
HAL Id: hal-01261183
https://hal.science/hal-01261183v4

Preprint submitted on 8 Nov 2016 (v4), last revised 15 Oct 2019 (v10)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monoidal Closed Categories of Tree Automata
Colin Riba

To cite this version:

Colin Riba. Monoidal Closed Categories of Tree Automata. 2016. �hal-01261183v4�

https://hal.science/hal-01261183v4
https://hal.archives-ouvertes.fr

Monoidal Closed Categories of Tree Automata

Colin Riba

ENS de Lyon, Université de Lyon, LIP?

Abstract. We propose a fibred monoidal closed category of automata on
infinite trees, with existential and universal quantifications. Our notion is
inspired from Dialectica-like categories, suggested by the specific logical
form of the transitions of alternating automata, and which gives the
shape of linear implication automata and a notion of ∃∀-normal form of
automata. We thus obtain a realizability interpretation where proofs in
a first-order multiplicative linear logic over automata are interpreted as
winning strategies in a generalization of usual acceptance games.

1 Introduction

This paper proposes a fibred monoidal closed category of automata on infinite
trees, following and extending the Curry-Howard like approach of [32]: “automata
as objects, executions as morphisms”.

We consider a variation of alternating automata on infinite trees. Alternating
tree automata (see e.g. [28, 29, 12] and also [36]) are equivalent in expressive
power to the Monadic Second-Order Logic (MSO) on infinite trees, which sub-
sumes most of the logics used in verification [35]. Alternating tree automata are
linearly closed under complement, and together with the translation of alter-
nating automata to non-deterministic ones (the Simulation Theorem [28, 9, 29])
this provides a convenient decomposition of the translation of MSO formulas to
automata (see e.g. [12] and [36]), implying the decidability of MSO [31].

Tree automata and MSO are traditionally viewed as positive objects: one
is primarily interested in satisfaction or satisfiability, the primitive notion of
quantification is existential, and the primitive Boolean connectives tend to be
disjunction and negation. In contrast, Curry-Howard approaches tend to favor
negative settings, in which the predominant logical connective is implication,
and where the predominant form of quantification is universal. This is conve-
niently handled with fibrations (see e.g. [19]), which model universally quantified
implications. The model of [32] already put tree automata in a negative setting.

The main difficulty in the translation of MSO formula to tree automata is
the interplay between negation and existential quantification. Alternating au-
tomata have no correct primitive notion of existential quantification, while non-
deterministic automata have existential quantification but no linear complement,
and they simulate alternating automata at an exponential cost. It follows that

? UMR 5668 CNRS ENS Lyon UCBL INRIA

2

quantifier alternations in MSO formulas reflect the non-elementary complexity
of the translation to tree automata.

This paper shows that the decomposition via alternating automata of the
translation of MSO formulas to tree automata corresponds to some extent to
the decomposition of intuitionistic logic in linear logic [11]. The model presented
here provides a realizability interpretation of a deduction system for a first order
multiplicative linear logic over tree automata. The fibred symmetric monoidal
closed structure allows to handle existential and universal quantifications, as
well as a multiplicative conjunction and a linear implication (inducing a linear
complement). Moreover, we show that the simulation of alternating automata by
non-deterministic ones can be performed using a powerset operation satisfying
the deduction rules of the ’ !’ modality of linear logic. This gives constructions
on automata reflecting the connectives of MSO.

Most modern approaches to MSO and tree automata use games (see e.g. [35,
12, 30]), because game determinacy provides a convenient approach to the com-
plementation of alternating tree automata. Following [32], our models are based
on game semantics (see e.g. [1, 15]). The notion of morphisms is given by a syn-
chronous restriction of the linear arrow of simple games. This restriction allows
to internalize homsets in tree automata (as required by the closed structure), so
that a realizer in our computational interpretation can always be described as
an accepting run of some tree automaton (with decidable emptiness checking in
the case of regular automata, equivalent to MSO).

The monoidal closed structure on automata is inspired from the closed struc-
ture of Dialectica categories (see e.g. [8, 16]), which are based on Gödel’s Di-
alectica interpretation (see e.g. [4, 23]). Dialectica can be seen as a constructive
notion of prenex ∃∀-formulas, which in particular allows to see an implication
of ∃∀-formulas as an ∃∀-formula. This gives the transition function of the linear
implication automata, and motivates our notion of automata (see §3.2).

Our main contributions (wrt [32]) are the closed structure on automata and
a primitive notion of universal quantification (§5.1 & §5.2). We also explicit a
deduction system (§5.3), as well as the fact that the simulation of alternating
automata by non-deterministic ones satisfies the deduction rules (but unfortu-
nately not cut-elimination) of the ! modality of intuitionistic linear logic (§5.4).
As a by-product, the fibred structure of [32], based on codomain fibrations, is
simplified to variants of simple fibrations (see e.g. [19]).

The paper is organized as follows. We begin in §2 with an overview of some
basic material on game semantics and monoidal categories. We present our notion
of automata in §3, as well as the notions of substituted acceptance games and
of linear synchronous arrow games, which lead in §4 to the fibration DialAut.
Then §5 presents some constructions and properties of automata and DialAut:
monoidal closed structure in §5.1, quantifications in §5.2, the deduction system
in §5.3, and the interpretation of simulation as exponential rules in §5.4.

Notations. Concatenation of sequences s, t is denoted either s.t or s · t, and ε
is the empty sequence. Alphabets (denoted Σ,Γ, etc) are finite non-empty sets.

3

Let A be the category of alphabets and functions f : Σ → Γ . Fix a singleton set
1 := {•}, and two-elements sets 2 := {0, 1} and B := {t, f}. Fix also a non-empty
finite set D of tree directions. A Σ-labeled D-ary tree is a function T : D∗ → Σ.

2 Games

Following [32], the morphisms of our categories of automata are based on a
restriction of the linear arrow of simple games (see e.g. [1, 15]) between (general-
ized) acceptance games. We review in §2.1 some basic material on simple games.
More specific aspects of zig-zag games are discussed in §2.2 and §2.3.

2.1 Simple Games

Simple games are two-player games where the Proponent P (∃löıse) and the
Opponent O (∀belard) play in turn moves, producing plays subject to specified
rules. Formally, a simple game A has the form

A = (A+, A−, ξA, LA)

where A+ and A− are resp. the sets of P-moves and O-moves, ξA ∈ {+,−} is

the polarity, and LA ⊆ ℘ξAA is a non-empty prefix-closed set of legal plays, where

℘ξA := (Aξ ·A−ξ)∗+(Aξ ·A−ξ)∗ ·Aξ for ξ ∈ {+,−}. So P starts in a positive game
and O starts in a negative one. The game A is full if A+ and A− are non-empty
and LA = ℘ξAA . Write A = (U,X) for the full positive game with A+ := U and
A− := X. Let s, t, . . . range of over plays and m,n, . . . range over moves.

A play s is a P-play (resp. an O-play) if either s = ε or s ends with a P-
move (resp. an O-move). A (P-)strategy on A is a non-empty set of legal P-plays
σ ⊆ LA such that if s.t ∈ σ and s is a P-play, then s ∈ σ (P-prefix-closure), and
if s.n ∈ σ and s.m ∈ σ, then n = m (P-determinism).

A simple game with winning is a simple game A equipped with a set of
winning plays (or winning condition)WA ⊆ (AξA ·A−ξA)ω. Consider a P-strategy
σ on A and an O-play s ∈ LA. We say that s is an O-interrogation of σ if either
s = ε and A is positive, or if s = t.m for some t ∈ σ. We say that σ is total if for
every O-interrogation s of σ, we have s.n ∈ σ for some n. A winning (P-)strategy
on (A,WA) is a total strategy σ on A s.t. for all $ ∈ (AξA · A−ξA)ω, we have
$ ∈ WA whenever ∃∞k ∈ N. $(0). · · · .$(k) ∈ σ.

Simple games form a category SG. The maps from A to B, with A, B of the
same polarity, are P-strategies in the linear arrow game

A(B := (A− +B+, A+ +B−,−, LA(B)

where LA(B consists of those negative plays s such that s�A ∈ LA and s�B ∈ LB ,
where s�A is the restriction of s to A+ +A−, and similarly for s�B .

Note that the polarity of moves in component B is preserved while the po-
larity of moves in A is reversed. The plays of A(B start in component A iff A
and B are both positive. Moreover, plays satisfy the switching condition: given

4

s.m.n ∈ LA(B , with n ∈ (A(B)−, then m and n are in the same component
(i.e. only P is allowed to switch between A and B).

In order to describe identities and composition in SG, we rely on the following
fact from [17]. There is a faithful functor HS : SG −→ Rel (the category of
sets and relations) mapping a game A to LA and a strategy σ : A (B to
HS(σ) := {(s�A, s�B) | s ∈ σ} ⊆ LA×LB . Explicitly, HS(idA) is identity relation
on LA, and given σ : A(B, τ : B(C, τ ◦ σ is the unique strategy such that
HS(τ ◦ σ) is the relation HS(τ) ◦HS(σ).

2.2 Zig-Zag Games

In this paper, we only consider a subcategory of SG whose maps σ : A(B are
required to be (total) zig-zag strategies. This constraint is easily expressed using
Hyland & Schalk’s representation of strategies as relations [17].

Given a set Tr, the category Rel(Set/Tr) of relations over Tr has the same
objects as Set/Tr (pairs of a set A and a function trA : A → Tr). Maps from
(A, trA) to (B, trB) are relations R ⊆ A×B s.t. trA(a) = trB(b) for all (a, b) ∈ R.

A zig-zag strategy σ : A(B is a strategy such that for every (even-length)
play s ∈ σ, the projections s�A and s�B have the same length (see Fig. 1, top
left). Hence, σ : A(B is a zig-zag strategy if and only if HS(σ) is a Rel(Set/N)-
map from (LA, length : LA → N) to (LB , length : LB → N). Simple games and
zig-zag strategies therefore form a lluf subcategory of SG.

It is well-known (see e.g. [1, 15]), that total and winning strategies compose
and form a category. The case of zig-zag strategies over full games is particularly
simple. First, it is easy to see that if σ : A(B and τ : B(C are both zig-zag
and total, then τ ◦ σ is total. Consider now full games with winning (A,WA)
and (B,WB). Note that if σ : A (B is zig-zag and total, then for every
$ ∈ ((A+ +B−) ·(A−+B+))ω, if $ has infinitely many finite prefixes in σ, then
$�A and $�B are both infinite. Given (A,WA) and (B,WB), we can therefore
let WA(B ⊆ ((A+ +B−) · (A−+B+))ω be the set of infinite plays $ such that
$�B ∈ WB whenever $�A ∈ WA.

Definition 2.1 (The Categories DZ and DZW). The category DZ(W) has
full positive games (with winning) as objects. Maps from A to B are total (win-
ning) zig-zag strategies σ : A(B.

The category DZ has a particularly simple monoidal structure, which differs
from the usual ones in game semantics.

Proposition 2.2. The category DZ is symmetric monoidal with unit I := (1,1)
and A⊗B := (U × V,X × Y) where A = (U,X) and B = (V, Y).

2.3 Monoids and Comonoids

A commutative monoid in a symmetric monoidal category (C,⊗, I) is an object
M equipped with structure maps m : M ⊗M → M and u : I → M subject

5

to coherence conditions (see e.g. [27]). A (commutative) comonoid in C is a
(commutative) monoid in Cop. In this paper, by (co)monoid we always mean
commutative (co)monoid. Write Comon(C) for the category of comonoids in C.
Its maps from (K, d, e) to (K ′, d′, e′) are C-maps K → K ′ which commute with
the comonoid structure. Note that if (C,⊗, I) is Cartesian, then every C-object
has a canonical comonoid structure. Moreover, 1 is a monoid in Set.

Proposition 2.3. If M,K are non-empty, then M := (1,M) is a monoid and
K := (K,1) is a comonoid in DZ. Structure maps can be depicted as follows:

M ⊗M
mM
−(M

O (•, •)
• P
m O

P (m,m)

I
uM
−(M

O •
• P
m O

P •

K
dK
−(K ⊗K

O k
(k, k) P
(•, •) O

P •

K
eK
−(I

O k
• P
• O

P •

Following [17, 18], a monoid (M,m, u) in C induces a monad (M,µM , ηM)
of monoid indexing. The functor M takes an object A to A ⊗M and a map
f : A→ B to f ⊗ idM : A⊗M → B ⊗M . The natural maps µM and ηM are

µMA := (idA ⊗m) ◦ α : (A⊗M)⊗M −→ A⊗M
ηMA := (idA ⊗ u) ◦ ρ−1 : A −→ A⊗M

(where ρ : A⊗I→ A and α : (A⊗M)⊗M → A⊗(M⊗M) are structural isos of
(C,⊗, I)). The monad (M,µM , ηM) is actually lax symmetric monoidal, so that
its Kleisli category Kl(M) is symmetric monoidal with structure induced by the
(identity on objects) canonical functor FM : C → Kl(M) and the lax structure
of (M,µM , ηM). In particular, ⊗Kl(M) acts as ⊗ on objects.

Proposition 2.4. Given a monoid M in C, the Kleisli category Kl(M) is sym-
metric monoidal with A⊗Kl(M)B := A⊗B on objects and unit I. Moreover, each
comonoid (K, d, e) in C induces a comonoid (K, ηMK⊗K ◦ d, ηMI ◦ e) in Kl(M).

3 Tree Automata and Generalized Acceptance Games

We present here our notion of tree automata (§3.2) as well as the morphisms
of our categories of automata (§3.4). They are strategies in a generalization of
the linear synchronous arrow games [32] obtained by a suitable restriction of the
linear arrow of simple games between generalized substituted acceptance games.
Usual acceptance games can be seen as automata instantiated with trees, and
substituted acceptances games (§3.3) can be seen as automata instantiated with
morphisms from a base category T of trees (§3.1).

3.1 The Base Category T of Trees

It follows from Prop. 2.3 that the DZ-object D := (1,D) is a monoid in DZ.
We write DZD for the Kleisli category of indexing with D. Thanks to Prop. 2.4,

6

DZ A
σ
−(B

O u
P v
O y
P x

T Σ
M−→ Γ

O a

P b

O d
P •

1 A(T)

(p, qA)
P u
O (x, d)

(p.d, q′A)

P u′

O (x′, d′)

(p.d.d′, q′′A)

Σ A(M) −(B(N)

(p, qA) (p, qB)

O (a, u)
(a, v) P
(y, d) O

P (x, d)

(p.d, q′A) (p.d, q′B)

Fig. 1. Plays in Games

DZD is symmetric monoidal with A ⊗ B := (U × V,X × Y) and I := (1,1).
Moreover, each alphabet Σ induces a DZD-comonoid Σ := (Σ,1).

Definition 3.1 (The Base Category T). The objects of T are alphabets.
Maps from Σ to Γ are strategies M ∈ DZD[Σ,Γ] (see Fig. 1, down left).

Remark 3.2. Note that T-maps Σ → Γ are determined by functions of the form(⋃
n∈N Σ

n+1 ×Dn
)
→ Γ . In particular T[1, Σ] ' (D∗ → Σ). We write Ṫ for the

T-map corresponding to the tree T : D∗ → Σ and M• for the tree corresponding
to the map M ∈ T[1, Σ].

Proposition 3.3. The category T embeds to Comon(DZD) via the functor ET

mapping Σ to the comonoid (Σ, dΣ , eΣ) and M : T[Γ,Σ] to itself.

Example 3.4. (i) A 2-labelled tree T : D∗ → 2 is the characteristic function
of the set S ⊆ D∗ such that p ∈ S iff T (p) = 1.

(ii) Each A-map f : Σ → Γ induces a T-map Mf := λa.λ .λa.f(a). We write
p ∈ T[Σ,Σ] for the T-projection induced by the A-projection p ∈ A[Σ,Σ].

3.2 Tree Automata

Definition 3.5 (Tree Automata). A tree automaton A over alphabet Σ (no-
tation A : Σ) has the form

A = (QA , q
ı
A , U , X , δA , ΩA) (1)

where QA is the finite set of states, qıA ∈ QA is the initial state, U and X
are finite non-empty sets of resp. P and O-moves, ΩA ⊆ Qω is the acceptance
condition, and the transition function δA has the form

δA : QA ×Σ −→ U ×X −→ (D −→ QA)

7

Following the usual terminology (see e.g. [35, 12, 30]), an automaton A as
in (1) is non-deterministic if X = 1, and deterministic if moreover U = 1. We say
that A is regular if ΩA is an ω-regular set (see e.g. [35, 12, 30]). Parity automata
are regular automata A such that ΩA is generated from a map cA : QA → N
as the set of sequences (qk)k such that the maximal number occurring infinitely
often in (cA(qk))k is even. Regular automata are equivalent in expressive power
with MSO (see e.g. [35, 12]).

Example 3.6. (i) The unit automaton IΣ : Σ is the unique deterministic au-
tomaton over Σ with state set 1 (so that • is initial) and ΩI := 1ω.

(ii) Usually (see e.g. [28, 29], and also [36]), an alternating tree automaton A
over Σ with state set QA has transitions given by a map δA taking a state
q and an input letter a to an irredundant disjunctive normal form over
QA ×D, so that we can assume δA(q, a) ∈ P(P(QA ×D)).

This leads to an automaton Â in the sense of Def. 3.5 with states QA + B,
P-moves U := P(QA×D) and O-moves X := QA, with ΩÂ := ΩA+Q∗A.t

ω,
and with δÂ(b, a, , ,) := b if b ∈ B and for q ∈ QA, δÂ(q, a, γ, q′, d) = q′′

where q′′ := q′ if (q′, d) ∈ γ ∈ δA(q, a), q′′ := t if (q′, d) /∈ γ ∈ δA(q, a), and
q′′ := f if γ /∈ δA(q, a).

3.3 Substituted Acceptance Games

A substituted acceptance game [32] is a full positive game Γ ` A(M) obtained
by instantiating an automaton A : Σ as in (1) with a tree map M ∈ T[Γ,Σ].
The P-moves of Γ ` A(M) are Γ × U and its O-moves are X × D. Note that
this game has no maximal finite play. We equip it with a winning condition W.
Each infinite play $ ∈ ((Σ × U) · (X × D))ω generates an infinite sequence of
states (qk)k ∈ QωA as follows. We let q0 := qıA and (using Rem. 3.2)

qk+1 := δA(qk,M(b0. · · · .bk , d0. · · · .dk−1), uk, xk, dk)

where $ = ((bk, uk) · (xk, dk))k. Then $ is winning (i.e. $ ∈ W) iff (qk)k is
accepting (i.e. (qk)k ∈ ΩA). Note that P plays input characters b0, . . . , bk ∈ Γ ,
which are transmitted by M to the transition function of A. On the other hand,
the tree directions d0, . . . , dk ∈ D are played by O. Write Σ ` A for Σ ` A(IdΣ).

If M = Mf for an A-map f : Γ → Σ, then the game Γ ` A(Mf) is the same
as the game Γ ` A[f], where the automaton A[f] : Γ is defined as A, but with
δA[f](q, b, u, x, d) := δA(q, f(b), u, x, d).

Given a tree T : D∗ → Σ, the game 1 ` A(Ṫ) (also writtenA(T)) is similar to
usual acceptance games (see e.g. [35, 12, 30]). A typical play of A(T) is depicted
on Fig. 1 (middle). Note that the input alphabet of A(T) is 1, so that P only
plays moves in U .

Definition 3.7. Given A : Σ and T : D∗ → Σ, we say that A accepts T if P
has a winning strategy in A(T). We let L(A) be the set of T : D∗ → Σ such
that A accepts T . A set of trees L ⊆ (D∗ → Σ) is regular if there is a regular
automaton A : Σ such that L = L(A).

8

3.4 Linear Synchronous Arrow Games

Morphisms of our categories of automata are strategies in linear synchronous
arrow games [32], obtained by a suitable restriction of the linear arrow of simple
games on generalized substituted acceptance games.

Fix an alphabet Σ and consider full positive games A = (Σ×U,X×D,WA)
and B = (Σ × V, Y ×D,WB). We define a synchronous restriction of A(B.
Let the trace tr(t) ∈ (Σ + D)∗ of a play t ∈ ℘+

A (resp. ℘+
B) be the restriction

of t to Σ + D. We say that an even-length play s ∈ LA(B is synchronous if
tr(s�A) = tr(s�B). Note that P has to play the same a ∈ Σ and tree directions
d ∈ D as chosen by O (see also Fig. 1 (right)).

When A = (Σ ` A(M)) and B = (Σ ` B(N)), we write Σ ` A(M)(B(N)
for the game A (B restricted to (prefixes of) synchronous plays s ∈ LA(B

(see Fig. 1 (right)). Note that s�A and s�B explore the same path of the input
tree, with the same input characters a ∈ Σ. We write Σ ` A(B for the game
Σ ` A(IdΣ)(B(IdΣ) where A,B : Σ.

A strategy σ : A (B is synchronous if all its plays are synchronous, or
equivalently if HS(σ) is a Rel(Set/(Γ+D)∗)-map from (℘+

A, tr) to (℘+
B , tr). Note

that synchronous strategies are zig-zag. We thus get categories of winning syn-
chronous strategies by equipping games of the form A (B with the winning
condition WA(B of zig-zag games.

Definition 3.8 (The Categories AG
(W)
Σ). Objects of AGΣ are pairs (U,X),

and maps from (U,X) to (V, Y) are synchronous DZ-maps from (Σ×U,X×D)
to (Σ × V, Y ×D).

Objects of AGW
Σ are tuples (U,X,WA), where WA ⊆ ((Σ × U) · (X ×D))ω.

AGW
Σ -maps from (U,X,WA) to (V, Y,WB) are synchronous DZW-maps from

(Σ × U,X ×D,WA) to (Σ × V, Y ×D,WB).

Given A = (Σ ` A(M)) write A for the AG
(W)
Σ -object (U,X) (resp. (U,X,WA)).

Example 3.9. Given A : Σ and T : D∗ → Σ, P has a winning strategy in A(T)
(i.e. T ∈ L(A)) iff P has a winning strategy in 1 ` I1(A(Ṫ).

4 Fibrations of Tree Automata

We now present our category DialAut of tree automata and generalized substi-
tuted acceptance games. The category DialAut is fibred over T (Def. 3.1), and
its fibre over Σ is equivalent to the category AGW

Σ (Def. 3.8).

The fibred structure of DialAut is based on an indexed category DialZ, induced
from DZD by comonoid indexing (inspired from [17, 18]). This allows a smooth
treatment of monoidal closure and universal quantifications.

9

4.1 The Indexed Category DialZ

The indexed category DialZ is similar to the simple fibration s : s(B) → B (see
e.g. [19, 16, 14]). Given B with finite products, the objects of s(B) are pairs
(I,X) of B-objects. Maps (I,X)→ (J, Y) are pairs (f0, f) with f0 : I → J and
f : I × X → Y . The functor s : s(B) → B is the first projection, and the fibre
over I is the Kleiseli category of indexing with the comonoid I. Using comonoid
indexing [17, 18] (dual to monoid indexing, see §2.3), since comonoids have finite
products, the same pattern can be applied to a symmetric monoidal category.
This gives a fibration whose fibre over the comonoid K is the Kleiseli category
of indexing with K.

Dually to monoid indexing, a comonoid (K, d, e) in a symmetric monoidal
category (C,⊗, I) induces a comonad (K, δK , εK), where we let K(A) := K ⊗A
and K(f) := idK ⊗ f for f : A→ B, and where

δKA := α ◦ (d⊗ idA) : K ⊗A −→ K ⊗ (K ⊗A)
εKA := λ ◦ (e⊗ idA) : K ⊗A −→ A

Moreover, the dual of Prop. 2.4 holds, so that Kl(K) is symmetric monoidal
with on objects A⊗Kl(K) B := A⊗B and unit I.

Now, a comonoid morphism u : K → L induces a strict monoidal functor
uCI : Kl(L) → Kl(K) which is the identity on objects and such that uCI(f) :=
f ◦ (u⊗ idA) : K ⊗A→ B for f : L⊗A→ B. Since (−)CI is itself functorial, we
thus have an indexed category CI(C) : Comon(C)op → Cat.

Given a comonoid K and a monoid M in C, the comonad K is related to
the monad M by a distributive law. A distributive law Λ of a comonad G over
a monad T on C is a natural map Λ : G ◦ T ⇒ T ◦G subject to some coherence
conditions (see e.g. [13]), which ensure that we have a category Kl(Λ) with the
same objects as C and with Kl(Λ)[A,B] := C[GA, TB], and that there is a

lifting functor (−)
↑

: Kl(Λ)→ C taking f : GA→ TB to f↑ : GTA→ GTB. A
distributive law of K over M is given by the natural associativity maps:

Φ(−) := α−1K,(−),M : K ⊗ ((−)⊗M) =⇒ (K ⊗ (−))⊗M

Moreover, by Prop. 2.4 we have Kl(Φ)[A,B] = CI(Kl(M))(K)[A,B].
We now turn to the specific cases of DZ and DZD. Recall that DZ-objects of

the form Σ = (Σ,1) are comonoids in DZ and DZD. Moreover, T-maps induce
comonoid morphisms in DZD by Prop. 3.3. We thus get an indexed category
DialZ := CI(DZD) ◦ ET : Top → Cat.

4.2 The Fibred Category DialAut

The fibration da : DialAut → T is obtained by Grothendieck completion of an
indexed category (−)∗ : Top → Cat, which takes an alphabet Σ to a category
equivalent to AGW

Σ (see Def. 3.8). The action of (−)∗ on T-maps is based on
the indexed category DialZ defined above.

10

We first note that DialZ(Σ) is equivalent to AGΣ . On the one hand, a
strategy σ ∈ DialZ(Σ)[A,B] ' DZ[Σ ⊗ A,B ⊗ D] is actually lifted to a syn-
chronous σ↑ ∈ AGΣ [A,B]. On the other hand, given σ ∈ AGΣ [A,B], we have

σ = (εΣ ◦ σ ◦ (idΣ ⊗ ηD))
↑

where εΣ ◦ σ ◦ (idΣ ⊗ ηD) ∈ DialZ(Σ)[A,B]. Since

(−)
↑

is faithful on DialZ(Σ), it follows that σ 7→ εΣ ◦σ ◦ (idΣ⊗ηD) is functorial.
For each alphabet Σ, we define a category DialAutΣ . It has the same objects

as AGW
Σ , namely tuples (U,X,WA) whereWA ⊆ ((Σ×U)·(X×D))ω. Maps from

(U,X,WA) to (V, Y,WB) are DZ-strategies σ : (Σ×U,X) −((V, Y ×D) (a.k.a.
DialZ(Σ)-maps) whose lift σ↑ are AGW

Σ -maps from (U,X,WA) to (V, Y,WB).
Composition and identities of DialAutΣ are induced by composition and identities
of DialZ(Σ) thanks to the functoriality of (−)

↑
. DialAutΣ is equivalent to AGW

Σ .
Maps L ∈ T[Γ,Σ] induce functors L∗ : DialAutΣ → DialAutΓ . Given a

DialAutΣ-object A = (U,X,WA), let L∗(A) := (U,X,L∗(WA)), where ((bk, uk) ·
(xk, dk))k ∈ L∗(WA) iff ((L(b0. · · · .bk, d0. · · · .dk−1), uk) · (xk, dk))k ∈ WA.

The action of L∗ on maps is induced by CI(DZD)(L) : DialZ(Σ)→ DialZ(Γ),
so that for σ ∈ DialAutΣ [A,B], we let L∗(σ) := σ ◦ (L ⊗ idA) (where ◦, ⊗ and

idA are taken in DZD). It is easy to check that L∗(σ)
↑

is winning.
We obtain an indexed category (−)∗ : Top → Cat since (−)∗ is itself

functorial. We let da : DialAut → T be its Grothendieck completion. The
objects of DialAut are pairs (Σ, (U,X,WA)) where (U,X,WA) is an object of
DialAutΣ . Maps from (Σ, (U,X,WA)) to (Γ, (V, Y,WB)) are pairs (L, σ) of a
T-map L : Σ → Γ and a DialAutΣ-map σ from (U,X,WA) to L∗(V, Y,WB).

Substitution in Games and Language Inclusion. We now discuss substi-
tution for the acceptance games of §3.3 and check that DialAutΣ (and AGW

Σ) is
correct w.r.t. language inclusion.

