
HAL Id: hal-01261183
https://hal.science/hal-01261183v2

Preprint submitted on 7 Jul 2016 (v2), last revised 15 Oct 2019 (v10)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Dialectica-Like Approach to Tree Automata
Colin Riba

To cite this version:

Colin Riba. A Dialectica-Like Approach to Tree Automata. 2016. �hal-01261183v2�

https://hal.science/hal-01261183v2
https://hal.archives-ouvertes.fr

A Dialectica-Like Approach to Tree Automata

Colin Riba
ENS de Lyon, Université de Lyon, LIP ∗

colin.riba@ens-lyon.fr http://perso.ens-lyon.fr/colin.riba/

Abstract
We propose a fibred monoidal closed category of alternating tree
automata. Our notion is based on Dialectica-like categories, sug-
gested by the specific logical form of the transitions of alternating
automata. The basic monoidal closed structure gives a realizability
interpretation of proofs of a first-order multiplicative linear logic as
winning strategies in corresponding acceptance games.

Moreover, we show that the usual powerset operation translating
an alternating automaton to an equivalent non-deterministic one
satisfies the deduction rules of the ’!’ modality of linear logic. We
thus get a deduction system for intuitionistic linear logic, which in
particular gives deduction for minimal intuitionistic predicate logic
via the Girard translation. We also get a weak form of completeness
of our realizers wrt language inclusion, based on the ’?’ modality.

1. Introduction
We propose fibred monoidal closed categories for tree automata.
We extend the approach of [28], based on the slogan: Automata as
objects, Executions as morphisms.

We consider a variation of alternating automata on infinite trees.
Alternating tree automata (see e.g. [7, 24, 25, 31]) are equivalent
in expressive power to the Monadic Second-Order Logic (MSO),
which subsumes most of the logics used in verification.

The models presented here provide a computational interpreta-
tion of a deduction system for tree automata (see §6). It encompass
the constructions on automata reflecting the connectives of MSO,
which are used in the translation of MSO-formulas to tree automata
(see e.g. [7, 30, 31]) and give the decidability of MSO [27] (via de-
cidability of emptiness checking).

Tree automata and MSO are traditionally viewed as positive ob-
jects: one is primarily interested in satisfaction or satisfiability, the
Boolean connectives are disjunction and negation and the primitive
notion of quantification is existential. In contrast, Curry-Howard
approaches tend to favor proof-theoretic oriented and negative ap-
proaches, i.e. approaches in which the predominant logical connec-
tive is the implication, and where the predominant form of quan-
tification is universal. We build on [28] which proposed fibred cat-

∗UMR 5668 CNRS ENS Lyon UCBL INRIA

[Copyright notice will appear here once ’preprint’ option is removed.]

egories of tree automata with a monoidal product and existential
quantifications.

Wrt the decomposition of MSO formulas in tree automata,
the switch from a disjunction to a conjunction implemented by a
monoidal product is unproblematic. The main problems concerns
the interplay between negation and existential quantification. While
alternating automata are linearly closed under complement, they
have no correct primitive notion of existential quantification. On
the other hand, non-deterministic automata have existential quan-
tification but no linear notion of complement. Alternating automata
can be translated to non-deterministic one (the Simulation Theo-
rem [25]) at an exponential cost. It follows that quantifier alterna-
tions in MSO formulas reflect the non-elementary complexity of
the translation to tree automata.

This paper shows that this decomposition corresponds to some
extent to the decomposition of intuitionistic logic in linear logic [6].
We propose a monoidal closed structure for tree automata, which
encompass operations on alternating tree automata (including
complement). Moreover, we show that the usual powerset oper-
ation translating an alternating automaton to an equivalent non-
deterministic one satisfies the deduction rules of the ’!’ modality of
linear logic. We thus get a deduction system for intuitionistic linear
logic, which in particular gives deduction for minimal intuitionistic
predicate logic via the Girard translation.

Most modern approaches to MSO and tree automata use games
(see e.g. [7, 26, 30]), because game determinacy provides a con-
venient approach to the complementation of alternating tree au-
tomata. Following [28], our models are based on game semantics.
The notion of morphisms is based on a synchronous restriction of
the linear arrow of simple games (see e.g. [1, 10]). This restric-
tion allows to internalize homsets in tree automata (as required by
the closed structure), so that a realizer in our computational inter-
pretation can always be described as an accepting run of some tree
automata (with decidable emptiness checking in the case of regular
automata, equivalent to MSO).

Our main contributions (wrt [28]) are the closed structure on
automata and a primitive notion of universal quantification (see §3).
We also explicit a deduction system (§6), as well as the fact that
the simulation of alternating automata by non-deterministic ones
satisfies the deduction rules (but unfortunately not cut-elimination)
of the ! modality of intuitionistic linear logic (§7).

We use Gödel’s Dialectica interpretation (see e.g. [2, 19]) in
two related ways. First, Dialectica can be seen as a constructive
notion of prenex ∃∀-formulas, on which we base the transitions
of the internal implication of tree automata. This leads to our no-
tion of automata presented in §2. Second, our notion of morphism
(issued from [28]) is based on zig-zag strategies, which can be rep-
resented using Dialectica-like categories (see e.g. [5, 9, 11]). As a
by-product, the fibred structure of [28], based on codomain fibra-
tions, is simplified to variants of simple fibrations (see e.g. [14]).

The paper is organized as follows. We begin in §2 by an
overview of the Curry-Howard-like approach to tree automata

1 2016/7/7

http://perso.ens-lyon.fr/colin.riba/

of [28], and §3 presents the main aspects of our Dialectica-like
approach. We then give in §4 a presentation of a fibred monoidal
closed structure on zig-zag games, on top of which we present our
fibrations of automata in §5. Finally, §6 presents our deduction
system and §7 the interpretation of exponential rules. Appendix A
gives some definitions and basic facts on simple and zig-zag games.

2. A Curry-Howard Approach to Tree Automata
Fix a non-empty finite set D of tree directions. Alphabets (denoted
Σ,Γ, etc) are finite non-empty sets. Fix also a singleton set 1 :=
{•}, and two-elements sets 2 := {0, 1} and B := {t, f}.
Definition 2.1. A Σ-labeled D-ary tree is a map T : D∗ → Σ.

Example 2.2. (i) A 2-labelled tree T : D∗ → 2 is the character-
istic function of the set S ⊆ D∗ such that p ∈ S iff T (p) = 1.

(ii) Given T : D∗ → Σ1 × · · · × Σn and a projection pΣi :
Σ1× · · ·×Σn → Σi, we have pΣiT = pΣi ◦T : D∗ → Σi.

(iii) TakeD := 2. A finite execution of the interleaving (P0 |||P1)
of two processes P0 and P1 can be described as a finite word
p ∈ D∗, with pn = d iff an atomic instruction of Pd is
executed at step n. An infinite execution of (P0 ||| P1) can
then be seen as an infinite path χ in the full binary tree D∗,
that is an ω-word χ ∈ Dω .

(iv) Continuing (iii), consider, for each d ∈ D, the following
transition system Pd, where Γ̃d is a finite non-empty set:

// Nd

Γ̃d ��

rd

// Wd

wd
��

ed

// Cd

Γ̃d ��

ld
OO

(Pd)

We seePd as representing the possible executions of a process
Pd with states Σd = {Nd, Wd, Cd} and actions Γd = Γ̃d +
{rd, wd, ed, ld}. Process Pd can perform actions in its non-
critical section Nd, but also by action rd request access to its
critical section Cd. Accesses to Cd are guarded by the waiting
state Wd.
A binary tree I : D∗ → ∆0×∆1 where ∆d := 1+ Σd×Γd
can be seen as a particular implementation of (P0 |||P1) if it is
correct in the sense that I(ε) = (•, •) (standing for (N0, N1)),
p∆dI(p.(1−d)) = p∆dI(p), and moreover the transitions of
Pd are respected from Nd by each sequence (p∆dI(pk))k s.t.
pk+1 = pk.(1− d)nk .d for some (nk)k.

2.1 Tree Automata and Games
Our notion of tree automaton is a variation of the usual notion of
alternating automaton. It allows to naturally see tree automata as
Dialectica-like ∃∀-forms and to build a linear implication automa-
ton A(B from automata A and B (see §3 below).

Definition 2.3 (Tree Automata). A tree automatonA over alphabet
Σ (notation A : Σ) has the form

A = (QA , q
ı
A , U , X , δA , ΩA) (1)

where QA is the finite set of states, qıA ∈ QA is the initial state,
U and X are finite sets of resp. P and O-moves, ΩA ⊆ Qω is the
acceptance condition, and the transition function δA has the form

δA : QA × Σ −→ U ×X −→ (D −→ QA)

We suppose for simplicity that automata are complete, in the sense
that U and X are always non-empty. An automaton A as in (1) is
non-deterministic if X = 1 and deterministic if moreover U = 1,
in which case we see its transition function as being of the form

δA : QA × Σ −→ D −→ QA

1 A(T)

(p, qA)
P u
O (x, d)

(p.d, q′A)

P u′

O (x′, d′)

(p.d.d′, q′′A)

1 A(M) −(B(N)

(p, qA) (p, qB)
O u

v P
(y, d) O

P (x, d)

(p.d, q′A) (p.d, q′B)

Figure 1. Plays in Games over 1

Example 2.4. (i) The unit automaton IΣ : Σ is the unique deter-
ministic automaton over Σ with state set 1 (so that • is initial)
and acceptance given by ΩI := 1ω .

(ii) Usually (see e.g. [24, 25], and also [31]), an alternating tree
automaton A over Σ with state set QA has transitions given
by a map δA taking a state q and an input letter a to an
irredundant disjunctive normal form1 over QA × D, so that
we can assume δA(q, a) ∈ P(P(QA ×D)) which is read as
the ∨∧-form ∨

γ∈δA(q,a)

∧
(q′,d)∈γ

(q′, d)

This leads to an automaton Â in the sense of Def. 2.3 with
states QA + B, P-moves U := P(QA × D) and O-moves
X := QA, with transitions given by δÂ(b, a, , ,) := b if
b ∈ B and for q ∈ QA:

δÂ(q, a, γ, q′, d) :=

 q′ if γ ∈ δÂ(q, a) and (q′, d) ∈ γ
t if γ ∈ δÂ(q, a) and (q′, d) /∈ γ
f if γ /∈ δÂ(q, a)

and with acceptance condition ΩÂ := ΩA +Q∗A.t
ω .

Similarly to the usual setting (see e.g. [7, 26, 30]), acceptance of a
tree T : D∗ → Σ by an automaton A : Σ as in (1) can be defined
via a two-player acceptance game. We read transitions of the form

δA(qA, a) : U ×X −→ (D −→ QA)

as ∨∧-forms ∨
u∈U

∧
x∈X

∧
d∈D

δA(qA, a, u, x, d)

generating the game A(T) depicted on Fig. 1 (left), where the
Proponent P (also called Automaton or ∃loı̈se) plays from the

∨
’s

by choosing the u, u′ ∈ U , while its Opponent O (∀bélard) plays
from the

∧
’s and tries to find a failing path by choosing the d, d′ ∈

D together with the x, x′ ∈ X . The state q′A is computed from
(p, qA) as q′A := δA(qA, T (p), u, x, d) (and similarly for q′′A from
(p.d, q′A)). An infinite play in A(T) from (ε, qıA) generates an
infinite sequence of states (qn)n, and P wins that play iff (qn)n ∈
ΩA (note that there is no finite maximal play). Then A accepts T
iff P has a (total)2 winning strategy in this game.

