idM

// (A⊗ (B ⊗ C))⊗M

which follows from the monoid coherence law (61) of (M,u,m) and the monoidal coherence C,
and to

I⊗ (A⊗M)
λA⊗M //

((idI⊗u)◦λ−1
I )⊗idA⊗M

��

A⊗M

(I⊗M)⊗ (A⊗M)
(idA⊗B⊗m)◦θI,A

// (I⊗A)⊗M

λA⊗idM

OO

and

(A⊗M)⊗ I
ρA⊗M //

idA⊗M⊗((idI⊗u)◦λ−1
I )

��

A⊗M

(A⊗M)⊗ (I⊗M)
(idA⊗B⊗m)◦θA,I

// (A⊗ I)⊗M

ρA⊗idM

OO

which follow from the monoid coherence laws (62) of (M,u,m) and the monoidal coherence of
C and finally

(A⊗M)⊗ (B ⊗M)
γTA,TB //

(idA⊗B⊗m)◦θA,B
��

(B ⊗M)⊗ (A⊗M)

(idA⊗B⊗m)◦θB,A
��

(A⊗B)⊗M
γA,B⊗idM

// (B ⊗A)⊗M

which follows from commutative monoid coherence law (63) of (M,u,m) together with the
symmetric monoidal coherence of C.

D.8.2. The map ηA : A→ A⊗M is monoidal. We have to check:

A⊗B
((idA⊗u)◦ρ−1

A )⊗((idB⊗u)◦ρ−1
B )
// (A⊗M)⊗ (B ⊗M)

(id⊗m)◦θA,B
��

A⊗B
(idA⊗B⊗u)◦ρ−1

A⊗B

// (A⊗B)⊗M

107



I
(idI⊗u)◦λ−1

I

''
I

(idI⊗u)◦ρ−1
I

// I⊗M

The first diagram follows from Prop. D.9. The second one directly follows from the fact that
λI = ρI (see e.g. [Mel09, Prop. 2]).

D.8.3. The map µA : (A⊗M)⊗M → A⊗M is monoidal. We check:

((A⊗M)⊗M)⊗ ((B ⊗M)⊗M)
µA⊗µB //

(m2
A,B⊗idM )◦m2

A⊗M,B⊗M
��

(A⊗M)⊗ (B ⊗M)

m2
A,B

��
((A⊗B)⊗M)⊗M µA⊗B

// (A⊗B)⊗M

I
(m0⊗idM )◦m0

yy

m0

""
(I⊗M)⊗M µI

// I⊗M

for

m2
A,B = (idA⊗B⊗m)◦θA,B and m0 = (idI⊗u)◦λ−1

I and µA = (idA⊗m)◦αA,M,M

The first diagram follows from the monoid coherence laws (61) and (63) together with the
symmetric monoidal coherence of C. The second diagram follows from Prop. D.9.

D.9. The Comonad of Comonoid Indexing

Dually, a comonoid (K, e, d) in a monoidal category C gives rise to a comonad G = (G, δ, ε)
where G(−) := K ⊗ (−), and

εA := λA ◦ (e⊗ idA) : K ⊗A −→ A
and δA := αK,K,A ◦ (d⊗ idA) : K ⊗A −→ K ⊗ (K ⊗A)

Since a comonoid on C is a monoid on Cop, it is also well-known (again from e.g. [HS03, §2.5]
or [Mel09, §6.8]) that G is a comonad. Dually to §D.7, G is actually oplax symmetric monoidal.
Its strength is

g2
A,B : K ⊗ (A⊗B) −→ (K ⊗A)⊗ (K ⊗B) and g0 : K ⊗ I −→ I

where g2
A,B is the composite

K ⊗ (A⊗B)
d⊗id−→ (K ⊗K)⊗ (A⊗B)

ϑA,B−→ (K ⊗A)⊗ (K ⊗B)

where ϑA,B is a natural map made of identities and structure maps of C, and where g0 is the
composite

K ⊗ I
e⊗idI−→ I⊗ I

λI−→ I

108



The map ϑA,B is explicitely defined as the following composite:

(K ⊗K)⊗ (A⊗B)
α−→ K ⊗ (K ⊗ (A⊗B))

idA⊗α−1

−→ K ⊗ ((K ⊗A)⊗B)
γ−→

((K ⊗A)⊗B)⊗K α−→ (K ⊗A)⊗ (K ⊗B)

By duality, from Prop. D.12 we get:

Proposition D.14 (Prop. 4.4.(b)). (G, δ, ε) is an oplax symmetric monoidal comonad.

Similarly to Cor. D.13, by applying Prop. D.4 to Prop. D.14 we get:

Corollary D.15 (Prop. 5.2.(a)). Kl(G) is symmetric monoidal.

D.10. The Distributive Law of Comonoid over Monoid Indexing.

We now formally check that the associativity map Φ of §4.2 is indeed a distributive law of the
comonad of comonoid indexing over the monad of monoid indexing. We moreover note that Φ
is monoidal in the sense of Proposition D.7.

Proposition D.16. Consider, in an SMC (C,⊗, I), a comonoid (K, e, d) and a monoid (M,u,m),
inducing respectivelly the comonad (G, δ, ε) with

GA := K⊗A εA := λA◦(e⊗idA) : K⊗A −→ A δA := αK,K,A◦(d⊗idA) : K⊗A −→ K⊗(K⊗A)

and the monad (T, µ, η) with

TA := A⊗M ηA := (idA⊗u)◦ρ−1
A : A −→ A⊗M µA := (idA⊗m)◦αA,M,M : (A⊗M)⊗M −→ A⊗M

Then,

(i) the associativity structure map

ΦA := α−1
K,A,M : GTA = K ⊗ (A⊗M) =⇒ (K ⊗A)⊗M = TGA

is a distributive law of G over T ,

(ii) and it is moreover monoidal (in the sense of Prop. D.7), that is:

G(TA⊗ TB)

g2
TA,TB

��

G(m2
A,B)

// GT (A⊗B)

ΦA⊗B
��

GTA⊗GTB

ΦA⊗ΦB
��

TG(A⊗B)

T (g2
A,B)

��
TGA⊗ TGB

m2
GA,GB

// T (GA⊗GB)

(67)

where (m2,m0) is the (lax) strength of T and (g2, g0) is the oplax strength of G.

109



D.10.1. Proof of Proposition D.16.(i). First, note that Φ(−) is natural by assumption. The
diagrams of §D.4 unfold to:

(K ⊗A)⊗M
δA⊗idM

,,
K ⊗ (A⊗M)

ΦA
33

δA⊗M ((

(K ⊗ (K ⊗A))⊗M

K ⊗ (K ⊗ (A⊗M))
idK⊗ΦA

// K ⊗ ((K ⊗A)⊗M)

ΦK⊗A

55

(68)

K ⊗ (A⊗M)
ΦA

++
K ⊗ ((A⊗M)⊗M)

idK⊗µA
22

ΦA⊗M ))

(K ⊗A)⊗M

(K ⊗ (A⊗M))⊗M
ΦA⊗idM

// ((K ⊗A)⊗M)⊗M
µK⊗A

66

(69)

(K ⊗A)⊗M
εA⊗idM

''
K ⊗ (A⊗M)

ΦA
66

εA⊗M
// A⊗M

(70)

K ⊗ (A⊗M)
ΦA

((
K ⊗A

idK⊗ηA
77

ηK⊗A
// (K ⊗A)⊗M

(71)

• Diagram (68) amounts to

(K ⊗A)⊗M
(αK,K,A◦(d⊗idA))⊗idM

,,

αK,A,M

ss
K ⊗ (A⊗M)

αK,K,A⊗M◦(d⊗idA⊗M ) ((

(K ⊗ (K ⊗A))⊗M
αK,K⊗A,M

uu
K ⊗ (K ⊗ (A⊗M)) K ⊗ ((K ⊗A)⊗M)

idK⊗αK,A,Moo

By functoriality of ⊗ we have

(αK,K,A◦(d⊗idA))⊗idM = (αK,K,A◦(d⊗idA))⊗(idM◦idM ) = (αK,K,A⊗idM )◦((d⊗idA)⊗idM )

and therefore

(idK ⊗ αK,A,M ) ◦ αK,K⊗A,M ◦ ((αK,K,A ◦ (d⊗ idA))⊗ idM ) =

(idK ⊗ αK,A,M ) ◦ αK,K⊗A,M ◦ (αK,K,A ⊗ idM ) ◦ ((d⊗ idA)⊗ idM )

110



From the pentagon law, it follows that

(idK⊗αK,A,M )◦αK,K⊗A,M◦((αK,K,A◦(d⊗idA))⊗idM ) = αK,K,A⊗M◦αK⊗K,A,M◦((d⊗idA)⊗idM )

and from by naturality of α we get

(idK⊗αK,A,M )◦αK,K⊗A,M◦((αK,K,A◦(d⊗idA))⊗idM ) = αK,K,A⊗M◦(d⊗(idA⊗idM ))◦αK,A,M
and we are done since idA ⊗ idM = idA⊗M by bifunctoriality of ⊗.

• Diagram (69), which unfolds to

K ⊗ (A⊗M)

K ⊗ ((A⊗M)⊗M)

idK⊗µA
22

(K ⊗A)⊗M
αK,A,M

kk

(K ⊗ (A⊗M))⊗M
αK,A⊗M,M

ii

((K ⊗A)⊗M)⊗M
µK⊗A

66

αK,A,M⊗idM
oo

is dealt-with similarly.

• Diagram (70) amounts to

(K ⊗A)⊗M
(λA◦(e⊗idA))⊗idM

''

αK,A,M

vv
K ⊗ (A⊗M)

λA⊗M◦(e⊗idA⊗M )
// A⊗M

By bi-functoriality of ⊗, we have idA⊗M = idA ⊗ idM , and by naturality of α it follows
that

λA⊗M ◦ (e⊗ idA⊗M ) ◦ αK,A,M = λA⊗M ◦ αI,A,M ◦ ((e⊗ idA)⊗ idM )

On the other hand, by functoriality of ⊗, we have

(λA◦(e⊗idA))⊗idM = (λA◦(e⊗idA))⊗(idM ◦idM ) = (λA⊗idM )◦((e⊗idA)⊗idM )

and we are done since λA⊗M ◦ αI,A,M = λA ⊗ idM by [Mel09, Prop. 1].