First, note that for a DialAutΣ-object A := (Σ ` A(M)) and L ∈ T[Γ,Σ],
we have L∗(A) = (Γ ` A(M ◦ L)). Given also B := (Σ ` B(N)) and some
σ ∈ DialAutΣ [A,B], we have L∗(σ) ∈ DialAutΓ [(Γ ` A(M ◦L)), (Γ ` B(N ◦L))].

Assume now that A = (Σ ` A) and B = (Σ ` B). Given T : D∗ → Σ,
we thus have Ṫ ∗(σ) ∈ DialAut1[A(T),B(T)]. If T ∈ L(A) then there is some
τ ∈ DialAut1[I1,A(T)], so that Ṫ ∗(σ) ◦ τ ∈ DialAut1[I1,B(T)] and T ∈ L(B).
We therefore have shown:

Proposition 4.1. If P has a winning strat. in Σ ` A(B, then L(A) ⊆ L(B).

5 Categorical Structure and Operations on Automata

We present here some constructions and properties of automata and DialAut:
monoidal closed structure in §5.1, quantifications in §5.2, the deduction system
in §5.3, and the interpretation of simulation as exponential rules in §5.4.

5.1 Monoidal Closed Structure

The main contribution of this paper is that automata and generalized substituted
acceptance games are equipped with a monoidal closed structure. We introduce

11

a linear implication connective on automata, satisfying

A⊗ B −(C ' B −((A(C) (2)

and which is compatible with cut-elimination (see Rem. 5.14). As a consequence,
we get universal quantifications as right adjoints to weakening.

The category DZ has a monoidal closed structure which follows the pattern
of the Gödel’s Dialectica interpretation: Given A = (U,X) and B = (V, Y),
a total zig-zag strategy σ : A (B as in Fig. 1 (top left) provides infinite
sequences of maps f : U → V (for the P-move v in B after the O-move u in A)
and F : U × Y → X (for the P-move x in A after the O-moves u and y).

Proposition 5.1. The category DZ is symmetric monoidal closed. The linear
exponent of A = (U,X) and B = (V, Y) is A(DZ B := (V U×XU×Y , U×Y).

The monoidal closed structure of DZ thus departs from traditional game seman-
tics since the natural isomorphism A ⊗ B −(C ' B −((A(DZ C) relates
only strategies, but not plays.

The monoidal closed structure of DZ lifts to DZD and to the fibres DialZ(Σ).
Since DZD[A⊗B,C] = DZ[A⊗B,C ⊗D] ' DZ[A,B(DZ C ⊗D] we should
have (A (DZD

B) ⊗ D ' (A (DZ B ⊗ D). This leads to ((U,X) (DZD

(V, Y)) = (W,Z) with (W,Z×D) ' (V U×XU×Y×D, U×Y ×D). We therefore let
(U,X)(DZD

(V, Y) := (V U ×XU×Y×D, U ×Y). This lifts directly to DialZ(Σ)
since DialZ(Σ)[A⊗B,C] = DZD[Σ ⊗A⊗B,C] ' DZD[Σ ⊗A,B(DZD

C].

Proposition 5.2. DZD and DialZ(Σ) are symmetric monoidal closed.

This gives the fibrewise symmetric monoidal closed structure of DialAut (in
the sense of [19, §1.8]). The unit over Σ is IΣ := (1,1,1ω). Given DialAutΣ-
objects A = (U,X,WA) and B = (V, Y,WB), let

A⊗DA B := (U × V, X × Y, WA uWB)
A(DA B := (V U ×XU×Y×D, U × Y, WA AWB)

where $ ∈ WA u WB iff ($�(Σ×U)+(X×D) ∈ WA ∧ $�(Σ×V)+(Y×D) ∈ WB),
and ((ak, fk, Fk) · (uk, yk, dk))k ∈ WA A WB iff (α ∈ WA ⇒ β ∈ WB) with
α := ((ak, uk) · (Fk(uk, yk, dk), dk))k and β := ((ak, fk(uk)) · (yk, dk))k.

Proposition 5.3. The fibration DialAut is fibrewise monoidal closed.

The symmetric monoidal closed structure of DialAutΣ gives a monoidal prod-
uct and a linear implication on automata.

Definition 5.4. Given A : Σ as in (1) and (B : Σ) = (QB, q
ı
B, V, Y, δB, ΩB), let

A⊗ B := (QA ×QB, (qıA, q
ı
B), U × V, X × Y, δA⊗B, ΩA⊗B)

A(B := (QA ×QB, (qıA, q
ı
B), V U ×XU×Y×D, U × Y, δA(B, ΩA(B)

with δA⊗B((qA, qB), a, (u, v), (x, y), d) := (δA(qA, a, u, x, d), δB(qB, a, v, y, d)) and
with δA(B((qA, qB), a, (f, F), (u, y), d) := (q′A, q

′
B) where q′B = δB(qB, a, fv, y, d)

and q′A = δA(qA, a, u, F (u, y, d), d).
We moreover let (qk, q

′
k)k ∈ ΩA⊗B iff ((qk)k ∈ ΩA ∧ (q′k)k ∈ ΩB), and

(qk, q
′
k)k ∈ ΩA(B iff ((qk)k ∈ ΩA ⇒ (q′k)k ∈ ΩB).

12

Note that A ⊗ B is non-deterministic if both A and B are non-deterministic.
Moreover, given A,B : Γ and M ∈ T[Σ,Γ], we have, as DialAutΣ-objects,
Σ ` (A(M) (DA B(M)) = Σ ` (A (B)(M) and Σ ` (A(M) ⊗DA B(M)) =
Σ ` (A⊗ B)(M).

Example 5.5. (i) Given A,B as in Def. 5.4, there is a winning P-strategy in
Σ ` A ⊗ B (A. It maps (u, v) ∈ U × V to u ∈ U and x ∈ X to
(x, y) ∈ X × Y , where y ∈ Y is arbitrary (recall that Y is non-empty). It
follows that P has a winning strategy in Σ ` A −((B(A).

(ii) If A : Σ is non-deterministic, then there is a winning P-strategy in Σ `
A (A ⊗ A. Its maps u ∈ U to (u, u) ∈ U × U . Note that such strategy
may not exist when X 6= 1, since O can play two different (x, x′) ∈ X ×X
in the component A⊗A.

Proposition 5.6. Given A,B : Σ, we have L(A⊗ B) = L(A) ∩ L(B).

Falsity and Complementation. Alternating automata enjoy a complementa-
tion construction linear in the number of states (see e.g. [28]). Using the monoidal
closed structure, a similar construction can be done with our automata.

The falsity automaton ‹ : Σ is (B, f,D,1, δ‹, Ω‹) where Ω‹ := B∗.tω and
where δ‹(t, , d′, •, d) := t and δ‹(f, , d, •, d) := f and δ‹(f, , d′, •, d) := t if
d′ 6= d. Note that ‹ accepts no tree since in an acceptance game, O can always
play the same d as P. Given A : Σ, let A‹ := A(‹. Note that A‹ is equivalent
to an automaton with states QA + 1. We say that A is Borel if its acceptance
condition is a Borel set (regular sets are Borel). Thanks to the determinacy of
Borel games [26], we get:

Proposition 5.7. If A : Σ is Borel then L(A‹) = ΣD∗ \ L(A).

5.2 Quantifications

A fibration p : E → B has existential quantifications (also called simple co-
products [19]) when the weakening functors π∗ : EI → EI×J (induced by the
B-projections π : I × J → I) have left adjoints

∐
I,J : EI×J → EI satisfying a

Beck-Chevalley coherence condition, insuring that the adjunction
∐
I,J a π∗ is

preserved by substitution. Universal quantifications (simple products [19]) are
given by a right adjoint

∏
I,J : EI×J → EI to π∗ (also with a Beck-Chevalley

condition). The simple fibration s : s(B)→ B always has simple coproducts, and
has simple products iff B is Cartesian closed. They are given by∐

I,J

(I × J,X) := (I, J ×X) and
∏
I,J

(I × J,X) := (I,XJ)

This extends to DialZ, where given a T-projection p : Σ × Γ → Σ, the
weakening functor p∗ : DialZ(Σ)→ DialZ(Σ × Γ) has left and right adjoints∐
Σ,Γ

(U,X) := (Γ ×U,X) and
∏
Σ,Γ

(U,X) := (UΓ , Γ ×X) ' (Γ (DZD
(U,X))

13

The Beck-Chevalley condition amounts, for L ∈ T[∆,Σ], to L∗(
e
Σ,Γ (U,X)) =e

∆,Γ (L× IdΓ)∗(U,X) where
e
∈ {
∐
,
∏
}. It holds since substitution functors

are identities on objects. Quantifications in DialAut are given by∐
Σ,Γ

(U,X,WA) := (Γ ×U,X,WA) and
∏
Σ,Γ

(U,X,WA) := (UΓ , Γ ×X,
∏
Σ,Γ

WA)

where ((ak, fk) · (bk, xk, dk))k ∈
∏
Σ,Γ WA iff ((ak, bk, fk(bk)) · (xk, dk))k ∈ WA.

Proposition 5.8. DialAut has existential and universal quantifications.

The same constructions give quantifiers on automata.

Definition 5.9. Given A : Σ × Γ as in (1), let

(∃ΓA : Σ) := (QA , q
ı
A , Γ × U , X , δ∃ΓA , ΩA)

(∀ΓA : Σ) := (QA , q
ı
A , U

Γ , Γ ×X , δ∀ΓA , ΩA)

where δ∃ΓA(q, a, (b, u), x, d) := δA(q, (a, b), u, x, d) and δ∀ΓA(q, a, f, (b, x), d) :=
δA(q, (a, b), f(b), x, d).

Note that given A : Σ × Γ we have (Σ `
∐
Σ,Γ A) = (Σ ` ∃ΣA) and (Σ `∏

Σ,Γ A) = (Σ ` ∀ΣA) as DialAutΣ-objects.
Let pΣ ∈ T[Σ×Γ,Σ] be the first projection. It is easy to see that if A accepts

T : D∗ → (Σ × Γ), then ∃ΓA accepts (pΣ ◦ Ṫ)•, so that pΣ(L(A)) ⊆ L(∃ΓA).
The converse only holds for non-deterministic automata.

Proposition 5.10. If A : Σ×Γ is non-deterministic then L(∃ΓA) = pΣ(L(A)).

Example 5.11. (i) Given A : Σ as in (1), let D : Σ×U×X be the deterministic
automaton (QA, q

ı
A,1,1, δD, ΩA) with δD : QA× (Σ×U ×X)→ D→ QA

obtained from δA in the obvious way. In DialAutΣ we have A ' ∃U∀XD.
(ii) The Beck-Chevalley conditions imply

∐
Σ,Γ A(M × IdΓ) = (∃ΓA)(M) and∏

Σ,Γ A(M × IdΓ) = (∀ΓA)(M). Thanks to the adjunctions
∐
a p∗ a

∏
,

in DialAut we have

Σ ` (∃ΓA)(M) (B(N) ' Σ × Γ ` A(M × IdΓ) (B(N ◦ pΣ)
Σ ` B(N) ((∀ΓA)(M) ' Σ × Γ ` B(N ◦ pΣ) (A(M × IdΓ)

Hence P has a winning strategy in Σ ` (∀ΣA)[1Σ](A (modΣ ' 1×Σ).
(iii) If A,B : Σ are regular, then the game Σ ` A(B is equivalent to a finite

regular game. Indeed, by (ii), P has a winning strategy in Σ ` A(B iff he
has a winning strategy in 1 ` I1(∀Σ(A(B). But since in that game O
can only play • in the component I1, similarly as in Ex. 3.9 it is equivalent
to the acceptance game of the automaton ∀Σ(A (B) : 1 on the unique
tree 1 : D∗ → 1. Since ∀Σ(A (B) is regular, this game is equivalent to
a finite regular game and the winner always effectively has a finite state
winning strategy (see e.g. [35, Ex. 6.12 & Thm. 6.18]).

(iv) If A,B : Σ are non-deterministic Borel and L(A)∩L(B) = ∅, then P has a
winning strategy in Σ ` A⊗ B(‹ and in Σ ` A(B‹.

14

5.3 A Deduction System for Automata

We now present a deduction system for tree automata. It allows to derive se-
quents M ; A ` A where A = A1, . . . ,An : Σ, A : Σ and M ∈ T[Γ,Σ]. The
rules are given in Fig. 2. They are correct in the following sense:

Proposition 5.12. If M ; A ` A is derivable, then there is a winning P-strategy
in Γ ` A1(M)⊗ . . .⊗An(M)(A(M).

A game of the form Γ ` A(M)(B(N) is represented as 〈M,N〉 ; A[p] ` B[q]
where p and q are suitable projections. Write A ` B for the sequent Id ; A ` B.

Example 5.13. (i) If A,B : Σ are both non-deterministic, then one can derive
A ` A ⊗ A and B ⊗ (B (A) ` A ⊗ B, so that by Prop. 5.12, P has a
winning strategy in Σ ` B ⊗ (B(A) −(A⊗ B.

(ii) Continuing (i), if A,B are moreover Borel and L(A) ∩ L(B) = ∅, by
Ex. 5.11.(iv) there is a winning P-strategy in Σ ` A ⊗ B (‹. By
composing it with the strategy of (i), we obtain a winning P-strategy in
Σ ` B⊗(B(A) −(‹ and thus in Σ ` (B(A) −(B‹. It then follows
from Ex. 5.5.(i) and Prop. 4.1 that L(A) ⊆ L(B(A) ⊆ L(B‹).

Remark 5.14. The rules of Fig. 2 are compatible with cut-elimination (see e.g. [27]).
For instance, the following two derivations are interpreted by the same strategy:

∆1

A ` B
I ` A(B

∆2

I ` A B ` B
A(B ` B

I ` B

...

∆1[∆2/A]

I ` B

5.4 Non-Deterministic Automata

We have seen in §5.1 that similarly to usual alternating automata, our automata
have linear complements. Moreover, by Prop. 5.10 the projection operation is
correct on non-deterministic automata. However, complementation is not linear
on non-deterministic automata and projection is not correct in general on alter-
nating automata. On the other hand it is well-known that regular alternating
and non-deterministic automata are equivalent in expressive power:

Theorem 5.15 (Simulation [28, 9] (see also [29])). Given a regular A : Σ,
one can effectively build a regular non-deterministic !A : Σ s.t. L(A) = L(!A).

The automaton !A is in general exponentially larger than A.
In our context, it is possible to adapt the construction for !A of [36] so that

the operation !(−) satisfies the deduction rules of the usual exponential modality !
of intuitionistic linear logic [11] (see also [27]). For regular A,B,A:

M ; !A ` A
M ; !A ` !A

M ; A, B ` A
M ; A, !B ` A

M ; A, ` A
M ; A, !B ` A

M ; A, !B, !B ` A
M ; A, !B ` A

15

Propositional rules (for N non-deterministic):

M ; A, A ` A
M ; A ` B M ; C, B ` C

M ; A, C ` C
M ; A ` A
M ; A, B ` A

M ; B ` B M ; C, C ` A
M ; B, C,B(C ` A

M ; A, B ` C
M ; A ` B(C

M ; A, N , N ` A
M ; A, N ` A

M ; A, B, C ` A
M ; A, B ⊗ C ` A

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B M ; A ` I

Quantification and Substitution Rules:
(where M,N are composable, p is a suitable projection, and a ∈ A[Σ,Γ])

M × IdΓ ; A[p], B ` A[p]

M ; A, ∃ΓB ` A
M ×N ; A ` A

M ×N ; A ` (∃ΓA)[p]

M ; A ` A
M ◦N ; A ` A

M ×N ; A, B ` A
M ×N ; A, (∀ΓB)[p] ` A

M × IdΓ ; A[p] ` A
M ; A ` ∀ΓA

M × IdΓ ; A ` A
M × IdΣ ; A[id× a] ` A[id× a]

Fig. 2. Deduction Rules for Automata

It follows that the exponential ! allows to define, using Girard’s decomposition,
an intuitionistic implication ⇒ as A ⇒ B := !A(B.

The last two rules (called Weakening and Contraction) are already part of
the basic system (Fig. 2). The second rule (Dereliction) easily follows from the
construction of !A. The most difficult rule is the first one (Promotion). It relies
on the existence of positional P-strategies in regular games equipped with a
disjunction of parity conditions (also called a Rabin condition) [21, 22, 20, 37].
Unfortunately, positionality is not preserved by composition, and this rule is not
compatible with cut-elimination (in the sense of Rem. 5.14).

Proposition 5.16. Let N ,A : Σ be regular, with N non-deterministic.

(i) There is a winning P-strategy in Σ ` !A(M)(A(M).
(ii) If there is a winning P-strategy in Σ ` N (L) (A(M) then there is a

winning P-strategy in Σ ` N (L)(!A(M).

Example 5.17. Let A,B : Σ be regular, and write ?A for (!(A‹))‹.

(i) There is a winning P-strategy in Σ ` ((?A ⇒ ?B)⇒ ?A) =⇒ ?A.
(ii) If L(A) ⊆ L(B), then there is a winning P-strategy in Σ ` !A(?B.

(iii) Extending [7, Thm. 1], for each regular language L ⊆ ΣD∗ , there is a
non-deterministic automaton B with L(B) = L, and such that for every
non-deterministic parity automaton A with L(A) ⊆ L, there is a winning
P-strategy in Σ ` A(B induced by a function QA ×QB ×Σ × U → V .

Further works include e.g. intuitionistic and linear versions of MSO, accounts
of separation properties (as in e.g. [33]), and exponential modalities in DZ.

16

References

[1] S. Abramsky. Semantics of Interaction. In A. M. Pitts and P. Dybjer, editors,
Semantics and Logics of Computation, volume 14 of Publications of the Newton
Institute, page 1. Cambridge University Press, 1997. 2, 3, 4, 20

[2] A. Arnold. The µ-calculus alternation-depth hierarchy is strict on binary trees.
ITA, 33(4/5):329–340, 1999.

[3] A. Arnold and D. Niwinski. Continuous Separation of Game Languages. Fundam.
Inform., 81(1-3):19–28, 2007.

[4] J. Avigad and S. Feferman. Gödel’s functional (”Dialectica”) interpretation. In
S. Buss, editor, Handbook Proof Theory, volume 137 of Studies in Logic and the
Foundations of Mathematics, pages 337–405. Elsevier, 1998. 2

[5] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. First steps
in synthetic guarded domain theory: step-indexing in the topos of trees. Logical
Methods in Computer Science, 8(4), 2012. 44, 45, 49

[6] M. Bojańczyk and T. Colcombet. Bounds in w-Regularity. In Proceedings of
LICS’06, pages 285–296. IEEE Computer Society, 2006.

[7] T. Colcombet and C. Löding. The Non-deterministic Mostowski Hierarchy and
Distance-Parity Automata. In ICALP 2008, volume 5126 of Lecture Notes in
Computer Science, pages 398–409. Springer, 2008. 15, 36, 38

[8] V. de Paiva. The Dialectica categories. Technical Report 213, University of
Cambridge Computer Laboratory, January 1991. 2, 41

[9] E. A. Emerson and C. S. Jutla. Tree Automata, Mu-Calculus and Determinacy
(Extended Abstract). In FOCS, pages 368–377. IEEE Computer Society, 1991. 1,
14, 33, 95

[10] A. Facchini, F. Murlak, and M. Skrzypczak. Rabin-Mostowski Index Problem: A
Step beyond Deterministic Automata. In LICS, pages 499–508. IEEE Computer
Society, 2013.

[11] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987. 2, 14
[12] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite

Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002. 1,
2, 7, 23

[13] R. Harmer, M Hyland, and P.-A. Melliès. Categorical combinatorics for innocent
strategies. In LICS 2007, pages 379–388, 2007. 9, 23, 59, 76

[14] P. J. W. Hofstra. The dialectica monad and its cousins. In M. Makkai and B.T.
Hart, editors, Models, Logics, and Higher-dimensional Categories: A Tribute to
the Work of Mihály Makkai, CRM proceedings & lecture notes. American Math-
ematical Society, 2011. 9

[15] J. M. E. Hyland. Game Semantics. In A. M. Pitts and P. Dybjer, editors, Seman-
tics and Logics of Computation, volume 14 of Publications of the Newton Institute,
page 131. Cambridge University Press, 1997. 2, 3, 4, 20

[16] J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Logic, 114(1-
3):43–78, 2002. 2, 9, 41

[17] J. M. E. Hyland and A. Schalk. Abstract Games for Linear Logic. Electr. Notes
Theor. Comput. Sci., 29:127–150, 1999. 4, 5, 8, 9, 18, 94

[18] J. M. E. Hyland and A. Schalk. Glueing and orthogonality for models of linear
logic. Theoretical Computer Science, 294(1/2):183–231, 2003. 5, 8, 9, 40, 41, 42,
44, 87, 89

[19] B. Jacobs. Categorical Logic and Type Theory. Studies in logic and the foundations
of mathematics. Elsevier, 2001. 1, 2, 9, 11, 12

17

[20] C. S. Jutla. Determinization and Memoryless Winning Strategies. Inf. Comput.,
133(2):117–134, 1997. 15, 33, 34

[21] N. Klarlund. Progress measures, immediate determinacy, and a subset construc-
tion for tree automata. Annals of Pure and Applied Logic, 69(2-3):243–268, 1994.
15, 33, 34

[22] N. Klarlund and D. Kozen. Rabin Measures. Chicago J. Theor. Comput. Sci.,
1995, 1995. 15, 33, 34

[23] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics. Springer, 2008. 2

[24] S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition,
1998. 26, 68

[25] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: A first introduction
to topos theory. Springer, 1992. 45

[26] D. A. Martin. Borel Determinacy. The Annals of Mathematics, Second Series,
102(2):363–371, 1975. 12, 30

[27] P.-A. Melliès. Categorical semantics of linear logic. In Interactive models of
computation and program behaviour, volume 27 of Panoramas et Synthèses. SMF,
2009. 5, 14, 20, 26, 43, 52, 68, 70, 71, 72, 74, 75, 82, 87, 89, 92, 93

[28] D. E. Muller and P. E. Schupp. Alternating Automata on Infinite Trees. Theor.
Comput. Sci., 54:267–276, 1987. 1, 7, 12, 14, 33, 95

[29] D. E. Muller and P. E Schupp. Simulating Alternating Tree Automata by Non-
deterministic Automata: New Results and New Proofs of the Theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci., 141(1&2):69–107, 1995. 1, 7, 14,
33, 95

[30] D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic and Games.
Pure and Applied Mathematics. Elsevier, 2004. 2, 7, 23

[31] M. O. Rabin. Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society, 141:1–35, 1969. 1

[32] C. Riba. Fibrations of tree automata. In TLCA, volume 38 of LIPIcs, pages
302–316. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. 1, 2, 3, 5, 7,
8, 18, 20, 26

[33] L. Santocanale and A. Arnold. Ambiguous classes in mu-calculi hierarchies. Theor.
Comput. Sci., 333(1-2):265–296, 2005. 15, 36, 39, 95

[34] M. Skrzypczak. Separation Property for wB- and wS-regular Languages. Logical
Methods in Computer Science, 10(1), 2014.

[35] W. Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, volume III, pages 389–455. Springer,
1997. 1, 2, 7, 13, 23, 32, 38

[36] I. Walukiewicz. Monadic second-order logic on tree-like structures. Theor. Com-
put. Sci., 275(1-2):311–346, 2002. 1, 7, 14, 23, 30, 33

[37] Z. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.
15, 33, 34

18

A Proofs and Additional Material for §2 (Games)

This appendix gathers proofs and some supplementary basic material on §2. We
discuss the Hyland & Schalk functor [17], the definition of the categories DZ
and DZW, and some related easy basic facts about relations in slices which will
lead in §B to a simple proof that AGΣ and AGW

Σ are categories (see Def. 3.8).
We also discuss general facts on monoids and comonoids in symmetric monoidal
categories. We finally discuss the monoidal structure of DZ, using a represen-
tation of DZ as a subcategory of the simple self-dualization G(S) of the topos
of trees S . The construction of simple self dualization is presented in §I. The
representation of zig-zag strategies in G(S) is presented in §J. Some material
on monoidal categories is recalled in §M.

Notations. Given a full positive game A = (, U,X), we let ℘even
A ⊆ ℘+

A = LA
be the set of its even-length plays. Note that there is a bijection

∂ = 〈∂U , ∂X〉 : ℘even
A −→ ∪n∈N(Un ×Xn)

with ∂(ε) = (•, •) and ∂(s.u.x) = (∂U (s).u, ∂X(s).x).

A.1 The Hyland-Schalk Functor [17]

The faithfull functor HS : SG −→ Rel is defined in [17] as a functor from the
full subcategory of SG consisting of negative games only. The extension to SG
is discussed in §4 of the Appendix of the long version of [32]1.

Proposition A.1. The map taking σ : A(B to

HS(σ) := {(s�A, s�B) | s ∈ σ} ⊆ LA × LB

is a faithfull functor HS : SG→ Rel.

We can therefore faithfully represent strategies σ : A(B as spans

LA
π1←− HS(σ)

π2−→ LB

Explicitly, HS(idA) is identity relation on LA, and given σ : A(B, τ : B(C,
τ ◦ σ is the unique strategy such that HS(τ ◦ σ) is the relation HS(τ) ◦HS(σ).

A.2 The Category SG/Tr of Sliced Games over Tr

Given a set Tr, the category Rel(Set/Tr) of relations over Tr has the same
objects as Set/Tr (pairs of a set A and a function trA : A → Tr). Maps from

1 Available at https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf.

https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf

19

(A, trA) to (B, trB) are relations R ⊆ A×B s.t. trA(a) = trB(b) for all (a, b) ∈ R,
that is

Rπ1

rr
π2

,,A
trA ,,

B
trBrrTr

A sliced game over Tr is a pair of a simple game (with winning) A and a
function trA : LA → Tr.

The category SG/Tr has sliced games as objects. The maps from (A, trA) to
(B, trB) are strategies σ : A(B such that HS(σ) is a Rel(Set/Tr)-map from
(LA, trA) to (LB , trB). We therefore require:

HS(σ)π2

rr
π1

,,LA
trA ,,

LB
trBrrTr

It directly follows from Prop. A.1 that SG/Tr is a category.

Proposition A.2. SG/Tr is a category.

A.3 The Category DZ0 of Zig-Zag Games

A zig-zag strategy σ : A(B is a strategy such that for every (even-length) play
s ∈ σ, the projections s�A and s�B have the same length (see Fig. 1, top left).
Hence, σ : A(B is a zig-zag strategy if and only if HS(σ) is a Rel(Set/N)-map
from (LA, length : LA → N) to (LB , length : LB → N):

HS(σ)π1

rr
π2

,,LA
length ,,

LB
lengthrrN

Let DZ0 have full positive games as objects and zig-zag strategies as mor-
phisms. Proposition A.2 directly gives:

Proposition A.3. DZ0 is a category.

A.4 Simple Games with Winning

A simple game with winning is a simple game A equipped with a set of winning
plays (or winning condition) WA ⊆ (AξA ·A−ξA)ω.

Consider a P-strategy σ on A and an O-play s ∈ LA. We say that s is an
O-interrogation of σ if either s = ε and A is positive, or if s = t.m for some t ∈ σ.
We say that σ is total if for every O-interrogation s of σ, we have s.n ∈ σ for
some n. A winning (P-)strategy on (A,WA) is a total strategy σ on A s.t. for all
$ ∈ (AξA ·A−ξA)ω, we have $ ∈ WA whenever ∃∞k ∈ N. $(0). · · · .$(k) ∈ σ.

20

It is well-known (see e.g. [1, 15]), that on negaive simple games, total and
winning strategies compose and form a category. The case of SG is discussed in
§5 of the Appendix of the long version of [32]2.

Proposition A.4. Simple games with winning define a category, SGW, where
maps from (A,WA) to (B,WB) are total strategies σ : A(B which are winning
for the winning condition WSG

A(B consisting of infinite plays $ such that if ($�A
is either a finite legal P-play of A or $�A ∈ WA) then ($�B is either a finite
legal P-play of A or $�B ∈ WB).

A.5 The Categories DZ and DZW

Its easy to see that total zig-zag strategies compose: σ : A(B and τ : B(C
are both zig-zag and total, then τ ◦ σ is zig-zag and total.