Definition 2.5. Given A : Σ, we let L(A) be the set of T : D∗ →
Σ such that A accepts T .

An automaton A is regular if ΩA is an ω-regular set (see e.g. [7,
26, 30]). Parity automata are regular automata A such that ΩA is
generated from a map cA : QA → N as the set of sequences (qn)n
such that the maximal k occurring infinitely often in (cA(qn))n

1 That is, an element of the free distributive lattice over QA×D [15, §4.8].
2 All winning strategies considered in this paper are assumed to be also total
(see App. A).

2 2016/7/7

is even. Regular automata are equivalent in expressive power with
MSO (see e.g. [7, 30]).

Definition 2.6. A set of trees L ⊆ (D∗ → Σ) is regular if there is
a regular automaton A : Σ such that L = L(A).

Example 2.7. (i) Continuing Ex. 2.2.(iv), the mutual exclusion
property (ME) states that in an interleaved execution, P0 and
P1 can not be both simultaneously in their critical section.
Then a correct I as in Ex. 2.2.(iv) satisfies (ME) iff it is
accepted by the deterministic automaton ME : ∆0 × ∆1,
whose states are QME := B = {t, f} with t initial and
ΩME := tω , and whose transition function takes a state
q ∈ QME and a ∈ ∆ := ∆0 ×∆1 to the map

δME(q, a) : d ∈ D 7→
{

f if a = ((C0,−), (C1,−))
q otherwise

(ii) Given an alphabet Σ and a setA ⊆ Σ, we define an automaton
AΣ
A which accepts the trees T : D∗ → Σ such that every

infinite path in T meets A infinitely often. The state set of
AΣ
A is B with t initial, its transitions are given by:

δAA(q, a) : d ∈ D 7−→
{

t if a ∈ A
f otherwise

and (qn)n ∈ Bω is accepting iff it contains infinitely many
occurrences of t.

(iii) More generally, any LTL property over all paths of a finite
state system can be described by a regular deterministic au-
tomaton.

2.2 Linear Synchronous Arrow Games
This paper builds from [28] which introduces fibred categories of
automata and substituted acceptance games, whose objects are au-
tomata (possibly instantiated with trees) and whose morphisms are
strategies in a suitable restriction of the linear arrow of simple
games (see e.g. [1, 10]) between corresponding (extended) accep-
tance games. We now present an adaptation of the substituted ac-
ceptance games [28] to our context.

Assume that we have a category T of trees (see Def. 4.8 below),
whose objects are alphabets and such that the homset T[Σ,Γ]
contains all functions M : D∗ → (Σ → Γ) and such that
(D∗ → Σ) ' T[1,Σ].

Given automata A : Γ as in (1) and B : ∆ with

B = (QB , q
ı
B , V , Y , δB , ΩB) (2)

and tree maps M : D∗ → (Σ → Γ) and N : D∗ → (Σ → ∆),
the substituted acceptance game [28]

A(M) −(B(N) (over Σ)

is depicted Fig. 2, where a ∈ Σ, d ∈ D and q′A is computed from
(p, qA) and M by q′A := δA(qA,M(p)(a), u, x, d) (and similarly
for q′B from (p, qB) andN). An infinite play$ inA(M)(B(N)
thus determines an infinite sequence (qn, q

′
n)n ∈ (QA × QB)ω .

Then $ is winning (for P) iff (q′n)n ∈ ΩB whenever (qn)n ∈ ΩA.
Note that there is no finite maximal play in A(M) (B(N).

Moreover, P is forced to play the input character a ∈ Σ and the
tree direction d ∈ D imposed by O. In particular, the game is D-
synchronous, in the sense that one infinite play explores exactly one
path of the input.
Remark 2.8. A P-strategy σ on A(M) (B(N) is a strategy
on the linear arrow of simple games with components A(M) and
B(N), such that the projections to components A(M) and B(N)
of every play s of σ have the same trace in (D + Σ)∗ (see [28]).

Example 2.9 (Games over 1). Figure 1 (right) depicts the particular
case of a game over alphabet 1 obtained by specializing the game
of Fig. 2 to trees in (D∗ → Σ) ' T[1,Σ].

Σ A(M) −(B(N)

(p, qA) (p, qB)

O (a, u)
(a, v) P
(y, d) O

P (x, d)

(p.d, q′A) (p.d, q′B)

Figure 2. Plays in Linear Synchronous Arrow Games

(i) Consider an arbitrary A : Σ and some tree T : D∗ → Σ.
Then P has winning strategy in A(T) (i.e. T ∈ L(A)) iff P
has a winning strategy in I1 (A(T).

(ii) Continuing Ex. 2.7.(i), it is possible that only some specific
executions of a correct I satisfy (ME). Such specific execu-
tions can be described as the infinite paths of a partial sched-
uler3 S ⊆ D∗, and we can check whether I satisfies (ME)
along all infinite paths of S by using an automaton S such
that S(S)(ME(I) forces O to explore a path in S.
The deterministic automaton S : 2 runs on subsets of D∗

represented by their characteristic maps S : D∗ → 2 (as in
Ex. 2.2.(i) above). Its states are QS := B, with t initial and
ΩS := tω , and its transitions are given by

δS(q, i) : d ∈ D 7−→
{
q if i = 1
f otherwise

Then P has a winning strategy in S(S) (ME(I) iff I
satisfies (ME) along all infinite paths of S, since by D-
synchronicity P is forced to play the same tree direction in
the component S(S) as imposed by O inME(I).

Example 2.10. (i) Consider a game as in Fig. 2 where A and B
are both over the same alphabet Σ and where M and N are
both the identity T-map IdΣ := λp.λa.a.
We write A (B for the game A(IdΣ) (B(IdΣ). Note
that transitions do not depend anymore from the tree positions
p ∈ D∗ since q′A = δA(qA, a, u, x, d) (and similarly for q′B).

(ii) Continuing (i), it is well-known (see e.g. [7, 26, 30]) that
every regular language L of infinite words can be recognized
by a deterministic ω-word parity automaton (QL, q

ı
L, δL, cL).

Following [31], given a regular tree automata A over Σ, let

A† := (QA ×QL , (qıA, q
ı
L) , U , X , δA† , ΩA†)

where L = ΩA, ΩA† is generated from cL (via second
projection) and the transition function δA† is defined as

δA†((qA, qL), a, u, x, d) := (q′A , δL(qL, q
′
A))

with q′A := δA(qA, a, u, x, d). Note that A and A† have the
same sets of P and O-moves, so that the identity (“copy-cat”)
strategies provide an isomorphism A ' A†.

(iii) Also continuing (i), assume that A and B are moreover both
non-deterministic (so that x = y = •). Then a map QA ×
U → V (as in [4, Def. 1]) determines a P-strategy onA(B.
It follows from [4, Thm. 1] that for any regular tree language
L there is a non-deterministic automaton B such that L(B) =
L and such that for every parity non-deterministic A with
L(A) ⊆ L(B) there is a winning P-strategy on A(B.

3 It would make sense to also require S to be prefix-closed, but this is
unnecessary if we focus on infinite paths.

3 2016/7/7

2.2.1 Deterministic Linear Implications
Anticipating on §3.1, we indicate how the linear synchronous arrow
between deterministic automata can be internalized into determin-
istic automata.

Given deterministic A and B, both over Σ, the deterministic
automatonA(B has states QA×QB (with (qıA, q

ı
B) initial) and

transitions given by

δA(B((qA, qB), a) := (δA(qA, a) , δB(qB, a))

The acceptance condition ofA(B consists of those (qn, q
′
n)n ∈

(QA ×QB)ω such that (q′n)n ∈ ΩB whenever (qn)n ∈ ΩA. Note
that A(B is regular as soon as both A and B are regular.
Example 2.11. Continuing Ex. 2.9.(ii), we define an automaton
CS : 2 × ∆ such that P wins the game I1 (CS(〈S, I〉) iff
P wins the game S(S) (ME(I). First note that S and ME
have different input alphabets (resp. 2 and ∆). Given the FinSet-
projection p2 : 2×∆→ 2, the automaton S[p2] : 2×∆ has the
same states as S and transitions given by

δS[p2](q, (i, a), d) := δS(q, p2(i, a), d) = δS(q, i, d)

AutomatonME [p∆] : 2×∆ (for the projection p∆ : 2×∆→ ∆)
is obtained similarly. We then let CS := (S[p2](ME [p∆]).

2.3 Indexed Structure
The categories of [28] based on the games in Fig. 2 are actually
fibred over the lluf subcategory of T with homsets restricted to
maps of the form D∗ → (Σ → ∆). We will present in §5 a
fibration DialAut generalizing [28].

It is sufficient to mention here the fact that a tree mapL : D∗ →
(Ξ → Σ) defines a functor L∗, which maps a game A(M) (
B(N) over Σ as in Fig. 2, to the gameA(M ◦L)(B(N ◦L) over
Ξ (defined similarly but with (M ◦ L) := λp.λx.M(p)(L(p)(x))
and N ◦ L, in place of M and N), and maps a (winning) P-
strategy σ on A(M) (B(N) to a (winning) P-strategy L∗(σ)
on A(M ◦ L)(B(N ◦ L).

Assume now that P has a winning strategy in the gameA(B
over (say) Σ. Then for every tree T ∈ D∗ → Σ ' T[1,Σ], we
have a winning strategy T ∗(σ) on the gameA(T)(B(T) over 1.
Now if T ∈ L(A), by Ex. 2.9.(i) there is a winning P-strategy τ on
I1 (A(T), and since (total) winning P-strategies compose (see
App. A), we obtain a winning P-strategy T ∗(σ)◦τ on I1 (B(T),
so that T ∈ L(B). We therefore have:

Proposition 2.12. If P has a winning strategy on A (B, then
L(A) ⊆ L(B).

Remark 2.13. In case the map L above is issued from a FinSet-
map f : Ξ → Σ, then a game of the form A (B (hence with
A,B : Σ) is mapped to A[f] (B[f] (where A[f] and B[f] are
defined by internalizing f into the transition functions, similarly as
in Ex. 2.11). It follows that there is a category Aut of automata
fibred over (non-empty) finite sets (see §5.2).

2.4 Projection and Existential Quantification
The role of input characters a ∈ Σ in the play depicted in Fig. 2 is
actually issued from the usual operation of projection on automata,
which implements a form of existential quantification over labeled
input trees. In our context, the (almost usual) projection operation
of [28] can be adapted as follows:

Definition 2.14. Given automaton A over Σ× Γ as in (1), let

∃ΓA := (QA , q
ı
A , Γ× U , X , δ∃ΓA , ΩA)

where δ∃ΓA(q, a, (b, u), x, d) := δA(q, (a, b), u, x, d).

1 (∃2CS)(I)
(p, q)

P (i, •)
O d

(p.d, q′)
P (j, •)
O d′

(p.d.d′, q′′)

1 (∃∆C0)(S) ((∃∆E1)(S)
(p, q0) (p, q1)

O (a, •)
P (b, •)
O d
P d

(p.d, q′0) (p.d, q′1)

Figure 3. Projection and Existential Quantifications

It is easy to see that if A accepts T : D∗ → (Σ × Γ), then
∃ΓA accepts pΣT , so that pΣ(L(A)) ⊆ L(∃ΓA). The converse
only holds for non-deterministic automata.

Proposition 2.15. IfA : Σ×Γ is non-deterministic thenL(∃ΓA) =
pΣ(L(A)).