• Diagram (71) unfolds to

K ⊗ (A⊗M)

K ⊗A

idK⊗((idA⊗u)◦ρ−1
A )
77

(idK⊗A⊗u)◦ρ−1
K⊗A

// (K ⊗A)⊗M

αK,A,M
hh

and is dealt-with similarly, but with [Mel09, Prop. 1] used as follows: Reasoning as for
Diagram (70), we are left to show that

αK,A,I ◦ ρ−1
K⊗A = idK ⊗ ρ−1

A

which amounts to
ρ−1
K⊗A = α−1

K,A,I ◦ (idK ⊗ ρ−1
A )

and we are done by applying [Mel09, Prop. 1].

111



D.10.2. Proof of Proposition D.16.(ii). Diagram (67) unfolds to

K ⊗ ((A⊗M)⊗ (B ⊗M))

ϑTA,TB◦(d⊗id)

��

idK⊗((id⊗m)◦θA,B)
// K ⊗ ((A⊗B)⊗M)

α−1

��
(K ⊗ (A⊗M))⊗ (K ⊗ (B ⊗M))

α−1⊗α−1

��

(K ⊗ (A⊗B))⊗M

((ϑA,B◦(d⊗id))⊗idM
��

((K ⊗A)⊗M)⊗ ((K ⊗B)⊗M)
(id⊗m)◦θK⊗A,K⊗B

// ((K ⊗A)⊗ (K ⊗B))⊗M

But we are done, since modulo symmetric monoidal coherence, the above amounts to

K ⊗M ⊗M idK⊗m //

d⊗idM⊗M
��

K ⊗M
d⊗idM
��

K ⊗K ⊗M ⊗M
idK⊗K⊗m

// K ⊗K ⊗M

E. Simple Self Dualization

In this appendix, we present some aspects of the construction called simple self dualization
in [HS03]. We begin by basic definitions and facts, and then give a general method to construct
(lax) symmetric monoidal monads and oplax symmetric monoidal comonads in this setting,
which will be used later on in §F to explain the monoidal structure of DZ.

E.1. Some Basic Definitions and Facts

We recall here some basic material about Dialectica-like categories from [dP91, HS03]. Given
a category C, its simple self-dualization is G(C) := C × Cop (also written Cd in [HS03]). Its
objects are pairs U,X of objects of C, and a morphism from (U,X) to (V, Y ) is given by a pair
of maps (f, F ), denoted

(f, F ) : (U,X) −p→ (V, Y )

where f : U → V and F : Y → X. If C is symmetric monoidal, then G(C) is an instance of a
Girard category, in the sense of de Paiva [dP91, HS03].

Assume now that the monoidal structure (⊗, I) = (×,1) of C is Cartesian. Then G(C) is
symmetric monoidal closed w.r.t.

(U,X)⊗G (V, Y ) := (U ⊗ V,XV ⊗ Y U ) with unit (I, I)

The linear exponentials are given by

(U,X)(G (V, Y ) := (V U ×XY , U × Y )

Moreover, G(C) can be equipped with a comonad (T, δ, ε) where the action on objects of T is

T (U,X) := (U,XU )

and the maps δ and ε are given by

(fε, Fε) : (U,XU ) −p→ (U,X)
(fδ, Fδ) : (U,XU ) −p→ (U,XU×U )

112



where fε = fδ = idU , Fε(u, x) = x and Fδ(h, u) = h(u, u) (see e.g. [dP91, Def. 15, §4.2]).
The co-Kleiseli category D(C) := Kl(T ) is a Dialectica category in the sense of [dP91, Hyl02]

(see e.g. [dP91, Prop. 52, §4.3]). Explicitely, its objects are pairs A = (U,X) of objects of C,
and a map from A to (V, Y ) is a G(C)-morphism (f, F ) from TA to (V, Y ), that is

(f, F ) : (U,XU ) −p→ (V, Y )

D(C) is symmetric monoidal closed w.r.t. the product

(U,X)⊗ (V, Y ) := (U × V,X × Y ) with unit (1,1)

Note that with A = (U,X) and B = (V, Y ),

T (A⊗B) = (U × V, (X × Y )U×V )

' (U × V,XUV × Y V U )
= TA⊗G TB

The linear exponentials of D(C) are given by

(U,X)( (V, Y ) := (V U ×XU×Y , U × Y )

Note that A( B ' TA(G B, so the monoidal closure of D(C) actually follows from that of
G(C):

D(C)[A⊗B,C] = G(C)[T (A⊗B), C]
' G(C)[TA⊗G TB,C]
' G(C)[TA, TB(G C]
' D(C)[A,B( C]

E.2. Self Duality

The category G(C) is equipped with an isomorphism

(−)⊥ : G(C)
'−→ G(C)op

mapping the G(C)-object (U,X) to (X,U) and taking (f, F ) : (U,X) −p→ (V, Y ) to (F, f) :
(X,U) −→G(C)op (Y, V ) (that is (F, f) : (Y, V ) −p→ (X,U)). Note that (−)⊥ is a strict involu-

tion: G(C)⊥⊥ = G(C).

E.3. Monoidal Structure

Consider an SMC C. Note that Cop is also an SMC, and recall from §E.1 the tensor product ⊗
of G(C) given by

(U,X)⊗ (V, Y ) = (U ⊗ V,X ⊗ Y ) with unit I = (I, I)

Assuming the following structure maps of C

α : (A⊗B)⊗C −→ A⊗(B⊗C) λ : I⊗A −→ A ρ : A⊗I −→ A γ : A⊗B −→ B⊗A

the structure maps of (G(C),⊗, I) are given by:

α := (α, α−1) : ((U,X)⊗ (V, Y ))⊗ (W,Z) −→ (U,X)⊗ ((V, Y )⊗ (W,Z))
λ := (λ, λ−1) : (I, I)⊗ (U,X) −→ (U,X)
ρ := (ρ, ρ−1) : (U,X)⊗ (I, I) −→ (U,X)
γ := (γ, γ−1) : (U,X)⊗ (V, Y ) −→ (V, Y )⊗ (U,X)

Proposition E.1 ([HS03]). Equipped with the above data, the category G(C) is symmetric
monoidal.

113



E.4. (Commutative) Monoids

Proposition E.2. Consider an SMC C. Given a comutative monoid (M,u,m) and a commu-
tative comonoid (K, e, d) in C, the G(C)-object (M,K) is a commutative monoid in G(C) with
structure maps

u(M,K) := (u, e) : (I, I) −p→ (M,K)

m(M,K) := (m, d) : (M ⊗M,K ⊗K) −p→ (M,K)

Proof. The proof is trivial since (1) commutation of the required diagrams amounts to com-
ponentwise commutation of the corresponding diagrams in C and Cop, and (2) the second
components of commutative monoids diagrams in G(C) are commutative comonoids diagrams
in Cop.

E.5. (Commutative) Comonoids

Recall that a (commutative) comonoid in a category is a (commutative) monoid in the oppostive
category. Since G(C)op ' G(C)⊥, it follows that Prop. E.2 dualizes to:

Corollary E.3. Consider an SMC C. Given a comonoid (K, e, d) and a monoid (M,u,m) in
C, the G(C)-object (K,M) is a commutative comonoid in G(C) with structure maps

e(K,M) := (e, u) : (K,M) −p→ (I, I)

d(M,K) := (d,m) : (K,M) −p→ (K ⊗K,M ⊗M)

E.6. A (Lax) Symmetric Monoidal Monad

Assume now that C is Cartesian closed, and fix a functor H : C→ C. Recall (from e.g. [Mel09,
§5.2]) that H lifts in a unique way to an oplax symmetric monoidal functor, with strength

t2A,B := 〈H(π1), H(π2)〉 : H(A×B) −→ HA×HB

and
t0 := 1H1 : H1 −→ 1

Note that the naturality of t2(−),(−), that is

(H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = 〈H(π1), H(π2)〉 ◦H(f × g)

follows from the universality property of the Cartesian product since (say)

π1 ◦ (H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = H(f ◦ π1) = H(π1 ◦ (f × g))

Consider now the functor

(−)H : G(C) −→ G(C)

defined as
(U,X)H := (UHX , X)

and
(f, F )H := (λh.f ◦ h ◦H(F ) , F ) : (UHX , X) −p→ (V HY , Y )

(where (f, F ) : (U,X) −p→ (V, Y )), and the maps

η(U,X) = (fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UHX , X)

µ(U,X) = (fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UHX×HX , X) −p→ (UHX , X)

114



Proposition E.4. ((−)H , µ, η) is a (lax) symmetric monoidal monad, with strength

m2
A,B = (f2

A,B, F
2
A,B) := (λ(h, k).(h× k) ◦ t2X,Y , idX×Y ) :

(UHX × V HY , X × Y ) −→ ((U × V )H(X×Y ) , X × Y )

(where A = (U,X) and B = (V, Y )), and

m0 := (1,1) : (1,1) −→ (1H1,1)

The proof of Prop. E.4 is defered to §G.

E.7. An Oplax Symmetric Monoidal Comonad

Proposition E.4 can be dualized thanks to the self duality G(C)op = G(C)⊥:

Corollary E.5. Assume C is a CCC and H : C→ C is a funtor. Then (H(−), δ, ε) is an oplax
symmetric monoidal comonad on C, where

H(U,X) := (U,XHU ) and H(f, F ) := (f , λh.F◦h◦H(f)) : (U,XHU ) −p→ (V, Y HV )

(for (f, F ) : (U,X) −p→ (V, Y )), and

ε(U,X) = (fε, Fε) := (idU , λx.λ .x) : (U,XHU ) −p→ (U,X)

δ(U,X) = (fδ, Fδ) := (idU , λh.λu.h(u, u)) : (U,XHU ) −p→ (U,XHU×HU )

and where the oplax strength of H(−) is given by

n2
A,B = (f2

A,B, F
2
A,B) := (idU×V , λ(h, k).(h× k) ◦ t2U,V ) :

(U × V , (X × Y )H(U×V )) −→ (U × V , XHU × Y HV )

where A = (U,X), B = (V, Y ) and t2U,V is defined as in E.6, and

n0 := (1,1) : (1,1H1) −→ (1,1)

F. A Dialectica-Like Interpretation of Zig-Zag Strategies

We give here a Dialectica-like presentation of total zig-zag strategies σ : A ( B for A and B
positive full games. It relies on a distributive law ζ in an instance of Dialectica called simple
self-dualization in [HS03]. We will perform it in the topos of trees S .

We first instantiate the constructions and results of §G to the case of G(S ). We then show
in §F.4 that the category DZ of simple zig-zag games can be obtained as a full subcategory of
some category of zig-zag games in G(S ). In §F.5 we present the distributive law ζ based on
the constructions of §G. Finally, using the fact that DZ can be obtained as a full subcategory
of some category of zig-zag games in G(S ) described as the Kleisli category of the distributive
law ζ, we discuss the monoidal structure of DZ and DZD.