– Proof. Indeed, consider (s, t) ∈ HS(τ ◦ σ) = HS(τ) ◦HS(σ), and u such that
(s, u) ∈ HS(σ) and (u, t) ∈ HS(τ). Given a legal (A (C)O-move m in
(say) component A, since σ is zig-zag and total, there is some n such that
(s.m, u.n) ∈ HS(σ). Since n ∈ BP ⊆ (B (C)O, and since τ is zig-zag and
total, there is some r ∈ CP such that (u.n, t.r) ∈ HS(τ), from which it follows
that (s.m, t.r) ∈ HS(τ ◦ σ). The case of m ∈ CO is similar. ut

Consider full games with winning (A,WA) and (B,WB). Note that if σ : A(B
is zig-zag and total, then for every $ ∈ ((A+ + B−) · (A− + B+))ω, if $ has
infinitely many finite prefixes in σ, then $�A and $�B are both infinite. We let
WA(B ⊆ ((A+ + B−) · (A− + B+))ω be the set of infinite plays $ such that
$�B ∈ WB whenever $�A ∈ WA. Note that for an infinite play $ of a total
zig-zag σ : A(B (i.e. s.t. ∃∞k ∈ N.$(0). · · · .$(k) ∈ σ), we have $ ∈ WSG

A(B

iff $ ∈ WA(B . We therefore get:

Proposition A.5. DZ and DZW are categories.

A.6 Monoids and Comonoids

A commutative monoid in a symmetric monoidal category (C,⊗, I) is an object
M equipped with structure maps m : M ⊗M → M and u : I → M subject
to coherence conditions (see e.g. [27]). A (commutative) comonoid in C is a
(commutative) monoid in Cop. In this paper, by (co)monoid we always mean
commutative (co)monoid. Note that if (C,⊗, I) is Cartesian, then every object
has a canonical comonoid structure.

The following is Prop. M.12 together with Prop. M.14.

Proposition A.6. (a) A monoid (M,m, u) in C induces a (lax) symmetric
monoidal monad (M,µM , ηM) of monoid indexing. The functor M takes

2 Available at https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf.

https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf

21

an object A to A⊗M and a map f : A→ B to f ⊗ idM : A⊗M → B⊗M .
The natural maps µM and ηM are

µMA := (idA ⊗m) ◦ α : (A⊗M)⊗M −→ A⊗M
ηMA := (idA ⊗ u) ◦ ρ−1 : A −→ A⊗M

(where ρ : A⊗ I→ A and α : (A⊗M)⊗M → A⊗ (M ⊗M) are structural
isos of (C,⊗, I)).

(b) Dually, a comonoid K = (K, d, e) in C induces an oplax symmetric monoidal
comonad (K, δK , εK), where we let K(A) := K ⊗ A and K(f) := idK ⊗ f
for f : A→ B, and where

δKA := α ◦ (d⊗ idA) : K ⊗A −→ K ⊗ (K ⊗A)
εKA := λ ◦ (e⊗ idA) : K ⊗A −→ A

It then follows from Prop. M.2 and Prop. M.4 that for a monoid M and a
comonoid K, the Kleisely categories Kl(M) and Kl(K) are symmetric monoidal,
for a monoidal product ⊗Kl which has the same actions as ⊗ on objects and the
same unit I. Moreover, thanks to Prop. M.11, comonoids in C lift to comonoids
in Kl(M) in a canonical way (and dually for monoids and Kl(K)), so that we
have:

Proposition A.7 (Prop 2.4).

(a) Given a monoid M in C, the Kleisli category Kl(M) is symmetric monoidal
with A⊗Kl(M) B := A⊗B on objects and unit I. Moreover, each comonoid
(K, d, e) in C induces a comonoid (K, ηMK⊗K ◦ d, ηMI ◦ e) in Kl(M).

(b) Dually, given a comonoid K in C, the Kleisli category Kl(K) is symmetric
monoidal with A⊗Kl(K) B := A⊗ B on objects and unit I. Moreover, each
comonoid (M,m, u) in C induces a comonoid (K, m ◦ εKM⊗M , u ◦ εKI).

A.7 The Monoidal Structure of DZ (§2.2 and §2.3)

We discuss here Prop. 2.2 and Prop. 2.3 concerning the symmetric monoidal
structure of DZ. The proofs are based on an interpretation of DZ as a subcate-
gory of the simple self-dualization G(S) of the topos of trees S . The construc-
tion of simple self dualization is presented in §I. The representation of zig-zag
strategies in G(S) is presented in §J. Some material on monoidal categories is
recalled in §M.

The monoidal structure of DZ is given by the following data, (where A =
(U,X), B = (V, Y) and C = (W,Z)):

A⊗B := (U × V,X × Y) with unit I := (1,1)

and the natural structure maps:

(A⊗B)⊗ C
αA,B,C
−(A⊗ (B ⊗ C)

O ((u, v), w)
(u, (v, w)) P
(x, (y, z)) O

P ((x, y), z)

22

I⊗A
λA
−(A

O (•, u)
u P
x O

P (•, x)

A⊗ I
ρA
−(A

O (u, •)
u P
x O

P (x, •)

A⊗B
γA,B
−(B ⊗A

O (u, v)
(v, u) P
(y, x) O

P (x, y)

The following is shown in Prop. J.5 using a represention of total zig-zag strategies
in the topos of trees.

Proposition A.8 (Prop. 2.2). The category DZ equipped with the above data
is symmetric monoidal.

Proposition 2.3 is Prop. J.6, proved using a represention of total zig-zag
strategies in the topos of trees.

Proposition A.9 (Prop. 2.3). If M,K are non-empty, then M := (1,M) is a
monoid and K := (K,1) is a comonoid in DZ. Structure maps can be depicted
as follows:

M ⊗M
mM
−(M

O (•, •)
• P
m O

P (m,m)

I
uM
−(M

O •
• P
m O

P •

K
dK
−(K ⊗K

O k
(k, k) P
(•, •) O

P •

K
eK
−(I

O k
• P
• O

P •

B Proofs of §3 (Tree Automata and Generalized
Acceptance Games)

B.1 Proofs of §3.1 (The Base Category T of Trees)

The following is shown in Prop. J.7 using a represention of total zig-zag strategies
in the topos of trees (see also §A.7).

Proposition B.1 (Prop. 3.3). The category T embeds to Comon(DZD) via
the functor ET mapping an object Σ of T to the comonoid (Σ, eΣ , dΣ) and a
morphism M : T[Γ,Σ] to itself.

Remark B.2 (Comonoids in DZD). Each DZ-comonoid Σ = (Σ,1) is lifted to
a comonoid Σ = (Σ,1) whose structure maps d̃Σ = FD(dΣ) and ẽΣ = FD(eΣ)
can be depicted as follows:

Σ
d̃Σ
−(Σ ⊗Σ

O a

(a, a) P
d O

P •

Σ
ẽΣ
−(I

O a

• P
d O

P •

Proof. From Prop. J.6.(ii) together with Prop. M.11 applied to Prop. M.12 and
Prop. J.6.(i). ut

23

B.2 Proofs of §3.4 (Linear Synchronous Arrow Games)

Given AGΣ-objects A = (U,X) and B = (V, Y), a strategy σ : (Σ × U,X ×
D) −((Σ×V, Y ×D) is a AGΣ-map iff HS(σ) is a Rel(Set/(Γ+D)∗)-map from

(℘+
A, tr) to (℘+

B , tr). It therefore follows from Prop. A.2 that

Proposition B.3. For each alphabet Σ, AGΣ is a category.

Since AGΣ-maps are zig-zag, we moreover obtain from Prop. A.5 that

Proposition B.4. For each alphabet Σ, AGW
Σ is a category.

We record here for future use the following property:

Proposition B.5. For every regular automaton A : Σ, there is a parity au-
tomaton A† : Σ such that A† ' A in AGW

Σ .

Proof. Recall (from e.g. [35, 12, 30]) that every regular language L of ω-words
can be recognized by a deterministic ω-word parity automaton (QL, q

ı
L, δL, cL).

Following [36], given a regular tree automaton A : Σ as in (1), let

A† := (QA ×QL , (qıA, q
ı
L) , U , X , δA† , ΩA†)

where L = ΩA, ΩA† is generated from cL via second projection, and

δA†((qA, qL), a, u, x, d) := (q′A , δL(qL, q
′
A))

with q′A := δA(qA, a, u, x, d). Note that A and A† have the same P and O-moves,
so that identity strategies provide an isomorphism A ' A†. ut

C Proofs of §4 (Fibrations of Tree Automata)

In this appendix, we gather facts related to §4 and show that we indeed have an
indexed category

(−)∗ : T −→ Cat

taking Σ to DialAutΣ and L ∈ T[Γ,Σ] to L∗ : DialAutΣ → DialAutΓ .
First, the functoriality of uCI : Kl(K ′) → Kl(K) for K,K ′ comonoids in

(C,⊗, I) trivially follows from the bifunctoriality of ⊗.
Note that given a distributive law Λ : GT ⇒ TG (in the sense of [13]), the

lifting functor (−)
↑

takes f : GA→ TB to

f↑ := G(µB ◦ Tf ◦ ΛA) ◦ δTA : GTA −→ GTB

The dual of Prop. 2.4, (on the comonad of comonoid indexing) is Prop. A.7.
Moreover, given a comonoid K and a monoid M , it follows from Prop. M.16
that the associativity map

Φ(−) := α−1K,(−),M : K ⊗ ((−)⊗M) =⇒ (K ⊗ (−))⊗M

is a distributive law. We therefore have:

24

Proposition C.1. The family of associativity maps ΦΣA : Σ ⊗ (A ⊗ D) −(
(Σ ⊗A)⊗D forms a distributive law.

Remark C.2. It is well-known (and stated in Prop. M.5) that the Kleisli category
Kl(ΦΣ) of ΦΣ is equivalent to the Kleisli category DialZ(Σ) of the lift to DZD

of the DZ-comonad Σ.

Proposition C.3. For each alphabet Σ, DialAutΣ is a category.

Proof. Since DialZ(Σ) is a category, it remains to check that DialAutΣ has iden-

tities and composition. This follows from the fuctoriality of (−)
↑

: DialZ(Σ) →
AGΣ . Indeed,

– idA
↑ = idAG

A is winning since AGW
Σ is a category ;

– given composable DialAutΣ-maps τ and σ, since (τ ◦ σ)
↑

= τ↑ ◦ σ↑, we have

that (τ ◦ σ)
↑

is winning since τ↑ and σ↑ are winning. ut

C.1 Substitution in DialAut

We now check that given L ∈ T[Γ,Σ] = DZD[Γ,Σ], the operation taking σ ∈
DialAutΣ [A,B] to

L∗(σ) := σ ◦DZD
(L⊗DZD

idDZD

A)

is indeed a functor DialAutΣ → DialAutΓ . It trivially follows from the bifunc-
toriality of ⊗DZD

that L∗ is a functor from DialZ(Γ) → DialZ(Σ). Hence we

only have to show that L∗(σ)
↑

is winning from L∗(A) to L∗(B) as soon as σ↑ is
winning from A to B.

We first discuss the action of (−)
↑

: DialZ(Σ)→ AGΣ . Consider A = (U,X),
B = (V, Y) and σ ∈ DialZ(Σ)[A,B], as in:

Σ A
σ
−(B

O (a, u)
v P

(y, d) O
P x

Modulo associatiy, the map σ↑ ∈ AGΣ [A,B] is given by

(idΣ⊗((idB⊗mD)◦(σ⊗idD)))◦(dΣ⊗idA⊗D) : Σ⊗A⊗D −(Σ⊗B⊗D

Note that

σ̃ := (idB ⊗mD) ◦ (σ ⊗ idD) : Σ ⊗A⊗D −→ B ⊗D

25

plays as follows:

Σ ⊗A⊗D
σ⊗idD

−(B ⊗D⊗D
idB⊗mD

−(B ⊗D
O (a, u)

v
v P

(y, d) O
(y, d, d)

P (x, d)

It follows that σ↑ = (idΣ ⊗ σ̃) ◦ (dΣ ⊗ idA⊗D) plays as follows:

Σ ⊗A⊗D
dΣ⊗idA⊗D

−(Σ ⊗Σ ⊗A⊗D
idΣ⊗σ̃
−(Σ ⊗B ⊗D

O (a, u)
(a, a, u)

(a, v) P
(y, d) O

(x, d)
P (x, d)

That is

Σ A
σ↑

−(B
O (a, u)

(a, v) P
(y, d) O

P (x, d)

On the other hand, note that L∗(σ) plays as follows:

Γ ⊗A
L⊗DZD

id
DZD
A

−(Σ ⊗A⊗D
(idB⊗m)◦(σ⊗idD)

−(B ⊗D
O (b, u)

(a, u)
v P

(y, d) O
(x, d)

P x

so that L∗(σ)
↑

plays as:

Σ A
L∗(σ)↑

−(B
O (b, u)

(b, v) P
(y, d) O

P (x, d)

26

Proposition C.4. If σ↑ is winning then L∗(σ)
↑

is winning.

Proof. Note first for an arbitrary total zig-zag strategy τ : A(B, every infinite
play $ such that ∃∞k.$(0). · · · .$(k) ∈ τ is uniquely determined by $�A and
$�B . In the following, we write $ = ($�A, $�B).

Consider now a strategy σ ∈ DialAutΣ [A,B], and an infinite play $ such

that ∃∞k.$(0). · · · .$(k) ∈ L∗(σ)
↑
. Let

$ = (((bk, uk) · (xk, dk))k , ((bk, vk) · (yk, dk))k)

By definition of the action of L∗ on DialAutΣ-objects, we have

((L(b0. · · · .bk, d0. · · · .dk−1), uk) · (xk, dk))k ∈ WA

and ((L(b0. · · · .bk, d0. · · · .dk−1), vk) · (yk, dk))k ∈ WB

Let

$′ := (((L(b0. · · · .bk, d0. · · · .dk−1), uk)·(xk, dk))k , ((L(b0. · · · .bk, d0. · · · .dk−1), vk)·(yk, dk))k)

We thus have $ ∈ WL∗(A)(L∗(B) if and only if $′ ∈ WA(B

Now we are done since on the other hand, reasonning as in App. 7.2 & 8.2
of the long version of [32]3, it is easy to see that for all k ∈ N we have

$′(0). · · · .$′(k) ∈ σ↑ iff $(0). · · · .$(k) ∈ L∗(σ)
↑

so that ∃∞k.$′(0). · · · .$′(k) ∈ σ↑. ut

Proposition C.5 (Prop. 4.1). Given A : Σ and B : Σ, if there is a winning
P-strategy σ in A(B, then L(A) ⊆ L(B).

Proof. Let T : D∗ → Σ. Since σ is a DialAutΣ-map, it follows from Prop. C.4
that T ∗(σ) is a DialAut1-map from A(T) to B(T).

Now, if T ∈ L(A), then there is a DialAut1-strategy τ in I1 (A(T). It
follows from Prop. C.3 that T ∗(σ) ◦ τ is winning on I1 (B(T), hence that
T ∈ L(B). ut

D Proofs of §5.1 (Monoidal Closed Structure)

D.1 The Monoidal Closed Structure of DZ

Proposition D.1 (Prop. 5.1). The category DZ is symmetric monoidal closed.

Recall from e.g. [27] that a symmetric monoidal category C is closed if for
every object A, the functor A⊗ (−) has a right adjoint (−)A. Since A⊗ (−) is
already a functor, according to [24, Thm. IV.1.2] it is sufficient to show that for
every object C there is an object CA and map

evalC : A⊗ CA −→ C

3 Available at https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf.

https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf

27

such that for every f : A⊗B → C there is a unique Λ(f) : B → CA such that

A⊗ CA evalC // C

A⊗B
f

88

idA⊗Λ(f)

OO

Proof (of Prop. D.1). We rely on Prop. A.1. Let A = (U,X), B = (V, Y) and
C = (W,Z). Recall that A(DZ C = (WU ×XU×Z , U ×Z). We define the total
zig-zag strategy evalC : A⊗ (A(DZ C)(C as follows:

A⊗ (A(DZ C)
evalC
−(C

O (u, (f, F))
f(u) P
z O

P (F (u, z), (u, z))

Given any τ ′ : B((A(DZ C), the composition evalC ◦ (idA ⊗ τ ′) is given by:

A⊗B
idA⊗τ ′
−(A⊗ (A(DZ C)

evalC
−(C

O (u, v)
(u, (f ′, F ′))

f ′(u) P
z O

(F ′(u, z), (u, z))
P (F ′(u, z), y′)

It follows that evalC ◦ (idA ⊗ τ ′) = evalC ◦ (idA ⊗ τ ′′) implies τ ′ = τ ′′.
We show this by induction on pairs of even-length plays (s, t) ∈ ℘even

A ×
℘even
A(DZC

. Assume toward a contradiction that for some such (s, t) ∈ HS(τ ′) ∩
HS(τ ′′), for some v ∈ V we have (s.v, t.(f ′, F ′)) ∈ HS(τ ′) and (s.v, t.(f ′′, F ′′)) ∈
HS(τ ′′) with f ′ 6= f ′′. Then for some u ∈ U , we have say f ′(u) 6= f ′′(u). Then,
for some r we have

evalC◦(idA⊗τ ′) 3 r.(u, v).f ′(u) 6= r.(u, v).f ′′(u) ∈ evalC◦(idA⊗τ ′′)

Hence a contradiction. The case of F ′ 6= F ′′ is dealt-with similarly.
Fix now some total zig-zag σ : A⊗B(C.
We define τ = Λ(σ) : B ((A (DZ C) by induction on plays. To each

(s, t) ∈ HS(τ), with s and t even-length, we associate (s′, t′) ∈ HS(σ), with s′ and
t′ of the same length, and such that, for (v, y) = ∂(s) and ((f, F), (u, z)) = ∂(t),
we have ∂(s′) = ((u, v), (F (u, z), y)) and ∂(t′) = (f(u), z), where we take the
pointwise application of sequences of functions and the map ∂ is defined in
App. 2.

For the base case, we put (ε, ε) ∈ HS(τ), and associate it to (ε, ε) ∈ HS(σ).

28

Assume now (s, t) ∈ HS(τ), associated to (s′, t′) ∈ HS(σ). For each v ∈ V ,
we define the functions fv : U → W and Fv : U × Z → X as follows: given
u ∈ U , let w such that (s′.(u, v), t′.w) ∈ HS(σ), and for each z ∈ Z, let x
and yu,z such that (s′.(u, v).(x, yu,z), t

′.w.z) ∈ HS(σ). We then let fv(u) := w
and Fv(u, z) := x. We now let (s.v.yu,z, t.(fv, Fv).(u, z)) ∈ HS(τ), and associate
it to (s′.(u, v).(x, yu,z), t

′.w.z) = (s′.(u, v).(Fv(u, z), yu,z), t
′.fv(u).z) so that the

invariant is satisfied.
This conclude the definition of τ .
It then follows from the invariant that we indeed have evalC ◦ idA ⊗ τ = σ.
First note that the map (s, t) ∈ HS(τ) 7→ (s′, t′) ∈ HS(σ) is surjective. The

property then follows from the fact that (s, t) ∈ HS(τ) iff (s′, t′) ∈ HS(evalC ◦
idA⊗τ). This is shown by induction on pairs of plays (s, t) ∈ ℘even

B ×℘even
A(DZC

. The
base case is trivial. For the induction step, given such (s.v.yu,z, t.(fv, Fv).(u, z)),
we have (s.v.yu,z, t.(fv, Fv).(u, z)) ∈ HS(τ) if and only if

(s′.(u, v).(Fv(u, z), yu,z), t
′.f)v(u).z) ∈ HS(evalC ◦ idA ⊗ τ)

This concludes the proof of Prop. D.1. ut

D.2 Symmetric Monoidal Closed Structure in DZD, DialZ(Σ) and
DialAut

Proposition D.2 (Prop. 5.2). DZD and DialZ(Σ) are symmetric monoidal
closed.

Proof. The symmetrict monoidal structure follows from Prop. A.7. The closed
structure is presented in §5.1. ut

Proposition D.3 (Prop. 5.3). The fibration DialAut is fibrewise monoidal
closed.

Proof. We first show that substitution functors of DialZ are strong symmetric
monoidal. Using Prop. B.1, this follows from a general fact on indexed categories
CI(C) : Comon(C)op → Cat, for a symmetric monoidal category (C,⊗, I). Given
a commonoid morphism u : K → L in Comon(C), the substitution functor u∗

is the identity on objects, so the strength is made of identities. It remains to
show that the required diagrams commute (see §M.1), which amounts to

u∗(αKl(L)) = αKl(K) u∗(ρKl(L)) = ρKl(K)

u∗(λKl(L)) = λKl(K) u∗(γKl(L)) = γKl(K)

where αKl(−), ρKl(−), λKl(−) and γKl(−) are the symmetric monoidal structure
maps of Kl(−). But by §M.3 each of these maps fKl(−) is f ◦λ ◦ (e⊗ id) (where
f is the corresponding map of C), so that in C:

u∗(fKl(L)) = f ◦ λ ◦ (e⊗ id) ◦ (u⊗ id)

and we are done since e ◦ u = e as u is a comonoid morphism (see §M.3).

29

The argument is the same for the fibrewise symmetric monoidal closed struc-
ture of DialZ, since the closed structure of DialZ(Σ) is directly lifted by the
comonad Σ from the closed structure of DZD.

The result then follows from the fact that the operationsWAuWB andWA A
WB are preserved by substitution, and from the fact that all the symmetric
monoidal structure maps as well as the evaluation map are (total) winning, and
that the Currying map Λ(−) preserves (total) winning strategies. ut

Proposition D.4 (Prop. 5.6). L(A⊗ B) = L(A) ∩ L(B).

Proof. The inclusion (⊆) follows using the projectionsA⊗B → A andA⊗B → B.
For the other direction, using Prop. D.3, tensor σ winning on I1 (A(T)

with τ winning on I1(B(T) and then precompose with a monoidal unit map.
ut

D.3 Falsity and Complementation

Recall that ‹ : Σ is (B, f,D,1, δ‹, Ω‹) where Ω‹ := B∗.tω and δ‹(t, , d′, •, d) :=
t and δ‹(f, , d, •, d) := f and δ‹(f, , d′, •, d) := t if d′ 6= d.

Let A : Σ as in (1). Note that A‹ : Σ can be described as

(QA × B, (qıA, f),D
U ×XU×D, U, δA‹ , ΩA‹)

with δA‹(a, (qA, f), (f, F), u, d) = (q′A,b) where b = f iff f(u) = d, and

δA‹(a, (qA, t), (f, F), u, d) = (q′A, t)

where q′A := δA(a, qA, u, F (u, d), d). Hence O looses as soon as he does not follow
the direction proposed by P via f . Moreover, since ‹ has no transition from t
to f, and since Ω‹ = B∗.tω, it follows that A‹ is equivalent to an automaton
with state set QA + {t}. (which is linear in QA).

Proposition D.5 (Prop. 5.7). If ΩA is Borel, then T ∈ L(A‹) iff T /∈ L(A).

The proof uses the notion of O-strategy. In order to properly define winning
O-strategies in our context, it is convenient to define an O-strategy on A as a
P-stratey in the dual A of A. The dual of A is the game A := (A−, A+,−ξA, LA).

Note that A
ξ

= A−ξ, so that A
ξA = A

−ξA
= AξA and

℘ξAA = ℘
−ξA
A

= (A−ξA ·AξA)∗ + (A−ξA ·AξA)∗ ·A−ξA
= (A

ξA ·A−ξA)∗ + (A
ξA ·A−ξA)∗ ·AξA

= ℘
ξA
A

and we indeed have LA ⊆ ℘
ξA
A

. If A is a game with winning, then we let WA :=

(AξA ·A−ξA) \WA.

30

Proof. The argument is an adaptation of the one given in [36]. By Martin’s
Theorem [26], it is equivalent to show that P wins the game A‹(T) iff O wins
A(T), where, using the notions of §2, an O-strategy is just a P-strategy on the
dual game.

For (⇒), assuming given a winning P-strat σ on A(T) (‹, we build a
winning O-strat τ in A(T). The strategy τ is build by induction on plays. To
each play t of τ , we associate a play s of σ such that if t leads to state qA, then
s leads to state (qA, f). In the base case, both t and s are the empty plays, and
the invariant is respected. For the induction step, assume that P plays u from
t in A(T). Let (f, F) be the move of σ from s. We then let τ answer the pair
(F (u, f(u)), f(u)) from s.u, and A goes to state q′A. In A(T) (‹, we let O
play the pair (f(u), u). Then A (‹ goes to state (q′A, f) and the invariant is
respected. Since σ is winning and A (‹ stays in states of the form (, f) the
infinite sequence of states produced in A(T) is rejecting, as required.

For the conversion direction, assuming given a winning O-strat τ on A(T),
we build a winning P-strat σ in A(T)(‹. The strategy σ is build by induction
on plays as long as A (‹ stays in states of the form (, f) (if it switches to
(, t) then P trivially wins). So to each play s of σ which leads to state (qA, f),
we associate a play t of τ which leads to state qA. The base case is trivial. For
the induction step, we build (f, F) from σ as follows: to each u, σ associates
(from t) a pair (x, d). We let F (u,) := d and f(u) := x. Assume then that
from s.(f, F), O plays some (u, d). If d 6= f(u) then we are done. Otherwise,
A(‹ switches to (q′A, f). We then let P play u from t, so that by construction
τ answers (F (u,), d), and A goes to state q′A. But then, since τ is winning
for O, the sequence of A-states is rejecting, so that P wins in A(T) (‹, as
required. ut

E Proofs of §5.2 (Quantifications)

Recall that quantifications in DialAut are given by∐
Σ,Γ

(U,X,WA) = (Γ × U,X,WA) and
∏
Σ,Γ

(U,X,WA) = (UΓ , Γ ×X,
∏
Σ,Γ

WA)

where ((ak, fk) · (bk, xk, dk))k ∈
∏
Σ,Γ WA iff ((ak, bk, fk(bk)) · (xk, dk))k ∈ WA.

Proposition E.1 (Prop. 5.8). DialAut has existential and universal quantifi-
cations.

Proof. We check the Beck-Chevalley conditions. Given a DialAutΣ×Γ -object A
and L ∈ T[∆,Σ], we have to show

L∗(
∐
Σ,Γ

A) =
∐
∆,Γ

(L× IdΓ)∗(A) and L∗(
∏
Σ,Γ

A) =
∏
∆,Γ

(L× IdΓ)∗(A)

– For existential quantifications, this follows from the fact that

((ck, bk, uk) · (xk, dk))k ∈ WL∗(
∐
A)

31

iff

((L(c0. · · · .ck, d0. · · · .dk−1), bk, uk) · (xk, dk))k ∈ WA

iff

((ck, bk, uk) · (xk, dk))k ∈ W∐
(L×Id)∗(A)

– For universal quantification, we have

((ck, fk) · (bk, xk, dk))k ∈ WL∗(
∏
A)

iff

((L(c0. · · · .ck, d0. · · · .dk−1), bk, fk(bk)) · (xk, dk))k ∈ WA

iff

((ck, bk, fk(bk)) · (xk, dk))k ∈ W(L×Id)∗(A)

iff

((ck, fk) · (bk, xk, dk))k ∈ W∏
(L×Id)∗(A)

ut

Proposition E.2 (Prop. 5.10). If A : Σ×Γ is non-deterministic then L(∃ΓA) =
pΣ(L(A)).

Proof. Let T : D∗ → Σ. A winning P-strategy in 1 ` I((∃ΓA)(T) is given by
a map ∏

n∈N

(Dn −→ Γ × U)

hence by a pair of maps[∏
n∈N

(Dn → Γ)

]
×

[∏
n∈N

(Dn → U)

]

that is by a tree T ′ : D∗ → Γ and a winning P-strategy in 1 ` I(A〈T, T ′〉. ut

The following proposition contains an effective strengthening of Ex. 5.11.(iv).
It asserts the existence of a winning P-strategy on Σ ` A ⊗ B (‹ as soon as
A,B : Σ are non-deterministic regular such that L(A) ∩ L(B) = ∅.

Proposition E.3 (Ex. 5.11.(iv)). Given non-deterministic Borel A,B : Σ,
if L(A) ∩ L(B) = ∅, then there are winning P-strategies in A ⊗ B (‹ and
A(B‹. If moreover A and B are regular then the P-strategies can be assumed
to be regular.