Example 2.16. (i) Continuing Ex. 2.11, fix a correct I : D∗ →
∆. A play of ∃2CS(I) is depicted on Fig. 3 (left). Winning
P-strategies in that game are in 1-1 with partial schedulers
S ⊆ D∗ such that I satisfies (ME) along any path of S.

(ii) Reversing the perspective of (i), assume now that we want, for
a fixed partial scheduler S ⊆ D∗, to ensure the existence of
a particular behavior of say P1, assuming the existence of a
particular behavior of P0, e.g. for every infinite path χ of S,

∃P0(P0 is infinitely often in state C0 in χ) =⇒
∃P1(P1 infinitely often executes e1 in χ) (3)

Consider the automata A∆
C0

and A∆
E1

defined following
Ex. 2.7.(ii), where a ∈ C0 iff p∆0(a) = (C0,−) and similarly
for E1. Following §2.2.1, let C0 := (S[p2](A∆

C0
[p∆]) and

E1 := (S[p2](A∆
E1

[p∆]). Then a winning P strategy in the
game (∃∆C0)(S) ((∃∆E1)(S) (see Fig. 3, right) provides
an implementation of (3).

Remark 2.17. Anticipating on §5.3, the existential quantifica-
tion are usual fibred existential quantifications (called simple co-
products in e.g. [14, Def. 1.9.1]) in the fibred category Aut (see
Rem. 2.13 and §5). So in particular ∃Γ is left-adjoint to the weaken-
ing functor p∗Σ. More generally, given automata A : ∆× Γ, B : Ξ,
and tree maps M : D∗ → (Σ → ∆) and N : D∗ → (Σ → Ξ),
there is an isomorphism

(∃ΓA)(M) (B(N) ' A(M × IdΓ) (B(N ◦ pΣ) (4)

In particular, if Σ = ∆ = 1 then (modulo 1 × Γ ' Γ), the
plays of A (B(N ◦ 1Γ) over Γ are in bijection with plays of
∃ΓA(B(N):

1 ∃ΓA −(B(N)

(p, qA) (p, qB)

O (b, u)
v P

(y, d) O
P (x, d)

(p.d, q′A) (p.d, q′B)

2.5 Monoidal Structure
Tree automata are naturally equipped with a synchronous (direct)
product, which gives a symmetric monoidal structure.

Definition 2.18. Given automataA and B over Σ as in (1) and (2),

A⊗B := (QA ×QB, (qıA, qıB), U × V,X × Y, δA⊗B,ΩA⊗B)

4 2016/7/7

with δA⊗B((qA, qB), a, (u, v), (x, y), d) := (q′A, q
′
B) where q′A =

δA(qA, a, u, x, d) and q′B = δB(qB, a, v, y, d), and moreover
((qn, q

′
n))n ∈ ΩA⊗B iff both (qn)n ∈ ΩA and (q′n)n ∈ ΩB.

Note that A ⊗ B is non-deterministic if A and B are non-
deterministic.
Example 2.19. (i) Given A as in (1) and B as in (2), there is a

winning P-strategy onA⊗B(A. It maps (u, v) ∈ U × V
to u ∈ U and x ∈ X to (x, y) ∈ X × Y , where y ∈ Y is
arbitrary (recall that Y is assumed to be non-empty).

(ii) If A is non-deterministic, then there is a P-winning strategy
on A (A ⊗ A. Its maps u ∈ U to (u, u) ∈ U × U . Note
that such strategy may not exist when X 6= 1, since O can
play two different (x, x′) ∈ X×X in the componentA⊗A.

Proposition 2.20. Given A : Σ and B : Σ, we have L(A⊗ B) =
L(A) ∩ L(B).

3. A Dialectica-Like Approach to Automata
This section presents the two main innovations of this paper: the
monoidal closed structure on tree automata, and a primitive notion
of universal quantification.

3.1 Monoidal Closed Structure
The main contribution of this paper w.r.t. [28] is that we obtain a
monoidal closed structure. The main consequence is the introduc-
tion of a linear implication connective on automata, satisfying

A⊗ B −(C ' B −((A(C) (5)

and which is compatible with cut-elimination (see Rem. 6.2).
We now discuss how to build to a linear implication automaton

(A(B) : Σ from automataA as in (1) and B as in (2), both over
Σ. The isomorphism (5) imposes that A (B runs A and B in
parallel, so that we letQA(B := QA×QB (with (qıA, q

ı
B) initial).

Recall from §2.1, that in acceptance game (as in Fig. 1, left), we
see the transition δA(a, qA) of A as an ∨∧-form∨

u∈U

∧
x∈X

∧
d∈D

q′u,x,d

so that the transition δA(B(a, qA, qB) should by a form of linear
implication:∨

u∈U

∧
x∈X

∧
d∈D

q′u,x,d −→
∨
v∈V

∧
y∈Y

∧
d∈D

q′′v,y,d

We now follow the pattern of Gödel’s Dialectica interpretation (see
e.g. [2, 19]). It consists in Skolemization for a suitable (construc-
tive) prenex form:∨

u∈U
∧
x∈X

∧
d∈D q

′
u,x,d (

∨
v∈V

∧
y∈Y

∧
d∈D q

′′
v,y,d

≡∧
u∈U

∨
v∈V

∧
y∈Y

∧
d∈D

∨
x∈X

∨
d′∈D(q′u,x,d′ , q

′′
v,y,d)

Since we must have d = d′, the above amounts to:∧
u∈U

∨
v∈V

∧
y∈Y

∧
d∈D

∨
x∈X(q′u,x,d , q

′′
v,y,d)

We now skolemize the ∧∨, replacing ∧U ∨V (−) by ∨V U ∧U (−)
and similarly for the resulting ∧U ∧Y ∧D ∨X (−). This leads to∨

f∈V U

∧
u∈U

∧
y∈Y

∧
d∈D

∨
x∈X(q′u,x,d , q

′′
f(v),y,d)

≡∨
f

∨
F

∧
u

∧
y

∧
d∈D(q′u,F (u,y,d),d , q

′′
f(v),y,d)

We therefore put:

Definition 3.1. Given automataA and B over Σ as in (1) and (2),
let A(B be the automaton

(QA ×QB, (qıA, qıB), V U ×XU×Y×D, U × Y, δA(B,ΩA(B)

with δA(B((qA, qB), a, (f, F), (u, y), d) := (q′A, q
′
B) where

q′A = δA(qA, a, u, F (u, y, d), d) and q′B = δB(qB, a, f(v), y, d),
and moreover ((qn, q

′
n))n ∈ ΩA(B iff (q′n)n ∈ ΩB whenever

(qn)n ∈ ΩA.

We now see how to define a strategy Λ(σ) : I ((A (B)
assuming a given σ : A(B, as in

Σ A
σ
−(B

(p, qA) (p, qB)

O (a, u)
v P

Note that σ locally gives, for each fixed a ∈ Σ, a function fa : u ∈
U 7→ v ∈ V . Similarly, the next O-move against σ must contain
some y ∈ Y and d ∈ D, to which σ answers some x ∈ X . This
also defines a function Fa : (u, y, d) 7→ x. We can then let Λ(σ)
play (fa, Fa). Moreover the next O-move against Λ(σ) must be
some (u, y, d), as in

Σ I
Λ(σ)

−((A(B)

p (p, (qA, qB))

O a
(a, (fa, Fa)) P

(u, y, d) O
P d

p.d (p.d, (q′A, q
′
B))

These (u, y, d) can be transmitted back to σ, which by definition
of fa and Fa, played v = fa(u) and x = Fa(u, y, d). Continuing
this way, the two strategies explore the same path of the tree, with
the same input in Σ, and produce the same states in QA and QB.
Example 3.2. Given A and B on the same alphabet, since P has
a winning strategy on A ⊗ B (A, he has a winning strategy on
A −((B(A).

3.2 Complementation and Falsity
Alternating automata enjoy a complementation construction linear
in the number of states (see e.g. [24]). Using the monoidal closed
structure, a similar construction can be done with our automata.

In this paragraph we consider Borel automata, i.e. automata
whose acceptance condition is a Borel set (regular sets are Borel).

The falsity automaton ‹ (over Σ) is (B, f, D,1, δ‹,Ω‹) where
Ω‹ := B∗.tω and the transition function δ‹ is defined as follows:
let δ‹(t, , d′, •, d) := t, and

δ‹(f, , d′, •, d) :=

{
f if d = d′

t otherwise

Note that ‹ accepts no tree since in an acceptance game, O can
always play the same d as P. Given an automaton A on Σ, let
A‹ := A(‹. The automaton A‹ can be seen as

(QA × B, (qıA, f), D
U ×XU×D, U, δA‹ ,ΩA (‹)

with δA‹(a, (qA, f), (f, F), u, d) = (q′A,b) where b = f iff
f(u) = d, and δA‹(a, (qA, t), (f, F), u, d) = (q′A, t), where
q′A := δA(a, qA, u, F (u, d), d). Hence O looses as soon as he
does not follow the direction proposed by P via f . Thanks to the
determinacy of Borel games [22], we get:

Proposition 3.3. Given a Borel automaton A : Σ and a tree
T : D∗ → Σ, T ∈ L(A‹) iff T /∈ L(A).

Example 3.4. Given non-deterministic Borel automata A and B
s.t. L(A) ∩ L(B) = ∅, it follows from (4), and Props. 2.15, 2.20
and 3.3 that P has a winning strategy in A ⊗ B (‹, and thus
in A (B‹. We will show in §6 (Ex.6.1.(ii)) that in this case P

5 2016/7/7

has a winning strategy on (B(A) −(B‹. It then follows from
Ex. 3.2 and Prop. 2.12 that L(A) ⊆ L(B(A) ⊆ L(B‹).

3.3 Universal Quantifications and the ∃∀-Normal Form
We have seen the projection operation ∃Σ(−) in §2.4. We devise
now a coprojection operation ∀Σ(−), which follows Gödel’s Di-
alectica interpretation of universal quantifications, and also allows
to see automata as ∃∀-forms: For an automaton A with

δA : QA × Σ −→ U ×X −→ (D −→ QA)

we will have
A ' ∃U∀XD (6)

where D is the deterministic automaton whose transition function

δD : QA × (Σ× U ×X) −→ D −→ QA

is obtained from δA in the obvious way.
Let us look at what should happen when (say) ∀Γ(−) is applied

to an automaton A = ∃U∀XD over Σ × Γ, so that ∀ΓA =
∀Γ∃U∀XD. In order to recover an ∃∀-form from ∀Γ∃U∀XD, we
apply here the same trick as in Gödel’s Dialectica interpretation,
replacing ∀Γ∃U (−) by ∃UΓ∀Γ(−), so that

∀ΓA = ∀Γ∃U∀XD = ∃UΓ∀Γ×XD′

where δD′(qA, (a, f, (b, x)), d) := δA(qA, (a, b), f(b), x, d).
This gives the general definition of coprojection for automata:

Definition 3.5. Given automaton A over Σ× Γ as in (1), let

∀ΓA := (QA , q
ı
A , U

Γ , Γ×X , δ∀ΓA , ΩA)

where δ∀ΓA(q, a, f, (b, x), d) := δA(q, (a, b), f(b), x, d).

Note that ifD (over say Σ×U×X) is deterministic, then ∀XD
has 1 ' 1Γ as P-moves and Γ ' Γ×1 as O-moves. It follows that
for A as in (1) we indeed have A ' ∃U∀XD as in (6).