115



F.1. The Topos of Trees

The topos of trees S is the presheaf category over the order (N,≤) seen as a category, see
e.g. [BMSS12].

An object X of S is given by a family of sets (Xn)n∈N equipped with restriction maps
rXn : Xn+1 → Xn. A morphism f from X to Y is a family of functions fn : Xn → Yn compatible
with restriction: rYn ◦ fn+1 = fn ◦ rXn .

As a topos, S is Cartesian closed w.r.t. to the Cartesian product of presheaves, which is given
by (X × Y )n := Xn × Yn. Exponentials are defined as usual for presheaves (see e.g. [MLM92])
by

(XY )n := Nat[N[−, n]× Y,X]

Explicitly, (XY )n consists of sequences (ξk : Yk → Xk)k≤n which are compatible with rX and
rY . The restriction map of XY takes (ξk)k≤n+1 ∈ (XY )n+1 to (ξk)k≤n ∈ (XY )n.

We will use the functor I : S → S of [BMSS12]. On objects, it maps X to ((IX)n)n∈N

where (IX)n+1 := Xn and (IX)0 := 1, with rIXn+1 := rXn and rIX0 := 1 : X0 → 1. On
morphisms, (If)n+1 := fn and (If)0 := 1 : 1→ 1. Note that I(X × Y ) ' IX ×IY .

Define the family of maps predX : X ⇒ IX, natural in X, as predX0 := 1 : X0 → 1 and
predXn+1 := rXn .

The functor I allows S to be equipped with fixpoint operators fixX : XIX ⇒ X, defined as

fixXn ((fm)m≤n) := (fn ◦ . . . ◦ f0)(•)

The maps fixX are natural in X. Given f : IX × Y ⇒ X, writing f t : Y ⇒ XIX for the
exponential transpose of f , fixX◦f t is the unique map h : Y ⇒ X satisfying f◦〈predX ◦ h, idY 〉 =
h (see [BMSS12, Thm. 2.4]).

Given a sequence of sets M = (Mn)n, we also denote by M the S -object with Mn :=
∏n
i=0Mi

and restriction maps rMn (m.m) := m. (rM is an epi). Note that M × N ' M ×N , where
M ×Nn :=

∏n
i=0Mi ×Ni. If Mn = M for all n, then we write M? for the S -object M .

F.2. The Monoidal Structure of G(S )

Following §F.1, we take for S the monoidal structure given by its Cartesian product (so that
⊗ := × with I := 1). Since (An)n × (Bn)n = (An × Bn)n the structure maps of (S ,⊗, I)
(induced from its Cartesian structure) have as components the corresponding structure maps
of Set:

αn := α : (An ×Bn)× Cn → An × (Bn × Cn) λn := λ : 1×An → An
ρn := ρ : An × 1→ An γn := γ : An ×Bn → Bn ×An

The required diagrams follow as usual from the fact that Cartesian categories are monoidal
(using the universal property of the Cartesian product).

F.3. Monoids and Comonoids in G(S )

Prop. E.2 and Cor. E.3 (on monoid and comonoid objects in categories of the form G(C))
specialize to:

Proposition F.1. Let X be an object of S .

116



(i) The G(S )-object (1, X) is a commutative monoid of G(S ), with structure maps

u := (1,1) : (1,1) −p→ (1, X)
m := (1, 〈id, id〉) : (1× 1, X ×X) −p→ (1, X)

(ii) The G(S )-object (X,1) is a commutative comonoid of G(S ), with structure maps

e := (1,1) : (X,1) −p→ (1,1)
d := (〈id, id〉,1) : (X,1) −p→ (X ×X,1× 1)

Proof. By Prop. E.2 and Cor. E.3, since the terminal object 1 of a Cartesian category is a
commutative monoid, and since any object of a Cartesian category is a commutative comonoid.

F.4. A Dialectica-Like Interpretation of Zig-Zag Strategies

We now show that DZ is equivalent to a category obtained from a distributive law in G(S ).
First, the functional representation of total zig-zag strategies of Proposition 3.12 can be refor-
mulated as follows:

Proposition F.2. Given positive full games A = (U,X) and B = (V, Y ), there is a bijection
(−)G(S ) from total zig-zag strategies σ : A( B to G(S )-morphisms

(f, F ) : (U?, X?U?) −p→ (V ?IY ? , Y ?)

Moreover, the composition of total zig-zag strategies induced by Proposition 3.12 and de-
scribed in §3.6 conventiently fits in the framework of G(S ) since the fixpoint equation (40)
of §3.6 can actually be written using the fixpoint operator fix of S . Indeed, given G(S )-
objects (U,X), (V, Y ), (W,Z), and G(S )-morphisms

(f, F ) : (U,XU ) −p→ (V IY , Y )
(g,G) : (V, Y V ) −p→ (WIZ , Z)

we can define their composite

(g,G) ◦ (f, F ) = (h,H) : (U,XU ) −p→ (WIZ , Z)

as follows (modulo exponential transpose and again using the internal λ-calculus of S ):

h(u, z) := g(f(u, y(Iu, z)), z)
H(z, u) := F (u, y(u, z))

where y(u, z) := fixY (λy.G(f(u, y), z))

F.5. The Distributive Law ζ

In §3.6, we have discussed how the associativity and unit laws of composition in DZ can be
obtained via the functor HS : SG → Rel. We can actually proceed differently. The category
DZ of simple zig-zag games can be obtained as a full subcategory of some category of zig-zag
games in G(S ) described as the Kleisli category of a distributive law ζ.

The law ζ is based on the constructions of §G. It distributes an oplax symmetric monoidal
comonad obtained from Cor. E.5 over a (lax) symmetric monoidal monad obtained from Prop. E.4:

117



• The oplax symmetric monoidal comonad, denoted T = (T, ε, δ), is obtained from Cor. E.5
by taking H := IdS .

Explicitely, T (U,X) := (U,XU ) and the action of T on morphisms is given by:

(f, F ) : (U,X) −p→ (V, Y )
T7−→ (f , λh.F ◦ h ◦ f) : (U,XU ) −p→ (V ,Y V )

The maps ε and δ are given by:

(fε, Fε) := (idU , λx.λ .x) : (U,XU ) −p→ (U,X)
(fδ, Fδ) := (idU , λh.λu.h(u, u)) : (U,XU ) −p→ (U,XU×U )

• The (lax) symmetric monoidal monad, denoted (−)I = ((−)I, ε, δ), is obtained from
Prop. E.4 by taking H(−) := I(−) (see §F.1 and [BMSS12]).

Explicitely, (U,X)I := (UIX , X) and the action of (−)I on morphisms is given by:

(f, F ) : (U,X) −p→ (V, Y )
(−)I7−→ (λh.f ◦ h ◦IF , F ) : (UIX ,X) −p→ (V IY ,Y )

The maps η and µ are given by:

(fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UIX , X)
(fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UIX×IX , X) −p→ (UIX , X)

The distributive law
ζ : T ((−)I) =⇒ (T (−))I

is given by
ζA = (f ζ , F ζ) : (UIX , XUIX

) −p→ (UI(XU ), XU )

where the maps

f ζ : UIX ×I(XU ) −→ U and F ζ : UIX ×XU −→ X

are defined as follows. Let f ζ0 (θ0, •) := θ0. Given ξ ∈ (XU )n, θ ∈ (UIX)n and θ′ ∈ (UIX)n+1,

F ζn(θ, ξ) := fixXn (ξ ◦ θ)
f ζn+1(θ′, ξ) := θ′n+1(fixXn (ξ ◦ rn(θ′)))

= θ′n+1(Fn(rn(θ′), ξ))

The maps ζA form a distributive law of T over (−)I, which is moreover monoidal in the sense
of Prop. D.7. These facts are summarized in the following Proposition whose proof is defered
to §H.

Proposition F.3.

(i) The family of maps ζA : T (AI) −p→ (TA)I forms a distributive law.

118



(ii) Moreover, ζ(−) is monoidal in the sense of Prop. D.7, that is:

T (AI ⊗BI)

g2
AI,BI

��

T (m2
A,B)

// T ((A⊗B)I)

ζA⊗B
��

T (AI)⊗ T (BI)

ζA⊗ζB
��

(T (A⊗B))I

(g2
A,B)I

��
(TA)I ⊗ (TB)I

m2
TA,TB

// (TA⊗ TB)I

(72)

where (m2,m0) is the (lax) strength of (−)I defined as in Prop. E.4, and (g2, g0) is the
oplax strength of T defined as in Cor. E.5, so that:

• For (−)I:

m2
A,B := (λ(h, k).(h× k) ◦ 〈I(π1),I(π2)〉 , idX×Y ) :

(UIX × V IY , X × Y ) −→ ((U × V )I(X×Y ) , X × Y )

(where A = (U,X) and B = (V, Y )), and m0 := (1,1) : (1,1) −→ (1I1,1).

• For T :

g2
A,B := (idU×V , λ(h, k).(h×k)) : (U×V , (X×Y )U×V ) −→ (U×V , XU×Y V )

(where A = (U,X) and B = (V, Y )), and g0 := (1,1) : (1,11) −→ (1,1).

It then follows from Prop. F.3 and Cor. D.8 that Kl(ζ) is symmetric monoidal.

• Its monoidal product is that of G(S ) on objects, so that

(U,X)⊗Kl(ζ) (V, Y ) = (U,X)⊗ (V, Y ) = (U × V,X × Y ) and I = (1,1)

and on maps, given (f, F ) ∈ Kl(ζ)[A0, B0] and (g,G) ∈ Kl(ζ)[A1, B1], we let

(f, F )⊗Kl(ζ) (g,G) := m2
B0,B1

◦ ((f, F )⊗ (g,G)) ◦ g2
A0,A1

• The structure maps are the image under λhA→B.ηB ◦ h ◦ εA of the structure maps of
G(S ).

From now on, if no ambiguity arises, we write ⊗ for the monoidal product of Kl(ζ).
We write Kl(ζ?) for the full subcategory of Kl(ζ) whose objects are of the form (U?, X?).

Together with §F.4, Prop. F.3 gives:

Proposition F.4. The category DZ is equivalent to Kl(ζ?).

F.6. The Symmetric Monoidal Structure of DZ

Recall from Prop. F.4 that DZ is isomorphic to Kl(ζ?) the full subcategory of Kl(ζ) whose
objects are of the form (U?, X?).

Note that I is an object of Kl(ζ?), as well as A⊗B as soon as A and B are objects of Kl(ζ?).
It thus follows from Prop. F.4, Prop. F.3 and Cor. D.8 that:

Proposition F.5 (Prop. 4.2). Equipped with the above data, the category Kl(ζ?) (and thus
DZ) is symmetric monoidal.