The effectiveness part of the statment can be seen to follow from Ex. 5.11.(iii).
It is nevertheless interesting to note how the strategy can be effectivelly com-
puted in this particular case.

32

Proof. Since L(A) ∩ L(B) = ∅, we have L(A ⊗ B) = ∅ by Prop. D.4. Since A
and B are non-deterministic, so is A ⊗ B. It then follows from Prop. E.2 that
L(∃Σ(A ⊗ B)) = ∅, hence, by Prop. D.5 that the automaton (∃Σ(A ⊗ B))‹ : 1
accepts the unique tree 1 : D∗ → 1. But winning P-strategies in (∃Σ(A⊗B))‹(1)
can be lifted to winning P-strategies in

I1 −((∃Σ(A⊗ B))‹(1)

But note that since (∃Σ(A⊗ B))‹ : 1, that game is actually the same as

I1 −((∃Σ(A⊗ B))‹

It then follows from Prop. D.3 that there is a winning P-strategy in the game

∃Σ(A⊗ B) −(‹
and therefore by Prop. E.1 (in the form of Ex. 5.11.(ii)) that there is a winning
P-strategy on A⊗ B(‹ and therefore also in A(B‹.

If the automata A and B are regular, then the automaton (∃Σ(A ⊗ B))‹ is
regular. It is therefore effectivelly equivalent to a parity automaton by Prop. B.5.
It is then well-known (see e.g. [35, Thm. 6.18]) that there is effectivelly a regular
winning P-strategy in the acceptance game (∃Σ(A⊗B))‹(1). It is easy to see that
this strategy is lifted (as above) to regular winning P-strategies in A⊗ B (‹
and A(B‹. ut

F Proofs of §5.3 (A Deduction System for Automata)

Proposition F.1 (Prop. 5.12). Let A = A1, . . . ,An : Σ and A : Σ and
M ∈ T[Γ,Σ]. If M ; A ` A is derivable using the rules of Fig. 2, then there is
a winning P-strategy in Γ ` A1(M)⊗ . . .⊗An(M)(A(M).

Proof. The proof is as usual by induction on the derivations and by cases on the
last applied rules.

– The Propositional rules of Fig. 2 follow from the facts that DialAutΣ are
categories (Prop. C.3), moreover equipped with a symmetric monoidal closed
structure (Prop. D.3) and from Ex.5.5.(ii).

– The Substitution rules of Fig. 2 follow from the facts that DialAut is fibred
over T (§C.1 and in part. Prop. C.4), and from the internalization of A-maps
in automata (§3.3).

– The Quantifier rules of Fig. 2 follow from the adjunctions
∐
a p∗ a

∏
(§5.2)

and from the Beck-Chevalley conditions (Prop. E.1), and Ex. 5.11.(ii). ut

G Proofs of §5.4 (Non-Deterministic Automata)

G.1 Game Graphs and Positionality

Fix A(M) : Σ and B(N) : Σ. The game graph of Σ ` A(M) (B(N) is the
graph G with vertices:

(AP ×BP) + (AO ×BP) + (AO ×BO)

33

((p , a , qA) , (p , a , qB)) AP ×BP

O ↓
((p , a.a , qA , u) , (p , a , qB)) AO ×BP

P ↓
((p , a.a , qA , u) , (p , a.a , qB , v)) AO ×BO

O ↓
((p , a.a , qA , u) , (p.d , a.a , q′B)) AO ×BP

P ↓
((p.d , a.a , q′A) , (p.d , a.a , q′B)) AP ×BP

Fig. 3. Edges of the graph G

where
AP := D∗ ×Σ∗ ×QA
BP := D∗ ×Σ∗ ×QB

AO := D∗ ×Σ∗ ×QA × U
BO := D∗ ×Σ∗ ×QB × V

and edges as in Fig. 3, with q′A := δA(qA,M(a.a, p), u, x, d) (for some x ∈ X)
and q′B := δB(qB, N(a.a, p), v, y, d) (for some y ∈ Y). Write pos for the graph
morphism from the set of plays of Σ ` A(M)(B(N) (seen as a tree) to G. We
say that a strategy σ is positional if it agrees on plays with the same position,
i.e. if s.m ∈ σ, t.m′ ∈ σ with pos(s) = pos(t) implies m = m′.

Consider now parity automataA1, . . . ,An and B. Then the winning condition
of a game of the form A1(M1)⊗ . . .⊗An(Mn)(B(N) is a disjunction of parity
conditions, also called a Rabin condition, which is induced by colorings depending
only on the vertices of its game graph G. It has been shown in [21, 22, 20, 37] that
if P has a winning strategy σ in such a game, then he has a winning positional
strategy (w.r.t. G), which according to [37] is recursive in σ.

G.2 Non-Determinization (or Simulation [28, 9, 29])

Our exponential construction !(−) is an adapatation of the one used in the proof
of Thm. 5.15 by [36]. Given a parity automaton A : Σ, we let

!A := (Q!A , q
ı
!A , U

QA , 1 , δ!A , Ω!A)

where Q!A := P(QA × QA), qı!A := {(qıA, qıA)} and δ!A is defined as follows:
Given a ∈ Σ, f ∈ UQA , d ∈ D and S = {(, q1), . . . , (, qn)} ∈ Q!A, let

δ!A(S, a, f, •, d) := T1 ∪ · · · ∪ Tn

where, for each k ∈ {1, . . . , n},

Tk := {(qk, q) | ∃x ∈ X. q = δA(qk, a, f(qk), x, d)}

Let a trace in an infinite sequence (Sn)n ∈ Qω!A be a sequence (qn)n such that for
all n, (qn, qn+1) ∈ Sn+1. We let Ω!A be the set of sequences (Sn)n whose traces
all belong to ΩA. Note that Ω!A is ω-regular since ΩA is ω-regular.

34

Remark G.1 (Partiality). Note that Q!A = P(Q × Q) contains a “true” state
∅ ∈ Q!A, so the map

δ̃!A : Q!A ×Σ −→ UQ −→ (D −→ Q!A)

is always total.

IfA is a regular automaton, let !A := !(A†), whereA† is obtained from Prop. B.5.

G.3 Proofs of §5.4

Proposition G.2 (Prop. 5.16.(i)). If A : Σ is regular, there is a winning
P-strategy ε in Σ ` !A(N)(A(N).

Proof. By Prop. B.5, we can assumeA to be a parity automaton. Using Prop. A.1,
we define HS(ε) by induction on plays as follows, with the following invariant:
for each (s, t) ∈ HS(ε), with s, t of even length, writing q for the state of t and
S for the state of s, we have q ∈ S�2.

The base case is trivial. Let (s, t) ∈ HS(ε) with s and t even-length, and with
t in state q and s in state S. Given an O-move (a, h), we let (s.(a, h), t.h(q)) ∈
HS(ε), and for all (x, d) we further let (s.(a, h).(•, d), t.h(q).(x, d)) ∈ HS(ε). Then
the invariant is insured by definition of !A.

The strategy τ is winning since the sequence of states produced in A is a
trace in the sequence of states produced in !A. ut

Proposition G.3 (Prop. 5.16.(ii)). Given N ,A : Σ regular with N non-
deterministic, if there is a winning P-strategy in Σ ` N (L)(A(M) then there
is a winning P-strategy in Σ ` N (L)(!A(M).

Proof. By Prop. B.5, we can assume N and A to be parity automata. Write G
for the game graph of Σ ` N (L)(A(M). Thanks to [21, 22, 20, 37], there is
a positional (w.r.t. G) winning P-strategy σ in Σ ` N (L)(A(M).

We build a winning P-strategy τ on N (L)(!A(M) such that the following
invariant is satisfied:

– To each play t of τ with pos(t) = ((p, a, qN) , (p, a, S)) where S = {(, q1), . . . , (, qn)},
we associate a set E(t) = {s1, . . . , sn} of plays of σ, with pos(si) = ((p, a, qN) , (p, a, qi)),

– and if moreover t′ extends t and is such that pos(t′) = ((p.d, a.a, q′N) , (p.d, a.a, S′))
then for all s′ ∈ E(t′) there is some s ∈ E(t) such that s′ extends s.

The strategy τ is build by induction on plays as follows:

– For the base case (initial position ε), we have by definition S = {(qıA, qıA)}
and E(ε) = {qıA}.

– For the inductive step, let t with pos(t) = ((p, a, qN) , (p, a, S)) and let O
play from t some (a, v) in component N (L) of N (L)(!A.
For si ∈ E(t), let ui be the move of σ from position ((p, a.a, qN , v) , (p, a, qi))
(thus going to position ((p, a.a, qN , v) , (p, a.a, qi, ui))). This defines a map

35

ht.(a,v) : QA → U taking qi to ui (the definition of ht.(a,v) on irrelevant q’s
is arbitrary), and we let τ play ht.(a,v) in the component !A(M) of N (L)(
!A(M), thus going to position ((p, a.a, qN , v) , (p, a.a, S, ht.(a,v))). Then if O
answers some d ∈ D in the component !A(M), and we let P play • in the
component N (L) (recall that both !A and N are non-deterministic), the
current position in N (L) (!A(M) becomes ((p.d, a.a, q′N) , (p.d, a.a, S′)))
where

q′N := δN (qN , L(a.a, p), v, •, d)

and

S′ := δ!A(S,M(a.a, p), ht.(a,v), •, d)

Let

t′ := t.(a, v).ht.(a,v).d.•

and write S′ = {(, q′1), . . . , (, q′m)}. By definition of !A, each q′j is equal
to δA(qij ,M(a.a, p), uij , xj , d) for fome ij and some xj (note that there
might be several such ij and xj , but we select one). For each j, we let
O play (xj , d) in the component A(M) of N (L) (A(M) from position
((p, a.a, qN , v) , (p, a.a, qij , uij)) thus going to position ((p, a.a, qN , v) , (p.d, a.a, q′j)).
We then let P answer • in the component N (L), thus leading to position
((p.d, a.a, q′N) , (p.d, a.a, q′j)).
We finally put

E(t′) := {si0 .(a, v).ui0 .(x0, d).• , · · · , sim .(a, v).uim .(xm, d).•}

This completes the definition of τ .
We now show that τ is winning. Consider an infinite play (ti)i∈N of τ , and let

(qn, Sn)n∈N be the associated sequence of states in (QN ×Q!A)ω. Assume that
(qn)n ∈ ΩN . We show that (Sn)n ∈ Ω!A. Let (q′n)n be a trace in (Sn)n, so that
(q′n, q

′
n+1) ∈ Sn+1. We have to show that (q′n)n ∈ ΩA. Note that for all n ∈ N,

pos(t4n) = ((pn, an, qn) , (pn, an, Sn))

By construction, for each n ∈ N there are sn ∈ E(t4n) and s′n ∈ E(t4(n+1)) such
that s′n extends sn:

s′n = sn.(an, vn).un.dn.• where an+1 = an.an and pn+1 = pn.dn

and such that moreover

pos(sn) = ((pn, an, qn) , (pn, an, q
′
n))

and

pos(s′n) = ((pn+1, an+1, qn+1) , (pn+1, an+1, q
′
n+1))

so that

pos(s′n) = pos(sn+1)

36

Since σ is positional, it follows that the infinite sequence

$:= ε.(a0, v0).u0.d0. · · · .pn.(an, vn).un.dn. · · ·

is an infinite play of σ. Since $ produces the sequence of states (qn, q
′
n)n ∈

(QN ×QA)ω, we get (q′n)n ∈ ΩA since (qn)n ∈ ΩN by assumption. ut

By combinining Props. G.3 and G.2 we obtain:

Corollary G.4 (Thm. 5.15). L(A) = L(!A) for a regular A.

Proposition G.5 (Ex. 5.17.(i)). The law of Peirce !((?A ⇒ ?B)⇒ ?A) ` ?A,
(where ?A = (!A‹)‹) can be derived using the exponential rules.

Proof. We can derive
!A‹ , ?A ` ‹

so that (since ?B = (!B‹)‹)
!A‹ , ?A ` ?B

from which follows that

!((?A ⇒ ?B)⇒ ?A) , !A‹ ` ?A

and thus
!((?A ⇒ ?B)⇒ ?A) , !A‹ ` ‹

and we are done since ?A = (!A‹)‹. ut

Proposition G.6 (Weak Completeness (Ex. 5.17.(ii))). Given regular au-
tomata A,B : Σ, if L(A) ⊆ L(B) then there is an effective winning P-strategy
in Σ ` !A((!(B‹))‹.

Proof. By Cor. G.4, if L(A) ⊆ L(B) then L(!A)∩L(!(B‹)) = ∅, and we conclude
by Prop. E.3. ut

The proof of the next Proposition (Ex. 5.17.(iii)) is defered to §H. This is a
uniform version of [7, Thm. 1].

Proposition G.7 (Ex. 5.17.(iii)). For each regular L ⊆ ΣD∗ , there is a
non-deterministic automaton B with L(B) = L, and such that for every non-
deterministic parity A with L(A) ⊆ L, there is a winning strategy in Σ ` A(B
induced by a function QA ×QB ×Σ × U → V .

H Further Examples

This Appendix is devoted to the proof of Prop. G.7 (Ex. 5.17.(iii)). It relies on the
existence of position winning P-strategies in games of the form Σ ` A⊗B(‹,
for non-deterministic parity automata A,B : Σ such that L(A) ∩ L(B) = ∅.

Further more, we show in §H.4 that such strategies, when combined with
our internalized linear implication can handle a construction for the separation
property of [33, Thm. 2.7].

37

H.1 On Positional Strategies

Consider non-deterministic parity automata A,B : Σ. It follows from §G.1 that
if P has a winning strategy in Σ ` A (B, then P has a positional winning
strategy. But the game graph of Σ ` A(B is equivalent to the graph G with
vertices:

(AP ×BP) + (AO ×BP) + (AO ×BO) + (AO ×BP ×D)

where

AP := QA AO := Σ ×QA × U BP := QB BO := Σ ×QB × V

and with edges

– from (AP ×BP) to (AO ×BP):

(qA , qB)
O−→ ((a, qA, u) , qB) for all a ∈ Σ and all u ∈ U

– from (AO ×BP) to (AO ×BO):

((a, qA, u) , qB)
P−→ ((a, qA, u) , (a, qB, v)) for all v ∈ V

– from (AO ×BO) to (AO ×BP ×D):

((a, qA, u) , (a, qB, v))
O−→ ((a, qA, u) , q′B , d)

where d ∈ D and q′B := δB(qB, a, v, d),
– from (AO ×BP ×D) to (AP ×BP):

((a, qA, u) , q′B , d)
P−→ (q′A , q′B)

where q′A := δA(qA, a, u, d).

Since a positional P-strategy in G is given by a function

g : QA ×QB ×Σ × U −→ V

we thus have:

Lemma H.1. Given non-deterministic parity automata A,B : Σ, if P has a
winning strategy in Σ ` A (B, then P has a winning strategy induced by a
function QA ×QB ×Σ × U → V .

H.2 On Positional Strategies for Separation

Consider now non-deterministic parity automata A,B : Σ such that L(A) ∩
L(B) = ∅. Then by Prop. E.3 there is a winning P-strategy in Σ ` A⊗ B(‹.
It follows from Lem. H.1 that P has winning strategy induced by a function

g : QA ×QB × B×Σ × U × V −→ D

The game Σ ` A ⊗ B (‹ is won by P if ‹ goes to state t, since it can not
switch back to f. It follows that it is sufficient to have the values of g above with
‹ in state f. It follows that P has a winning strategy in Σ ` A⊗B(‹ induced
by a map of the form

h : QA ×QB ×Σ × U × V −→ D

38

H.3 Proof of Prop. G.7 (Ex. 5.17.(iii))

Example 5.17.(iii) is the following uniform version of [7, Thm. 1]:

Proposition H.2. For each regular language L ⊆ ΣD∗ , there is a non-deterministic
B : Σ such that for every non-deterministic parity automaton A : Σ with
L(A) ⊆ L(B), there is a map g : QA × QB × Σ × U → V which induces a
winning P-strategy in Σ ` A(B.

The proof of Prop. H.2 follows the lines of [7], itself based on the comple-
mentation construction used in [35, Proof of Thm. 6.9].

Fix a regular L ⊆ ΣD∗ , and consider a non-deterministic parity C = (QC , q
ı
C ,W, δC , ΩC)

recognizing the complement of L. Using the closure properties of ω-regular lan-
guages, there is a deterministic parity ω-word automaton D : Σ × V ×D where

V := (QC ×W −→ D)

such that D accepts (ak, fk, dk)k iff for all (uk)k ∈ Uω and all (qk)k ∈ QωC , we
have (qk)k /∈ ΩC whenever q0 := qıC , qk+1 := δC(qk, ak, uk, fk(qk, ak, uk)), and
dk = fk(qk, ak, uk).

Write D := (QD, q
ı
D, ΩD). Let now B : Σ be a parity non-deterministic

automaton with P-moves V and such that an infinite play ((ak, fk) · dk)k is
winning iff (ak, fk, dk)k is accepted by D. Explicitly, we let

B = (QD, q
ı
D, V, δB, ΩD)

where
δB(q, a, f, d) := δD(q, (a, f, d))

Lemma H.3 ([35]). L(B) = L.

Proof (of the Lemma). We show that L(B) = L(C‹). Let T : D∗ → Σ. Assume
first that T ∈ L(C‹), so that P has winning strategy in C‹(T). Since C is a
parity automaton, this strategy can be assumed to be positional, hence to be
determined by a function D∗ → (QC×W → D). But this determines a P-strategy
in B(T), which is winning by definition of B. Conversely, assume that T ∈ L(B).
Since B is non-deterministic, a winning P-strategy in B(T) is given by a function
D∗ → V = D∗ → (QC ×W → D). ut

Going back to the proof of Prop. H.2, consider a non-deterministic parity
A : Σ with L(A) ⊆ L. Since L(A) ∩ L(C) = ∅, it follows from §H.2 that there is
a function

g : QA ×QC ×Σ × U ×W −→ D

which generates a winning P-strategy in Σ ` A ⊗ C (‹. But g can be seen as
a map

QA ×Σ × U −→ V

and this map generates a winning P-strategy in Σ ` A(B. ut

39

H.4 A Separation Property from [33]

Our internalized linear arrow can handle a construction for the separation prop-
erty of [33, Thm. 2.7].

Consider non-deterministic parity automata A,B : Σ such that L(A) ∩
L(B) = ∅. Assume moreover that both A and B are parity with colorings of
range {0, . . . , n} for some even n. Theorem 2.7 of [33] say that there is a parity
automaton C such that L(A) ⊆ L(C) ⊆ L(B‹) and such that ΩC is generated by
a coloring cB : QC → N of range ⊆ {0, . . . , n} and such that in each reachable
strongly connected component of C (for q → q′ iff q′ = δC(q, a, f, v, d) for some
a, f, v, d), cC has range either {1, . . . , n} or {0, . . . , n− 1}.

We build C by restricting B(A along a winning strategy in Σ ` A⊗B(‹.
By §H.2, there is a function

g : QA ×QB ×Σ × U × V −→ D

wich generates a winning P-strategy in Σ ` A⊗ B(‹.
We restrict the automaton B (A : Σ along g as follows. Recall that

QB(A = QB ×QA. Define C : Σ as follows:

C := (QB(A + {t}, qıB(A, UV , V, δC , ΩC)

where δC(t, , , ,) := t, and

δC((qB, qA), a, f, v, d) :=

{
t if g(qA, qB, a, f(v), v) 6= d
δB(A((qA, qB), a, f, v, d) otherwise

The coloring cC of C is then defined as in [33, §2.2.2]. We define it explicitly as
follows. Consider a reachable strongly connected component C of C. Note that if
C contains t, then C = {t}, and we put cC(t) := n. Otherwise, C contains only
states of B (A, that is states in QB × QA. Assume that C is non-trivial and
contains two states (, qA) and (qB,) with cA(qA) = cB(qB) = n. By definition
of δC , the set of states

{(q′A, q′B, f) | (q′B, q
′
A) ∈ C}

is reached infinitely often in an infinite play of the strategy in Σ ` A ⊗ B(‹
induced by g. But this contradicts the fact that this strategy is winning. It follows
that either (a) cA never takes the value n in C or (b) cB never takes the value n
in C. In the case (a), for each state (qB, qA) of C we put cC(qB, qA) := cA(qA),
and in the case (b) we put cC(qB, qA) := cB(qB) + 1.

Consider now an infinite sequence of the form ρ := (q′k, qk)k ∈ QωB(A and
let C be a strongly connected component of C such that Infk(q′k, qk) ⊆ C. Let
m = max(InfkcC(q

′
k, qk)).

Claim. If m is even, then ρ ∈ ΩB(A
Proof (of the Claim). In case (a) above, we have m = max(InfkcA(qk)) hence
(qk)k ∈ ΩA and ρ ∈ ΩB(A. In case (b), m = max((InfkcB(q′k) + 1)), hence
max(InfkcB(q′k)) is odd, so that (q′k)k /∈ ΩB and ρ ∈ ΩB(A. ut

40

Lemma H.4. L(C) ⊆ L(B‹).

Proof. Consider a winning P-strategy σ in C(T). Recall that the P-moves of B‹
are DV and that its O-moves are V , and that the P-moves of C are UV and that
its O-moves are V . Let τ be the winning P-strategy τ on A ⊗ B (‹ (whose
P-moves are D and O-moves are U × V) induced by g. We define a P-strategy
θ by combining σ and τ as follows: modulo Currying, θ plays from v ∈ V the
tree direction d ∈ D proposed by T ∗(τ) from v and the u ∈ U given by σ on v.
Hence the strategies σ and θ play the same moves in B (provided by O). So the
sequences of QB-states produced by σ and θ are the same, unless O plays in B‹
a tree direction d ∈ D different from the one proposed by θ, i.e. different from
the one proposed by τ . In this case, the play on B‹(T) is P-winning and we are
done. Assume now that the sequences of QB-states agree. We show that they
can not be in ΩB. Assume toward a contradiction that they are. By the claim
above, since σ is winning, the sequence of states in C belongs to ΩB(A The play
respects σ, so the sequence of QA-states must belong to ΩA since σ is winning.
But the play also respects T ∗(τ), which is winning in A(T) ⊗ B(T) (‹, so
the sequence of QA-states can not belong to ΩA. It follows that the sequence
of QB-states can not belong to ΩB, and we are done since the play in B‹(T) is
then P-winning. ut

In order to complete the proof of the separation property, it remains to show
the following

Lemma H.5. L(A) ⊆ L(C).

Proof. Let T : D∗ → Σ such that T ∈ L(A). Consider a winning positional P-
strategy τ in A(T) induced by a function D∗ → (QA → U). This gives a function
D∗ → (QC × V → U) which induces a strategy σ in C(T). Consider an infinite
play $ of σ induced by an infinite play $τ of τ . Let ρ ∈ QωC be the sequence
of states produced by $. If ρ contains t, then ρ ∈ Q∗B(A.tω ⊆ ΩC and we are
done. Otherwise, let ρ = (q′k, qk)k ∈ QB(A. If we are in case (a) above, then
max(Infk(cC(ρ))) = max(Infk(cA(qk))), hence ρ ∈ ΩC . Assume that we are in
case (b), so that max(Infk(cC(ρ))) = max(Infk(cB(q′k))+1). Let θ be the winning
P-strategy in Σ ` A ⊗ B(‹ induced by g. Then, by combining $τ and $�B,
we obtain an infinite play $′ of θ. Note that in this play, ‹ never switches to
t since we assumed ρ ∈ ΩB(A. It follows that $′ produces the same sequence
of states (q′k)k ∈ QB as $, and we must have (q′k)k /∈ ΩB since (qk)k ∈ ΩA. It
follows that max(Infk(cC(ρ))) = max(Infk(cB(q′k)) + 1) is even. ut

I Simple Self Dualization

In this appendix, we present some aspects of the construction called simple
self dualization in [18]. We begin by basic definitions and facts, and then give
a general method to construct (lax) symmetric monoidal monads and oplax
symmetric monoidal comonads in this setting, which will be used later on in §J
to explain the monoidal structure of DZ.

41

I.1 Some Basic Definitions and Facts

We recall here some basic material about Dialectica-like categories from [8, 18].
Given a category C, its simple self-dualization is G(C) := C× Cop (also written
Cd in [18]). Its objects are pairs U,X of objects of C, and a morphism from
(U,X) to (V, Y) is given by a pair of maps (f, F), denoted

(f, F) : (U,X) −p→ (V, Y)

where f : U → V and F : Y → X. If C is symmetric monoidal, then G(C) is an
instance of a Girard category, in the sense of de Paiva [8, 18].

Assume now that the monoidal structure (⊗, I) = (×,1) of C is Cartesian.
Then G(C) is symmetric monoidal closed w.r.t.

(U,X)⊗G (V, Y) := (U ⊗ V,XV ⊗ Y U) with unit (I, I)

The linear exponentials are given by

(U,X)(G (V, Y) := (V U ×XY , U × Y)

Moreover, G(C) can be equipped with a comonad (T, δ, ε) where the action on
objects of T is

T (U,X) := (U,XU)

and the maps δ and ε are given by

(fε, Fε) : (U,XU) −p→ (U,X)
(fδ, Fδ) : (U,XU) −p→ (U,XU×U)

where fε = fδ = idU , Fε(u, x) = x and Fδ(h, u) = h(u, u) (see e.g. [8, Def. 15,
§4.2]).

The co-Kleiseli category D(C) := Kl(T) is a Dialectica category in the sense
of [8, 16] (see e.g. [8, Prop. 52, §4.3]). Explicitely, its objects are pairs A = (U,X)
of objects of C, and a map from A to (V, Y) is a G(C)-morphism (f, F) from
TA to (V, Y), that is

(f, F) : (U,XU) −p→ (V, Y)

D(C) is symmetric monoidal closed w.r.t. the product

(U,X)⊗ (V, Y) := (U × V,X × Y) with unit (1,1)

Note that with A = (U,X) and B = (V, Y),

T (A⊗B) = (U × V, (X × Y)U×V)

' (U × V,XUV × Y V U)
= TA⊗G TB

The linear exponentials of D(C) are given by

(U,X)((V, Y) := (V U ×XU×Y , U × Y)

42

Note that A (B ' TA (G B, so the monoidal closure of D(C) actually
follows from that of G(C):

D(C)[A⊗B,C] = G(C)[T (A⊗B), C]
' G(C)[TA⊗G TB,C]
' G(C)[TA, TB(G C]
' D(C)[A,B(C]

I.2 Self Duality

The category G(C) is equipped with an isomorphism

(−)⊥ : G(C)
'−→ G(C)op

mapping the G(C)-object (U,X) to (X,U) and taking (f, F) : (U,X) −p→ (V, Y)
to (F, f) : (X,U) −→G(C)op (Y, V) (that is (F, f) : (Y, V) −p→ (X,U)). Note that

(−)⊥ is a strict involution: G(C)⊥⊥ = G(C).

I.3 Monoidal Structure

Consider an SMC C. Note that Cop is also an SMC, and recall from §I.1 the
tensor product ⊗ of G(C) given by

(U,X)⊗ (V, Y) = (U ⊗ V,X ⊗ Y) with unit I = (I, I)

Assuming the following structure maps of C

α : (A⊗B)⊗C −→ A⊗(B⊗C) λ : I⊗A −→ A ρ : A⊗I −→ A γ : A⊗B −→ B⊗A

the structure maps of (G(C),⊗, I) are given by:

α := (α, α−1) : ((U,X)⊗ (V, Y))⊗ (W,Z) −→ (U,X)⊗ ((V, Y)⊗ (W,Z))
λ := (λ, λ−1) : (I, I)⊗ (U,X) −→ (U,X)
ρ := (ρ, ρ−1) : (U,X)⊗ (I, I) −→ (U,X)
γ := (γ, γ−1) : (U,X)⊗ (V, Y) −→ (V, Y)⊗ (U,X)

Proposition I.1 ([18]). Equipped with the above data, the category G(C) is
symmetric monoidal.

I.4 (Commutative) Monoids

Proposition I.2. Consider an SMC C. Given a comutative monoid (M,u,m)
and a commutative comonoid (K, e, d) in C, the G(C)-object (M,K) is a com-
mutative monoid in G(C) with structure maps

u(M,K) := (u, e) : (I, I) −p→ (M,K)
m(M,K) := (m, d) : (M ⊗M,K ⊗K) −p→ (M,K)

Proof. The proof is trivial since (1) commutation of the required diagrams
amounts to componentwise commutation of the corresponding diagrams in C
and Cop, and (2) the second components of commutative monoids diagrams in
G(C) are commutative comonoids diagrams in Cop.