The inversion of quantifiers from ∀Γ∃U (−) to ∃UΓ∀U (−) cor-
responds, in games, to the usual (constructive) Skolemization per-
formed in Gödel’s Dialectica interpretation.
Remark 3.6. Similarly as existential quantifications (in Rem. 2.17),
the operation ∀(−) gives usual fibred universal quantifications in
Aut (see Rem. 2.13 and §5). It is right adjoint to weakening, and
satisfies the dual law of (4):

B(N) ((∀ΓA)(M) ' B(N ◦ pΣ) (A(M × IdΓ) (7)

Example 3.7. (i) As usual, (7) gives for any A : Σ a winning
P-strategy εA on (∀ΣA)[1Σ](A (modulo Σ ' 1× Σ).

(ii) If A and B (both over Σ) are regular, then the game A (B
is equivalent to a finite regular game. Indeed, by (7), P has a
winning strategy on A (B iff he has a winning strategy on
I1 (∀Σ(A(B). But since in that game O can only play •
in the component I1, similarly as in Ex. 2.9.(i), it is equivalent
to the acceptance game of the automaton ∀Σ(A(B) : 1 on
the unique tree 1 : D∗ → 1 (in the sense of Fig. 1 left). Since
∀Σ(A(B) : 1 is regular, it is then well-known (see e.g. [30,
Ex. 6.12 & Thm. 6.18]) that its acceptance game is equivalent
to a finite regular game, and that the winner always effectively
has a finite state winning strategy.

(iii) Our internalized linear arrow can handle a construction for
the separation property of [29, Thm. 2.7]. Assume A and B
as in Ex. 3.4 are regular. It follows from (ii) that P has a
finite-state winning strategy τ on A ⊗ B (‹, described
(say) by the automaton (Qτ , q

ı
τ , δτ , oτ) where 〈δτ , oτ 〉 :

Qτ × (Σ×U ×V)→ Qτ ×D. We can then restrict B(A
along τ . Define C : Σ as follows:

C := ((QB(A ×Qτ) + {t}, (qıB(A, qıτ), UV , V, δC ,ΩC)

where δC(t, , , ,) := t, and δC((q, qτ), a, f, v, d) := t if
o(qτ , a, f(v), v) 6= d, and otherwise, δC((q, qτ), a, f, v, d) :=
(δB(A(q, a, f, v, d) , δτ (qτ , a, f(v), v)), and with ΩC :=
(QB(A×Qτ).tω+π−1(ΩB(A) (where π : QB(A×Qτ →
QB(A is a projection). Note that L(B (A) ⊆ L(C) ⊆
L(B‹). If A and B are parity automata both with color-
ings of range {0, . . . , n} for some even n, then (as in [29,
§2.2.2]) since τ is winning, ΩC can be described with a col-
oring c of range {0, . . . , n} (with c(t) = n) and such that
in each strongly connected component of C (for q → q′ iff
q′ = δC(q, a, f, v, d) for some a, f, v, d), c has range either
{1, . . . , n} or {0, . . . , n− 1}.

3.4 Alternating v.s. Non-Deterministic Tree Automata
We have seen in §3.2 that similarly to usual alternating automata,
our automata have linear complements. On the other hand, we have
seen in Prop. 2.15 that the projection operation is correct on non-
deterministic automata. However, complementation is not linear on
non-deterministic automata and projection is not correct in general
on alternating automata.

Actually, regular alternating and non-deterministic automata are
equivalent in expressive power:

Theorem 3.8 (Simulation [25]). Given a regular automatonA, we
can effectively build a non-deterministic automaton !A such that
L(A) = L(!A).

The automaton !A is in general exponentially larger than A.
This can be seen as a reason for the non-elementary complexity of
MSO: each alternation of quantifiers costs an exponential.

We will see in §7 that in our context, the non-determinization
operation !(−) satisfies the deduction rules of the usual exponential
modality ! of intuitionistic linear logic (see e.g. [23]). It follows
that the exponential modality ! allows to define, an intuitionistic
implication ⇒ (i.e. satisfying the deduction rules of intuitionistic
logic) as A ⇒ B := !A(B (Girard’s decomposition).
Example 3.9. (i) There is a winning P-strategy on ((?A ⇒

?B)⇒ ?A) =⇒ ?A, where ?A = (!(A‹))‹.
(ii) Extending Ex. 3.4, if L(A) ⊆ L(B), then there is a winning

P-strategy on !A(?B.

4. Simple Zig-Zag Games
In this section, we decompose the synchronicity constraints im-
posed on the linear synchronous arrow games of [28] (see §2.2
and Fig. 2) using a monad of monoid indexing and comonads of
comonoid indexing in a category DZ of simple zig-zag games. This
leads to a fibration DialZ, with existential and universal quantifica-
tions and with fibrewise symmetric monoidal closed structure. It is
the base of the fibrations of automata and acceptance games pre-
sented in §5.

4.1 Simple Zig-Zag Games
The synchronicity constraints of [28] presented in §2.2 impose the
P-strategies on games of the form A(M) (B(N) depicted in
Fig. 2 to be zig-zag strategies, in the sense that for all (even-length)
play s of such a strategy, the projections of s to componentsA(M)
and B(N) must have the same length.

Definition 4.1. The category DZ of simple zig-zag games has
pairs of non-empty sets A = (U,X), B = (V, Y), etc as objects.
Morphisms from A to B are zig-zag strategies σ : A (B where
A and B are seen as simple full positive games4, see Fig. 4 (left),
where u ∈ U , v ∈ V , y ∈ Y and x ∈ X .

4 See App. A.

6 2016/7/7

DZ A
σ
−(B

O u
P v
O y
P x

DZD A
σ
(DZD B

O u
P v
O (y, d)
P x

Figure 4. Zig-Zag Strategies

The category DZ is equipped with a very simple synchronous
monoidal closed structure which is different from the asynchronous
usual ones in game semantics.

Proposition 4.2. The category DZ is symmetric monoidal. The
unit is I = (1,1), and given A = (U,X) and B = (V, Y) we let

A⊗B := (U × V , X × Y)

4.2 Monoidal Closed Structure
The monoidal closed structure follows the pattern of the Gödel’s
Dialectica interpretation: A full positive game A = (U,X) is
seen as a succession of ∨∧-forms, where P plays from the ∨’s by
choosing the u ∈ U and O plays from the ∧’s by choosing the
x ∈ X . Given another game B = (V, Y), a (total) zig-zag strategy
σ : A(B as in Fig. 4 (left) can be seen as providing a succession
of maps f : U → V (corresponding to the P-move v in component
B following the O-move u in A) and F : U × Y → X (corresp.
to the P-move x in A following the O-moves u and y).

Proposition 4.3. The category DZ is symmetric monoidal closed.
The linear exponent of A = (U,X) and B = (V, Y) is

A(B := (V U ×XU×Y , U × Y)

The monoidal closed structure of DZ thus departs from traditional
game semantics since the natural isomorphism A ⊗ B (C '
B ((A(C) relates only strategies, but not plays.

4.3 D-Synchronicity
We express the D-synchronicity constraint of [28] using a monad
of monoid indexing.

Monoid Indexing [12, 13]. Let (C,⊗, I) be a symmetric monoidal
category and let Mon(C) be its category of commutative monoids.
Its objects are objects M of C equipped with structure maps

I
u−→ M

m←− M ⊗M

subject to some coherence conditions (see e.g. [23]). A morphism
from (M,u,m) to (N,u′,m′) is a C-morphism M → N which
commutes with the structure maps.

Given a commutative monoid (M,u,m) in C, define the monad
M = (M,η, µ) as follows. The functor M acts on objects by
tensoring with M on the right and on morphisms by

(f : A→ B) 7−→ (f ⊗ idM : A⊗M → B ⊗M)

The natural maps η and µ are

ηA := (idA ⊗ u) ◦ ρ−1 : A −→ A⊗M
µA := (idA ⊗m) ◦ α : (A⊗M)⊗M −→ A⊗M

(where ρ : A⊗ I→ A and α : (A⊗M)⊗M → A⊗ (M ⊗M)
are structural isos of (C,⊗, I)). It is easy to see that M is a (lax)
monoidal monad (see e.g. [23] for definitions).

We now turn to the monoid of D-synchronicity in DZ.

Proposition 4.4. In DZ, the objectD := (1, D) is a commutative
monoid with structure:

I
u
−(D

O •
• P
d O

P •

D ⊗D
m
−(D

O (•, •)
• P
d O

P (d, d)

We let DZD be the Kleisli category of the monadD. A DZD-map
from A to B is a DZ-strategy σ : A(B ⊗D (see Fig. 4 right).

The symmetric monoidal closed structure of DZ lifts to DZD .
For the symmetric monoidal structure this follows from the fact that
the monad D is (lax) monoidal. For monoidal closure, since

DZD[A⊗B,C] = DZ[A⊗B,C ⊗D]
' DZ[A,B (DZ C ⊗D]

we should have (A (DZD B) ⊗ D ' (A (DZ B ⊗ D). This
leads to ((U,X)(DZD (V, Y)) = (W,Z) with

(W,Z ×D) ' (V U ×XU×Y×D, U × Y ×D)

We therefore let

(U,X)(DZD (V, Y) := (V U ×XU×Y×D, U × Y)

Proposition 4.5. DZD is symmetric monoidal closed.

4.4 Fibred Structure in DZD

We now turn to the synchronicity constraint of [28] imposing P
to play the same input character a as chosen by O (see Fig. 2).
We express this constraint in DZD by a comonad of comonoid
indexing (dual to monoid indexing), which leads to a split fibred
structure similar to the usual simple fibrations (see e.g. [14]).

4.4.1 The Fibred Structure of Comonoid Indexing
The fibred structure of DZD is added along a pattern similar to the
simple fibration s : s(B)→ B over a Cartesian base category B (see
e.g. [9, 11]). Recall (from e.g. [14]) that s(B) has pairs (I,X) of B-
objects as objects, with maps (I,X) → (J, Y) given by a pairs of
B-maps f0 : I → J and f : I×X → Y . The functor s : s(B)→ B
is the first projection. We would like to use as base the category
DZD and its monoidal product, which is not Cartesian. However,
it is well-known (1) that the fibre category of s(B) over say I , is
the co-Kleiseli category of a co-monad whose functor is I × (−)
(see e.g. [14, Ex. 1.3.4]), and (2) that commutative comonoids form
a Cartesian category. Comonoid indexing [12, 13], allows to get a
fibration whose fibre over K, for K a commutative comonoid, is
the co-Kleiseli category for K ⊗ (−).

Comonoid Indexing [12, 13]. This is dual to monoid indexing
used above. Let Comon(C) be the category of commutative
comonoids on a symmetric monoidal category C. Its objects are
objects K of C equipped with structure maps

I
e←− K

m−→ K ⊗K
subject to some condition dual to those of Mon(C). A morphism
from (K, e,m) to (L, e′,m′) is also a C-morphism K → L
compatible with the structure maps. It is well-known (see e.g. [23,
Cor. 18, §6.5]) that Comon(C) is Cartesian.