119



F.7. Monoids and Comonoids in DZ

Thanks to Prop. D.11, we therefore get from Prop. F.3 and Prop. F.1:

Proposition F.6 (Prop. 4.3).

(i) Objects of the form M = (1,M) equipped with structure maps

I
u
−( M

O •
• P
m O

P •

M ⊗M
m
−( M

O (•, •)
• P
m O

P (m,m)

are monoids in DZ.

(ii) Objects of the form K = (K,1) equipped with structure maps

K
eK
−( I

O k
• P
• O

P •

K
dK
−( K ⊗K

O k
(k, k) P
(•, •) O

P •

are comonoids in DZ.

F.8. The Base Category T

Proposition F.7 (Prop. 4.6). The category T embeds to Comon(DZD) via the functor ET

mapping an object Σ of T to the comonoid (Σ, eΣ, dΣ) and a morphism M : T[Γ,Σ] to itself.

Proof of Proposition F.7. Fix M ∈ T[Σ,Γ], so that

M ' (fM ,1) : (Σ,1Σ) −p→ (ΓI(1×D),1×D)

The comonoid structure maps can be explicitelly defined as

eΣ ' (1,1) : (Σ,1Σ) −p→ (1I(1×D),1×D)

and

dΣ ' (λ .λa.(a, a) , 1) : (Σ,1Σ) −p→ ((Σ× Σ)I(1×1×D) , 1× 1×D)

We check the required diagrams:

• First,

Σ
M //

dΣ

��

Γ

dΓ

��
Σ⊗ Σ

M⊗M // Γ⊗ Γ

Note that all maps involved are 1 on the second component, so we only check the first
one.

120



We then compute (leaving implicit the monad maps used for composition in DZD):

(fM × fM ) ◦ (λ .λa.(a, a)) = λI(p).λa.〈fM (I(p), a) , fM (I(p), a)〉

and we are done since on the other hand

(λ .λa.(a, a)) ◦ fM = λI(p).λa.(fM (I(p), a), fM (I(p), a))

• Second, the coherence diagram

Σ
M //

eΣ

��

Γ

eΓ

��
I

trivially holds since all involved maps are in the second component are 1, and, for the
first component, since 1 is terminal in S .

G. Proof of Proposition E.4

In this appendix we give a proof of Prop. E.4. We first recall its statment.
Assume that C is Cartesian closed, and fix a functor H : C → C. Recall (from e.g. [Mel09,
§5.2]) that H lifts in a unique way to an oplax symmetric monoidal functor, with strength

t2A,B := 〈H(π1), H(π2)〉 : H(A×B) −→ HA×HB

and
t0 := 1H1 : H1 −→ 1

Note that the naturality of t2(−),(−), that is

(H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = 〈H(π1), H(π2)〉 ◦H(f × g)

follows from the universality property of the Cartesian product since (say)

π1 ◦ (H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = H(f ◦ π1) = H(π1 ◦ (f × g))

Consider now the functor

(−)H : G(C) −→ G(C)

defined as
(U,X)H := (UHX , X)

and
(f, F )H := (λh.f ◦ h ◦H(F ) , F ) : (UHX , X) −p→ (V HY , Y )

(where (f, F ) : (U,X) −p→ (V, Y )), and the maps

η(U,X) = (fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UHX , X)

µ(U,X) = (fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UHX×HX , X) −p→ (UHX , X)

121



Proposition G.1 (Prop. E.4). ((−)H , η, µ) is a (lax) symmetric monoidal monad, with strength

m2
A,B = (f2

A,B, F
2
A,B) := (λ(h, k).(h× k) ◦ t2X,Y , idX×Y ) :

(UHX × V HY , X × Y ) −→ ((U × V )H(X×Y ) , X × Y )

(where A = (U,X) and B = (V, Y )), and

m0 := (1,1) : (1,1) −→ (1H1,1)

G.1. (−)H is a lax symmetric monoidal functor

G.2. (−)H is a functor. First, given A = (U,X) we have

(idA)H = (λh.idU ◦ h ◦H(idX) , idX) = (λh.h , idX) = idAH

Moreover, given (f, F ) : (U,X) −p→ (V, Y ) and (g,G) : (V, Y ) −p→ (W,Z), we have

((g,G) ◦ (f, F ))H = (g ◦ f , F ◦G)H = (λh.g ◦ f ◦ h ◦H(F ◦G) , F ◦G)

= (λh.g ◦ h ◦HG,G) ◦ (λh.f ◦ h ◦HF,F )

since

λh.g◦f ◦h◦H(F ◦G) = λh.g◦f ◦h◦H(F )◦H(G) = λh.(λk.g◦k◦H(G))(f ◦h◦H(F ))

G.3. The maps m2
(−),(−) are natural. We have to check that given (f, F ) : (U,X) −p→ (V, Y )

and (g,G) : (U ′, X ′) −p→ (V ′, Y ′) we have

m2
B,B′ ◦ ((f, F )H ⊗ (g,G)H) = ((f, F )⊗ (g,G))H ◦m2

A,A′

(where A = (U,X), B = (V, Y ), A′ = (U ′, X ′) and B′ = (V ′, Y ′)). We compute

m2
B,B′ ◦ ((f, F )H ⊗ (g,G)H)

= m2
B,B′ ◦ ((λh.f ◦ h ◦H(F ), F )⊗ (λk.g ◦ k ◦H(G), G))

= m2
B,B′ ◦ ((λh.f ◦ h ◦H(F ))× (λk.g ◦ k ◦H(G)) , F ×G)

= ((λ(h, k).(h× k) ◦ t2Y,Y ′) ◦ ((λh.f ◦ h ◦H(F ))× (λk.g ◦ k ◦H(G))) , F ×G)

= ((λ(h, k).(h× k) ◦ t2Y,Y ′) ◦ (λ(h, k).〈f ◦ h ◦H(F ) , g ◦ k ◦H(G)〉) , F ×G)

= (λ(h, k).((f ◦ h ◦H(F ))× (g ◦ k ◦H(G))) ◦ t2Y,Y ′ , F ×G)

= (λ(h, k).(f × g) ◦ (h× k) ◦ (H(F )×H(G)) ◦ t2Y,Y ′ , F ×G)

= (λ(h, k).(f × g) ◦ (h× k) ◦ t2X,X′ ◦H(F ×G) , F ×G)

= (λ(h, k).(λp.(f × g) ◦ p ◦H(F ×G)) ◦ ((h× k) ◦ t2X,X′) , F ×G)

= ((f, F )⊗ (g,G))H ◦m2
A,A′

G.4. (−)H is lax symmetric monoidal. Note that (−)H is the identity on the second compo-
nents, so we only have to check diagrams for the first components.

122



• The associativity diagram leads to check

(UHX × V HY )×WHZ
α
UHX,V HY ,WHZ

//

(λ(h,k).(h×k)◦t2X,Y )×id
WHZ

��

UHX × (V HY ×WHZ)

id
UHX

×(λ(h,k).(h×k)◦t2Y,Z)
��

(U × V )H(X×Y ) ×WHZ

λ(h,k).(h×k)◦t2X×Y,Z
��

UHX × (V ×W )H(Y×Z)

λ(h,k).(h×k)◦t2X,Y×Z
��

((U × V )×W )H((X×Y )×Z)

λh.αU,V,W ◦h◦H(α−1
X,Y,Z)

// (U × (V ×W ))H(X×(Y×Z))

(where A = (U,X), B = (V, Y ) and C = (W,Z)). Note that since C is Cartesian closed:

α = 〈π1 ◦ π1 , 〈π2 ◦ π1, π2〉〉 = λ((u, v), w).(u, (v, w))

We have to check

λ((h, k), l).αU,V,W ◦(((h×k)◦t2X,Y )×l)◦t2X×Y,Z◦H(α−1
X,Y,Z) = λ((h, k), l).(h×((k×l)◦t2Y,Z))◦t2X,Y×Z

But we are done since it follows from the universal property of the Cartesian product of
C that we have

(HX ×HY )×HZ
αHX,HY,HZ // HX × (HY ×HZ)

H(X × Y )×HZ

t2X,Y ×idHZ

OO

HX ×H(Y × Z)

idHX×t2Y,Z

OO

H((X × Y )× Z)

t2X×Y,Z

OO

H(X × (Y × Z))

t2X,Y×Z

OO

H(α−1
X,Y,Z)

oo

• The unit diagrams are dealt-with similarly. We only check the diagram for the unit λ(−),
which lead to check

1× UHX
λ
UHX //

1×id
UHX

��

UHX

11 × UHX
λ(h,k).(h×k)◦t2I,X

// (1× U)H(1×X)

λh.λU◦h◦H(λ−1
X )

OO

Since λ(−) = π2, we have to show

λ(•, h).h = λ(•, h).λU ◦ (• × h) ◦ t21,X ◦H(λ−1
X )

It follows from the unversal property of the Cartesian product of C that we have have

1×HX HX

H(λ−1
X )

��

λ−1
HXoo

H1×HX

1×idHX

OO

H(1×X)
t21,X

oo

123



We are therefore lead to check

λ(•, h).h = λ(•, h).λU ◦ (• × h) ◦ λ−1
HX

and we are done since λ−1
(−) = 〈1, id(−)〉.

• The symmetry diagram is dealt-with similarly.

G.5. ((−)H , η, µ) is a monad

G.6. The maps η(−) are natural. Let (f, F ) : (U,X) −p→ (V, Y ). We have to check

η(V,Y ) ◦ (f, F ) = (λh.f ◦ h ◦H(F ) , F ) ◦ η(U,X)

which amounts to

(λu.λ .u) ◦ f = (λh.f ◦ h ◦H(F )) ◦ (λu.λ .u)

that is
λu.λ .f(u) = λu.f ◦ (λ .u) ◦H(F )

and we are done.

G.7. The maps µ(−) are natural. Let (f, F ) : (U,X) −p→ (V, Y ). We have to check

µ(V,Y ) ◦ (λh.(λk.f ◦ k ◦H(F )) ◦ h ◦H(F ) , F ) = (λh.f ◦ h ◦H(F ) , F ) ◦ µ(U,X)

which amounts to

(λh.λx.h(x, x)) ◦ (λh.λx.f ◦ (h(H(F )(x))) ◦H(F )) = (λh.f ◦ h ◦H(F )) ◦ (λh.λx.h(x, x))

that is

(λh.λx.h(x, x)) ◦ (λh.λx.λy.f(h(H(F )(x)), H(F )(y))) = λh.f ◦ (λx.h(x, x)) ◦H(F )

which reduces to

λh.λx.(λx.λy.f(h(H(F )(x)), H(F )(y)))(x, x) = λh.λx.f(h(H(F )(x), H(F )(x)))

and we are done.