43

I.5 (Commutative) Comonoids

Recall that a (commutative) comonoid in a category is a (commutative) monoid
in the oppostive category. Since G(C)op ' G(C)⊥, it follows that Prop. I.2
dualizes to:

Corollary I.3. Consider an SMC C. Given a comonoid (K, e, d) and a monoid
(M,u,m) in C, the G(C)-object (K,M) is a commutative comonoid in G(C)
with structure maps

e(K,M) := (e, u) : (K,M) −p→ (I, I)
d(M,K) := (d,m) : (K,M) −p→ (K ⊗K,M ⊗M)

I.6 A (Lax) Symmetric Monoidal Monad

Assume now that C is Cartesian closed, and fix a functor H : C → C. Recall
(from e.g. [27, §5.2]) that H lifts in a unique way to an oplax symmetric monoidal
functor, with strength

t2A,B := 〈H(π1), H(π2)〉 : H(A×B) −→ HA×HB

and
t0 := 1H1 : H1 −→ 1

Note that the naturality of t2(−),(−), that is

(H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = 〈H(π1), H(π2)〉 ◦H(f × g)

follows from the universality property of the Cartesian product since (say)

π1 ◦ (H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = H(f ◦ π1) = H(π1 ◦ (f × g))

Consider now the functor

(−)H : G(C) −→ G(C)

defined as
(U,X)H := (UHX , X)

and

(f, F)H := (λh.f ◦ h ◦H(F) , F) : (UHX , X) −p→ (V HY , Y)

(where (f, F) : (U,X) −p→ (V, Y)), and the maps

η(U,X) = (fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UHX , X)
µ(U,X) = (fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UHX×HX , X) −p→ (UHX , X)

Proposition I.4. ((−)H , µ, η) is a (lax) symmetric monoidal monad, with strength

m2
A,B = (f2A,B , F

2
A,B) := (λ(h, k).(h× k) ◦ t2X,Y , idX×Y) :

(UHX × V HY , X × Y) −→ ((U × V)H(X×Y) , X × Y)

(where A = (U,X) and B = (V, Y)), and

m0 := (1,1) : (1,1) −→ (1H1,1)

The proof of Prop. I.4 is defered to §K.

44

I.7 An Oplax Symmetric Monoidal Comonad

Proposition I.4 can be dualized thanks to the self duality G(C)op = G(C)⊥:

Corollary I.5. Assume C is a CCC and H : C→ C is a funtor. Then (H(−), δ, ε)
is an oplax symmetric monoidal comonad on C, where

H(U,X) := (U,XHU) and H(f, F) := (f , λh.F◦h◦H(f)) : (U,XHU) −p→ (V, Y HV)

(for (f, F) : (U,X) −p→ (V, Y)), and

ε(U,X) = (fε, Fε) := (idU , λx.λ .x) : (U,XHU) −p→ (U,X)
δ(U,X) = (fδ, Fδ) := (idU , λh.λu.h(u, u)) : (U,XHU) −p→ (U,XHU×HU)

and where the oplax strength of H(−) is given by

n2A,B = (f2A,B , F
2
A,B) := (idU×V , λ(h, k).(h× k) ◦ t2U,V) :

(U × V , (X × Y)H(U×V)) −→ (U × V , XHU × Y HV)

where A = (U,X), B = (V, Y) and t2U,V is defined as in I.6, and

n0 := (1,1) : (1,1H1) −→ (1,1)

J A Dialectica-Like Interpretation of Zig-Zag Strategies

We give here a Dialectica-like presentation of total zig-zag strategies σ : A(B
for A and B positive full games. It relies on a distributive law ζ in an instance of
Dialectica called simple self-dualization in [18]. We will perform it in the topos
of trees S .

We first instantiate the constructions and results of §K to the case of G(S).
We then show in §J.4 that the category DZ of simple zig-zag games can be
obtained as a full subcategory of some category of zig-zag games in G(S). In §J.5
we present the distributive law ζ based on the constructions of §K. Finally, using
the fact that DZ can be obtained as a full subcategory of some category of zig-
zag games in G(S) described as the Kleisli category of the distributive law ζ,
we discuss the monoidal structure of DZ and DZD.

J.1 The Topos of Trees

The topos of trees S is the presheaf category over the order (N,≤) seen as a
category, see e.g. [5].

An object X of S is given by a family of sets (Xn)n∈N equipped with re-
striction maps rXn : Xn+1 → Xn. A morphism f from X to Y is a family of
functions fn : Xn → Yn compatible with restriction: rYn ◦ fn+1 = fn ◦ rXn .

45

As a topos, S is Cartesian closed w.r.t. to the Cartesian product of presheaves,
which is given by (X × Y)n := Xn × Yn. Exponentials are defined as usual for
presheaves (see e.g. [25]) by

(XY)n := Nat[N[−, n]× Y,X]

Explicitly, (XY)n consists of sequences (ξk : Yk → Xk)k≤n which are compatible
with rX and rY . The restriction map of XY takes (ξk)k≤n+1 ∈ (XY)n+1 to
(ξk)k≤n ∈ (XY)n.

We will use the functor I : S → S of [5]. On objects, it maps X to
((IX)n)n∈N where (IX)n+1 := Xn and (IX)0 := 1, with rIXn+1 := rXn and

rIX0 := 1 : X0 → 1. On morphisms, (If)n+1 := fn and (If)0 := 1 : 1 → 1.
Note that I(X × Y) ' IX ×IY .

Define the family of maps predX : X ⇒ IX, natural in X, as predX0 := 1 :
X0 → 1 and predXn+1 := rXn .

The functor I allows S to be equipped with fixpoint operators fixX :
XIX ⇒ X, defined as

fixXn ((fm)m≤n) := (fn ◦ . . . ◦ f0)(•)

The maps fixX are natural in X. Given f : IX×Y ⇒ X, writing f t : Y ⇒ XIX

for the exponential transpose of f , fixX ◦ f t is the unique map h : Y ⇒ X
satisfying f ◦ 〈predX ◦ h, idY 〉 = h (see [5, Thm. 2.4]).

Given a sequence of sets M = (Mn)n, we also denote by M the S -object

with Mn :=
∏n
i=0Mi and restriction maps rMn (m.m) := m. (rM is an epi). Note

that M ×N 'M ×N , where M ×Nn :=
∏n
i=0Mi ×Ni. If Mn = M for all n,

then we write M? for the S -object M .

J.2 The Monoidal Structure of G(S)

Following §J.1, we take for S the monoidal structure given by its Cartesian
product (so that ⊗ := × with I := 1). Since (An)n × (Bn)n = (An × Bn)n
the structure maps of (S ,⊗, I) (induced from its Cartesian structure) have as
components the corresponding structure maps of Set:

αn := α : (An ×Bn)× Cn → An × (Bn × Cn) λn := λ : 1×An → An
ρn := ρ : An × 1→ An γn := γ : An ×Bn → Bn ×An

The required diagrams follow as usual from the fact that Cartesian categories
are monoidal (using the universal property of the Cartesian product).

J.3 Monoids and Comonoids in G(S)

Prop. I.2 and Cor. I.3 (on monoid and comonoid objects in categories of the
form G(C)) specialize to:

Proposition J.1. Let X be an object of S .

46

(i) The G(S)-object (1, X) is a commutative monoid of G(S), with structure
maps

u := (1,1) : (1,1) −p→ (1, X)
m := (1, 〈id, id〉) : (1× 1, X ×X) −p→ (1, X)

(ii) The G(S)-object (X,1) is a commutative comonoid of G(S), with struc-
ture maps

e := (1,1) : (X,1) −p→ (1,1)
d := (〈id, id〉,1) : (X,1) −p→ (X ×X,1× 1)

Proof. By Prop. I.2 and Cor. I.3, since the terminal object 1 of a Cartesian
category is a commutative monoid, and since any object of a Cartesian category
is a commutative comonoid.

J.4 A Dialectica-Like Interpretation of Zig-Zag Strategies

We now show that DZ is equivalent to a category obtained from a distributive
law in G(S). We first show (Prop. J.2) that total zig-zag strategies are in 1-1
correspondence with G(S) morphisms

(f, F) : (U?, X?U
?

) −p→ (V ?IY
?

, Y ?)

We then describe a composition of these morphisms respecting composition of
strategies. The distributive law ζ is presented in §J.5.

Total Zig-Zag Strategies in G(S). Consider a positive full game A = (U,X).
Recall from App. A the bijection

∂ = 〈∂U , ∂X〉 : ℘even
A −→ ∪n∈N(Un ×Xn)

with ∂(ε) = (•, •) and ∂(s.u.x) = (∂U (s).u, ∂X(s).x). Recall also from Prop. A.1
the faithfull functor HS : SG −→ Rel.

Consider now another positive full game B = (V,X) and let σ : A(B be
a total zig-zag strategy. By induction on n ∈ N, it is easy to see that for all
(u, y) ∈ Un × Y n, there is a unique (s, t) ∈ HS(σ) such that u = ∂U (s) and
y = ∂Y (t).

The property vacuously holds for n = 0. Assuming it for n, given (u.u, y.y) ∈
Un+1×Y n+1, by induction hypothesis, there is a unique (s, t) ∈ HS(σ) such that
u = ∂U (s) and y = ∂Y (t). Now, since σ is total and zig-zag, there is a unique
v ∈ V such that (s.u, t.v) ∈ HS(σ). Similarly, there is a unique x ∈ X such that
(s.u.x, t.v.y) ∈ HS(σ), and the property follows.

Furthermore, since u.u and y uniquely determine v = ∂V (t) and v, and since
u.u and y.y uniquely determine x = ∂X(s) and x, we obtain functions

fn+1 : Un+1 × Y n −→ V n+1

Fn+1 : Un+1 × Y n+1 −→ Xn+1

47

It follows that σ uniquely determine a G(S)-morphism

σG(S) = (f, F) : (U?, X?U
?

) −p→ (V ?IY
?

, Y ?)

Conversely, each (f, F) uniquely determine a total zig-zag strategy σ, with,
for all u.u ∈ Un+1, and all y ∈ Y n,

(∂−1(u, x).u , ∂−1(v, y).v) ∈ HS(σ)

where v.v = fn+1(u.u, y) and x = Fn(u, y); and for all y,

(∂−1(u, x).u.x , ∂−1(v, y).v.y) ∈ HS(σ)

where x.x = Fn+1(u.u, y.y).
We therefore have shown:

Proposition J.2. Given positive full games A = (U,X) and B = (V, Y), the
map (−)G(S) is a bijection from total zig-zag strategies σ : A (B to G(S)-
morphisms

(f, F) : (U?, X?U
?

) −p→ (V ?IY
?

, Y ?)

Composition of Total Zig-Zag Strategies in G(S). Note that given (u, x, v, y) ∈
(U ×X×V ×Y)n, we have ((u, x), (v, y)) ∈ HS(σ) if and only if v = fn(u,I(y))
and x = Fn(u, y). Here, we have written ((u, x), (v, y)) ∈ HS(σ) for (∂−1(u, x), ∂−1(v, y)) ∈
HS(σ). We adopt the same convention in the following.

Consider positive full games A = (U,X), B = (V, Y) and C = (W,Z), and
G(S)-morphisms

(f, F) : (U?, X?U
?

) −p→ (V ?IY
?

, Y ?)

(g,G) : (V ?, Y ?V
?

) −p→ (W ?IZ? , Z?)

We want to define their composite

(h,H) : (U?, X?U
?

) −p→ (W ?IZ? , Z?)

Write σ and τ for the total zig-zag strategies corresponding to resp. (f, F)
and (g,G). Then the relational composite

HS(τ ◦ σ) = HS(τ) ◦HS(σ)

must be such that ((u, x), (w, z)) ∈ HS(τ) ◦ HS(σ) if and only if there are (v, y)
such that

((u, x), (v, y)) ∈ HS(σ) and ((v, y), (w, z)) ∈ HS(τ)

But this is possible iff the following equations are satisfied:

v = fn(u,I(y)) w = gn(v,I(z))
x = Fn(u, y) y = Gn(v, z)

48

The derived equation
y = Gn(fn(u,I(y)), z)

uniquely defines y from u and z as

y = y(u, z) = fixYn (λy.Gn(fn(u, y), z))

(We have here tacitly used the fact that ξ ∈ (M?IM?

)n is completely determined
by its last component ξn.) Now, since I(y(u, z)) = y(Iu,Iz), we can define

hn+1(uu, z) := gn+1(fn+1(uu, y(u, z))) , z)
Hn+1(uu, zz) := Fn+1(uu, y(uu, zz))

More generally, given G(S)-objects (U,X), (V, Y), (W,Z), and G(S)-morphisms

(f, F) : (U,XU) −p→ (V IY , Y)
(g,G) : (V, Y V) −p→ (WIZ , Z)

we can define their composite

(g,G) ◦ (f, F) = (h,H) : (U,XU) −p→ (WIZ , Z)

as, modulo exponential transpose and again using the internal λ-calculus of S :

h(u, z) := g(f(u, y(Iu, z)), z)
H(z, u) := F (u, y(u, z))

where y(u, z) := fixY (λy.G(f(u, y), z))

J.5 The Distributive Law ζ

It is possible to directly check that the composition described in the previous
paragraph is associative and preserves identities. We can actually do better: The
category DZ of simple zig-zag games can be obtained as a full subcategory of
some category of zig-zag games in G(S) described as the Kleisli category of a
distributive law ζ.

The law ζ is based on the constructions of §K. It distributes an oplax symmet-
ric monoidal comonad obtained from Cor. I.5 over a (lax) symmetric monoidal
monad obtained from Prop. I.4:

– The oplax symmetric monoidal comonad, denoted T = (T, ε, δ), is obtained
from Cor. I.5 by taking H := IdS .
Explicitely, T (U,X) := (U,XU) and the action of T on morphisms is given
by:

(f, F) : (U,X) −p→ (V, Y)
T7−→ (f , λh.F ◦ h ◦ f) : (U,XU)−p→ (V ,Y V)

The maps ε and δ are given by:

(fε, Fε) := (idU , λx.λ .x) : (U,XU) −p→ (U,X)
(fδ, Fδ) := (idU , λh.λu.h(u, u)) : (U,XU) −p→ (U,XU×U)

49

– The (lax) symmetric monoidal monad, denoted (−)I = ((−)I, ε, δ), is ob-
tained from Prop. I.4 by taking H(−) := I(−) (see §J.1 and [5]).
Explicitely, (U,X)I := (UIX , X) and the action of (−)I on morphisms is
given by:

(f, F) : (U,X) −p→ (V, Y)
(−)I7−→ (λh.f ◦ h ◦IF , F) : (UIX ,X)−p→ (V IY ,Y)

The maps η and µ are given by:

(fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UIX , X)
(fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UIX×IX , X) −p→ (UIX , X)

The distributive law

ζ : T ((−)I) =⇒ (T (−))I

is given by

ζA = (fζ , F ζ) : (UIX , XUIX

) −p→ (UI(X
U), XU)

where the maps

fζ : UIX×I(XU) −→ U and F ζ : UIX×XU −→ X

are defined as follows. Let fζ0 (θ0, •) := θ0. Given ξ ∈ (XU)n, θ ∈ (UIX)n and
θ′ ∈ (UIX)n+1,

F ζn(θ, ξ) := fixXn (ξ ◦ θ)
fζn+1(θ′, ξ) := θ′n+1(fixXn (ξ ◦ rn(θ′)))

= θ′n+1(Fn(rn(θ′), ξ))

The maps ζA form a distributive law of T over (−)I, which is moreover
monoidal in the sense of Prop. M.7. These facts are summarized in the following
Proposition whose proof is defered to §L.

Proposition J.3.

(i) The family of maps ζA : T (AI) −p→ (TA)I forms a distributive law.
(ii) Moreover, ζ(−) is monoidal in the sense of Prop. M.7, that is:

T (AI ⊗BI)

g2
AI,BI

��

T (m2
A,B)

// T ((A⊗B)I)

ζA⊗B

��
T (AI)⊗ T (BI)

ζA⊗ζB
��

(T (A⊗B))I

(g2A,B)I

��
(TA)I ⊗ (TB)I

m2
TA,TB

// (TA⊗ TB)I

(3)

where (m2,m0) is the (lax) strength of (−)I defined as in Prop. I.4, and
(g2, g0) is the oplax strength of T defined as in Cor. I.5, so that:

50

– For (−)I:

m2
A,B := (λ(h, k).(h× k) ◦ 〈I(π1),I(π2)〉 , idX×Y) :

(UIX × V IY , X × Y) −→ ((U × V)I(X×Y) , X × Y)

(where A = (U,X) and B = (V, Y)), and m0 := (1,1) : (1,1) −→
(1I1,1).

– For T :

g2A,B := (idU×V , λ(h, k).(h×k)) : (U×V , (X×Y)U×V) −→ (U×V , XU×Y V)

(where A = (U,X) and B = (V, Y)), and g0 := (1,1) : (1,11) −→
(1,1).

It then follows from Prop. J.3 and Cor. M.8 that Kl(ζ) is symmetric monoidal.

– Its monoidal product is that of G(S) on objects, so that

(U,X)⊗Kl(ζ)(V, Y) = (U,X)⊗(V, Y) = (U×V,X×Y) and I = (1,1)

and on maps, given (f, F) ∈ Kl(ζ)[A0, B0] and (g,G) ∈ Kl(ζ)[A1, B1], we
let

(f, F)⊗Kl(ζ) (g,G) := m2
B0,B1

◦ ((f, F)⊗ (g,G)) ◦ g2A0,A1

– The structure maps are the image under λhA→B .ηB ◦h ◦ εA of the structure
maps of G(S).

From now on, if no ambiguity arises, we write ⊗ for the monoidal product of
Kl(ζ).

We write Kl(ζ?) for the full subcategory of Kl(ζ) whose objects are of the
form (U?, X?). Together with §J.4, Prop. J.3 gives:

Proposition J.4. The category DZ is equivalent to Kl(ζ?).

J.6 The Symmetric Monoidal Structure of DZ

Recall from Prop. J.4 that DZ is isomorphic to Kl(ζ?) the full subcategory of
Kl(ζ) whose objects are of the form (U?, X?).

Note that I is an object of Kl(ζ?), as well as A⊗B as soon as A and B are
objects of Kl(ζ?). It thus follows from Prop. J.4, Prop. J.3 and Cor. M.8 that:

Proposition J.5. Equipped with the above data, the category Kl(ζ?) (and thus
DZ) is symmetric monoidal.

51

J.7 Monoids and Comonoids in DZ

Thanks to Prop. M.11, we therefore get from Prop. J.3 and Prop. J.1:

Proposition J.6 (Prop. A.9).

(i) Objects of the form M = (1,M) equipped with structure maps

I
u
−(M

O •
• P
m O

P •

M ⊗M
m
−(M

O (•, •)
• P
m O

P (m,m)

are monoids in DZ.
(ii) Objects of the form K = (K,1) equipped with structure maps

K
eK
−(I

O k
• P
• O

P •

K
dK
−(K ⊗K

O k
(k, k) P
(•, •) O

P •

are comonoids in DZ.

J.8 The Base Category T

Proposition J.7 (Prop. B.1). The category T embeds to Comon(DZD) via
the functor ET mapping an object Σ of T to the comonoid (Σ, eΣ , dΣ) and a
morphism M : T[Γ,Σ] to itself.

Proof (Proof of Proposition J.7). Fix M ∈ T[Σ,Γ], so that

M ' (fM ,1) : (Σ,1Σ) −p→ (ΓI(1×D),1×D)

The comonoid structure maps can be explicitelly defined as

eΣ ' (1,1) : (Σ,1Σ) −p→ (1I(1×D),1×D)

and

dΣ ' (λ .λa.(a, a) , 1) : (Σ,1Σ) −p→ ((Σ×Σ)I(1×1×D) , 1×1×D)

We check the required diagrams:

– First,

Σ
M //

dΣ
��

Γ

dΓ
��

Σ ⊗Σ M⊗M // Γ ⊗ Γ

52

Note that all maps involved are 1 on the second component, so we only check
the first one.
We then compute (leaving implicit the monad maps used for composition in
DZD):

(fM × fM) ◦ (λ .λa.(a, a)) = λI(p).λa.〈fM (I(p), a) , fM (I(p), a)〉

and we are done since on the other hand

(λ .λa.(a, a)) ◦ fM = λI(p).λa.(fM (I(p), a), fM (I(p), a))

– Second, the coherence diagram

Σ
M //

eΣ

��

Γ

eΓ

��
I

trivially holds since all involved maps are in the second component are 1,
and, for the first component, since 1 is terminal in S .

K Proof of Proposition I.4

In this appendix we give a proof of Prop. I.4. We first recall its statment.
Assume that C is Cartesian closed, and fix a functor H : C→ C. Recall (from

e.g. [27, §5.2]) that H lifts in a unique way to an oplax symmetric monoidal
functor, with strength

t2A,B := 〈H(π1), H(π2)〉 : H(A×B) −→ HA×HB

and
t0 := 1H1 : H1 −→ 1

Note that the naturality of t2(−),(−), that is

(H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = 〈H(π1), H(π2)〉 ◦H(f × g)

follows from the universality property of the Cartesian product since (say)

π1 ◦ (H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = H(f ◦ π1) = H(π1 ◦ (f × g))

Consider now the functor

(−)H : G(C) −→ G(C)

defined as
(U,X)H := (UHX , X)

53

and

(f, F)H := (λh.f ◦ h ◦H(F) , F) : (UHX , X) −p→ (V HY , Y)

(where (f, F) : (U,X) −p→ (V, Y)), and the maps

η(U,X) = (fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UHX , X)
µ(U,X) = (fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UHX×HX , X) −p→ (UHX , X)

Proposition K.1 (Prop. I.4). ((−)H , η, µ) is a (lax) symmetric monoidal
monad, with strength

m2
A,B = (f2A,B , F

2
A,B) := (λ(h, k).(h× k) ◦ t2X,Y , idX×Y) :

(UHX × V HY , X × Y) −→ ((U × V)H(X×Y) , X × Y)

(where A = (U,X) and B = (V, Y)), and

m0 := (1,1) : (1,1) −→ (1H1,1)

K.1 (−)H is a lax symmetric monoidal functor

(−)H is a functor. First, given A = (U,X) we have

(idA)H = (λh.idU ◦ h ◦H(idX) , idX) = (λh.h , idX) = idAH

Moreover, given (f, F) : (U,X) −p→ (V, Y) and (g,G) : (V, Y) −p→ (W,Z), we
have

((g,G)◦(f, F))H = (g◦f , F ◦G)H = (λh.g◦f ◦h◦H(F ◦G) , F ◦G)

= (λh.g ◦ h ◦HG,G) ◦ (λh.f ◦ h ◦HF,F)

since

λh.g◦f◦h◦H(F◦G) = λh.g◦f◦h◦H(F)◦H(G) = λh.(λk.g◦k◦H(G))(f◦h◦H(F))

The maps m2
(−),(−) are natural. We have to check that given (f, F) : (U,X) −p→

(V, Y) and (g,G) : (U ′, X ′) −p→ (V ′, Y ′) we have

m2
B,B′ ◦ ((f, F)H ⊗ (g,G)H) = ((f, F)⊗ (g,G))H ◦m2

A,A′

54

(where A = (U,X), B = (V, Y), A′ = (U ′, X ′) and B′ = (V ′, Y ′)). We compute

m2
B,B′ ◦ ((f, F)H ⊗ (g,G)H) = m2

B,B′ ◦ ((λh.f ◦ h ◦H(F), F)⊗ (λk.g ◦ k ◦H(G), G))

= m2
B,B′ ◦ ((λh.f ◦ h ◦H(F))× (λk.g ◦ k ◦H(G)) , F ×G)

= ((λ(h, k).(h× k) ◦ t2Y,Y ′) ◦ ((λh.f ◦ h ◦H(F))× (λk.g ◦ k ◦H(G))) , F ×G)

= ((λ(h, k).(h× k) ◦ t2Y,Y ′) ◦ (λ(h, k).〈f ◦ h ◦H(F) , g ◦ k ◦H(G)〉) , F ×G)

= (λ(h, k).((f ◦ h ◦H(F))× (g ◦ k ◦H(G))) ◦ t2Y,Y ′ , F ×G)

= (λ(h, k).(f × g) ◦ (h× k) ◦ (H(F)×H(G)) ◦ t2Y,Y ′ , F ×G)

= (λ(h, k).(f × g) ◦ (h× k) ◦ t2X,X′ ◦H(F ×G) , F ×G)

= (λ(h, k).(λp.(f × g) ◦ p ◦H(F ×G)) ◦ ((h× k) ◦ t2X,X′) , F ×G)

= ((f, F)⊗ (g,G))H ◦m2
A,A′

(−)H is lax symmetric monoidal. Note that (−)H is the identity on the second
components, so we only have to check diagrams for the first components.

– The associativity diagram leads to check

(UHX × V HY)×WHZ
αUHX,VHY ,WHZ

//

(λ(h,k).(h×k)◦t2X,Y)×idWHZ

��

UHX × (V HY ×WHZ)

idUHX×(λ(h,k).(h×k)◦t
2
Y,Z)

��
(U × V)H(X×Y) ×WHZ

λ(h,k).(h×k)◦t2X×Y,Z
��

UHX × (V ×W)H(Y×Z)

λ(h,k).(h×k)◦t2X,Y×Z
��

((U × V)×W)H((X×Y)×Z)

λh.αU,V,W ◦h◦H(α−1
X,Y,Z)

// (U × (V ×W))H(X×(Y×Z))

(where A = (U,X), B = (V, Y) and C = (W,Z)). Note that since C is
Cartesian closed:

α = 〈π1 ◦ π1 , 〈π2 ◦ π1, π2〉〉 = λ((u, v), w).(u, (v, w))

We have to check

λ((h, k), l).αU,V,W ◦(((h×k)◦t2X,Y)×l)◦t2X×Y,Z◦H(α−1X,Y,Z) = λ((h, k), l).(h×((k×l)◦t2Y,Z))◦t2X,Y×Z
But we are done since it follows from the universal property of the Cartesian
product of C that we have

(HX ×HY)×HZ
αHX,HY,HZ // HX × (HY ×HZ)

H(X × Y)×HZ

t2X,Y ×idHZ

OO

HX ×H(Y × Z)

idHX×t2Y,Z

OO

H((X × Y)× Z)

t2X×Y,Z

OO

H(X × (Y × Z))

t2X,Y×Z

OO

H(α−1
X,Y,Z)

oo

55

– The unit diagrams are dealt-with similarly. We only check the diagram for
the unit λ(−), which lead to check

1× UHX
λUHX //

1×idUHX
��

UHX

11 × UHX
λ(h,k).(h×k)◦t2I,X

// (1× U)H(1×X)

λh.λU◦h◦H(λ−1
X)

OO

Since λ(−) = π2, we have to show

λ(•, h).h = λ(•, h).λU ◦ (• × h) ◦ t21,X ◦H(λ−1X)

It follows from the unversal property of the Cartesian product of C that we
have have

1×HX HX

H(λ−1
X)

��

λ−1
HXoo

H1×HX

1×idHX

OO

H(1×X)
t21,X

oo

We are therefore lead to check

λ(•, h).h = λ(•, h).λU ◦ (• × h) ◦ λ−1HX

and we are done since λ−1(−) = 〈1, id(−)〉.
– The symmetry diagram is dealt-with similarly.

K.2 ((−)H , η, µ) is a monad

The maps η(−) are natural. Let (f, F) : (U,X) −p→ (V, Y). We have to check

η(V,Y) ◦ (f, F) = (λh.f ◦ h ◦H(F) , F) ◦ η(U,X)

which amounts to

(λu.λ .u) ◦ f = (λh.f ◦ h ◦H(F)) ◦ (λu.λ .u)

that is

λu.λ .f(u) = λu.f ◦ (λ .u) ◦H(F)

and we are done.