Given a commutative comonoid (K, e,m) in C, define a
comonad K = (K, ε, δ) whose functor K acts on objects by ten-
soring on the left and on morphisms by

(f : A→ B) 7−→ (idK ⊗ f : K ⊗A→ K ⊗B)

The natural maps ε and δ are given by (modulo structural isos)

εA ' e⊗ idA : K ⊗A −→ A
δA ' m⊗ idA : K ⊗A −→ K ⊗K ⊗A

7 2016/7/7

DialZΣ A
σ
−(B

O (a, u)
P v
O (y, d)
P x

T Σ
M−→ Γ

O a
P b
O d
P •

Figure 5. The Fibred Structure of DialZ

Grothendieck Completion. A comonoid morphism u : K → L
induces a functor u∗ : Kl(L) → Kl(K) acting as the identity on
objects and taking f : L⊗A→ B to f ◦ (u⊗ idA) : K⊗A→ B.
It readily follows that id∗K = idKl(K) and that (u ◦ v)∗ = v∗ ◦ u∗.
In other words, we have a functor CI(C) : Comon(C)op → Cat.
Its Grothendieck completion

∫
CI(C) (see e.g. [14]) is the category

whose objects are pairs (K,A) of an object K of Comon(C) and
an object A of C, and whose morphisms from (K,A) to (L,B)
are pairs (u, f) where u : K → L is a comonoid morphism and
f : K⊗A→ B. The category

∫
CI(C) is fibred over Comon(C)

via the first projection, that we denote

sCI(C) :

∫
CI(C) −→ Comon(C)

Its is a split fibration since CI(C) is strict, and its fibre over K is
the category Kl(K).

4.4.2 Comonoid Indexing in DZD

In DZD , objects of the form Σ = (Σ,1) can be equipped with a
commutative comonoid structure.

Proposition 4.6. In DZD , each object Σ = (Σ,1) is a commuta-
tive monoid with structure:

Σ
eΣ
−(I

O a
• P
d O

P •

Σ
dΣ

−(Σ⊗ Σ
O a

(a, a) P
d O

P •
Hence for each Σ = (Σ,1) there is a comonad ΣD in DZD . We
denote by DialZΣ its Kleisli category. A typical play of a strategy
σ ∈ DialZΣ[A,B] is depicted on Fig. 5 (left).

The symmetric monoidal structure of DZD lifts to DialZΣ

since (dually toD), the comonad ΣD is oplax symmetric monoidal.
The closed structure of DialZ is the same as that of DZD since

DialZΣ[A⊗B,C] = DZD[Σ⊗A⊗B,C]
' DZD[Σ⊗A,B (DZD C]

Proposition 4.7. DialZΣ is symmetric monoidal closed.

4.4.3 The Fibred Category DialZ

We now turn to DialZ. It is fibred over a base category T whose
objects are alphabets and which embeds in Comon(DZD). DialZ
is obtained by change-of-base of fibrations of sCI(DZD) along this
embedding. The fibre of DialZ over Σ will thus be DialZΣ.

Definition 4.8 (The Base Category T). The objects of T are
alphabets (Σ, Γ, etc) and the morphisms M ∈ T[Σ,Γ] are the
strategies M ∈ DZD[Σ,Γ] (see Fig. 5, right).

Remark 4.9. Note that T-maps Σ → Γ are determined by func-
tions of the form

(⋃
n∈N Σn+1 ×Dn

)
→ Γ. It follows that, as

required in §2.2, each function D∗ → (Σ → Γ) induces a map in
T[Σ,Γ] and that D∗ → Σ ' T[1,Σ].

It is easy to see that T-maps induce commutative comonoid
morphisms in DZD .

Proposition 4.10. The category T embeds to Comon(DZD)
via the functor ET mapping an object Σ of T to the comonoid
(Σ, eΣ, dΣ) and a morphism M : T[Γ,Σ] to itself.

We now define the fibred category DialZ by change-of-base of
fibrations of sCI(DZD) along ET:

DialZy //

dz

��

∫
CI(DZD)

sCI(DZD)

��
T

ET // Comon(DZD)

Explicitly, the objects of DialZ are pairs (Σ, A) of an alphabet Σ
and a DZ-objectA, and a morphism from (Σ, A) to (Γ, B) is given
by a pair (L, σ) whereL ∈ T[Σ,Γ] and σ is a DialZΣ-map fromA
to B (recall from §4.4.1 that L∗ : DialZΓ → DialZΣ is the identity
on objects). Composition in DialZ is induced by composition in∫
CI(DZD) (see e.g. [14]).

Proposition 4.11. dz : DialZ→ T is symmetric monoidal closed.

4.5 Quantification in DialZ

We now sketch existential and universal quantification in DialZ.

Existential Quantification. A fibration p : E→ B has existential
quantifications (also called simple coproducts [14]) when the weak-
ening functors π∗ : EJ → EI×J (induced by the B-projections
π : I × J → I) have left adjoints

∐
I,J : EI×J → EI satisfying

some coherence conditions, called the Beck-Chevalley conditions,
insuring that the adjunction

∐
I,J a π

∗ is preserved by substitution
(see e.g. [14]).

The simple fibration s : s(B) → B has simple coproducts (see
e.g. [14, Prop. 1.9.3]). They are induced by∐

I,J

(I × J,X) := (I, J ×X)

So, for C symmetric monoidal, sCI :
∫
CI(C) → Comon(C) has

coproducts induced, recalling that Comon(C) is Cartesian, by∐
I,J

(I × J,X) := (I, J ⊗X)

This leads in DialZ to
∐

Σ,Γ(Σ× Γ, (U,X)) := (Σ, (Γ×U,X)).
The Beck-Chevalley condition amounts to (for L ∈ T[∆,Σ]):∐

∆,Γ

(L× idΓ)∗(Σ× Γ, (U,X)) = L∗(
∐
Σ,Γ

(Σ× Γ, (U,X)))

Universal Quantification. Universal quantifications (simple prod-
ucts [14]) are given by a right adjoint

∏
I,J to π∗ (also with a

Beck-Chevalley condition). It is also well-known (see e.g. [14,
Prop. 1.9.3.(ii)]) that the simple fibration s(B) has products

∏
I,J :

s(B)�I×J → s(B)�I iff B is Cartesian closed. They are given by∏
I,J

(I × J,X) := (I,XJ)

So, for C symmetric monoidal closed, recalling that Comon(C)
is Cartesian, the fibration sCI :

∫
CI(C)→ Comon(C) has simple

products induced by∏
I,J

(I × J,X) := (I, J (X)

In the case of DialZ, for Γ = (Γ,1) this gives∏
Σ,Γ(Σ× Γ, (U,X)) := (Σ, Γ(DZD (U,X))

' (Σ, (UΓ,Γ×X))

8 2016/7/7

The Beck-Chevalley condition amounts to (for L ∈ T[∆,Σ]):

L∗(
∏
Σ,Γ

(Σ× Γ, (U,X))) =
∏
∆,Γ

(L× idΓ)∗(Σ× Γ, (U,X))

4.6 The Distributive Law of Comonoid over Monoid
Indexing

We note here that the comonoids ΣD on DZD are actually gen-
erated (by the free functor FD of D) from comonoids Σ on DZ.
Moreover, on DZ, the comonad Σ is related to the monad D by a
distributive law.

The comonoid Σ = (Σ,1) on DZ is dual to the monoid D.

Proposition 4.12. In DZ, the objects Σ = (Σ,1) can be equipped
with a commutative comonoid structure (ẽΣ, d̃Σ) such that eΣ =
FD(ẽΣ) and dΣ = FD(ẽΣ).

Recall from e.g. [23] that FD is the identity on objects and takes
σ ∈ DZ[A,B] to ηB ◦ σ ∈ DZD[A,B].

A distributive law Λ of a comonad G over a monad T on a
category C is given by a natural transformation

Λ : G ◦ T =⇒ T ◦G
subject to some coherence conditions, which can be found e.g.
in [8]. These coherence conditions ensure that we can define a
category Kl(Λ), whose objects are the objects of C, and whose
morphisms are given by Kl(Λ)[A,B] := C[GA, TB].

We therefore take for G the comonad of indexing by the
comonoid Σ = (Σ,1), and for T the monad of indexing by the
monoid D = (1, D). For the natural transformation, we take the
natural associativity map of the monoidal structure of DZ:

ΦΣ
A := α−1

Σ,A,D : Σ⊗ (A⊗D) −((Σ⊗A)⊗D

Proposition 4.13. The family of maps ΦΣ
A : Σ ⊗ (A ⊗ D) −(

(Σ⊗A)⊗D forms a distributive law.

Remark 4.14. The Kleisli category Kl(ΦΣ) of ΦΣ is equivalent to
the category DialZΣ. It allows to describe the homset DialZΣ[A,B]
in the homset DZ[Σ ⊗ (A ⊗ D) , Σ ⊗ (B ⊗ D)]: A strategy
σ ∈ DialZΣ[A,B] can be lifted to the strategy σ↑ ∈ DZ[Σ ⊗
(A⊗D),Σ⊗ (B ⊗D)] defined as

σ↑ := (idΣ ⊗ (µB ◦ (σ ⊗ idD) ◦ ΦΣ
A)) ◦ δA

It moreover follows from the coherence laws of ΦΣ and of D and
Σ that σ↑ ◦ τ↑ = (σ ◦ τ)↑ and that idA

↑ = idΣ⊗(A⊗D).

5. Fibrations of Tree Automata
We present here an adaptation of the fibrations SAG(W) and
Aut(W) of [28]. They are based on the fibration DialZ of §4.

The fibrations Aut(W) are made of finite objects only (but their
morphisms can be arbitrary strategies), and can be seen as fibrations
of tree automata. The fibrations SAG(W) can be seen as the result
of saturating Aut(W) by precomposition of games with T-maps,
so that to incorporate infinite objects such asA(T) for an arbitrary
labelled tree T : D∗ → Σ.

We begin with fibrations DialAut(W) which generalize SAG(W)

so that to have existential and universal quantifications (in [28],
existential quantification is restricted to Aut(W)). We then present
SAG(W) and Aut(W) and finally discuss quantifiers.

5.1 The Fibred Categories DialAut and DialAutW

Given an alphabet Σ the (fibre) category DialAutΣ is defined as
follows. Its objects are tuples A = (QA, U,X, α) where

α :
⋃
n∈N

(Σn × Un ×Xn ×Dn) −→ QA

A morphism from A = (QA, U,X, α) to B = (QB , V, Y, β) is a
DialZΣ-strategy σ : (U,X)((V, Y).

The categories DialAutΣ are indexed over T: It follows from
Rem. 4.9 that a strategy L ∈ T[Σ,Γ] can be seen as a function

L :
∏
n∈N

((Σn+1 ×Dn)→ Γn+1)

The action of L∗ on A = (QA, U,X, α) is (QA, U,X,L
∗(α))

where L∗(α)(ε, ε, ε, ε) := α(ε, ε, ε, ε) and

L∗(α)(a, u, x, p.d) := α(L(a, p), u, x, p.d)

On maps, L∗ takes σ : A→ B to the action of L on σ in DialZ.
We get a strict indexed category, of which da : DialAut→ T is

the Grothendieck completion. Explicitly, the objects of DialAut are
pairs (Σ, A), where A is an object of DialAutΣ. Morphisms from
(Σ, A) to (Γ, B) are pairs (L, σ) where L ∈ T[Σ,Γ] and σ is a
DialAutΣ-map from A to L∗(B). The functor da : DialAut → T
is the first projection.

Winning. We equip objects of DialAutΣ with acceptance condi-
tions, leading to winning conditions on games5, and to the fibra-
tion daW : DialAutW → T. The objects of the fibre category
DialAutWΣ are pairs (A,ΩA) where A is an object of DialAutΣ
and ΩA ⊆ QωA. The morphisms are defined as follows.