G.8. Associativity Law. Since µ(−) is the identity on the second component, we only have to
check

UHX×HX×HX
λh.λx.h(x,x) //

λh.(λk.λy.k(y,y))◦h
��

UHX×HX

λh.λx.h(x,x)
��

UHX×HX
λh.λx.h(x,x)

// UHX

that is
λh.λy.(λx.h(x, x))(y, y) = λh.λx.((λk.λy.k(y, y)) ◦ h)(x, x)

We compute
λh.λy.(λx.h(x, x))(y, y) = λh.λy.h(y, y, y)

and we are done since

λh.λx.((λk.λy.k(y, y)) ◦ h)(x, x) = λh.λx.(λz.λy.h(z)(y, y))(x, x)

= λh.λx.(λy.h(x)(y, y))x = λh.λx.h(x, x, x)

124



G.9. Unit Laws. Since η(−) and µ(−) are the identity on the second component, we only have
to check

UHX
λu.λ .u // UHX×HX

λh.λx.h(x,x)

��

UHX
λh.(λu.λ .u)◦hoo

UHX

We are done since

(λh.λx.h(x, x)) ◦ (λu.λ .u) = λu.λx.(λ .u)(x, x) = λu.λx.ux = idUHX

and
(λh.λx.h(x, x)) ◦ (λh.(λu.λ .u) ◦ h) = λh.λx.((λu.λ .u) ◦ h)(x, x)

= λh.λx.(λy.λ .h(y))(x, x)
= λh.λx.(λ .h(x))x
= λh.λx.hx
= idUHX

G.10. ((−)H , η, µ) is lax symmetric monoidal

It remains to show that η and µ are lax monoidal natural transformations. Once again, we only
check the second components, which amount to the following.

G.11. η(−) is lax monoidal. We have to check

U × V
(λu.λ .u)×(λv.λ .v)// UHX × V HY

λ(h,k).(h×k)◦t2X,Y
��

U × V
λp.λ .p

// (U × V )H(X×Y )

and 1
1

!!
1

λu.λ .u
// 1H1

The second diagram is obvious. The first one amounts to

λp.λ .p = λ(u, v).((λ .u)× (λ .v)) ◦ 〈H(π1), H(π2)〉

and we are done since

λ(u, v).((λ .u)×(λ .v))◦〈H(π1), H(π2)〉 = λ(u, v).〈λ .u,λ .v〉 = λ(u, v).λ .〈u, v〉 = λp.λ .p

G.12. µ(−) is lax monoidal.

• Preservation of the binary strength amounts to

UHX×HX × V HY×HY (λh.λx.h(x,x))×(λk.λy.k(y,y)) //

n
��

UHX × V HY

λ(h,k).(h×k)◦t2X,Y
��

(U × V )H(X×Y )×H(X×Y )

λh.λx.h(x,x)
// (U × V )H(X×Y )

125



where n is the first component of (m2
A,B)H ◦m2

AH ,BH
(for A = (U,X) and B = (V, Y )),

so that

n = (λl.((λ(h, k).(h× k) ◦ t2X,Y ) ◦ l) ◦ ((λ(h, k).(h× k) ◦ t2X,Y )

= λ(h, k).(λ(h′, k′).(h′ × k′) ◦ t2X,Y ) ◦ ((h× k) ◦ t2X,Y )

= λ(h, k).(λ(h′, k′).(h′ × k′) ◦ t2X,Y ) ◦ 〈h ◦H(π1) , k ◦H(π2)〉

= λ(h, k).λp.((h(H(π1)p))× (k(H(π2)p))) ◦ t2X,Y
= λ(h, k).λp.((h(H(π1)p))× (k(H(π2)p))) ◦ 〈H(π1) , H(π2)〉

= λ(h, k).λ(p, q).〈h(H(π1)p), H(π1)q) , k(H(π2)p,H(π2)q)〉

and therefore

(λh.λx.h(x, x)) ◦ n = λ(h, k).λx.n(h, k)(x, x)

= λ(h, k).λx.〈h(H(π1)x,H(π1)x) , k(H(π2)x,H(π2)x)〉

But now we are done since on the other hand,

(λ(h, k).(h× k) ◦ t2X,Y ) ◦ ((λh.λx.h(x, x))× (λk.λy.k(y, y)))

= λ(h, k).((λx.h(x, x))× (λy.k(y, y))) ◦ t2X,Y
= λ(h, k).((λx.h(x, x))× (λy.k(y, y))) ◦ 〈H(π1), H(π2)〉

= λ(h, k).λp.〈h(H(π1)p,H(π1)p) , k(H(π2)p,H(π2)p)〉

• Preservation of the unit strength amounts to

1
1

ww
n0

&&
1H1×H1

λ(h,k).(h×k)◦t21,1
// 1H1

where n0 is the first component of (m0)H ◦m0, so that n0 = (λh.1 ◦ h) ◦ 1 = 1 and we
are done since

(λ(h, k).(h× k) ◦ t21,1) ◦ 1 = 1

H. Proof of Proposition F.3

This appendix is devoted to the proof of Prop. F.3. We first recall its statment.

Proposition H.1 (Prop. F.3).

(i) The family of maps ζA : T (AI) −p→ (TA)I forms a distributive law.

126



(ii) Moreover, ζ(−) is monoidal in the sense of Prop. D.7, that is:

T (AI ⊗BI)

g2
AI,BI

��

T (m2
A,B)

// T ((A⊗B)I)

ζA⊗B
��

T (AI)⊗ T (BI)

ζA⊗ζB
��

(T (A⊗B))I

(g2
A,B)I

��
(TA)I ⊗ (TB)I

m2
TA,TB

// (TA⊗ TB)I

(73)

where (m2,m0) is the (lax) strength of (−)I defined as in Prop. E.4, and (g2, g0) is the
oplax strength of T defined as in Cor. E.5, so that:

• For (−)I:

m2
A,B := (λ(h, k).(h× k) ◦ 〈I(π1),I(π2)〉 , idX×Y ) :

(UIX × V IY , X × Y ) −→ ((U × V )I(X×Y ) , X × Y )

(where A = (U,X) and B = (V, Y )), and m0 := (1,1) : (1,1) −→ (1I1,1).

• For T :

g2
A,B := (idU×V , λ(h, k).(h×k)) : (U×V , (X×Y )U×V ) −→ (U×V , XU×Y V )

(where A = (U,X) and B = (V, Y )), and g0 := (1,1) : (1,11) −→ (1,1).

H.1. Proof of Proposition H.1.(i)

We have to check that ζ : T ((−)I) → (T−)I is natural and that the following four coherence
diagrams commute (see e.g. [HHM07]):

(TA)I

(δA)I

**
T (AI)

ζA

44

δAI %%

(TTA)I

TT (AI)
TζA

// T ((TA)I)

ζTA

88

(74)

T (AI)
ζA

**
T (AII)

T (µA)

44

ζAI &&

(TA)I

(T (AI))I
(ζA)I

// (TA)II
µTA

99

(75)

127



(TA)I

(εA)I

##
T (AI)

ζA
::

εAI
// AI

(76)

T (AI)
ζA

$$
TA

T (ηA)
;;

ηTA
// (TA)I

(77)

Recall that T is the comonad T = (T, ε, δ) and that (−)I is the monad ((−)I, η, µ) on G(S ).
We repeat the definitions of the functors T and (−)I:

(f, F ) : (U,X) −p→ (V, Y )
T7−→ (f , λh.F ◦ h ◦ f) : (U,XU ) −p→ (V ,Y V )

(f, F ) : (U,X) −p→ (V, Y )
(−)I7−→ (λh.f ◦ h ◦IF , F ) : (UIX ,X) −p→ (V IY ,Y )

and of the natural maps η and µ:

(fη, Fη) : (U,X) −p→ (UIX , X)
(fµ, Fµ) : (UIX×IX , X) −p→ (UIX , X)

where Fη = Fµ = idX , fη(u, x) = u and fµ(h, x) = h(x, x).
Moreover, the natural maps ε and δ are given by

(fε, Fε) : (U,XU ) −p→ (U,X)
(fδ, Fδ) : (U,XU ) −p→ (U,XU×U )

where fε = fδ = idU , Fε(u, x) = x and Fδ(h, u) = h(u, u).
We check in turn the required diagrams.

Lemma H.2. ζ is natural, that is, given (g,G) : A −p→ B, we have

T (AI)
T ((g,G)I) //

ζA
��

T (BI)

ζB
��

(TA)I
(T (g,G))I

// (TB)I

Proof. Let A = (U,X) and B = (V, Y ), and consider (g,G) : (U,X) −p→ (V, Y ). Note that

(g,G)I = (λh.ghIG , G) : (UIX , X) −p→ (V IY , Y )

T ((g,G)I) = (λh.ghIG , λh.Gh(λh.ghIG)) : (UIX , XUIX
) −p→ (V IY , Y V IY

)
T (g,G) = (g , λh.Ghg) : (U,XU ) −p→ (V, Y V )

(T (g,G))I = (λh.ghI(λh.Ghg) , λh.Ghg) : (UI(XU ), XU ) −p→ (V I(Y V ), Y V )

We have to show that
(T (g,G))I ◦ ζA = ζB ◦ T ((g,G)I)

that is

(λh.ghI(λh.Ghg))◦f ζA = f ζB◦(λh.ghIG) and F ζA◦(λh.Ghg) = λh.Gh(λh.ghIG)◦F ζB

128



For the first equation, which has type UIX → V I(Y V ), given θn+1 ∈ (UIX)n+1 and ξn ∈
(Y V )n, one has to show the following (where some ◦ are replaced by juxtaposition)

((λh.gn+1hI(λh.Gn+1hgn+1)) ◦ f ζAn+1)(θn+1)(ξn) = (f ζBn+1 ◦ (λh.gn+1hIGn+1))(θn+1)(ξn)

that is

((λh.gn+1 ◦ h ◦ (λh.Gnhgn))(f ζAn+1(θn+1)))(ξn) = (f ζBn+1((λh.gn+1 ◦ h ◦Gn)(θn+1)))(ξn)

that is
(gn+1 ◦ (f ζAn+1(θn+1)) ◦ (λh.Gnhgn))(ξn) = (f ζBn+1(gn+1θn+1Gn))(ξn)

that is
gn+1(f ζAn+1(θn+1)((λh.Gnhgn)ξn)) = f ζBn+1(gn+1θn+1Gn , ξn)

that is
gn+1(f ζAn+1(θn+1 , Gnξngn)) = f ζBn+1(gn+1θn+1Gn , ξn)

that is
gn+1 ◦ θn+1 ◦ fixn(Gnξnθn) = gn+1 ◦ θn+1 ◦Gn ◦ fixn(ξngnθnGn−1)

which is easily seens to hold, when unfolding the fixpoints, thanks to associativity of composi-
tion.