56

The maps µ(−) are natural. Let (f, F) : (U,X) −p→ (V, Y). We have to check

µ(V,Y)◦(λh.(λk.f ◦k◦H(F))◦h◦H(F) , F) = (λh.f ◦h◦H(F) , F)◦µ(U,X)

which amounts to

(λh.λx.h(x, x))◦(λh.λx.f◦(h(H(F)(x)))◦H(F)) = (λh.f◦h◦H(F))◦(λh.λx.h(x, x))

that is

(λh.λx.h(x, x))◦(λh.λx.λy.f(h(H(F)(x)), H(F)(y))) = λh.f◦(λx.h(x, x))◦H(F)

which reduces to

λh.λx.(λx.λy.f(h(H(F)(x)), H(F)(y)))(x, x) = λh.λx.f(h(H(F)(x), H(F)(x)))

and we are done.

Associativity Law. Since µ(−) is the identity on the second component, we only
have to check

UHX×HX×HX
λh.λx.h(x,x) //

λh.(λk.λy.k(y,y))◦h
��

UHX×HX

λh.λx.h(x,x)
��

UHX×HX
λh.λx.h(x,x)

// UHX

that is

λh.λy.(λx.h(x, x))(y, y) = λh.λx.((λk.λy.k(y, y)) ◦ h)(x, x)

We compute

λh.λy.(λx.h(x, x))(y, y) = λh.λy.h(y, y, y)

and we are done since

λh.λx.((λk.λy.k(y, y)) ◦ h)(x, x) = λh.λx.(λz.λy.h(z)(y, y))(x, x)

= λh.λx.(λy.h(x)(y, y))x = λh.λx.h(x, x, x)

Unit Laws. Since η(−) and µ(−) are the identity on the second component, we
only have to check

UHX
λu.λ .u // UHX×HX

λh.λx.h(x,x)

��

UHX
λh.(λu.λ .u)◦hoo

UHX

57

We are done since

(λh.λx.h(x, x))◦(λu.λ .u) = λu.λx.(λ .u)(x, x) = λu.λx.ux = idUHX

and

(λh.λx.h(x, x)) ◦ (λh.(λu.λ .u) ◦ h) = λh.λx.((λu.λ .u) ◦ h)(x, x)
= λh.λx.(λy.λ .h(y))(x, x)
= λh.λx.(λ .h(x))x
= λh.λx.hx
= idUHX

K.3 ((−)H , η, µ) is lax symmetric monoidal

It remains to show that η and µ are lax monoidal natural transformations. Once
again, we only check the second components, which amount to the following.

η(−) is lax monoidal. We have to check

U × V
(λu.λ .u)×(λv.λ .v)// UHX × V HY

λ(h,k).(h×k)◦t2X,Y
��

U × V
λp.λ .p

// (U × V)H(X×Y)

and 1

1

!!
1

λu.λ .u
// 1H1

The second diagram is obvious. The first one amounts to

λp.λ .p = λ(u, v).((λ .u)× (λ .v)) ◦ 〈H(π1), H(π2)〉

and we are done since

λ(u, v).((λ .u)×(λ .v))◦〈H(π1), H(π2)〉 = λ(u, v).〈λ .u,λ .v〉 = λ(u, v).λ .〈u, v〉 = λp.λ .p

µ(−) is lax monoidal.

– Preservation of the binary strength amounts to

UHX×HX × V HY×HY
(λh.λx.h(x,x))×(λk.λy.k(y,y)) //

n

��

UHX × V HY

λ(h,k).(h×k)◦t2X,Y
��

(U × V)H(X×Y)×H(X×Y)

λh.λx.h(x,x)
// (U × V)H(X×Y)

58

where n is the first component of (m2
A,B)H ◦m2

AH ,BH (for A = (U,X) and

B = (V, Y)), so that

n = (λl.((λ(h, k).(h× k) ◦ t2X,Y) ◦ l) ◦ ((λ(h, k).(h× k) ◦ t2X,Y)

= λ(h, k).(λ(h′, k′).(h′ × k′) ◦ t2X,Y) ◦ ((h× k) ◦ t2X,Y)

= λ(h, k).(λ(h′, k′).(h′ × k′) ◦ t2X,Y) ◦ 〈h ◦H(π1) , k ◦H(π2)〉
= λ(h, k).λp.((h(H(π1)p))× (k(H(π2)p))) ◦ t2X,Y
= λ(h, k).λp.((h(H(π1)p))× (k(H(π2)p))) ◦ 〈H(π1) , H(π2)〉
= λ(h, k).λ(p, q).〈h(H(π1)p), H(π1)q) , k(H(π2)p,H(π2)q)〉

and therefore

(λh.λx.h(x, x)) ◦ n = λ(h, k).λx.n(h, k)(x, x)

= λ(h, k).λx.〈h(H(π1)x,H(π1)x) , k(H(π2)x,H(π2)x)〉

But now we are done since on the other hand,

(λ(h, k).(h× k) ◦ t2X,Y) ◦ ((λh.λx.h(x, x))× (λk.λy.k(y, y)))

= λ(h, k).((λx.h(x, x))× (λy.k(y, y))) ◦ t2X,Y
= λ(h, k).((λx.h(x, x))× (λy.k(y, y))) ◦ 〈H(π1), H(π2)〉
= λ(h, k).λp.〈h(H(π1)p,H(π1)p) , k(H(π2)p,H(π2)p)〉

– Preservation of the unit strength amounts to

1

1

ww
n0

&&
1H1×H1

λ(h,k).(h×k)◦t21,1
// 1H1

where n0 is the first component of (m0)H ◦m0, so that n0 = (λh.1◦h)◦1 = 1
and we are done since

(λ(h, k).(h× k) ◦ t21,1) ◦ 1 = 1

L Proof of Proposition J.3

This appendix is devoted to the proof of Prop. J.3. We first recall its statment.

Proposition L.1 (Prop. J.3).

(i) The family of maps ζA : T (AI) −p→ (TA)I forms a distributive law.

59

(ii) Moreover, ζ(−) is monoidal in the sense of Prop. M.7, that is:

T (AI ⊗BI)

g2
AI,BI

��

T (m2
A,B)

// T ((A⊗B)I)

ζA⊗B

��
T (AI)⊗ T (BI)

ζA⊗ζB
��

(T (A⊗B))I

(g2A,B)I

��
(TA)I ⊗ (TB)I

m2
TA,TB

// (TA⊗ TB)I

(4)

where (m2,m0) is the (lax) strength of (−)I defined as in Prop. I.4, and
(g2, g0) is the oplax strength of T defined as in Cor. I.5, so that:

– For (−)I:

m2
A,B := (λ(h, k).(h× k) ◦ 〈I(π1),I(π2)〉 , idX×Y) :

(UIX × V IY , X × Y) −→ ((U × V)I(X×Y) , X × Y)

(where A = (U,X) and B = (V, Y)), and m0 := (1,1) : (1,1) −→
(1I1,1).

– For T :

g2A,B := (idU×V , λ(h, k).(h×k)) : (U×V , (X×Y)U×V) −→ (U×V , XU×Y V)

(where A = (U,X) and B = (V, Y)), and g0 := (1,1) : (1,11) −→
(1,1).

L.1 Proof of Proposition L.1.(i)

We have to check that ζ : T ((−)I) → (T−)I is natural and that the following
four coherence diagrams commute (see e.g. [13]):

(TA)I

(δA)I

**
T (AI)

ζA

44

δAI %%

(TTA)I

TT (AI)
TζA

// T ((TA)I)

ζTA

88

(5)

60

T (AI)

ζA

**
T (AII)

T (µA)

44

ζAI &&

(TA)I

(T (AI))I
(ζA)I

// (TA)II

µTA

99

(6)

(TA)I

(εA)I

##
T (AI)

ζA
::

εAI
// AI

(7)

T (AI)

ζA

$$
TA

T (ηA)
;;

ηTA
// (TA)I

(8)

Recall that T is the comonad T = (T, ε, δ) and that (−)I is the monad ((−)I, η, µ)
on G(S). We repeat the definitions of the functors T and (−)I:

(f, F) : (U,X) −p→ (V, Y)
T7−→ (f , λh.F ◦ h ◦ f) : (U,XU)−p→ (V ,Y V)

(f, F) : (U,X) −p→ (V, Y)
(−)I7−→ (λh.f ◦ h ◦IF , F) : (UIX ,X) −p→ (V IY ,Y)

and of the natural maps η and µ:

(fη, Fη) : (U,X) −p→ (UIX , X)
(fµ, Fµ) : (UIX×IX , X) −p→ (UIX , X)

where Fη = Fµ = idX , fη(u, x) = u and fµ(h, x) = h(x, x).
Moreover, the natural maps ε and δ are given by

(fε, Fε) : (U,XU) −p→ (U,X)
(fδ, Fδ) : (U,XU) −p→ (U,XU×U)

where fε = fδ = idU , Fε(u, x) = x and Fδ(h, u) = h(u, u).
We check in turn the required diagrams.

Lemma L.2. ζ is natural, that is, given (g,G) : A −p→ B, we have

T (AI)
T ((g,G)I) //

ζA

��

T (BI)

ζB

��
(TA)I

(T (g,G))I
// (TB)I

61

Proof. Let A = (U,X) and B = (V, Y), and consider (g,G) : (U,X) −p→ (V, Y).
Note that

(g,G)I = (λh.ghIG , G) : (UIX , X) −p→ (V IY , Y)

T ((g,G)I) = (λh.ghIG , λh.Gh(λh.ghIG)) : (UIX , XUIX
) −p→ (V IY , Y V

IY
)

T (g,G) = (g , λh.Ghg) : (U,XU) −p→ (V, Y V)

(T (g,G))I = (λh.ghI(λh.Ghg) , λh.Ghg) : (UI(X
U), XU) −p→ (V I(Y

V), Y V)

We have to show that

(T (g,G))I ◦ ζA = ζB ◦ T ((g,G)I)

that is

(λh.ghI(λh.Ghg))◦fζA = fζB◦(λh.ghIG) and F ζA◦(λh.Ghg) = λh.Gh(λh.ghIG)◦F ζB

For the first equation, which has type UIX → V I(Y
V), given θn+1 ∈ (UIX)n+1

and ξn ∈ (Y V)n, one has to show the following (where some ◦ are replaced by
juxtaposition)

((λh.gn+1hI(λh.Gn+1hgn+1))◦fζAn+1)(θn+1)(ξn) = (fζBn+1◦(λh.gn+1hIGn+1))(θn+1)(ξn)

that is

((λh.gn+1◦h◦(λh.Gnhgn))(fζAn+1(θn+1)))(ξn) = (fζBn+1((λh.gn+1◦h◦Gn)(θn+1)))(ξn)

that is

(gn+1 ◦ (fζAn+1(θn+1)) ◦ (λh.Gnhgn))(ξn) = (fζBn+1(gn+1θn+1Gn))(ξn)

that is

gn+1(fζAn+1(θn+1)((λh.Gnhgn)ξn)) = fζBn+1(gn+1θn+1Gn , ξn)

that is

gn+1(fζAn+1(θn+1 , Gnξngn)) = fζBn+1(gn+1θn+1Gn , ξn)

that is

gn+1 ◦ θn+1 ◦ fixn(Gnξnθn) = gn+1 ◦ θn+1 ◦Gn ◦ fixn(ξngnθnGn−1)

which is easily seens to hold, when unfolding the fixpoints, thanks to associativity
of composition.

The second equation, of type Y V → XUIX
, amounts, for ξn ∈ (Y V)n and

θn ∈ (UIX)n, to the following (where some ◦ are replaced by juxtaposition)

F ζAn (Gnξngn , θn) = ((λh.Gh(λh.ghIG))(F ζB (ξn)))(θn)

62

that is

F ζAn (Gnξngn , θn) = (Gn ◦ (F ζBn (ξn)) ◦ (λh.gnhIGn))(θn)

that is

F ζAn (Gnξngn , θn) = Gn(F ζBn (ξn)((λh.gnhIGn)(θn)))

that is
F ζAn (Gnξngn , θn) = Gn(F ζBn (ξn , gnθnIGn))

which also holds thanks to associativity of composition (when unfolding the
fixpoints).

Lemma L.3. Diagram (5) commutes.

Proof. Let A = (U,X), so that

T (AI) = T (UIX , X) = (UIX , XUIX

) and (TA)I = (U,XU)I = (UI(X
U), XU)

The diagram has type

T (AI) −p→ (TTA)I = (UIX , XUIX

) −p→ (UI(X
U×U) , XU×U)

Moreover,

(δA)I = (idU , λhu.h(u, u))I = (λh.hI(λhu.h(u, u)) , λhu.h(u, u))
TζA = T (fζA , F ζA) = (fζA , λh.F ζAhfζA)

We have to check the following two equations:

fδAI◦fζA = fζTA◦fTζA◦fδAI and F ζA◦FδAI = FδAI ◦FTζA◦F ζTA

The first one, of type UIX → UI(X
U×U), amounts, for θn+1 ∈ (UIX)n+1

and ξn+1 ∈ XU×U
n+1 , to the following

((λh.hI(λhu.h(u, u))) ◦ fζAn+1)(θn+1)(ξn+1) = (fζTAn+1f
ζA
n+1)(θn+1)(Iξn+1)

that is

(fζAn+1(θn+1) ◦I(λhu.h(u, u)))(ξn+1) = fζTAn+1(fζAn+1(θn+1) , ξn)

that is

fζAn+1(θn+1 , λu.ξn(u, u)) = fζAn+1(θn+1 , fixX
U

n (ξn ◦ fζAn (θn)))

Write

ln := fζAn+1(θn+1 , λu.ξn(u, u)) and rn := fζAn+1(θn+1 , fixX
U

n (ξn◦fζAn (θn)))

63

The proof is then by induction on n. In the base case n = 0, both sides unfold
to θ1(•). For the induction step, assuming the property for rn = ln, we show
ln+1 = rn+1.

First, note that Note that

fixUn+1(λu.ξn+1(u, u) ◦ θn+1) = fixUn+1(λx.ξn+1(θn+1(x), θn+1(x)))

= (λx.ξn+1(θn+1(x) , θn+1(x)))(fixUn (λx.ξn(θn(x), θn(x))))

= (λu.ξn+1(u, u))(θn+1(fixUn ((λu.ξn(u, u)) ◦ θn)))
= ξn+1(ln, ln)

so that
ln+1 = θn+2(ξn+1(ln, ln))

On the other hand, note that

fixX
U

n+1(ξn+1 ◦ fζAn+1(θn+1)) = ξn+1(fζAn+1(θn+1 , fixX
U

n (ξn ◦ fζAn (θn))))
= ξn+1(rn)

and so in particular

rn = θn+1(fixn(fixX
U

n (ξn ◦ fζA(θn)) ◦ θn))
= θn+1(fixn(ξn(rn−1) ◦ θn))

We thus have

rn+1 = θn+2(fixn+1(fixX
U

n+1(ξn+1 ◦ fζAn+1(θn+1)) ◦ θn+1))
= θn+2(fixn+1(ξn+1(rn) ◦ θn+1)
= θn+2(ξn+1(rn)(θn+1(fixn(ξn(rn−1) ◦ θn))))
= θn+2(ξn+1(rn)(rn))

and we conclude by induction hypothesis.

The second equation, of type XU×U → XUIX
, amounts, for ξn ∈ (XU×U)n

and θn ∈ (UIX)n, to the following:

F ζAn ◦(λhu.h(u, u))(ξn)(θn) = ((λhk.h(k, k))◦(λh.F ζAn hfζAn)◦F ζTAn)(ξn)(θn)

that is

F ζAn ((λhu.h(u, u))ξn , θn) = ((λhk.h(k, k))((λh.F ζAn hfζAn)(F ζTAn (ξn))))(θn)

that is

F ζAn (λu.ξn(u, u) , θn) = ((λhk.h(k, k))((F ζAn ◦ F ζTAn (ξn) ◦ fζAn)))(θn)

that is

F ζAn (λu.ξn(u, u) , θn) = (λk.(F ζAN ◦ F
ζTA
n (ξn) ◦ fζAn)(k, k))θn

that is

F ζAn (λu.ξn(u, u) , θn) = (F ζAn ◦ F ζTAn (ξn) ◦ fζAn)(θn)(θn)

64

that is

F ζAn (λu.ξn(u, u) , θn) = F ζAn (F ζTAn (ξn , f
ζA
n (θn)) , θn)

Reasonning as for the first equation, write

ln := F ζAn (λu.ξn(u, u) , θn) and rn := F ζAn (F ζTAn (ξn , f
ζA
n (θn)) , θn)

with
ln+1 = fixn+1((λu.ξn+1(u, u)) ◦ θn+1)

= ξn+1(θn+1(ln) , θn+1(ln))

and on the other hand

F ζTAn+1 (ξn+1 , f
ζA
n+1(θn+1)) = fixX

U

n+1(ξn+1 ◦ fζAn+1(θn+1))

= ξn+1(fζAn+1(θn+1 , fixX
U

n (ξn ◦ fζAn (θn)))

= ξn+1(θn+1(F ζAn (fixX
U

n (ξn ◦ fζAn (θn)) , θn))
= ξn+1(θn+1(F ζAn (F ζTAn (ξn, f

ζA
n (θn)) , θn))

= ξn+1(θn+1(rn))

We thus have

rn+1 = fixn+1(fixX
U

n+1(ξn+1 ◦ fζAn+1(θn+1)) ◦ θn+1)
= fixn+1(ξn+1(θn+1(rn)) ◦ θn+1)
= ξn+1(θn+1(rn) , θn+1(fixn(ξn(θn(rn−1)) ◦ θn)))
= ξn+1(θn+1(rn) , θn+1(rn))

and we conclude by induction hypothesis.

Lemma L.4. Diagram (6) commutes.

Proof. Let A = (U,X) so that the diagram has type

T (AII) −p→ (TA)I = (UIX×IX , XUIX×IX

) −p→ (UI(X
U), XU)

Note that

T (µA) = T (λhx.h(x, x) , idX) = (λhx.h(x, x) , λk.(k ◦ λhx.h(x, x)))
(ζA)I = (fζA , F ζA)I = (λh.fζA ◦ h ◦IF ζA , F ζA)

We have to check the following two equations:

fζA◦fTµA = fµTA◦f(ζA)I◦fζAI and FTµA◦F ζA = F ζAI ◦F(ζA)I◦FµTA

The first equation, of type UIX×IX → UI(X
U), amounts, for θn+1 ∈ (UIX×IX)n+1

and ξn ∈ (XU)n, to the following:

(fζAn+1◦(λhx.h(x, x)))(θn+1)(ξn) = ((λhk.h(k, k))◦(λh.fζAn+1hIF
ζA
n+1)◦fζAI

n+1)(θn+1)(ξn)

65

that is

fζAn+1(λx.θn+1(x, x) , ξn) = ((λhk.h(k, k))◦(λh.fζAn+1hF
ζA
n)◦fζAI

n+1)(θn+1)(ξn)

that is

fζAn+1(λx.θn+1(x, x) , ξn) = (λhk.h(k, k))(fζAn+1 ◦ f
ζAI

n+1 (θn+1) ◦ F ζAn)(ξn)

that is

fζAn+1(λx.θn+1(x, x) , ξn) = (fζAn+1 ◦ f
ζAI

n+1 (θn+1) ◦ F ζAn)(ξn)(ξn)

that is

fζAn+1(λx.θn+1(x, x) , ξn) = fζAn+1(f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)) , ξn)

Let

ln := fζAn+1(λx.θn+1(x, x) , ξn) and rn := fζAn+1(f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)) , ξn)

Note that for all n we have

ln+1 = (λx.θn+2(x, x))fixn+1(ξn+1 ◦ λx.θn+1(x, x))
= (λx.θn+2(x, x))((λx.ξn+1(θn+1(x, x)))fixn(ξn ◦ λx.θn(x, x))))
= θn+2(ξn+1(ln), ξn+1(ln))

On the other hand,

rn+1 = fζAn+2(f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1)) , ξn+1)

= f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1))(fixXn+1(ξn+1 ◦ f

ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

= θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , fixXn+1(ξn+1 ◦ f
ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

So we show by induction on n that

ξn+1(rn) = fixn+1(F ζAn+1(ξn+1)◦θn+1) = fixXn+1(ξn+1◦f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)))

The base case is trivial. For the induction step, on the one hand we have

fixn+2(F ζAn+2(ξn+2) ◦ θn+2)

= F ζAn+2(ξn+2 , θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1)))

= ξn+2(θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , F ζAn+1(ξn+1 , θn+1(fixn(F ζAn (ξn) ◦ θn))))

= ξn+2(θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , fixn+1(F ζAn+1(ξn+1) ◦ θn+1))

and we conclude by induction hypothesis, and on the other hand

fixXn+2(ξn+2 ◦ f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1)))

= ξn+2 ◦ f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1))(fixXn+1(ξn+1 ◦ f

ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

= ξn+2(θn+2(fixn(F ζAn+1(ξn+1) ◦ θn+1) , fixXn+1(ξn+1 ◦ f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)))))

66

and we also conclude by induction hypothesis.

The second equation, of type XU → XUIX×IX
, amounts, for ξn ∈ (XU)n

and θn ∈ (UIX×IX)n, to the following

((λk.(k ◦ λhx.h(x, x))) ◦ F ζAn)(ξn)(θn) = (F
ζAI
n ◦ F ζAn)(ξn)(θn)

that is
(F ζAn (ξn) ◦ λhx.h(x, x))(θn) = F

ζAI
n (F ζAn (ξn) , θn)

that is
F ζAn (ξn , λx.θn(x, x)) = F

ζAI
n (F ζAn (ξn) , θn)

This is dealt-with similarly to (but in a much simpler way than) the first equa-
tion.

Lemma L.5. Diagram (7) commutes.

Proof. Let A = (U,X), so that the diagram has type

T (AI) −p→ AI = (UIX , XUIX

) −p→ (UIX , X)

Note that

(εA)I = (idU ,λxu.x)I = (λh.(h ◦I(λxu.x)),λxu.x)

We have to show

λh.(h ◦I(λxu.x)) ◦ fζA = idUIX and F ζA ◦ λxu.x = λxu.x

For the first equation, given θn+1 ∈ (UIX)n+1, we have to show

fζAn+1(θn+1) ◦I(λxu.x) = θn+1

The result is trivial since the left-hand side unfolds to

λIx.fζAn+1(θn+1,λ .x) = λIx.θn+1(fixn(λ .x)) = λIx.θn+1(x)

The second equation is simpler and omitted.

Lemma L.6. Diagram (8) commutes.

Proof. Let A = (U,X), so that the diragram has type

TA −p→ (TA)I = (U,XU) −p→ (UI(X
U), XU)

Note that

T (ηA) = T (λux.u, idX) = (λux.u,λh.h ◦ (λux.u))

We have to show

fζA ◦ (λux.u) = λux.u and (λh.h ◦ (λux.u)) ◦ F ζA = idXU

67

For the first equation, given u ∈ Un+1 and ξn ∈ (XU)n, we have to show

fζAn+1(λx.u , ξn) = u

which is trivial. For the second equation, given ξn ∈ Xn and u ∈ Un we have to
show

F ζA(ξn , λx.u) = ξn(u)

which is also trivial.

L.2 Proof of Proposition L.1.(ii)

Fix G(S)-objects A = (U,X) and B = (V, Y). Diagram (4) amounts, to the
following two diagrams, for resp. the first and second component of G(S):

UIX × V IY

idUIX×VIY

��

λ(h,k).(h×k)◦〈I(π1),I(π2)〉 // (U × V)I(X×Y)

fζA⊗B

��
UIX × V IY

fζA×fζB
��

(U × V)I((X×Y)U×V)

λh.h◦I(λ(h,k).h×k)
��

UI(X
U) × V I(Y V)

λ(h,k).(h×k)◦〈I(π1),I(π2)〉
// (U × V)I(X

U×Y V)

(9)

(X × Y)U
IX×V IY

(X × Y)(U×V)I(X×Y)λh.h◦(λ(h,k).(h×k)◦〈I(π1),I(π2)〉)oo

XUIX × Y V IY

λ(h,k).h×k

OO

(X × Y)U×V

F ζA⊗B

OO

XU × Y V
F ζA×F ζB

OO

XU × Y V

λ(h,k).h×k

OO

idXU×Y V

oo

(10)

Commutation of (10). We reason modulo ((−)× (−))n ' (−)n× (−)n. Con-
sider θn+1 ∈ (UIX)n+1, θ′n+1 ∈ (V IY), and ξn+1 ∈ (XU)n+1, ξ′n+1 ∈ (Y V)n+1.

We have to show that

〈F ζAn+1(ξn+1, θn+1) , F ζBn+1(ξ′n+1, θ
′
n+1)〉 = F

ζA⊗B
n+1 (ξn+1×ξ′n+1,λI(x, y).〈θn+1(x), θ′n+1(y)〉)

which amounts to

〈fixn+1(ξn+1 ◦ θn+1) , fixn+1(ξ′n+1 ◦ θ′n+1)〉 = fixn+1((ξn+1×ξ′n+1)◦(λI(x, y).〈θn+1(x), θ′n+1(y)〉))

68

that is

〈(ξn+1 ◦ θn+1 ◦ ξn ◦ θn ◦ . . . ◦ ξ0 ◦ θ0)(•) , (ξ′n+1 ◦ θ′n+1 ◦ ξ′n ◦ θ′n ◦ . . . ◦ ξ′0 ◦ θ′0)(•)〉 =

((ξn+1×ξ′n+1)◦(λI(x, y).〈θn+1(x), θ′n+1(y)〉)◦. . .◦(ξ0×ξ′0)◦(λI(x, y).〈θ0(x), θ′0(y)〉))(•, •)

which follows from an easy induction on n ∈ N.

Commutation of (9). We reason modulo ((−)×(−))n ' (−)n×(−)n. Consider
θn+1 ∈ (UIX)n+1, θ′n+1 ∈ (V IY), and ξn ∈ (XU)n, ξ′n ∈ (Y V)n.

We have to show that

〈fζAn+1(θn+1, ξn) , fζBn+1(θ′n+1, ξ
′
n)〉 = f

ζA⊗B
n+1 (λI(x, y).〈θn+1(x), θ′n+1(y)〉 , ξn×ξ′n)

which amounts to (leaving implicit the restriction map rn):

〈θn+1(F ζAn+1(θn, ξn)) , θ′n+1(F ζBn+1(θ′n, ξ
′
n))〉

= (λI(x, y).〈θn+1(x), θ′n+1(y)〉)(F ζA⊗Bn (λI(x, y).〈θn(x), θ′n(y)〉 , ξn×ξ′n))

that is

(λI(x, y).〈θn+1(x), θ′n+1(y)〉)〈F ζAn+1(θn, ξn) , F ζBn+1(θ′n, ξ
′
n)〉

= (λI(x, y).〈θn+1(x), θ′n+1(y)〉)(F ζA⊗Bn (λI(x, y).〈θn(x), θ′n(y)〉 , ξn×ξ′n))

and we are done by (10).

M Monoids, Monads and Monoidal Categories

This appendix gathers easy and possibly well-known facts about monoidal cat-
egories. We refer to [27, 24] for missing details.

M.1 Monads and Comonads

Monads. A monad on a category C is a triple T = (T, µ, η) consisting of a functor
T : C→ C and two natural transformations µA : TTA→ TA and ηA : A→ TA
satisfying:

TTTA
µTA //

TµA

��

TTA

µA

��
TTA

µA
// TA

and TA
ηTA // TTA

µA

��

TA
TηAoo

TA

69

The Kleisli category Kl(T) = CT of T has the same objects as C and Kl(T)[A,B] :=
C[A, TB]. The categories C and Kl(T) = CT are related by an adjunction

C

FT

88
> Kl(T) = CT

UT

yy

where:

– The right adjoint UT : Kl(T)→ C maps objects A of Kl(T) to TA and takes
f ∈ Kl(T)[A,B] = C[A, TB] to

µB ◦ T (f) ∈ C[UTA,UTB] = C[TA, TB]

– The left adjoint FT : C → Kl(T) is the identity on objects and takes f ∈
C[A,B] to FT (f) := ηB ◦ f ∈ Kl(T)[A,B] = C[A, TB].

The category CT of Eilenberg-Moore algebras has, as objects, T -algebras h :
TA→ A such that

TTA
µA //

Th

��

TA

h

��
TA

h
// A

and TA

h

��
A

ηA

DD

A

and as morphisms from h : TA→ A to k : TB → B, maps f : A→ B such that

TA
Tf //

h

��

TB

k

��
A

f
// B

The categories C and CT are related by an adjunction

C

FT

;;> CT

UT

{{

where:

70

– The forgetful functor UT : CT → C maps h : TA→ A to A and f : (A, h)→
(B, k) to f : A→ B.