Given a DialAutWΣ -object A = ((QA, U,X, α),ΩA), define
the DZ-object a(A) := (Σ×U,X×D) (see Rem. 4.14). We equip
a(A) with the winning condition WA consisting of the infinite
plays $ in a(A) such that (α(∂($(0). · · · .$(2n))))n ∈ ΩA.6

Given now another DialAutWΣ -objectB = ((QB , V, Y, β),ΩB),
a DialAutWΣ -map from A to B is a DialZΣ-strategy σ : (U,X)(
(V, Y) whose lift σ↑ (see Rem. 4.14) is (total) winning on a(A)(
a(B). Recall from Rem. 4.14 that (−)↑ preserves composition. It
follows that DialAutWΣ is a category since the identity is (total)
winning and since (total) winning strategies compose. Moreover,

Proposition 5.1. Given L ∈ T[Σ,Γ], L∗ restricts to a functor
DialAutWΓ → DialAutWΣ .

Then define daW : DialAutW → T by Grothendieck completion.

Symmetric Monoidal Closed Structure. The fibred symmetric
monoidal closed structure of DialZ extends to DialAut(W).

The unit is I := (1,1,1,1). Consider DialAutΣ objects A =
(QA, U,X, α) and B = (QB , V, Y, β). Following the structure in
DialZ, let

A⊗B := (Σ, Q, U × V,X × Y, α u β)
A(B := (Σ, Q, V U ×XU×Y×D, U × Y, α A β)

where Q := QA ×QB and

(α u β)(a, (u, v), (x, y), p) := (α(a, u, x, p) , β(a, v, y, p))

(α A β)(a, (f, F), (u, y), d) := (qA, qB)

where qA := α(a, u, F (u, d), d) and qB := β(a, f(v), y, d).
On DialAutWΣ -objects, define ΩA⊗B as in Def. 2.18 and ΩA(B

as in Def. 3.1.

Proposition 5.2. The fibrations DialAut(W) are fibrewise monoidal
closed.

5.2 Automata and Substituted Acceptance Games

We now discuss how the fibrations SAG(W) and Aut(W) of [28]
(adapted to the base category T) embed into DialAut(W).

5 See App. A
6 ∂ is defined in App. A.

9 2016/7/7

The Fibred Categories SAG(W). An object of the fibres SAG(W)
Σ

is a pair (A,M) of an automaton A : Γ and an M ∈ T[Σ,Γ]. It
leads to the DialAutΣ-object A(M) := (QA, U,X, α) where α is
defined by induction as α(ε, ε, ε, ε) := qıA, and

α(a.a, u.u, x.x, p.d) := δA(α(a, u, x, p) , M(p, a.a) , u , x , d)

where, by Rem. 4.9,M is seen as a map ∪n∈N(Σn+1×Dn)→ Γ.
The corresponding DialAutWΣ -object is A(M) := (A(M),ΩA).

A fibre SAG
(W)
Σ -morphism from (A,M) to (B, N) is then just

a DialAut
(W)
Σ -strategy

σ : A(M) −(B(N)

Given L ∈ T[Γ,Σ], the functor L∗ : SAG
(W)
Σ → SAG

(W)
Γ maps

(A,M) to (A,M ◦ L), and acts on strategies as in DialAut(W).
This gives fibrations sag(W) : SAG(W) → T.

The Fibred Categories Aut(W). The fibred categories Aut(W)

can be seen as the restrictions of sag(W) : SAG(W) → T to
automata and to indexing by finite functions between alphabets.

Write A for the category of non-empty finite sets: its objects are
alphabets (Σ, Γ, etc) and its morphisms are functions f : Σ→ Γ.

Note that f : Σ → Γ induces (via Rem. 4.9) the T-map
Mf := λa.λ .λa.f(a). The action of M∗f on a SAGΓ-object
A = (A, IdΓ)) gives the object (A,Mf), and thus the DialAutΣ-
object A(Mf). The action of α can be internalized in A. Since

α(a.a, u.u, x.x, p.d) = δA(α(a, u, x, p) , f(a) , u , x , d)

we can define an automaton A[f] such that A[f](IdΣ) = A(Mf).

Definition 5.3. Given A : Γ as in (1) and a function f : Σ → Γ,
define the automaton A[f] : Σ as

A[f] = (QA , q
ı
A , U , X , δA[f] , ΩA)

where δA[f](q, a, u, x, d) := δA(q, f(a), u, x, d).

The categories Aut
(W)
Σ are then the full subcategories of SAG(W)

Σ
with automata A : Σ (seen as (A, IdΣ)) as objects. We thus get
fibrations aut(W) : Aut(W) → A.

Symmetric Monoidal Closed Structure. The fibrewise symmet-
ric monoidal closed structure of Aut(W) is given by Def. 2.18 for
the monoidal product (with unit IΣ as in Ex. 2.4.(i)) and by Def. 3.1
for the closed structure.

This structure lifts to SAG(W) as follows. First, given A : Σ
and B : Γ, define the automaton A ⊗ B : Σ × Γ over Σ × Γ as
A[pΣ]⊗B[pΓ] (and similarly forA(B). where pΣ : Σ×Γ→ Σ
and pΓ are projections (as in Ex. 2.11). The fibrewise symmetric
monoidal closed structure of SAG(W) is then issued from

(A,M) 2 (B, N) := (A 2 B)〈M,N〉 (for 2 ∈ {⊗,(})
Note that (A,M) 2 (B, N) = A(M) 2 B(N).

Proposition 5.4. The fibrations Aut(W) and SAG(W) are fibrewise
symmetric monoidal closed.

5.3 Quantification
DialAut(W) and Aut(W) (but not SAG(W)) have existential and
universal quantifications, based on that of DialZ (see §4.5).

In DialAut(W), existential and universal quantifications are
given by∐

Σ,Γ

(Σ× Γ, (QA, U,X, α)) := (Σ, (QA,Γ× U,X,
∐
Σ,Γ

α))

∏
Σ,Γ

(Σ× Γ, (QA, U,X, α)) := (Σ, (QA, U
Γ,Γ×X,

∏
Σ,Γ

α))

where∐
Σ,Γ(α)(a, (b, u), x, p) := α((a, b), u, x, p)∏
Σ,Γ(α)(a, f , (b, x), p) := α((a, b), f(b), x, p)

The action on maps is inherited from DialZ. The Beck-Chevalley
condition amounts, for L ∈ T[∆,Σ], to∐
∆,Γ

(L× id)∗(α) = L∗(
∐
Σ,Γ

α) L∗(
∏
Σ,Γ

α) =
∏
∆,Γ

(L× id)∗(α)

Quantifications in Aut(W) are given by Def. 2.14 and Def. 3.5 Note
that as DialAut-objects,

∐
Σ,ΓA = ∃ΓA and

∏
Σ,ΓA = ∀ΓA.

Proposition 5.5. The fibrations DialAut(W) and Aut(W) have
existential and universal quantifications.

Remark 5.6. The isomorphisms (4) and (7) of Rem. 2.17 and
Rem. 3.6:

(∃ΓA)(M) (B(N) ' A(M × IdΓ) (B(N ◦ pΣ)
B(N) ((∀ΓA)(M) ' B(N ◦ pΣ) (A(M × IdΓ)

follow from the Beck-Chevalley conditions in DialAutW since∐
Σ,ΓA(M × IdΓ) = M∗(

∐
∆,ΓA) = (∃ΓA)(M)∏

Σ,ΓA(M × IdΓ) = M∗(
∏

∆,ΓA) = (∀ΓA)(M)

6. A Deduction System for Automata
We now present a deduction system for tree automata. It allows to
derive judgments of the form

M ; A ` A

where A = A1, . . . ,An and A have the same input alphabet Γ
(say), and M ∈ T[Σ,Γ]. The sequents are intended to be inter-
preted in the fibration SAGW as follows: If M ; A ` A is deriv-
able, then there is a winning P-strategy in A(M)(A(M).

Note that a game of the form A(M) (B(N) is represented
as the judgment 〈M,N〉 ; A[p] ` B[q] where p and q are suitable
projections.

The rules are given in Figs. 6, 7, 8 and 9. The properties of
SAGW seen up to now allows to show the adequacy (existence of
a winning strategy for derivable judgments) of the system made of
the rules of Figs. 6, 7 and 8. The interpretation of the exponential
rules of Fig. 9 is presented in §7.
Example 6.1. (i) If A is non-deterministic, then using rules of

Fig. 9 one can derive A ` A⊗A.
(ii) Continuing (i), if B is non-deterministic, then one can derive
B⊗(B(A) ` A⊗B, so that by adequacy, P has a winning
strategy on B ⊗ (B(A) −(A⊗ B.
It then follows from Ex. 3.4 that if A and B are both non-
deterministic and Borel with L(A) ∩ L(B) = ∅, then P has
winning strategy on (B(A) −(B‹.

Remark 6.2 (Cut-Elmination). The rules of Fig. 6, Fig. 7 and Fig. 8
are compatible with cut-elimination (see e.g. [23]). For instance,
the following two derivations are interpreted by the same strategy

∆1

A ` B
I ` A(B

∆2

I ` A B ` B
A(B ` B

I ` B

...
∆1[∆2/A]

I ` B

7. The Exponential Modality
We now discuss the interpretation of the exponential rules of Fig. 9.
Note that these rules are restricted to regular automata and that the
usual weakening rule is part of the basic system (Fig. 6), thanks to

10 2016/7/7

M ; A, A ` A
M ; A ` B M ; C, B ` C

M ; A, C ` C

M ; A, B, C ` A
M ; A, B ⊗ C ` A

M ; A ` A M ; B ` B
M ; A, B ` A⊗ B

M ; B ` B M ; C, C ` A
M ; B, C,B(C ` A

M ; A, B ` C
M ; A ` B(C

M ; A ` I

M ; A ` A
M ; A, B ` A

Figure 6. Linear propositional rules

M ; A ` A
M ◦N ; A ` A

M × IdΓ ; A ` A a ∈ A[Σ,Γ]

M × IdΣ ; A[a] ` A[a]

Figure 7. Substitution rules (where M and N are composable)

M × IdΓ ; A[p], B ` A[p]

M ; A, ∃ΓB ` A
M ×N ; A ` A

M ×N ; A ` (∃ΓA)[p]

M ×N ; A, B ` A
M ×N ; A, (∀ΓB)[p] ` A

M × IdΓ ; A[p] ` A
M ; A ` ∀ΓA

Figure 8. Quantification rules (where p is a suitable projection)

M ; !A ` A
M ; !A ` !A

M ; A, B ` A
M ; A, !B ` A

M ; A, !B, !B ` A
M ; A, !B ` A

Figure 9. Exponentials (for regular automata)

Ex. 2.19.(i). The exponential automaton !A is a non-deterministic
automaton obtained by an adaptation of a known construction [31].

The most difficult rule is the first one (Promotion). It relies on
the existence of positional strategies in suitable games. Unfortu-
nately, these strategies do not compose, so that the rules of Fig. 9
are not compatible with cut-elimination (in the sense of Rem. 6.2).
Example 7.1. The law of Peirce !((?A ⇒ ?B) ⇒ ?A) ` ?A,
(where ?A = (!A‹)‹, see Ex 3.9. (i)) can be derived using the
exponential rules.