The second equation, of type Y V → XUIX
, amounts, for ξn ∈ (Y V )n and θn ∈ (UIX)n, to

the following (where some ◦ are replaced by juxtaposition)

F ζAn (Gnξngn , θn) = ((λh.Gh(λh.ghIG))(F ζB (ξn)))(θn)

that is
F ζAn (Gnξngn , θn) = (Gn ◦ (F ζBn (ξn)) ◦ (λh.gnhIGn))(θn)

that is
F ζAn (Gnξngn , θn) = Gn(F ζBn (ξn)((λh.gnhIGn)(θn)))

that is
F ζAn (Gnξngn , θn) = Gn(F ζBn (ξn , gnθnIGn))

which also holds thanks to associativity of composition (when unfolding the fixpoints).

Lemma H.3. Diagram (74) commutes.

Proof. Let A = (U,X), so that

T (AI) = T (UIX , X) = (UIX , XUIX
) and (TA)I = (U,XU )I = (UI(XU ), XU )

The diagram has type

T (AI) −p→ (TTA)I = (UIX , XUIX
) −p→ (UI(XU×U ) , XU×U )

Moreover,

(δA)I = (idU , λhu.h(u, u))I = (λh.hI(λhu.h(u, u)) , λhu.h(u, u))
TζA = T (f ζA , F ζA) = (f ζA , λh.F ζAhf ζA)

129



We have to check the following two equations:

fδAI ◦ f ζA = f ζTA ◦ fTζA ◦ fδAI and F ζA ◦ FδAI = FδAI ◦ FTζA ◦ F
ζTA

The first one, of type UIX → UI(XU×U ), amounts, for θn+1 ∈ (UIX)n+1 and ξn+1 ∈ XU×U
n+1 ,

to the following

((λh.hI(λhu.h(u, u))) ◦ f ζAn+1)(θn+1)(ξn+1) = (f ζTAn+1f
ζA
n+1)(θn+1)(Iξn+1)

that is
(f ζAn+1(θn+1) ◦I(λhu.h(u, u)))(ξn+1) = f ζTAn+1(f ζAn+1(θn+1) , ξn)

that is
f ζAn+1(θn+1 , λu.ξn(u, u)) = f ζAn+1(θn+1 , fixX

U

n (ξn ◦ f ζAn (θn)))

Write

ln := f ζAn+1(θn+1 , λu.ξn(u, u)) and rn := f ζAn+1(θn+1 , fixX
U

n (ξn ◦ f ζAn (θn)))

The proof is then by induction on n. In the base case n = 0, both sides unfold to θ1(•). For
the induction step, assuming the property for rn = ln, we show ln+1 = rn+1.

First, note that Note that

fixUn+1(λu.ξn+1(u, u) ◦ θn+1) = fixUn+1(λx.ξn+1(θn+1(x), θn+1(x)))

= (λx.ξn+1(θn+1(x) , θn+1(x)))(fixUn (λx.ξn(θn(x), θn(x))))

= (λu.ξn+1(u, u))(θn+1(fixUn ((λu.ξn(u, u)) ◦ θn)))
= ξn+1(ln, ln)

so that
ln+1 = θn+2(ξn+1(ln, ln))

On the other hand, note that

fixX
U

n+1(ξn+1 ◦ f ζAn+1(θn+1)) = ξn+1(f ζAn+1(θn+1 , fixX
U

n (ξn ◦ f ζAn (θn))))
= ξn+1(rn)

and so in particular

rn = θn+1(fixn(fixX
U

n (ξn ◦ f ζA(θn)) ◦ θn))
= θn+1(fixn(ξn(rn−1) ◦ θn))

We thus have

rn+1 = θn+2(fixn+1(fixX
U

n+1(ξn+1 ◦ f ζAn+1(θn+1)) ◦ θn+1))
= θn+2(fixn+1(ξn+1(rn) ◦ θn+1)
= θn+2(ξn+1(rn)(θn+1(fixn(ξn(rn−1) ◦ θn))))
= θn+2(ξn+1(rn)(rn))

and we conclude by induction hypothesis.
The second equation, of type XU×U → XUIX

, amounts, for ξn ∈ (XU×U )n and θn ∈ (UIX)n,
to the following:

F ζAn ◦ (λhu.h(u, u))(ξn)(θn) = ((λhk.h(k, k)) ◦ (λh.F ζAn hf ζAn ) ◦ F ζTAn )(ξn)(θn)

130



that is

F ζAn ((λhu.h(u, u))ξn , θn) = ((λhk.h(k, k))((λh.F ζAn hf ζAn )(F ζTAn (ξn))))(θn)

that is

F ζAn (λu.ξn(u, u) , θn) = ((λhk.h(k, k))((F ζAn ◦ F ζTAn (ξn) ◦ f ζAn )))(θn)

that is
F ζAn (λu.ξn(u, u) , θn) = (λk.(F ζAN ◦ F

ζTA
n (ξn) ◦ f ζAn )(k, k))θn

that is
F ζAn (λu.ξn(u, u) , θn) = (F ζAn ◦ F ζTAn (ξn) ◦ f ζAn )(θn)(θn)

that is
F ζAn (λu.ξn(u, u) , θn) = F ζAn (F ζTAn (ξn , f

ζA
n (θn)) , θn)

Reasonning as for the first equation, write

ln := F ζAn (λu.ξn(u, u) , θn) and rn := F ζAn (F ζTAn (ξn , f
ζA
n (θn)) , θn)

with
ln+1 = fixn+1((λu.ξn+1(u, u)) ◦ θn+1)

= ξn+1(θn+1(ln) , θn+1(ln))

and on the other hand

F ζTAn+1(ξn+1 , f
ζA
n+1(θn+1)) = fixX

U

n+1(ξn+1 ◦ f ζAn+1(θn+1))

= ξn+1(f ζAn+1(θn+1 , fixX
U

n (ξn ◦ f ζAn (θn)))

= ξn+1(θn+1(F ζAn (fixX
U

n (ξn ◦ f ζAn (θn)) , θn))

= ξn+1(θn+1(F ζAn (F ζTAn (ξn, f
ζA
n (θn)) , θn))

= ξn+1(θn+1(rn))

We thus have

rn+1 = fixn+1(fixX
U

n+1(ξn+1 ◦ f ζAn+1(θn+1)) ◦ θn+1)
= fixn+1(ξn+1(θn+1(rn)) ◦ θn+1)
= ξn+1(θn+1(rn) , θn+1(fixn(ξn(θn(rn−1)) ◦ θn)))
= ξn+1(θn+1(rn) , θn+1(rn))

and we conclude by induction hypothesis.

Lemma H.4. Diagram (75) commutes.

Proof. Let A = (U,X) so that the diagram has type

T (AII) −p→ (TA)I = (UIX×IX , XUIX×IX
) −p→ (UI(XU ), XU )

Note that

T (µA) = T (λhx.h(x, x) , idX) = (λhx.h(x, x) , λk.(k ◦ λhx.h(x, x)))
(ζA)I = (f ζA , F ζA)I = (λh.f ζA ◦ h ◦IF ζA , F ζA)

We have to check the following two equations:

f ζA ◦ fTµA = fµTA ◦ f(ζA)I ◦ f ζAI and FTµA ◦ F
ζA = F ζAI ◦ F(ζA)I ◦ FµTA

131



The first equation, of type UIX×IX → UI(XU ), amounts, for θn+1 ∈ (UIX×IX)n+1 and
ξn ∈ (XU )n, to the following:

(f ζAn+1 ◦ (λhx.h(x, x)))(θn+1)(ξn) = ((λhk.h(k, k)) ◦ (λh.f ζAn+1hIF
ζA
n+1) ◦ f ζAI

n+1 )(θn+1)(ξn)

that is

f ζAn+1(λx.θn+1(x, x) , ξn) = ((λhk.h(k, k)) ◦ (λh.f ζAn+1hF
ζA
n ) ◦ f ζAI

n+1 )(θn+1)(ξn)

that is

f ζAn+1(λx.θn+1(x, x) , ξn) = (λhk.h(k, k))(f ζAn+1 ◦ f
ζAI

n+1 (θn+1) ◦ F ζAn )(ξn)

that is
f ζAn+1(λx.θn+1(x, x) , ξn) = (f ζAn+1 ◦ f

ζAI

n+1 (θn+1) ◦ F ζAn )(ξn)(ξn)

that is
f ζAn+1(λx.θn+1(x, x) , ξn) = f ζAn+1(f

ζAI

n+1 (θn+1 , F
ζA
n (ξn)) , ξn)

Let

ln := f ζAn+1(λx.θn+1(x, x) , ξn) and rn := f ζAn+1(f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)) , ξn)

Note that for all n we have

ln+1 = (λx.θn+2(x, x))fixn+1(ξn+1 ◦ λx.θn+1(x, x))
= (λx.θn+2(x, x))((λx.ξn+1(θn+1(x, x)))fixn(ξn ◦ λx.θn(x, x))))
= θn+2(ξn+1(ln), ξn+1(ln))

On the other hand,

rn+1 = f ζAn+2(f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1)) , ξn+1)

= f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1))(fixXn+1(ξn+1 ◦ f

ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

= θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , fixXn+1(ξn+1 ◦ f
ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

So we show by induction on n that

ξn+1(rn) = fixn+1(F ζAn+1(ξn+1) ◦ θn+1) = fixXn+1(ξn+1 ◦ f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)))

The base case is trivial. For the induction step, on the one hand we have

fixn+2(F ζAn+2(ξn+2) ◦ θn+2)

= F ζAn+2(ξn+2 , θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1)))

= ξn+2(θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , F ζAn+1(ξn+1 , θn+1(fixn(F ζAn (ξn) ◦ θn))))

= ξn+2(θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , fixn+1(F ζAn+1(ξn+1) ◦ θn+1))

and we conclude by induction hypothesis, and on the other hand

fixXn+2(ξn+2 ◦ f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1)))

= ξn+2 ◦ f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1))(fixXn+1(ξn+1 ◦ f

ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

= ξn+2(θn+2(fixn(F ζAn+1(ξn+1) ◦ θn+1) , fixXn+1(ξn+1 ◦ f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)))))

and we also conclude by induction hypothesis.