– The free functor FT : C → CT maps A to (TA, µA) and f : A → B to
Tf : TA→ TB.

Comonads. Dually a comonad on C is a monad on Cop. It is therefore given by a
triple G = (G, δ, ε) where the functor G : C→ C and the natural transformations
δA : GA→ GGA and εA : GA→ A satisfy:

GA
δA //

δA

��

GGA

δGA

��
GGA

GδA

// GGGA

and GA GGA
εGAoo GεA // GA

GA

δA

OO

The Kleisli category Kl(G) = CG of G has the same objects as C and
Kl(G)[A,B] := C[GA,B]. The categories C and Kl(G) = CG are related by
an adjunction

Kl(G) = CG

UG

99> C

FG

xx

where:

– The left adjoint UG : Kl(G)→ C maps objects A of Kl(G) to GA and takes
f ∈ Kl(G)[A,B] = C[GA,B] to

G(f) ◦ δA ∈ C[UGA,UGB] = C[GA,GB]

– The right adjoint FG : C → Kl(G) is the identity on objects and takes
f ∈ C[A,B] to FG(f) := f ◦ εA ∈ Kl(G)[A,B] = C[GA,B].

(Lax) (Symmetric) Monoidal Monads. There are different notions of monoidal
functor (see e.g. [27]). Here we use lax monoidal functors (as the functor part
of lax monoidal monads), and the dual notion of oplax monoidal functor (as the
functor part of oplax monoidal comonads).

(Lax) Symmetric Monoidal Functors. A (lax) symmetric monoidal functor on
a symmetric monoidal category (C,⊗, I) is a functor F equipped with natural
transformations

m2
A,B : FA⊗ FB → F (A⊗B) and m0 : I→ F (I)

71

making the following diagrams commute:

(FA⊗ FB)⊗ FC
αFA,FB,FC //

m2
A,B⊗idFC

��

FA⊗ (FB ⊗ FC)

idFA⊗m2
B,C

��
F (A⊗B)⊗ FC

m2
A⊗B,C

��

FA⊗ F (B ⊗ C)

m2
A,B⊗C

��
F ((A⊗B)⊗ C)

F (αA,B,C)
// F (A⊗ (B ⊗ C))

I⊗ FA λFA //

m0⊗idFA
��

FA

F I⊗ FA
m2

I,A

// F (I⊗A)

F (λA)

OO FA⊗ I
ρFA //

idFA⊗m0

��

FA

FA⊗ F I
m2
A,I

// F (A⊗ I)

F (ρA)

OO

FA⊗ FB
γFA,FB //

m2
A,B

��

FB ⊗ FA

m2
B,A

��
F (A⊗B)

F (γA,B)
// F (B ⊗A)

(Lax) Monoidal Natural Transformations. A monoidal natural transformation
between (lax) monoidal functors θ : (F,m2,m0) =⇒ (G,n2, n0) is a natural
transformation θ : F =⇒ G making the following diagrams commute:

FA⊗ FB θA⊗θB //

m2
A,B

��

GA⊗GB

n2
A,B

��
F (A⊗B)

θA⊗B

// G(A⊗B)

and I

m0

~~

n0

F I

θI

// GI

The following is [27, Prop. 10]:

Proposition M.1. Symmetric monoidal categories, (lax) symmetric monoidal
functors, and monoidal natural transformations form a 2-category SymMonCat.

Proof.

– The identity functor IdC : C → C is monoidal (actually strict monoidal),
with m2

A,B = idA⊗B and m0 = idI.

– If (F,m2,m0) and (G,n2, n0) are lax monoidal, then so is FG, with structure
maps

F (n2A,B) ◦m2
GA,GB : FGA⊗ FGB → F (GA⊗GB)→ FG(A⊗B)

F (n0) ◦m0 : I→ F I→ FGI
ut

72

(Lax) (Symmetric) Monoidal Monads. A (lax) symmetric monoidal monad on
a monoidal category C is a monad (T, µ, η) such that T is a (lax) symmetric
monoidal functor and the transformations µ, η are monoidal (see e.g. [27]). It
then follows from [27, §6.10] that:

Proposition M.2. If T = (T, µ, η) is a (lax) symmetric monoidal monad on
(C,⊗, I) then its Kleisely category Kl(T) = CT is symmetric monoidal. More-
over, the functor FT : C→ Kl(T) = CT is strict and the adjunction

C

FT

88
> Kl(T) = CT

UT

yy

is (lax) symmetric monoidal (i.e. is an adjunction in SymMonCat).

Proof.

– The monoidal product ⊗Kl of Kl(T) is on objects the same as that of C and
has the same unit I. On morphisms, given f ∈ Kl(T)[A0, B0] = C[A0, TB0]
and g ∈ Kl(T)[A1, B1] = C[A1, TB1], we let f ⊗Kl g be the composite

A0 ⊗A1
f⊗g−→ TB0 ⊗ TB1

m2
B0,B1−→ T (B0 ⊗B1)

where m2 is the binary strength of T .
– The functor FT is strict, since its strength is given by:

f2A,B := idKl
A⊗B = ηA⊗B ∈ Kl(T)[A⊗KlB , A⊗KlB] = C[A⊗B , T (A⊗B)]

and

f0 := idKl
I = ηI ∈ Kl(T)[I , I] = C[I , T I]

– The functor UT is lax symmetric monoidal. Its strength is given by:

u2A,B := m2
A,B ∈ C[UTA⊗UTB , UT (A⊗B)] = C[TA⊗TB , T (A⊗B)]

and

u0 := m0 ∈ C[I , UT I] = C[I , T I]

where m2, m0 is the strength of T .
– The structure maps of Kl(T) are taken to be the image under FT of the

structure maps of C. It thus directly follows that the coherence conditions
are met on C.

– It remains to check the naturality of the structural maps of Kl(T), which
amounts to the following diagrams:

73

• For the associativity structure map α(−),(−),(−):

(A⊗B)⊗ C
(f⊗g)⊗h //

ηA⊗(B⊗C)◦αA,B,C
��

(A′ ⊗B′)⊗ C ′

ηA′⊗(B′⊗C′)◦αA′,B′,C′
��

T (A⊗ (B ⊗ C))
T (f⊗(g⊗h)) // T (A′ ⊗ (B′ ⊗ C ′))

Proof. By naturality of η and α, we have

ηA′⊗(B′⊗C′)◦αA′,B′,C′◦((f⊗g)⊗h) = T (f⊗(g⊗h))◦ηA⊗(B⊗C)◦αA,B,C

and we are done. ut

• For the unit structure maps λ(−) and ρ(−):

I⊗A
idI⊗f //

ηA◦λA
��

I⊗A′

ηA′◦λA′
��

TA
T (f) // TA′

and A⊗ I
f⊗idI //

ηA◦ρA
��

A′ ⊗ I

ηA′◦ρA′
��

TA
T (f) // TA′

Proof. By naturality of η, λ and ρ we have

ηA′◦λA′◦(idI⊗f) = T (f)◦ηA◦λA and ηA′◦λA′◦(f⊗idI) = T (f)◦ηA◦λA

and we are done. ut

• For the symmetry structure map γ(−),(−):

A⊗B
f⊗g //

ηB⊗A◦γA,B
��

A′ ⊗B′

ηB′⊗A′◦γA′,B′
��

T (B ⊗A)
T (g⊗f) // T (B′ ⊗A′)

Proof. By naturality of η and γ, we have

ηB′⊗A′ ◦ γA′,B′ ◦ (f ⊗ g) = T (g ⊗ f) ◦ ηB⊗A ◦ γA,B

and we are done. ut

Oplax (Symmetric) Monoidal Comonads. We sketch the dual notion of
oplax (symmetric) monoidal comonad. All constructions and results follow by
duality from the case of lax monads.

74

Oplax Monoidal Functors. An oplax symmetric monoidal functor F on a sym-
metric monoidal category (C,⊗, I) is equipped with natural transformations

m2
A,B : F (A⊗B)→ FA⊗ FB and m0 : F (I)→ I

making the following diagrams commute:

(FA⊗ FB)⊗ FC
αFA,FB,FC // FA⊗ (FB ⊗ FC)

F (A⊗B)⊗ FC

m2
A,B⊗idFC

OO

FA⊗ F (B ⊗ C)

idFA⊗m2
B,C

OO

F ((A⊗B)⊗ C)

m2
A⊗B,C

OO

F (αA,B,C)
// F (A⊗ (B ⊗ C))

m2
A,B⊗C

OO

I⊗ FA λFA //

m0⊗idFA
��

FA

F I⊗ FA F (I⊗A)

F (λA)

OO

m2
I,A

oo

FA⊗ I
ρFA //

idFA⊗m0

��

FA

FA⊗ F I F (A⊗ I)
m2
A,I

oo

F (ρA)

OO

FA⊗ FB
γFA,FB // FB ⊗ FA

F (A⊗B)

m2
A,B

OO

F (γA,B)
// F (B ⊗A)

m2
B,A

OO

(Oplax) Monoidal Natural Transformations. A monoidal natural transformation
between oplax monoidal functors θ : (F,m2,m0) =⇒ (G,n2, n0) is a natural
transformation θ : F =⇒ G making the following diagrams commute:

FA⊗ FB θA⊗θB // GA⊗GB

F (A⊗B)
θA⊗B

//

m2
A,B

OO

G(A⊗B)

n2
A,B

OO and I

F I
θI

//

m0

>>

GI

n0

``

The following is [27, Prop. 11]:

Proposition M.3. Symmetric monoidal categories, oplax symmetric monoidal
functors, and monoidal natural transformations form a 2-category SymOplaxMonCat.

75

Oplax Monoidal Comonads. An oplax monoidal comonad on a monoidal category
C is a comonad (G, δ, ε) such that G is an oplax monoidal functor and the
transformations δ, ε are monoidal (see e.g. [27]). It then follows from [27, §6.10]
that:

Proposition M.4. If G = (G, δ, ε) is an oplax symmetric monoidal comonad
on C then the Kleisely category Kl(G) = CG is symmetric monoidal. Moreover,
the functor FG : C→ Kl(G) = CG is strict and and the adjunction

Kl(G) = CG

FG

99> C

UT

xx

is oplax symmetric monoidal (i.e. is an adjunction in SymOplaxMonCat).

Proof. By Prop. M.2, since an oplax comonad on C is a lax monad on Cop, and
since Cop is symmetric monoidal iff C is symmetric monoidal.

We record for future use the monoidal structure of Kl(G):

– The monoidal product ⊗Kl of Kl(G) is on objects the same as that of C and
has the same unit I. On morphisms, given f ∈ Kl(G)[A0, B0] = C[GA0, B0]
and g ∈ Kl(G)[A1, B1] = C[GA1, B1], we let f ⊗Kl g be the composite

G(A0 ⊗A1)
g2A0,A1−→ GA0 ⊗GA1

f⊗g−→ B0 ⊗B1

where g2 is the binary strength of G.
– The functor FG is strict, since its strength is given by:

f2A,B := idKl
A⊗B = εA⊗B ∈ Kl(G)[A⊗KlB , A⊗KlB] = C[G(A⊗B) , A⊗B]

and

f0 := idKl
I = εI ∈ Kl(G)[I , I] = C[GI , I]

– The functor UG is oplax symmetric monoidal. Its strength is given by:

u2A,B := g2A,B ∈ C[UG(A⊗B) , UGA⊗UGB)] = C[G(A⊗B) , GA⊗GB]

and

u0 := g0 ∈ C[UGI , I] = C[GI , I]

where g2, g0 is the oplax strength of G.
– The structure maps of Kl(G) are taken to be the image under FG of the

structure maps of C.
ut

76

M.2 Distributive Laws of a Comonad over a Monad

Consider a category C equipped with a comonad (G, δ, ε) and monad (T, µ, η).
A distributive law of G over T is a natural tranformation

Λ : G ◦ T =⇒ T ◦G

such that the following diagrams commute (see e.g. [13]):

TGA
TδA

**
GTA

ΛA

44

δTA %%

TGGA

GGTA
GΛA

// GTGA
ΛGA

99

(11)

GTA
ΛA

**
GTTA

GµA

44

ΛTA %%

TGA

TGTA
TΛA

// TTGA

µGA

99

(12)

TGA
TεA

##
GTA

ΛA

::

εTA
// TA

(13)

GTA
ΛA

$$
GA

GηA

;;

ηGA
// TGA

(14)

The Kleisli Category Kl(Λ). The category Kl(Λ) has the same objects as
C, and its morphisms are given by Kl(Λ)[A,B] := C[GA, TB]. Identity and
composition laws follow from that of C using the monad T and comonad G and
the coherence properties of Λ : GT ⇒ TG.

Lifting of a Comonad to the Kleiseli Category of a Monad. Given a
distributive law Λ : GT ⇒ TG as above, the comonad (G, δ, ε) on C lifts to a
comonad (GT , δT , εT) on CT = Kl(T), where:

77

– GT (A) := G(A) and given f ∈ Kl(T)[A,B] = C[A, TB],

GT (f) := ΛB ◦G(f) ∈ Kl(T)[GTA,GTB] = C[GA, TGB]

– δT,A := FT (δA) ∈ Kl(T)[GA,GGA] = C[GA, TGGA] is explictitely given by

δT,A := ηGGA ◦ δA
– εT,A := FT (εA) ∈ Kl(T)[GA,A] = C[GA, TA] is explicitely given by

εT,A := ηA ◦ εA
Proposition M.5. The category Kl(Λ) is equivalent to the Kleisli category
Kl(GT).

Of course, one may alternatively consider the equivalent dual operation of lifting
the monad T to the Kleiseli category Kl(G).

Remark M.6. The above definition of the lift GT of G to Kl(T) satisfies the
properties asked in [?, Def. 3.10].

(Oplax) Monoidal Lifting. Assume now that G is an oplax (symmetric)
monoidal comonad and that T is a (lax) (symmetric) monoidal monad on a
symmetric monoidal category C. It follows from Prop. M.2 that the Kleiseli
category Kl(T) is symmetric monoidal. Moreover,

Proposition M.7. If Λ : GT ⇒ TG is monoidal, in the sense that

G(TA⊗ TB)

g2TA,TB

��

G(m2
A,B)

// GT (A⊗B)

ΛA⊗B

��
GTA⊗GTB

ΛA⊗ΛB
��

TG(A⊗B)

T (g2A,B)

��
TGA⊗ TGB

m2
GA,GB

// T (GA⊗GB)

(15)

where (m2,m0) is the strength of T and (g2, g0) is the strength of G, then
(GT , δT , εT) is an oplax (symmetric) monoidal comonad on Kl(T). The oplax
monoidal strength of GT is given by

g2T,A,B := FT (g2A,B) = ηGA⊗GB◦g2A,B ∈ Kl(T)[GT (A⊗KlB) , GTA⊗KlGTB]

(= C[G(A⊗B) , T (GA⊗GB)])

and

g0T := FT (g0) = ηI ◦ g0 ∈ Kl(T)[GT I , I] = C[GI , T I]

where
g2A,B : G(A⊗B)→ GA⊗GB and g0 : GI→ I

since g2, g0 is an oplax monoidal strength.

78

By applying now Prop. M.4 together with Prop. M.7, we thus get:

Corollary M.8. With the same assumptions, Kl(Λ) is symmetric monoidal.

Proof. We record for future use the monoidal structure of Kl(Λ) = Kl(GT):

– The monoidal product ⊗Kl of Kl(Λ) is on objects the same as that of C and
has the same unit I.

On morphisms, given

f ∈ Kl(Λ)[A0, B0] = Kl(GT)[A0, B0] = Kl(T)[GA0, B0] = C[GA0, TB0]

and g ∈ Kl(Λ)[A1, B1] = C[GA1, TB1]

we let f ⊗Kl g be the composite

G(A0⊗A1)
g2A0,A1−→ GA0⊗GA1

f⊗g−→ TB0⊗TB1

m2
B0,B1−→ T (B0⊗B1)

where g2 is the binary strength of G and m2 that of T . Note that we could
equivalently have taken the following composite (corresponding to composi-
tion in Kl(T)):

G(A0⊗A1)
g2T,A0,A1−→ T (GA0⊗GA1)

T (f⊗Kl(T)g)−→ TT (B0⊗B1)
µB0⊗B1−→ T (B0⊗B1)

since g2T,A0,A1
= ηGA0,GA1 ◦ g2A0,A1

and by the monad laws:

µB ◦ T (h) ◦ ηA = µB ◦ ηB ◦ h = h

– The structure maps of Kl(Λ) are taken to be the image under FGT of the
structure maps of Kl(T), itself beeing the image under FT of the structure
maps of C. Note that on maps,

FGT (FT (h)) = ηB ◦ h ◦ εA for h : A→ B

ut

Proof of Proposition M.7.

Naturality of g2T,A,B. The naturality of g2T,A,B , that is, in Kl(T):

GT (A⊗Kl B)
GT (f⊗Klg) //

g2T,A,B

��

GT (A′ ⊗Kl B
′)

g2
T,A′,B′

��
GTA⊗Kl GTB

GT (f)⊗KlGT (g)
// GTA′ ⊗Kl GTB

′

79

(where f ∈ Kl(T)[A,B] = C[A, TB] and g ∈ Kl(T)[A′, B′] = C[A′, TB′]),
amounts to, in C:

G(A⊗B)
ΛA′⊗B′◦G(m2

A′,B′◦(f⊗g)) //

ηGA⊗GB◦g2A,B
��

TG(A′ ⊗B′)

µGA′⊗GB′◦T (ηGA′⊗GB′◦g
2
A′,B′)

��
T (GA⊗GB)

µGA′⊗GB′◦T (m2
GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g))))

// T (GA′ ⊗GB′)

By naturality of η, we have

µGA′⊗GB′ ◦ T (m2
GA′,GB′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))) ◦ ηGA⊗GB =

µGA′⊗GB′ ◦ ηT (GA′⊗GB′) ◦m2
GA′,GB′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))

and by the unit monad law, we get:

µGA′⊗GB′◦T (m2
GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g))))◦ηGA⊗GB = m2

GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g)))

and therefore (by bifunctoriality of ⊗):

µGA′⊗GB′◦T (m2
A′,B′◦((ΛA′◦G(f))⊗(ΛB′◦G(g))))◦ηGA⊗GB = m2

GA′,GB′◦(ΛA′⊗ΛB′)◦(G(f)⊗G(g))

From which it follows (by naturality of g2) that

µGA′⊗GB′ ◦ T (m2
A′,B′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))) ◦ ηGA⊗GB ◦ g2A,B =

m2
GA′,GB′ ◦ (ΛA′ ⊗ ΛB′) ◦ g2TA′,TB′ ◦G(f ⊗ g)

On the other hand, also using the unit monad law we get:

µGA′⊗GB′◦T (ηGA′⊗GB′◦g2A′,B′) = µGA′⊗GB′◦T (ηGA′⊗GB′)◦T (g2A′,B′) = T (g2A′,B′)

We are therefore finally left with

m2
GA′,GB′ ◦ (ΛA′ ⊗ ΛB′) ◦ g2TA′,TB′ = T (g2A′,B′) ◦ ΛA′⊗B′ ◦G(m2

A′,B′)

which follows from (15).

Note that

G(TA′⊗TB′)
g2
TA′,TB′−→ GTA′⊗GTB′ ΛA′⊗ΛB′−→ TGA′⊗TGB′

m2
GA′,GB′−→ T (GA′⊗GB′)

and

G(TA′⊗TB′)
G(m2

A′,B′)−→ GT (A′⊗B′)
ΛA′⊗B′−→ TG(A′⊗B′)

T (g2
A′,B′)−→ T (GA′⊗GB′)

80

Oplax Symmetric Monoidal Coherence of g2T and g0T . The coherence of g2T and
g0T amount to the following diagrams.

– The associativity diagram:

(GTA⊗Kl GTB)⊗Kl GTC
αKl
GTA,GTB,GTC // GTA⊗Kl (GTB ⊗Kl GTC)

GT (A⊗Kl B)⊗Kl GTC

g2T,A,B⊗Klid
Kl
GTC

OO

GTA⊗Kl GT (B ⊗Kl C)

idKl
GTA

⊗Klg
2
T,B,C

OO

GT ((A⊗Kl B)⊗Kl C)

g2T,A⊗KlB,C

OO

GT (α
Kl
A,B,C)

// GT (A⊗Kl (B ⊗Kl C))

g2T,A,B⊗KlC

OO

(16)
First, recall that g2T,A,B = FT (g2A,B) by definition and that on objects GTA =

GA, and also FT (A) = A and A ⊗Kl B = A ⊗ B. Moreover, αKl
A,B,C =

FT (αA,B,C) and idKl
A = ηA = FT (idA). Also, since η(−) is monoidal, given

C-maps f and g we have

(ηA◦f)⊗Kl(ηB◦g) = m2
A,B◦((ηA◦f)⊗(ηB◦g)) = ηA⊗B◦(f⊗g) = FT (f⊗g)

Finally, thanks to the coherence diagram (14) of distributive laws, for the
bottom horizontal map we have

GT (αKl
A,B,C) = ΛA⊗(B⊗C) ◦G(ηA⊗(B⊗C)) ◦G(αA,B,C)

= ηG(A⊗(B⊗C)) ◦G(αA,B,C) = FT (G(αA,B,C))

It follows that (16) amounts to the following diagram in Kl(T):

(GA⊗GB)⊗GC
FT (αGA,GB,GC) // GA⊗ (GB ⊗GC)

G(A⊗B)⊗GC

FT (g
2
A,B⊗idGC)

OO

GA⊗G(B ⊗ C)

FT (idGA⊗g2B,C)

OO

G((A⊗B)⊗ C)

FT (g
2
A⊗B,C)

OO

FT (G(αA,B,C))
// G(A⊗ (B ⊗ C))

FT (g
2
A,B⊗C)

OO

Now we are done since the above diagram is the image under the functor FT
of the associativity coherence diagram of oplax the monoidal functor G.

– The coherence diagrams for units and symmetry are:

I⊗Kl GTA
λKl
GTA //

g0T⊗KlidGTA

��

GTA

GT I⊗Kl GTA GT (I⊗Kl A)

GT (λ
Kl
A)

OO

g2T,I,A

oo

GTA⊗Kl I
ρKl
GTA //

idGTA⊗Klg
0
T

��

GTA

GTA⊗Kl GT I GT (A⊗Kl I)
g2T,A,I

oo

GT (ρ
Kl
A)

OO

81

GTA⊗Kl GTB
γKl
GTA,GTB // GTB ⊗Kl GTA

GT (A⊗Kl B)

g2T,A,B

OO

GT (γ
Kl
A,B)

// GT (B ⊗Kl A)

g2T,B,A

OO

They are dealt-with similarly. We only detail the case of the unit λKl. First,
as above, we have g2T,I,A = FT (g2A,B) and g0T = FT (g0), and on objects:

GT (A) = A, FT (A) = A and A ⊗Kl B = A ⊗ B. Moreover, λKl
A = FT (λA)

and idKl
A = FT (idA). Again by monoidality of η(−) we have

g0T⊗Klid
Kl
GTA = m2

I,A◦(FT (g0)⊗FT (idGA)) = m2
I,A◦((ηI◦g0)⊗(ηGA◦idGA))

= ηI⊗GA ◦ (g0 ⊗ idGA) = FT (g0 ⊗ idGA)

Again by the coherence diagram (14) of distributive laws, we have

GT (λKl
A) = ΛA ◦G(ηA) ◦G(λA) = ηGA ◦G(λA) = FT (λA)

Then, as for the associativity coherence law above, we are done since we get
the image under the functor FT of the corresponding unit coherence diagram
for the oplax strength of G in C.

The natural map εT,A is monoidal. The corresponding diagrams are:

GTA⊗Kl GTB
εT,A⊗KlεT,B // A⊗Kl B

GT (A⊗Kl B)

g2T,A,B

OO

εT,A⊗KlB

// A⊗Kl B

and I

GT I

g0T

>>

εT,I
// I

Reasonning as above (and in part. using the lax monoidality of η(−)), these
diagrams are quivalent to

GA⊗GB
FT (εA⊗εB) // A⊗B

G(A⊗B)

FT (g
2
A,B)

OO

FT (εA⊗B)
// A⊗Kl B

and I

GI

FT (g
0)

>>

F(εI)
// I

Now we are done since recalling that FT is the identity on objects, the above
diagrams are the image under FT of the oplax monoidal coherence digrams of
ε(−).

82

The natural map δT,A is monoidal.

GTA⊗Kl GTB
δT,A⊗KlδT,B // GTGTA⊗Kl GTGTB

GT (A⊗Kl B)

g2T,A,B

OO

δT,A⊗KlB

// GTGT (A⊗Kl B)

GT (g
2
T,A,B)◦g2T,GTA,GTB

OO

and
I

GT (g
0
T)◦g

0
T

##
GT I

g0T

>>

δI

// GTGT I

Reasonning as above, using coherence diagram (14) of distributive laws, we have

GT (g2T,A,B) = ΛGA⊗GB◦G(ηGA⊗GB)◦g2A,B = ηG(GA⊗GB)◦G(g2A,B) = FT (g2A,B)

and we then conclude as in the case of ε(−) above.

M.3 Monoids and Comonoids

Monoids. Recall from e.g. [27] that a commutative monoid in an SMC (C,⊗, I)
is a triple M = (M,u,m) where M is an object of C and u and m are morphisms

I
u−→ M

m←− M ⊗M

subject to the following coherence diagrams:

(M ⊗M)⊗M α //

m⊗idM
��

M ⊗ (M ⊗M)
idM⊗m // M ⊗M

m

��
M ⊗M

m
// M

(17)

I⊗M

λ
''

u⊗idM // M ⊗M

m

��

M ⊗ I

ρ
ww

idM⊗uoo

M

(18)

M ⊗M
γ //

m

&&

M ⊗M
m

xx
M

(19)

It is well-known (see e.g. [27, Prop. 2]) that we always have λI = ρI in a monoidal
category.

83

Proposition M.9. If M = (M,u,m) is a monoid object in C, then

I⊗ I
u⊗u //

ρI=λI

��

M ⊗M

m

��
I

u
// M

Proof. By bifunctoriality of ⊗, it is equivalent to show

I⊗ I
idI⊗u//

λI

��

I ⊗M u⊗idM// M ⊗M

m

��
I

u
// M

But m◦(u⊗idM) = λM by the unit law (18), and we are done since by naturality
of λ we have

λM ◦ (idI ⊗ u) = u ◦ λI
ut

The Category Mon(C) of Commutative Monoids. The category Mon(C)
of commutative monoids of C has monoids as objects, and as morphisms from
(M,u,m) to (M ′, u′,m′), C-morphisms f : M → M ′ making the following two
diagrams commute:

M ⊗M
f⊗f //

m

��

M ′ ⊗M ′

m′

��
M

f
// M ′

and I

u

�� u′
M

f
// M ′

Comonoids. Dually, a commutative monoid in C is a triple K = (K, e, d) where

I
e←− K

d−→ M ⊗M

subject to the following coherence diagrams:

K
d //

d

��

K ⊗K

d⊗idK
��

K ⊗K idK⊗d // K ⊗ (K ⊗K) (K ⊗K)⊗Kαoo

(20)

I⊗K

λ
''

K ⊗K
(e⊗idK)oo (idK⊗e) // K ⊗ I

ρ

ww
K

d

OO (21)

84

K

d

xx

d

&&
K ⊗K

γ // K ⊗K

(22)

We record the following simple fact.

Proposition M.10. Given symmetric monoidal categories C, D, an oplax sym-
metric monoidal functor G : C → D, and a commutative comonoid (K, e, d) of
C, then (GK, g0 ◦Ge, g2K,K ◦Gd) is a commutative comonoid in D, where (g0, g2)
is the oplax strength of G.