Game Graphs and Positionality. Fix A(M) : Σ and B(N) : Σ.
The game graph of A(M)(B(N) is the graph G with vertices:

(AP ×BP) + (AO ×BP) + (AO ×BO)

where
AP := D∗ × Σ∗ ×QA
BP := D∗ × Σ∗ ×QB

AO := D∗ × Σ∗ ×QA × U
BO := D∗ × Σ∗ ×QB × V

and edges as in Fig. 10, with q′A := δA(qA,M(a.a, p), u, x, d)
(for some x ∈ X) and q′B := δB(qB, N(a.a, p), v, y, d) (for some
y ∈ Y). Write pos for the graph morphism from the set of plays
of the game A(M) (B(N) (seen as a tree) to G. We say that a
strategy σ is positional if it agrees on plays with the same position,
i.e. if s.m ∈ σ, t.m′ ∈ σ with pos(s) = pos(t) implies m = m′.

((p , a , qA) , (p , a , qB)) AP ×BP

O ↓
((p , a.a , qA , u) , (p , a , qB)) AO ×BP

P ↓
((p , a.a , qA , u) , (p , a.a , qB , v)) AO ×BO

O ↓
((p , a.a , qA , u) , (p.d , a.a , q′B)) AO ×BP

P ↓
((p.d , a.a , q′A) , (p.d , a.a , q′B)) AP ×BP

Figure 10. Edges of the graph G

Consider now parity automata A1, . . . ,An and B. Then the
winning condition of a game of the form A1(M1) ⊗ . . . ⊗
An(Mn)(B(N) is a disjunction of parity conditions, also called
a Rabin condition, which is induced by colorings depending only
on the vertices of its game graph G. It has been shown in [16–
18, 32] that if P has a winning strategy σ in such a game, then
he has a winning positional strategy (w.r.t. G), which according
to [32] is recursive in σ.

Non-Determinization (or Simulation [25]). Given a parity au-
tomaton A : Σ, by adapting the construction of [31], we let

!A := (Q!A , q
ı
!A , U

QA , 1 , δ!A , Ω!A)

whereQ!A := P(QA×QA), qı!A := {(qıA, qıA)} and the transition
function δ!A is defined as follows: Given a ∈ Σ, f ∈ UQA , d ∈ D
and S = {(, q1), . . . , (, qn)} ∈ Q!A, let

δ!A(S, a, f, •, d) := T1 ∪ · · · ∪ Tn
where, for each k ∈ {1, . . . , n},

Tk := {(qk, q) | ∃x ∈ X. q = δA(qk, a, f(qk), x, d)}
Let a trace in an infinite sequence (Sn)n ∈ Qω!A be a sequence
(qn)n such that for all n, (qn, qn+1) ∈ Sn+1. We let Ω!A be the
set of sequences (Sn)n whose traces all belong to ΩA. Note that
Ω!A is ω-regular since ΩA is ω-regular.

If A is a regular automaton, let !A := !(A†) (see Ex. 2.10.(ii)).

Interpretation of the ‘!′ Rules. We now discuss the interpretation
of the rules of Fig. 9. The first rule (called Promotion) follows from:

Proposition 7.2. If N is regular non-deterministic and A is regu-
lar, and if there is a winning P-strategy on N (L) (A(M) then
there is a winning P-strategy onN (L)(!A(M).

Prop. 7.2 relies on the existence of positional winning strategies in
Rabin games. The second rule (called Dereliction) is given by:

Proposition 7.3. If A is regular, there is a winning P-strategy
εA(M) on !A(M)(A(M).

Corollary 7.4. L(A) = L(!A) for a regular A.

The last rule (Contraction) follows from Ex. 2.19.(ii) and the fact
that !A is non-deterministic.

Weak Completeness. The exponentials satisfy the following weak
completeness property (see Ex. 3.9.(ii))

Proposition 7.5 (Weak Completeness). Given regular automataA
and B on Σ, if L(A) ⊆ L(B) then there is an effective winning P-
strategy on !A((!(B‹))‹.

8. Conclusion
We proposed fibred monoidal closed categories of tree automata.
They handle their basic constructs (closure under Boolean opera-
tions and equivalence with non-deterministic automata). Our model

11 2016/7/7

is based on games, which provide a realizability semantics for tree
automata. Further work will include the interpretation of deduction
systems for MSO.

A. Simple Games
Simple Games. Simple games are two-player games where the
Proponent P (∃loı̈se) and the Opponent O (∀belard) play in turn
moves from a specific set, producing sequences of moves which
may be subject to specified rules. Formally, a simple game A has
the form

A = (A+, A−, ξA, LA)

where A+ (=: AP) and A− (=: AO) are resp. the sets of P-moves
and O-moves, ξA ∈ {+,−} is the polarity of A, and LA ⊆ ℘ξAA
is a non-empty prefix-closed set of legal plays, where the sets ℘+

A

and ℘−A of positive and negative plays are given by

℘ξA := (Aξ ·A−ξ)∗ + (Aξ ·A−ξ)∗ ·Aξ for ξ ∈ {+,−}

So P starts in a positive game and O starts in a negative one. We let
s, t, . . . range of over plays and m,n, . . . range over moves. We
write ℘even

A for the set of even length plays in ℘ξAA . Note that there
is a bijection

∂ = 〈∂U , ∂X〉 : ℘even
A −→ ∪n∈N(Un ×Xn)

with ∂(ε) = (•, •) and ∂(s.u.x) = (∂U (s).u, ∂X(s).x).
The dual of A is the game A := (AO, AP,−ξA, LA). A game

A is full if LA = ℘ξAA . We write

A = (U,X)

to denote a full positive game with AP := U and AO := X .
A play is a P-play (resp. an O-play) if it is either empty or ends

with a P-move (resp. an O-move). A P-strategy σ is a non-empty
set of legal P-plays which is

P-prefix-closed: if s.t ∈ σ and s is a P-play then s ∈ σ, and

P-deterministic: if s.n ∈ σ and s.m ∈ σ then n = m.

Linear Arrow Games. Simple games form a category SG, in
which, given games A and B of the same polarity, the morphisms
from A to B are P-strategies in the negative linear arrow game

A(B = (BP +AO, BO +AP,−, LA(B)

where LA(B ⊆ ℘−A(B consists of those negative plays s such
that s�A ∈ LA and s�B ∈ LB , where s�A is the restriction of s to
AP +AO, and similarly for s�B.

Note that the polarity of moves in component B is preserved
while the polarity of moves in A is reversed. The plays of A(B
start in component A iff A and B are both positive. Moreover,
plays satisfy the switching condition: given s.m.n ∈ LA(B , with
n ∈ (A (B)O, then m and n are in the same component (i.e.
only P is allowed to switch between A and B).

The Hyland-Schalk Functor [12]. There is a faithful functor
HS : SG −→ Rel. mapping a simple game to its set of
legal plays, and a strategy σ : A(B to

HS(σ) := {(s�A, s�B) | s ∈ σ} ⊆ LA × LB
Hence strategies σ : A(B can be represented as spans

LA ←− HS(σ) −→ LB

In particular, the identity strategy idA is the unique strategy such
that HS(idA) = LA ×LA LA, where LA ×LA LA is the pullback
of the identity LA → LA with itself in Set.

Zig-Zag Strategy Given simple games A and B, a strategy σ :
A (B is a zig-zag strategy if for all play s ∈ σ, the restrictions
s�A and s�B have the same length. It is easy to check that zig-zag
strategies form a categories.

Note that synchronous strategies are zig-zag strategies. A zig-
zag strategy σ : A (B always has to switch component (recall
that O can never switch). In particular, ifA andB are positive, then
the plays of σ have the same shape as those of Fig. 4 (left).

Totality. Given games A and B, a strategy s : A(B is total if
given s ∈ σ, if s.n is legal then s.n.m ∈ σ for some move m.

It is easy to see that if σ : A (B and τ : B (C are both
zig-zag and total, then τ ◦ σ is zig-zag and total.

Indeed, consider (s, t) ∈ HS(τ ◦ σ) = HS(τ) ◦ HS(σ), and
u such that (s, u) ∈ HS(σ) and (u, t) ∈ HS(τ). Given a legal
(A (C)O-move m in (say) component A, since σ is zig-zag
and total, there is some n such that (s.m, u.n) ∈ HS(σ). Since
n ∈ BP ⊆ (B (C)O, and since τ is zig-zag and total, there is
some r ∈ CP such that (u.n, t.r) ∈ HS(τ), from which it follows
that (s.m, t.r) ∈ HS(τ ◦ σ). The case of m ∈ CO is similar.

Since identity strategies are total, it follows that simple games
and total zig-zag strategies form a category.

Winning. Simple games can be equipped with winning condi-
tions, which are infinite sequences of moves.

It is well-known (see e.g. [1, 10]), that total and winning strate-
gies compose and form a category. The case of zig-zag strategies
is particularly simple. Given (A,WA) and (B,WB), a total zig-
zag strategy σ : A (B is winning if for all infinite sequences
of moves $ such that $(0). · · · .$(n) ∈ σ for infinitely many n,
$�A ∈ WA implies $�B ∈ WB .

References
[1] S. Abramsky. Semantics of Interaction. In A. M. Pitts and P. Dybjer,

editors, Semantics and Logics of Computation, volume 14 of Publi-
cations of the Newton Institute, page 1. Cambridge University Press,
1997. 1, 3, 12

[2] J. Avigad and S. Feferman. Gödel’s functional (”Dialectica”) inter-
pretation. In S. Buss, editor, Handbook Proof Theory, volume 137 of
Studies in Logic and the Foundations of Mathematics, pages 337–405.
Elsevier, 1998. 1, 5

[3] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring.
First steps in synthetic guarded domain theory: step-indexing in the
topos of trees. Logical Methods in Computer Science, 8(4), 2012. 21,
22, 24

[4] T. Colcombet and C. Löding. The Non-deterministic Mostowski
Hierarchy and Distance-Parity Automata. In ICALP 2008, volume
5126 of Lecture Notes in Computer Science, pages 398–409. Springer,
2008. 3

[5] V. de Paiva. The Dialectica categories. Technical Report 213, Univer-
sity of Cambridge Computer Laboratory, January 1991. 1, 19

[6] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102,
1987. 1

[7] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of LNCS,
2002. Springer. 1, 2, 3

[8] R. Harmer, M. Hyland, and P.-A. Melliès. Categorical combinatorics
for innocent strategies. In LICS 2007, pages 379–388, 2007. 9, 30, 39

[9] P. J. W. Hofstra. The dialectica monad and its cousins. In M. Makkai
and B. Hart, editors, Models, Logics, and Higher-dimensional Cate-
gories: A Tribute to the Work of Mihály Makkai, CRM proceedings &
lecture notes. American Mathematical Society, 2011. 1, 7

[10] J. M. E. Hyland. Game Semantics. In A. M. Pitts and P. Dybjer, edi-
tors, Semantics and Logics of Computation, volume 14 of Publications
of the Newton Institute, page 131. Cambridge University Press, 1997.
1, 3, 12

12 2016/7/7

[11] J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Logic,
114(1-3):43–78, 2002. 1, 7, 19

[12] J. M. E. Hyland and A. Schalk. Abstract Games for Linear Logic.
Electr. Notes Theor. Comput. Sci., 29:127–150, 1999. 7, 12, 14

[13] J. M. E. Hyland and A. Schalk. Glueing and orthogonality for models
of linear logic. Theoretical Computer Science, 294(1/2):183–231,
2003. 7, 19, 20, 21, 45, 46, 47

[14] B. Jacobs. Categorical Logic and Type Theory. Studies in logic and
the foundations of mathematics. Elsevier, 2001. 1, 4, 7, 8, 15

[15] P. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 1986. 2

[16] C. S. Jutla. Determinization and Memoryless Winning Strategies. Inf.
Comput., 133(2):117–134, 1997. 11, 18

[17] N. Klarlund. Progress measures, immediate determinacy, and a subset
construction for tree automata. Annals of Pure and Applied Logic, 69
(2-3):243–268, 1994.