132



The second equation, of typeXU → XUIX×IX
, amounts, for ξn ∈ (XU )n and θn ∈ (UIX×IX)n,

to the following

((λk.(k ◦ λhx.h(x, x))) ◦ F ζAn )(ξn)(θn) = (F
ζAI
n ◦ F ζAn )(ξn)(θn)

that is
(F ζAn (ξn) ◦ λhx.h(x, x))(θn) = F

ζAI
n (F ζAn (ξn) , θn)

that is
F ζAn (ξn , λx.θn(x, x)) = F

ζAI
n (F ζAn (ξn) , θn)

This is dealt-with similarly to (but in a much simpler way than) the first equation.

Lemma H.5. Diagram (76) commutes.

Proof. Let A = (U,X), so that the diagram has type

T (AI) −p→ AI = (UIX , XUIX
) −p→ (UIX , X)

Note that
(εA)I = (idU ,λxu.x)I = (λh.(h ◦I(λxu.x)),λxu.x)

We have to show

λh.(h ◦I(λxu.x)) ◦ f ζA = idUIX and F ζA ◦ λxu.x = λxu.x

For the first equation, given θn+1 ∈ (UIX)n+1, we have to show

f ζAn+1(θn+1) ◦I(λxu.x) = θn+1

The result is trivial since the left-hand side unfolds to

λIx.f ζAn+1(θn+1,λ .x) = λIx.θn+1(fixn(λ .x)) = λIx.θn+1(x)

The second equation is simpler and omitted.

Lemma H.6. Diagram (77) commutes.

Proof. Let A = (U,X), so that the diragram has type

TA −p→ (TA)I = (U,XU ) −p→ (UI(XU ), XU )

Note that
T (ηA) = T (λux.u, idX) = (λux.u,λh.h ◦ (λux.u))

We have to show

f ζA ◦ (λux.u) = λux.u and (λh.h ◦ (λux.u)) ◦ F ζA = idXU

For the first equation, given u ∈ Un+1 and ξn ∈ (XU )n, we have to show

f ζAn+1(λx.u , ξn) = u

which is trivial. For the second equation, given ξn ∈ Xn and u ∈ Un we have to show

F ζA(ξn , λx.u) = ξn(u)

which is also trivial.

133



H.2. Proof of Proposition H.1.(ii)

Fix G(S )-objects A = (U,X) and B = (V, Y ). Diagram (73) amounts, to the following two
diagrams, for resp. the first and second component of G(S ):

UIX × V IY

id
UIX×VIY

��

λ(h,k).(h×k)◦〈I(π1),I(π2)〉 // (U × V )I(X×Y )

fζA⊗B
��

UIX × V IY

fζA×fζB
��

(U × V )I((X×Y )U×V )

λh.h◦I(λ(h,k).h×k)
��

UI(XU ) × V I(Y V )

λ(h,k).(h×k)◦〈I(π1),I(π2)〉
// (U × V )I(XU×Y V )

(78)

(X × Y )U
IX×V IY

(X × Y )(U×V )I(X×Y )λh.h◦(λ(h,k).(h×k)◦〈I(π1),I(π2)〉)oo

XUIX × Y V IY

λ(h,k).h×k

OO

(X × Y )U×V

F ζA⊗B

OO

XU × Y V

F ζA×F ζB

OO

XU × Y V

λ(h,k).h×k

OO

id
XU×Y V

oo

(79)

H.2.1. Commutation of (79).

We reason modulo ((−) × (−))n ' (−)n × (−)n. Consider θn+1 ∈ (UIX)n+1, θ′n+1 ∈ (V IY ),
and ξn+1 ∈ (XU )n+1, ξ′n+1 ∈ (Y V )n+1.

We have to show that

〈F ζAn+1(ξn+1, θn+1) , F ζBn+1(ξ′n+1, θ
′
n+1)〉 = F

ζA⊗B
n+1 (ξn+1 × ξ′n+1,λI(x, y).〈θn+1(x), θ′n+1(y)〉)

which amounts to

〈fixn+1(ξn+1 ◦ θn+1) , fixn+1(ξ′n+1 ◦ θ′n+1)〉 = fixn+1((ξn+1×ξ′n+1)◦(λI(x, y).〈θn+1(x), θ′n+1(y)〉))

that is

〈(ξn+1 ◦ θn+1 ◦ ξn ◦ θn ◦ . . . ◦ ξ0 ◦ θ0)(•) , (ξ′n+1 ◦ θ′n+1 ◦ ξ′n ◦ θ′n ◦ . . . ◦ ξ′0 ◦ θ′0)(•)〉 =

((ξn+1 × ξ′n+1) ◦ (λI(x, y).〈θn+1(x), θ′n+1(y)〉) ◦ . . . ◦ (ξ0 × ξ′0) ◦ (λI(x, y).〈θ0(x), θ′0(y)〉))(•, •)

which follows from an easy induction on n ∈ N.

H.2.2. Commutation of (78).

We reason modulo ((−) × (−))n ' (−)n × (−)n. Consider θn+1 ∈ (UIX)n+1, θ′n+1 ∈ (V IY ),
and ξn ∈ (XU )n, ξ′n ∈ (Y V )n.

We have to show that

〈f ζAn+1(θn+1, ξn) , f ζBn+1(θ′n+1, ξ
′
n)〉 = f

ζA⊗B
n+1 (λI(x, y).〈θn+1(x), θ′n+1(y)〉 , ξn × ξ′n)

134



which amounts to (leaving implicit the restriction map rn):

〈θn+1(F ζAn+1(θn, ξn)) , θ′n+1(F ζBn+1(θ′n, ξ
′
n))〉

= (λI(x, y).〈θn+1(x), θ′n+1(y)〉)(F ζA⊗Bn (λI(x, y).〈θn(x), θ′n(y)〉 , ξn × ξ′n))

that is

(λI(x, y).〈θn+1(x), θ′n+1(y)〉)〈F ζAn+1(θn, ξn) , F ζBn+1(θ′n, ξ
′
n)〉

= (λI(x, y).〈θn+1(x), θ′n+1(y)〉)(F ζA⊗Bn (λI(x, y).〈θn(x), θ′n(y)〉 , ξn × ξ′n))

and we are done by (79).

135



Contents

1. Introduction 1
1.1. (Non-Deterministic) Tree Automata. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Computational Interpretation of Proofs. . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Games and Alternating Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Toward Linear Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5. Toward Realizability Interpretations of MSO. . . . . . . . . . . . . . . . . . . . . 6
1.6. Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Categories of Games and Automata 7
2.1. Compositionality and Categorical Semantics. . . . . . . . . . . . . . . . . . . . . 7
2.2. Indexed Structure: Substitution and Quantification Rules. . . . . . . . . . . . . . 8
2.3. Toward a Semantics for Implications. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Simple Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. Game Semantics: Linear Arrow Games and Copy-Cat. . . . . . . . . . . . . . . . 16
2.6. Linear Synchronous Arrow Games. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7. Game Semantics: Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8. The (Synchronous) Direct Product of (Non-Deterministic) Automata. . . . . . . 21
2.9. Alternating Automata and Linear Logic. . . . . . . . . . . . . . . . . . . . . . . . 24
2.10. Realizability and Compositionality in [Rib15]. . . . . . . . . . . . . . . . . . . . . 26

3. Uniform Automata and Zig-Zag Games 27
3.1. Toward Monoidal Closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2. Uniform Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3. Full Positive Games and Acceptance for Uniform Automata. . . . . . . . . . . . . 30
3.4. Zig-Zag Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5. Uniform Linear Synchronous Arrow Games. . . . . . . . . . . . . . . . . . . . . . 32
3.6. The Category DZ(W) of Zig-Zag Games and Total (Winning) Strategies. . . . . . 33
3.7. Categories of Uniform Synchronous Arrow Games. . . . . . . . . . . . . . . . . . 36

4. Fibrations of Tree Automata 37
4.1. Symmetric Monoidal Structure of DZ . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2. Monoid and Comonoid Indexing in DZ . . . . . . . . . . . . . . . . . . . . . . . 39
4.3. The Indexed Structure of DialZ(−) and the Base Category T . . . . . . . . . . . 43
4.4. The Fibred Category DialAut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5. Substitution and Language Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . 49

5. Symmetric Monoidal Closed Structure 51
5.1. The Symmetric Monoidal Closure of DZ . . . . . . . . . . . . . . . . . . . . . . . 51
5.2. The Symmetric Monoidal Closed Structure of DialAut and Tree Automata . . . . 53

5.2.1. The Symmetric Monoidal Structure of DialZ. . . . . . . . . . . . . . . . . 53
5.2.2. The Symmetric Monoidal Closure of DZD and DialZ. . . . . . . . . . . . 54
5.2.3. The Symmetric Monoidal Closed Structure of DialAut. . . . . . . . . . . . 54
5.2.4. The Symmetric Monoidal Closed Structure of Uniform Automata. . . . . 55

5.3. Deduction, Adequacy and Correctness . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4. Falsity and Complementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1. Deduction Rules for ‹ and A‹. . . . . . . . . . . . . . . . . . . . . . . . . 60

136



6. Quantifications 60
6.1. Quantifications in DialAut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2. Quantifications on Uniform Automata . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3. Deduction Rules for Quantifications . . . . . . . . . . . . . . . . . . . . . . . . . 64

7. Non-Deterministic Automata 65
7.1. The Cartesian Structure of Non-Deterministic Automata . . . . . . . . . . . . . . 65

7.1.1. Application: Deduction Rules for Non-Deterministic Automata. . . . . . . 66
7.1.2. Application: Existential Quantifications and Extraction. . . . . . . . . . . 66
7.1.3. Application: Effective Realizers from Witnesses of Non-Emptiness. . . . . 68

7.2. Simulation and the Exponential Modality of ILL . . . . . . . . . . . . . . . . . . . 70
7.2.1. Parity Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2.2. An Exponential Construction on Uniform Automata. . . . . . . . . . . . . 72
7.2.3. Game Graphs and Positionality. . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.4. Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8. Conclusion 74
8.1. Further Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A. Non-Functoriality of the Usual Linear Negation of Alternating Automata 82

B. Proof of Adequacy of the Promotion Rule (Prop. 7.13) 84

C. Further Examples 86
C.1. On Positional Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
C.2. On Positional Strategies for Separation. . . . . . . . . . . . . . . . . . . . . . . . 87
C.3. Proof of Prop. C.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C.4. A Separation Property from [SA05]. . . . . . . . . . . . . . . . . . . . . . . . . . 88

D. Monoids, Monads and Monoidal Categories 90
D.1. Monads and Comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

D.1.1. Monads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.1.2. Comonads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