Proof. We check the required diagrams.
Diagram (20) unfolds to:

GK
g2K,K◦Gd //

g2K,K◦Gd
��

GK ⊗GK

g2◦Gd⊗idGK
��

GK ⊗GK
idGK⊗g2◦Gd // GK ⊗ (GK ⊗GK) (GK ⊗GK)⊗GKαoo

Note that since (K, e, d) is a comonoid in C, and since G is a functor, we have

GK
Gd //

Gd

��

G(K ⊗K)

G(d⊗idK)

��
G(K ⊗K)

G(idK⊗d) // G(K ⊗ (K ⊗K)) ((K ⊗K)⊗K)
Gαoo

By naturality of g2, we have

((g2◦Gd)⊗idGK)◦g2K,K = (g2⊗idGK)◦(Gd⊗G(idK))◦g2K,K = (g2⊗idGK)◦g2K⊗K,K◦G(d⊗idK)

From which it follows by oplax monoidality of G that

α◦((g2◦Gd)⊗idGK)◦g2K,K◦Gd = (idGK⊗g2)◦g2K,K⊗K◦G(α)◦G(d⊗idK)◦Gd

But by functoriality of G, since (K, e, d) is a comonoid in C we have

G(α) ◦G(d⊗ idK) ◦Gd = G(idK ⊗ d) ◦Gd

so that

α◦ ((g2 ◦Gd)⊗ idGK)◦ g2K,K ◦Gd = (idGK ⊗ g2)◦ g2K,K⊗K ◦G(idK ⊗d)◦Gd

The other diagrams are dealt-with similarly. ut

85

The Category Comon(C) of Commutative Comonoids. The category
Comon(C) of commutative comonoids of C has comonoids as objects, and as
morphisms from (K, e, d) to (K ′, e′, d′), C-morphisms f : K → K ′ making the
following two diagrams commute:

K
f //

d

��

K ′

d′

��
K ⊗K

f⊗f
// K ′ ⊗K ′

and K
f //

e
��

K ′

e′��
I

Lifting of Monoids and Comonoids to Kleiseli Categories. We note here
the following proposition, to be used in §J (together with Prop. L.1).

Proposition M.11. Let C be a symmetric monoidal category.

(a) Let T = (T, µ, η) be a (lax) symmetric monoidal monad on C.
(i) If (M,u,m) is a commutative monoid in C, then (M,FT (u),FT (m)) is

a commutative monoid in Kl(T).
(ii) If (K, e, d) is a commutative comonoid in C, then (K,FT (e),FT (d)) is

a commutative comonoid in Kl(T).
(b) Let G = (G, δ, ε) be an oplax symmetric monoidal comonad on C.

(i) If (M,u,m) is a commutative monoid in C, then (M,FG(u),FG(m)) is
a commutative monoid in Kl(G).

(ii) If (K, e, d) is a commutative comonoid in C, then (K,FG(e),FG(d)) is
a commutative comonoid in Kl(G).

We only prove Prop. M.11.(a) since the case M.11.(b) follows by duality.

Proof of Proposition M.11.(ai). Write (t2, t0) for the (lax) strength of T . Thanks
to Prop. M.2, the coherence diagrams of (M,FT (u),FT (m)) amount to the fol-
lowing in Kl(T).

– Coherence w.r.t. associativity amounts in Kl(T) to:

(M ⊗M)⊗M
FT (α) //

FT (m)⊗Klid
Kl
M

��

M ⊗ (M ⊗M)
idKl
M ⊗KlFT (m) // M ⊗M

FT (m)

��
M ⊗M

FT (m)
// M

Note that

FT (m)◦Kl(FT (m)⊗Klid
Kl
M) = µM◦T (ηM⊗M)◦T (m)◦t2M,M◦((ηM◦m)⊗(ηM))

Reasonning similarly as in the proof of Prop. M.7, we have

FT (m)◦Kl(FT (m)⊗Klid
Kl
M) = T (m)◦ηM⊗M◦(m⊗idM) = ηM◦m◦(m⊗idM)

= FT (m ◦ (m⊗ idM))

86

We similarly obtain

FT (m) ◦Kl (idK lM ⊗Kl FT (m)) = FT (m ◦ (idM ⊗m))

and we are done using the functoriality of FT and the associativity coherence
diagram (17) of monoids.

– Coherence w.r.t. units amounts in Kl(T) to:

I⊗M

FT (λ)
**

FT (u)⊗Klid
Kl
M // M ⊗M

FT (m)

��

M ⊗ I

FT (ρ)
tt

idKl
M ⊗KlFT (u)oo

M

Reasonning as above, we obtain:

FT (m) ◦Kl (FT (u)⊗Kl idKl
M) = FT (m ◦ (u⊗ idM))

and FT (m) ◦Kl (idKl
M ⊗Kl FT (u)) = FT (m ◦ (idM ⊗ u))

and we are done using the units cohrence diagram (18)
– Coherence w.r.t. symmetry amounts in Kl(T) to:

M ⊗M
FT (γ) //

FT (m)

**

M ⊗M
FT (m)

uu
M

and follows directly from diagram (19).

Proof of Proposition M.11.(aii). We proceed similarly as in the case (ai). We
only detail the case of coherence w.r.t. associativity, which amounts in Kl(T)
to:

K
FT (d) //

FT (d)

��

K ⊗K

FT (d)⊗KlidK
��

K ⊗K
idKl
K ⊗KlFT (d) // K ⊗ (K ⊗K) (K ⊗K)⊗K

FT (α)oo

Note that

(idKl
K ⊗Kl FT (d)) ◦Kl FT (d) = µK⊗(K⊗K) ◦ T (idKl

K ⊗Kl FT (d)) ◦ ηK⊗K ◦ d

= µK⊗(K⊗K) ◦ ηT (K⊗(K⊗K)) ◦ (idKl
K ⊗Kl FT (d)) ◦ ◦d

= (idKl
K ⊗Kl FT (d)) ◦ d

= ηK⊗(K⊗K) ◦ (idK ⊗ d) ◦ d
= FT ((idK ⊗ d) ◦ d)

87

We similarly obtain

(FT (d)⊗Kl idKl
K) ◦Kl FT (d) = FT ((d⊗ idK) ◦ d)

and we conclude using the functoriality of FT and the associativity coherence
diagram (20) of comonoids.

The Monad of Monoid Indexing. Following [18, §2.5], a monoid (M,u,m)
in a monoidal category C gives rise to a monad T = (T, µ, η) where T (−) :=
(−)⊗M ,

ηA := (idA ⊗ u) ◦ ρ−1A : A −→ A⊗M
and µA := (idA ⊗m) ◦ αA,M,M : (A⊗M)⊗M −→ A⊗M

It is well-known (see e.g. [18, §2.5] or [27, §6.6]) that (T, µ, η) is a monad. We
check here that T is actually a (lax) monoidal monad. The strength of T is

m2
A,B : (A⊗M)⊗ (B ⊗M)→ (A⊗B)⊗M and m0 : I→ I⊗M

where m2
A,B is the composite

(A⊗M)⊗ (B ⊗M)
θA,B−→ (A⊗B)⊗ (M ⊗M)

id⊗m−→ (A⊗B)⊗M

where θA,B is a natural map made of identities and structure maps of C, and
where m0 is the composite

I
λ−1
I−→ I⊗ I

idI⊗u−→ I⊗M

The map θA,B is explicitely defined as the following composite:

(A⊗M)⊗(B⊗M)
α−→ A⊗(M⊗(B⊗M))

idA⊗γ−→ A⊗((B⊗M)⊗M)
idA⊗α−→

A⊗ (B ⊗ (M ⊗M))
α−1

−→ (A⊗B)⊗ (M ⊗M)

Note that (T, µ, η) is only a lax monad, since the structure maps of monoid
objects are in general not isos.

Proposition M.12. (T, µ, η) is a (lax) symmetric monoidal monad.

By applying Prop. M.2 to Prop. M.12 we thus get:

Corollary M.13. Kl(T) is symmetric monoidal.

Proof of Proposition M.12.

88

T (−) = (−) ⊗M is a (strong) symmetric monoidal functor. The diagrams to
check amount to the following:

((A⊗M)⊗ (B ⊗M))⊗ (C ⊗M)
αTA,TB,TC //

((idA⊗B⊗m)◦θA,B)⊗idC⊗M
��

(A⊗M)⊗ ((B ⊗M)⊗ (C ⊗M))

idA⊗M⊗((idA⊗B⊗m)◦θB,C)

��
((A⊗B)⊗M)⊗ (C ⊗M)

(idA⊗B⊗m)◦θA⊗B,C
��

(A⊗M)⊗ ((B ⊗ C)⊗M)

(idA⊗B⊗m)◦θA,B⊗C
��

((A⊗B)⊗ C)⊗M
αA,B,C⊗idM

// (A⊗ (B ⊗ C))⊗M

which follows from the monoid coherence law (17) of (M,u,m) and the monoidal
coherence C, and to

I⊗ (A⊗M)
λA⊗M //

((idI⊗u)◦λ−1
I)⊗idA⊗M

��

A⊗M

(I⊗M)⊗ (A⊗M)
(idA⊗B⊗m)◦θI,A

// (I⊗A)⊗M

λA⊗idM

OO

and

(A⊗M)⊗ I
ρA⊗M //

idA⊗M⊗((idI⊗u)◦λ−1
I)

��

A⊗M

(A⊗M)⊗ (I⊗M)
(idA⊗B⊗m)◦θA,I

// (A⊗ I)⊗M

ρA⊗idM

OO

which follow from the monoid coherence laws (18) of (M,u,m) and the monoidal
coherence of C and finally

(A⊗M)⊗ (B ⊗M)
γTA,TB //

(idA⊗B⊗m)◦θA,B
��

(B ⊗M)⊗ (A⊗M)

(idA⊗B⊗m)◦θB,A
��

(A⊗B)⊗M
γA,B⊗idM

// (B ⊗A)⊗M

which follows from commutative monoid coherence law (19) of (M,u,m) together
with the symmetric monoidal coherence of C.

The map ηA : A→ A⊗M is monoidal. We have to check:

A⊗B
((idA⊗u)◦ρ−1

A)⊗((idB⊗u)◦ρ−1
B) // (A⊗M)⊗ (B ⊗M)

(id⊗m)◦θA,B
��

A⊗B
(idA⊗B⊗u)◦ρ−1

A⊗B

// (A⊗B)⊗M

89

I
(idI⊗u)◦λ−1

I

''
I

(idI⊗u)◦ρ−1
I

// I⊗M

The first diagram follows from Prop. M.9. The second one directly follows from
the fact that λI = ρI (see e.g. [27, Prop. 2]).

The map µA : (A⊗M)⊗M → A⊗M is monoidal. We check:

((A⊗M)⊗M)⊗ ((B ⊗M)⊗M)
µA⊗µB //

(m2
A,B⊗idM)◦m2

A⊗M,B⊗M
��

(A⊗M)⊗ (B ⊗M)

m2
A,B

��
((A⊗B)⊗M)⊗M

µA⊗B
// (A⊗B)⊗M

I
(m0⊗idM)◦m0

yy

m0

""
(I⊗M)⊗M

µI

// I⊗M

for

m2
A,B = (idA⊗B⊗m)◦θA,B and m0 = (idI⊗u)◦λ−1I and µA = (idA⊗m)◦αA,M,M

The first diagram follows from the monoid coherence laws (17) and (19) together
with the symmetric monoidal coherence of C. The second diagram follows from
Prop. M.9.

The Comonad of Comonoid Indexing. Dually, a comonoid (K, e, d) in a
monoidal category C gives rise to a comonad G = (G, δ, ε) where G(−) :=
K ⊗ (−), and

εA := λA ◦ (e⊗ idA) : K ⊗A −→ A
and δA := αK,K,A ◦ (d⊗ idA) : K ⊗A −→ K ⊗ (K ⊗A)

Since a comonoid on C is a monoid on Cop, it is also well-known (again from
e.g. [18, §2.5] or [27, §6.8]) that G is a comonad. Dually to §M.3, G is actually
oplax symmetric monoidal. Its strength is

g2A,B : K⊗(A⊗B) −→ (K⊗A)⊗(K⊗B) and g0 : K⊗I −→ I

where g2A,B is the composite

K ⊗ (A⊗B)
d⊗id−→ (K ⊗K)⊗ (A⊗B)

ϑA,B−→ (K ⊗A)⊗ (K ⊗B)

90

where ϑA,B is a natural map made of identities and structure maps of C, and
where g0 is the composite

K ⊗ I
e⊗idI−→ I⊗ I

λI−→ I

The map ϑA,B is explicitely defined as the following composite:

(K⊗K)⊗(A⊗B)
α−→ K⊗(K⊗(A⊗B))

idA⊗α−1

−→ K⊗((K⊗A)⊗B)
γ−→

((K ⊗A)⊗B)⊗K α−→ (K ⊗A)⊗ (K ⊗B)

By duality, from Prop. M.12 we get:

Proposition M.14. (G, δ, ε) is an oplax symmetric monoidal comonad.

Similarly to Cor. M.13, by applying Prop. M.4 to Prop. M.14 we get:

Corollary M.15. Kl(G) is symmetric monoidal.

The Distributive Law of Comonoid over Monoid Indexing. We now
check that there is distributive law Φ of (the comonad of) comonoid indexing
over (the monad of) monoid indexing. Moreover, Φ is monoidal in the sense of
Prop. M.7.

Proposition M.16. Consider, in an SMC (C,⊗, I), a comonoid (K, e, d) and
a monoid (M,u,m), inducing respectivelly the comonad (G, δ, ε) with

GA := K⊗A εA := λA◦(e⊗idA) : K⊗A −→ A δA := αK,K,A◦(d⊗idA) : K⊗A −→ K⊗(K⊗A)

and the monad (T, µ, η) with

TA := A⊗M ηA := (idA⊗u)◦ρ−1A : A −→ A⊗M µA := (idA⊗m)◦αA,M,M : (A⊗M)⊗M −→ A⊗M

Then,

(i) the associativity structure map

ΦA := α−1K,A,M : GTA = K ⊗ (A⊗M) =⇒ (K ⊗A)⊗M = TGA

is a distributive law of G over T ,
(ii) and it is moreover monoidal (in the sense of Prop. M.7), that is:

G(TA⊗ TB)

g2TA,TB

��

G(m2
A,B)

// GT (A⊗B)

ΦA⊗B

��
GTA⊗GTB

ΦA⊗ΦB
��

TG(A⊗B)

T (g2A,B)

��
TGA⊗ TGB

m2
GA,GB

// T (GA⊗GB)

(23)

where (m2,m0) is the (lax) strength of T and (g2, g0) is the oplax strength
of G.

91

Proof of Proposition M.16.(i). First, note that Φ(−) is natural by assumption.
The diagrams of §M.2 unfold to:

(K ⊗A)⊗M
δA⊗idM

,,
K ⊗ (A⊗M)

ΦA

33

δA⊗M ((

(K ⊗ (K ⊗A))⊗M

K ⊗ (K ⊗ (A⊗M))
idK⊗ΦA

// K ⊗ ((K ⊗A)⊗M)

ΦK⊗A

55

(24)

K ⊗ (A⊗M)

ΦA

++
K ⊗ ((A⊗M)⊗M)

idK⊗µA
22

ΦA⊗M))

(K ⊗A)⊗M

(K ⊗ (A⊗M))⊗M
ΦA⊗idM

// ((K ⊗A)⊗M)⊗M
µK⊗A

66

(25)

(K ⊗A)⊗M
εA⊗idM

&&
K ⊗ (A⊗M)

ΦA

66

εA⊗M
// A⊗M

(26)

K ⊗ (A⊗M)

ΦA

((
K ⊗A

idK⊗ηA
88

ηK⊗A
// (K ⊗A)⊗M

(27)

– Diagram (24) amounts to

(K ⊗A)⊗M
(αK,K,A◦(d⊗idA))⊗idM

,,

αK,A,M

ss
K ⊗ (A⊗M)

αK,K,A⊗M◦(d⊗idA⊗M) ((

(K ⊗ (K ⊗A))⊗M
αK,K⊗A,M

uu
K ⊗ (K ⊗ (A⊗M)) K ⊗ ((K ⊗A)⊗M)

idK⊗αK,A,Moo

92

By functoriality of ⊗ we have

(αK,K,A◦(d⊗idA))⊗idM = (αK,K,A◦(d⊗idA))⊗(idM◦idM) = (αK,K,A⊗idM)◦((d⊗idA)⊗idM)

and therefore

(idK ⊗ αK,A,M) ◦ αK,K⊗A,M ◦ ((αK,K,A ◦ (d⊗ idA))⊗ idM) =

(idK ⊗ αK,A,M) ◦ αK,K⊗A,M ◦ (αK,K,A ⊗ idM) ◦ ((d⊗ idA)⊗ idM)

From the pentagon law, it follows that

(idK⊗αK,A,M)◦αK,K⊗A,M◦((αK,K,A◦(d⊗idA))⊗idM) = αK,K,A⊗M◦αK⊗K,A,M◦((d⊗idA)⊗idM)

and from by naturality of α we get

(idK⊗αK,A,M)◦αK,K⊗A,M◦((αK,K,A◦(d⊗idA))⊗idM) = αK,K,A⊗M◦(d⊗(idA⊗idM))◦αK,A,M

and we are done since idA ⊗ idM = idA⊗M by bifunctoriality of ⊗.
– Diagram (25), which unfolds to

K ⊗ (A⊗M)

K ⊗ ((A⊗M)⊗M)

idK⊗µA
22

(K ⊗A)⊗M
αK,A,M

kk

(K ⊗ (A⊗M))⊗M
αK,A⊗M,M

ii

((K ⊗A)⊗M)⊗M
µK⊗A

66

αK,A,M⊗idM
oo

is dealt-with similarly.
– Diagram (26) amounts to

(K ⊗A)⊗M
(λA◦(e⊗idA))⊗idM

&&

αK,A,M

vv
K ⊗ (A⊗M)

λA⊗M◦(e⊗idA⊗M)
// A⊗M

By bi-functoriality of ⊗, we have idA⊗M = idA ⊗ idM , and by naturality of
α it follows that

λA⊗M ◦ (e⊗ idA⊗M) ◦ αK,A,M = λA⊗M ◦ αI,A,M ◦ ((e⊗ idA)⊗ idM)

On the other hand, by functoriality of ⊗, we have

(λA◦(e⊗idA))⊗idM = (λA◦(e⊗idA))⊗(idM◦idM) = (λA⊗idM)◦((e⊗idA)⊗idM)

and we are done since λA⊗M ◦ αI,A,M = λA ⊗ idM by [27, Prop. 1].

93

– Diagram (27) unfolds to

K ⊗ (A⊗M)

K ⊗A

idK⊗((idA⊗u)◦ρ−1
A)
88

(idK⊗A⊗u)◦ρ−1
K⊗A

// (K ⊗A)⊗M

αK,A,M
hh

and is dealt-with similarly, but with [27, Prop. 1] used as follows: Reasoning
as for Diagram (26), we are left to show that

αK,A,I ◦ ρ−1K⊗A = idK ⊗ ρ−1A

which amounts to

ρ−1K⊗A = α−1K,A,I ◦ (idK ⊗ ρ−1A)

and we are done by applying [27, Prop. 1].

Proof of Proposition M.16.(ii). Diagram (23) unfolds to

K ⊗ ((A⊗M)⊗ (B ⊗M))

ϑTA,TB◦(d⊗id)
��

idK⊗((id⊗m)◦θA,B) // K ⊗ ((A⊗B)⊗M)

α−1

��
(K ⊗ (A⊗M))⊗ (K ⊗ (B ⊗M))

α−1⊗α−1

��

(K ⊗ (A⊗B))⊗M

((ϑA,B◦(d⊗id))⊗idM
��

((K ⊗A)⊗M)⊗ ((K ⊗B)⊗M)
(id⊗m)◦θK⊗A,K⊗B

// ((K ⊗A)⊗ (K ⊗B))⊗M

But we are done, since modulo symmetric monoidal coherence, the above amounts
to

K ⊗M ⊗M idK⊗m //

d⊗idM⊗M
��

K ⊗M

d⊗idM
��

K ⊗K ⊗M ⊗M
idK⊗K⊗m

// K ⊗K ⊗M

Table of Contents

Monoidal Closed Categories of Tree Automata . 1
Colin Riba

1 Introduction . 1
2 Games . 3

2.1 Simple Games . 3
2.2 Zig-Zag Games . 4
2.3 Monoids and Comonoids . 4

3 Tree Automata and Generalized Acceptance Games 5
3.1 The Base Category T of Trees . 5
3.2 Tree Automata . 6
3.3 Substituted Acceptance Games . 7
3.4 Linear Synchronous Arrow Games . 8

4 Fibrations of Tree Automata . 8
4.1 The Indexed Category DialZ . 9
4.2 The Fibred Category DialAut . 9

Substitution in Games and Language Inclusion. 10
5 Categorical Structure and Operations on Automata 10

5.1 Monoidal Closed Structure . 10
Falsity and Complementation. 12

5.2 Quantifications . 12
5.3 A Deduction System for Automata . 14
5.4 Non-Deterministic Automata . 14

A Proofs and Additional Material for §2 (Games) . 18
A.1 The Hyland-Schalk Functor [17] . 18
A.2 The Category SG/Tr of Sliced Games over Tr 18

A.3 The Category DZ0 of Zig-Zag Games . 19
A.4 Simple Games with Winning . 19
A.5 The Categories DZ and DZW . 20
A.6 Monoids and Comonoids . 20
A.7 The Monoidal Structure of DZ (§2.2 and §2.3) 21

B Proofs of §3 (Tree Automata and Generalized Acceptance Games) 22
B.1 Proofs of §3.1 (The Base Category T of Trees) 22
B.2 Proofs of §3.4 (Linear Synchronous Arrow Games) 23

C Proofs of §4 (Fibrations of Tree Automata) . 23
C.1 Substitution in DialAut . 24

D Proofs of §5.1 (Monoidal Closed Structure) . 26
D.1 The Monoidal Closed Structure of DZ . 26
D.2 Symmetric Monoidal Closed Structure in DZD, DialZ(Σ) and

DialAut . 28
D.3 Falsity and Complementation . 29

E Proofs of §5.2 (Quantifications) . 30

95

F Proofs of §5.3 (A Deduction System for Automata) 32
G Proofs of §5.4 (Non-Deterministic Automata) . 32

G.1 Game Graphs and Positionality . 32
G.2 Non-Determinization (or Simulation [28, 9, 29]) 33
G.3 Proofs of §5.4 . 34

H Further Examples . 36
H.1 On Positional Strategies . 37
H.2 On Positional Strategies for Separation . 37
H.3 Proof of Prop. G.7 (Ex. 5.17.(iii)) . 38
H.4 A Separation Property from [33] . 39

I Simple Self Dualization . 40
I.1 Some Basic Definitions and Facts . 41
I.2 Self Duality . 42
I.3 Monoidal Structure . 42
I.4 (Commutative) Monoids . 42
I.5 (Commutative) Comonoids . 43
I.6 A (Lax) Symmetric Monoidal Monad . 43
I.7 An Oplax Symmetric Monoidal Comonad . 44

J A Dialectica-Like Interpretation of Zig-Zag Strategies 44
J.1 The Topos of Trees . 44
J.2 The Monoidal Structure of G(S) . 45
J.3 Monoids and Comonoids in G(S) . 45
J.4 A Dialectica-Like Interpretation of Zig-Zag Strategies 46

Total Zig-Zag Strategies in G(S). 46
Composition of Total Zig-Zag Strategies in G(S). 47

J.5 The Distributive Law ζ . 48
J.6 The Symmetric Monoidal Structure of DZ . 50
J.7 Monoids and Comonoids in DZ . 51
J.8 The Base Category T . 51

K Proof of Proposition I.4 . 52
K.1 (−)H is a lax symmetric monoidal functor . 53
K.2 ((−)H , η, µ) is a monad . 55
K.3 ((−)H , η, µ) is lax symmetric monoidal . 57

L Proof of Proposition J.3 . 58
L.1 Proof of Proposition L.1.(i) . 59
L.2 Proof of Proposition L.1.(ii) . 67

Commutation of (10). 67
Commutation of (9). 68

M Monoids, Monads and Monoidal Categories . 68
M.1 Monads and Comonads . 68

(Lax) (Symmetric) Monoidal Monads. 70
Oplax (Symmetric) Monoidal Comonads. 73

M.2 Distributive Laws of a Comonad over a Monad 76
The Kleisli Category Kl(Λ). 76
Lifting of a Comonad to the Kleiseli Category of a Monad. 76

96

(Oplax) Monoidal Lifting. 77
Proof of Proposition M.7. 78

M.3 Monoids and Comonoids . 82
Monoids. 82
The Category Mon(C) of Commutative Monoids. 83
Comonoids. 83
The Category Comon(C) of Commutative Comonoids. 85
Lifting of Monoids and Comonoids to Kleiseli Categories. 85
The Monad of Monoid Indexing. 87
Proof of Proposition M.12. 87
The Comonad of Comonoid Indexing. 89
The Distributive Law of Comonoid over Monoid Indexing. 90

	Monoidal Closed Categories of Tree Automata
	Introduction
	Games
	Simple Games
	Zig-Zag Games
	Monoids and Comonoids

	Tree Automata and Generalized Acceptance Games
	The Base Category T of Trees
	Tree Automata
	Substituted Acceptance Games
	Linear Synchronous Arrow Games

	Fibrations of Tree Automata
	The Indexed Category DialZ
	The Fibred Category DialAut
	Substitution in Games and Language Inclusion.

	Categorical Structure and Operations on Automata
	Monoidal Closed Structure
	Falsity and Complementation.

	Quantifications
	A Deduction System for Automata
	Non-Deterministic Automata

	Proofs and Additional Material for §2 (Games)
	The Hyland-Schalk Functor hs99ctcs
	The Category SG/Tr of Sliced Games over Tr
	The Category DZ0 of Zig-Zag Games
	Simple Games with Winning
	The Categories DZ and DZW
	Monoids and Comonoids
	The Monoidal Structure of DZ (§2.2 and §2.3)

	Proofs of §3 (Tree Automata and Generalized Acceptance Games)
	Proofs of §3.1 (The Base Category T of Trees)
	Proofs of §3.4 (Linear Synchronous Arrow Games)

	Proofs of §4 (Fibrations of Tree Automata)
	Substitution in DialAut

	Proofs of §5.1 (Monoidal Closed Structure)
	The Monoidal Closed Structure of DZ
	Symmetric Monoidal Closed Structure in DZD, DialZ() and DialAut
	Falsity and Complementation

	Proofs of §5.2 (Quantifications)
	Proofs of §5.3 (A Deduction System for Automata)
	Proofs of §5.4 (Non-Deterministic Automata)
	Game Graphs and Positionality
	Non-Determinization (or Simulation ms87tcs,ej91focs,ms95tcs)
	Proofs of §5.4

	Further Examples
	On Positional Strategies
	On Positional Strategies for Separation
	Proof of Prop. G.7 (Ex. 5.17.(iii))
	A Separation Property from as05tcs

	Simple Self Dualization
	Some Basic Definitions and Facts
	Self Duality
	Monoidal Structure
	(Commutative) Monoids
	(Commutative) Comonoids
	A (Lax) Symmetric Monoidal Monad
	An Oplax Symmetric Monoidal Comonad

	A Dialectica-Like Interpretation of Zig-Zag Strategies
	The Topos of Trees
	The Monoidal Structure of G(S)
	Monoids and Comonoids in G(S)
	A Dialectica-Like Interpretation of Zig-Zag Strategies
	Total Zig-Zag Strategies in G(S).
	Composition of Total Zig-Zag Strategies in G(S).

	The Distributive Law
	The Symmetric Monoidal Structure of DZ
	Monoids and Comonoids in DZ
	The Base Category T

	Proof of Proposition I.4
	(-)H is a lax symmetric monoidal functor
	((-)H,,) is a monad
	((-)H,,) is lax symmetric monoidal

	Proof of Proposition J.3
	Proof of Proposition L.1.(i)
	Proof of Proposition L.1.(ii)
	Commutation of (10).
	Commutation of (9).

	Monoids, Monads and Monoidal Categories
	Monads and Comonads
	(Lax) (Symmetric) Monoidal Monads.
	Oplax (Symmetric) Monoidal Comonads.

	Distributive Laws of a Comonad over a Monad
	The Kleisli Category Kl().
	Lifting of a Comonad to the Kleiseli Category of a Monad.
	(Oplax) Monoidal Lifting.
	Proof of Proposition M.7.

	Monoids and Comonoids
	Monoids.
	The Category Mon(C) of Commutative Monoids.
	Comonoids.
	The Category Comon(C) of Commutative Comonoids.
	Lifting of Monoids and Comonoids to Kleiseli Categories.
	The Monad of Monoid Indexing.
	Proof of Proposition M.12.
	The Comonad of Comonoid Indexing.
	The Distributive Law of Comonoid over Monoid Indexing.