D.2. (Lax) (Symmetric) Monoidal Monads. . . . . . . . . . . . . . . . . . . . . . . . . 91
D.2.1. (Lax) Symmetric Monoidal Functors. . . . . . . . . . . . . . . . . . . . . . 92
D.2.2. (Lax) Monoidal Natural Transformations. . . . . . . . . . . . . . . . . . . 92
D.2.3. (Lax) (Symmetric) Monoidal Monads. . . . . . . . . . . . . . . . . . . . . 93

D.3. Oplax (Symmetric) Monoidal Comonads. . . . . . . . . . . . . . . . . . . . . . . 94
D.3.1. Oplax Monoidal Functors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
D.3.2. (Oplax) Monoidal Natural Transformations. . . . . . . . . . . . . . . . . . 95
D.3.3. Oplax Monoidal Comonads. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

D.4. Distributive Laws of a Comonad over a Monad . . . . . . . . . . . . . . . . . . . 96
D.4.1. The Kleisli Category Kl(Λ). . . . . . . . . . . . . . . . . . . . . . . . . . . 97
D.4.2. Lifting of a Comonad to the Kleiseli Category of a Monad. . . . . . . . . 97
D.4.3. (Oplax) Monoidal Lifting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

D.5. Proof of Proposition D.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
D.5.1. Naturality of g2

T,A,B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

D.5.2. Oplax Symmetric Monoidal Coherence of g2
T and g0

T . . . . . . . . . . . . . 99
D.5.3. The natural map εT,A is monoidal. . . . . . . . . . . . . . . . . . . . . . . 101

137



D.5.4. The natural map δT,A is monoidal. . . . . . . . . . . . . . . . . . . . . . . 101
D.6. Monoids and Comonoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

D.6.1. Monoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
D.6.2. The Category Mon(C) of Commutative Monoids. . . . . . . . . . . . . . 103
D.6.3. Comonoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
D.6.4. The Category Comon(C) of Commutative Comonoids. . . . . . . . . . . 104
D.6.5. Lifting of Monoids and Comonoids to Kleiseli Categories. . . . . . . . . . 104
D.6.6. Proof of Proposition D.11.(ai). . . . . . . . . . . . . . . . . . . . . . . . . 105
D.6.7. Proof of Proposition D.11.(aii). . . . . . . . . . . . . . . . . . . . . . . . . 106

D.7. The Monad of Monoid Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
D.8. Proof of Proposition D.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

D.8.1. T (−) = (−)⊗M is a (strong) symmetric monoidal functor. . . . . . . . . 107
D.8.2. The map ηA : A→ A⊗M is monoidal. . . . . . . . . . . . . . . . . . . . 107
D.8.3. The map µA : (A⊗M)⊗M → A⊗M is monoidal. . . . . . . . . . . . . 108

D.9. The Comonad of Comonoid Indexing . . . . . . . . . . . . . . . . . . . . . . . . . 108
D.10.The Distributive Law of Comonoid over Monoid Indexing. . . . . . . . . . . . . . 109

D.10.1.Proof of Proposition D.16.(i). . . . . . . . . . . . . . . . . . . . . . . . . . 110
D.10.2.Proof of Proposition D.16.(ii). . . . . . . . . . . . . . . . . . . . . . . . . . 112

E. Simple Self Dualization 112
E.1. Some Basic Definitions and Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
E.2. Self Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
E.3. Monoidal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
E.4. (Commutative) Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
E.5. (Commutative) Comonoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
E.6. A (Lax) Symmetric Monoidal Monad . . . . . . . . . . . . . . . . . . . . . . . . . 114
E.7. An Oplax Symmetric Monoidal Comonad . . . . . . . . . . . . . . . . . . . . . . 115

F. A Dialectica-Like Interpretation of Zig-Zag Strategies 115
F.1. The Topos of Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
F.2. The Monoidal Structure of G(S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
F.3. Monoids and Comonoids in G(S ) . . . . . . . . . . . . . . . . . . . . . . . . . . 116
F.4. A Dialectica-Like Interpretation of Zig-Zag Strategies . . . . . . . . . . . . . . . 117
F.5. The Distributive Law ζ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
F.6. The Symmetric Monoidal Structure of DZ . . . . . . . . . . . . . . . . . . . . . . 119
F.7. Monoids and Comonoids in DZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
F.8. The Base Category T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

G. Proof of Proposition E.4 121
G.1. (−)H is a lax symmetric monoidal functor . . . . . . . . . . . . . . . . . . . . . . 122
G.2. (−)H is a functor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
G.3. The maps m2

(−),(−) are natural. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

G.4. (−)H is lax symmetric monoidal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
G.5. ((−)H , η, µ) is a monad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
G.6. The maps η(−) are natural. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
G.7. The maps µ(−) are natural. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
G.8. Associativity Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
G.9. Unit Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

138



G.10.((−)H , η, µ) is lax symmetric monoidal . . . . . . . . . . . . . . . . . . . . . . . . 125
G.11.η(−) is lax monoidal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
G.12.µ(−) is lax monoidal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

H. Proof of Proposition F.3 126
H.1. Proof of Proposition H.1.(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
H.2. Proof of Proposition H.1.(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

H.2.1. Commutation of (79). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
H.2.2. Commutation of (78). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

139


	Introduction
	(Non-Deterministic) Tree Automata.
	Computational Interpretation of Proofs.
	Games and Alternating Automata.
	Toward Linear Logic.
	Toward Realizability Interpretations of MSO.
	Outline.

	Categories of Games and Automata
	Compositionality and Categorical Semantics.
	Indexed Structure: Substitution and Quantification Rules.
	Toward a Semantics for Implications.
	Simple Games.
	Game Semantics: Linear Arrow Games and Copy-Cat.
	Linear Synchronous Arrow Games.
	Game Semantics: Composition.
	The (Synchronous) Direct Product of (Non-Deterministic) Automata.
	Alternating Automata and Linear Logic.
	Realizability and Compositionality in riba15tlca.

	Uniform Automata and Zig-Zag Games
	Toward Monoidal Closure.
	Uniform Automata.
	Full Positive Games and Acceptance for Uniform Automata.
	Zig-Zag Games.
	Uniform Linear Synchronous Arrow Games.
	The Category DZ(W) of Zig-Zag Games and Total (Winning) Strategies.
	Categories of Uniform Synchronous Arrow Games.

	Fibrations of Tree Automata
	Symmetric Monoidal Structure of DZ
	Monoid and Comonoid Indexing in DZ
	The Indexed Structure of DialZ(-) and the Base Category T
	The Fibred Category DialAut
	Substitution and Language Inclusion

	Symmetric Monoidal Closed Structure
	The Symmetric Monoidal Closure of DZ
	The Symmetric Monoidal Closed Structure of DialAut and Tree Automata
	The Symmetric Monoidal Structure of DialZ.
	The Symmetric Monoidal Closure of DZD and DialZ.
	The Symmetric Monoidal Closed Structure of DialAut.
	The Symmetric Monoidal Closed Structure of Uniform Automata.

	Deduction, Adequacy and Correctness
	Falsity and Complementation
	Deduction Rules for  and A.


	Quantifications
	Quantifications in DialAut
	Quantifications on Uniform Automata
	Deduction Rules for Quantifications

	Non-Deterministic Automata
	The Cartesian Structure of Non-Deterministic Automata
	Application: Deduction Rules for Non-Deterministic Automata.
	Application: Existential Quantifications and Extraction.
	Application: Effective Realizers from Witnesses of Non-Emptiness.

	Simulation and the Exponential Modality of ILL
	Parity Automata.
	An Exponential Construction on Uniform Automata.
	Game Graphs and Positionality.
	Applications.


	Conclusion
	Further Works.

	Non-Functoriality of the Usual Linear Negation of Alternating Automata
	Proof of Adequacy of the Promotion Rule (Prop. 7.13)
	Further Examples
	On Positional Strategies.
	On Positional Strategies for Separation.
	Proof of Prop. C.1.
	A Separation Property from as05tcs.

	Monoids, Monads and Monoidal Categories
	Monads and Comonads
	Monads.
	Comonads.

	(Lax) (Symmetric) Monoidal Monads.
	(Lax) Symmetric Monoidal Functors.
	(Lax) Monoidal Natural Transformations.
	(Lax) (Symmetric) Monoidal Monads.

	Oplax (Symmetric) Monoidal Comonads.
	Oplax Monoidal Functors.
	(Oplax) Monoidal Natural Transformations.
	Oplax Monoidal Comonads.

	Distributive Laws of a Comonad over a Monad
	The Kleisli Category Kl().
	Lifting of a Comonad to the Kleiseli Category of a Monad.
	(Oplax) Monoidal Lifting.

	Proof of Proposition D.7.
	Naturality of g2T,A,B.
	Oplax Symmetric Monoidal Coherence of g2T and g0T.
	The natural map T,A is monoidal.
	The natural map T,A is monoidal.

	Monoids and Comonoids
	Monoids.
	The Category Mon(C) of Commutative Monoids.
	Comonoids.
	The Category Comon(C) of Commutative Comonoids.
	Lifting of Monoids and Comonoids to Kleiseli Categories.
	Proof of Proposition D.11.(ai).
	Proof of Proposition D.11.(aii).

	The Monad of Monoid Indexing
	Proof of Proposition D.12.
	T(-) = (-) M is a (strong) symmetric monoidal functor.
	The map A : A A M is monoidal.
	The map A : (AM) M A M is monoidal.

	The Comonad of Comonoid Indexing
	The Distributive Law of Comonoid over Monoid Indexing.
	Proof of Proposition D.16.(i).
	Proof of Proposition D.16.(ii).


	Simple Self Dualization
	Some Basic Definitions and Facts
	Self Duality
	Monoidal Structure
	(Commutative) Monoids
	(Commutative) Comonoids
	A (Lax) Symmetric Monoidal Monad
	An Oplax Symmetric Monoidal Comonad

	A Dialectica-Like Interpretation of Zig-Zag Strategies
	The Topos of Trees
	The Monoidal Structure of G(S)
	Monoids and Comonoids in G(S)
	A Dialectica-Like Interpretation of Zig-Zag Strategies
	The Distributive Law 
	The Symmetric Monoidal Structure of DZ
	Monoids and Comonoids in DZ
	The Base Category T

	Proof of Proposition E.4
	(-)H is a lax symmetric monoidal functor
	(-)H is a functor.
	The maps m2(-),(-) are natural.
	(-)H is lax symmetric monoidal.
	((-)H,,) is a monad
	The maps (-) are natural.
	The maps (-) are natural.
	Associativity Law.
	Unit Laws.
	((-)H,,) is lax symmetric monoidal
	(-) is lax monoidal.
	(-) is lax monoidal.

	Proof of Proposition F.3
	Proof of Proposition H.1.(i)
	Proof of Proposition H.1.(ii)
	Commutation of (79).
	Commutation of (78).