[18] N. Klarlund and D. Kozen. Rabin Measures. Chicago J. Theor.
Comput. Sci., 1995, 1995. 11, 18

[19] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their
Use in Mathematics. Springer Monographs in Mathematics. Springer,
2008. 1, 5

[20] S. Mac Lane. Categories for the Working Mathematician. Springer,
2nd edition, 1998. 14, 35

[21] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: A first
introduction to topos theory. Springer, 1992. 21

[22] D. A. Martin. Borel Determinacy. The Annals of Mathematics, Second
Series, 102(2):363–371, 1975. 5, 17

[23] P.-A. Melliès. Categorical semantics of linear logic. In Interactive
models of computation and program behaviour, volume 27 of Panora-
mas et Synthèses. SMF, 2009. 6, 7, 9, 10, 14, 20, 26, 35, 36, 38, 43,
46, 47, 49

[24] D. E. Muller and P. E. Schupp. Alternating Automata on Infinite Trees.
Theor. Comput. Sci., 54:267–276, 1987. 1, 2, 5

[25] D. E. Muller and P. E. Schupp. Simulating Alternating Tree Automata
by Nondeterministic Automata: New Results and New Proofs of the
Theorems of Rabin, McNaughton and Safra. Theor. Comput. Sci., 141
(1&2):69–107, 1995. 1, 2, 6, 11

[26] D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic
and Games. Pure and Applied Mathematics. Elsevier, 2004. 1, 2, 3

[27] M. O. Rabin. Decidability of Second-Order Theories and Automata
on Infinite Trees. Transactions of the American Mathematical Society,
141:1–35, 1969. 1

[28] C. Riba. Fibrations of tree automata. In TLCA, volume 38 of LIPIcs,
pages 302–316. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015. 1, 2, 3, 4, 5, 6, 7, 9, 14, 16

[29] L. Santocanale and A. Arnold. Ambiguous classes in mu-calculi
hierarchies. Theor. Comput. Sci., 333(1-2):265–296, 2005. 6

[30] W. Thomas. Languages, Automata, and Logic. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume III,
pages 389–455. Springer, 1997. 1, 2, 3, 6, 17

[31] I. Walukiewicz. Monadic second-order logic on tree-like structures.
Theor. Comput. Sci., 275(1-2):311–346, 2002. 1, 2, 3, 11, 17

[32] Z. Zielonka. Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. Theoretical Computer Science, 200
(1-2):135–183, 1998. 11, 18

13 2016/7/7

B. Proofs of §4 (Simple Zig-Zag Games)
In this appendix we give the proofs of §4. The monoidal closed structure is proven directly here. The other parts (concerning the symmetric
monoidal structure, as well as §4.3, §4.4 and §4.6 are based on an interpretation of DZ is a subcategory of the simple self-dualization G(S)
of the topos of trees S . The construction of simple self dualization is presented in §F. The representation of zig-zag strategies in G(S) is
presented in §G. Some material on monoidal categories is recalled in §J.

B.1 The Monoidal Structure of DZ

The monoidal structure of DZ is given by the following data, (where A = (U,X), B = (V, Y) and C = (W,Z)):

A⊗B := (U × V,X × Y) with unit I := (1,1)

and the natural structure maps:

(A⊗B)⊗ C
αA,B,C

−(A⊗ (B ⊗ C)
O ((u, v), w)

(u, (v, w)) P
(x, (y, z)) O

P ((x, y), z)

I⊗A
λA

−(A
O (•, u)

u P
x O

P (•, x)

A⊗ I
ρA
−(A

O (u, •)
u P
x O

P (x, •)

A⊗B
γA,B

−(B ⊗A
O (u, v)

(v, u) P
(y, x) O

P (x, y)

The following is shown in Prop. G.5 using a represention of total zig-zag strategies in the topos of trees.

Proposition B.1 (Prop. 4.2). The category DZ equipped with the above data is symmetric monoidal.

B.2 The Monoidal Closed Structure of DZ

Proposition B.2 (Prop. 4.3). The category DZ is symmetric monoidal closed.

We rely on the faithfulness of HS : SG→ Rel (see [12], but also Lemma 4.6 in the Appendix of the long version of [28].7

Recall from e.g. [23] that a symmetric monoidal category C is closed if for every object A, the functor A⊗ (−) has a right adjoint (−)A.
Since A ⊗ (−) is already a functor, according to [20, Thm. IV.1.2] it is sufficient to show that for every object C there is an object CA and
map

evalC : A⊗ CA −→ C

such that for every f : A⊗B → C there is a unique Λ(f) : B → CA such that

A⊗ CA
evalC // C

A⊗B
f

88

idA⊗Λ(f)

OO

Proof of Prop. B.2. Let A = (U,X), B = (V, Y) and C = (W,Z). Recall that A(DZ C = (WU ×XU×Z , U × Z). We define the total
zig-zag strategy evalC : A⊗ (A(DZ C)(C as follows:

A⊗ (A(DZ C)
evalC
−(C

O (u, (f, F))
f(u) P
z O

P (F (u, z), (u, z))

Given any τ ′ : B ((A(DZ C), the composition evalC ◦ (idA ⊗ τ ′) is given by:

A⊗B
idA⊗τ ′
−(A⊗ (A(DZ C)

evalC
−(C

O (u, v)
(u, (f ′, F ′))

f ′(u) P
z O

(F ′(u, z), (u, z))
P (F ′(u, z), y′)

It follows that evalC ◦ (idA ⊗ τ ′) = evalC ◦ (idA ⊗ τ ′′) implies τ ′ = τ ′′.

7 Available at https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf.

14 2016/7/7

https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf

We show this by induction on pairs of even-length plays (s, t) ∈ ℘even
A × ℘even

A(DZC
. Assume toward a contradiction that for some such

(s, t) ∈ HS(τ ′) ∩ HS(τ ′′), for some v ∈ V we have (s.v, t.(f ′, F ′)) ∈ HS(τ ′) and (s.v, t.(f ′′, F ′′)) ∈ HS(τ ′′) with f ′ 6= f ′′. Then for
some u ∈ U , we have say f ′(u) 6= f ′′(u). Then, for some r we have

evalC ◦ (idA ⊗ τ ′) 3 r.(u, v).f ′(u) 6= r.(u, v).f ′′(u) ∈ evalC ◦ (idA ⊗ τ ′′)

Hence a contradiction. The case of F ′ 6= F ′′ is dealt-with similarly.
Fix now some total zig-zag σ : A⊗B (C.
We define τ = Λ(σ) : B ((A (DZ C) by induction on plays. To each (s, t) ∈ HS(τ), with s and t even-length, we

associate (s′, t′) ∈ HS(σ), with s′ and t′ of the same length, and such that, for (v, y) = ∂(s) and ((f, F), (u, z)) = ∂(t), we have
∂(s′) = ((u, v), (F (u, z), y)) and ∂(t′) = (f(u), z), where we take the pointwise application of sequences of functions and the map ∂ is
defined in App. A.

For the base case, we put (ε, ε) ∈ HS(τ), and associate it to (ε, ε) ∈ HS(σ).
Assume now (s, t) ∈ HS(τ), associated to (s′, t′) ∈ HS(σ). For each v ∈ V , we define the functions fv : U → W and

Fv : U × Z → X as follows: given u ∈ U , let w such that (s′.(u, v), t′.w) ∈ HS(σ), and for each z ∈ Z, let x and yu,z such that
(s′.(u, v).(x, yu,z), t

′.w.z) ∈ HS(σ). We then let fv(u) := w and Fv(u, z) := x. We now let (s.v.yu,z, t.(fv, Fv).(u, z)) ∈ HS(τ), and
associate it to (s′.(u, v).(x, yu,z), t

′.w.z) = (s′.(u, v).(Fv(u, z), yu,z), t
′.fv(u).z) so that the invariant is satisfied.

This conclude the definition of τ .
It then follows from the invariant that we indeed have evalC ◦ idA ⊗ τ = σ.
First note that the map (s, t) ∈ HS(τ) 7→ (s′, t′) ∈ HS(σ) is surjective. The property then follows from the fact that (s, t) ∈ HS(τ)

iff (s′, t′) ∈ HS(evalC ◦ idA ⊗ τ). This is shown by induction on pairs of plays (s, t) ∈ ℘even
B × ℘even

A(DZC
. The base case is

trivial. For the induction step, given such (s.v.yu,z, t.(fv, Fv).(u, z)), we have (s.v.yu,z, t.(fv, Fv).(u, z)) ∈ HS(τ) if and only if
(s′.(u, v).(Fv(u, z), yu,z), t

′.f)v(u).z) ∈ HS(evalC ◦ idA ⊗ τ).
This concludes the proof of Prop. B.2.

B.3 D-Synchronicity (§4.3)
The following is shown in Prop. G.6.(i) using a represention of total zig-zag strategies in the topos of trees.

Proposition B.3 (Prop. 4.4). In DZ, the object D := (1, D) is a commutative monoid with structure:

I
u
−(D

O •
• P
d O

P •

D ⊗D
m
−(D

O (•, •)
• P
d O

P (d, d)

Proposition B.4 (Prop. 4.5). DZD is symmetric monoidal closed.

Proof. The closed structure is presented in §4.3. The symmetric monoidal structure, which follows from the fact that the monad D is (lax)
symmetric monoidal, is given by Cor. J.11 applied to Prop. B.3.

B.4 Comonoid Indexing in DZD (§4.4.2)
The following is shown in Prop. G.7 using a represention of total zig-zag strategies in the topos of trees.

Proposition B.5 (Prop. 4.6). In DZD , each object Σ = (Σ,1) is a commutative monoid with structure:

Σ
eΣ
−(I

O a
• P
d O

P •

Σ
dΣ

−(Σ⊗ Σ
O a

(a, a) P
d O

P •
The proof of the following is dual to that of Prop. B.4. We apply Cor. J.13 instead of Cor. J.11 and Prop. B.5 instead of Prop. B.3.

Proposition B.6 (Prop. 4.7). DialZΣ is symmetric monoidal closed.

B.5 The Fibred Category DialZ (§4.4.3)
The following is shown in Prop. G.8.

Proposition B.7 (Prop. 4.10). The category T embeds to Comon(DZD) via the functor ET mapping an object Σ of T to the comonoid
(Σ, eΣ, dΣ) and a morphism M : T[Γ,Σ] to itself.

Proposition B.8 (Prop. 4.11). dz : DialZ→ T is symmetric monoidal closed.

Proof. For the symmetric monoidal structure, we use the known fact that change-of-base of fibrations preserves fibrewise structure (see
e.g. [14, Lem. 8.4.1]). Given a symmetric monoidal category C, the slice categories of

∫
CI(C) are the Kleisli categories for the (oplax)

symmetric monoidal comonads of comonoid indexing. So the argument is the same as for Prop. B.6 above. In order to show that
sCI(C) :

∫
CI(C) → Comon(C) is fibrewise symmetric monoidal, we have to show that substitution functors are strong symmetric

15 2016/7/7

monoidal. Given a commonoid morphism u : K → L in Comon(C), the substitution functor u∗ is the identity on objects, so the strength
is made of identities. It remains to show that the required diagrams commute (see §J.1.1), which amounts to

u∗(αKl(L)) = αKl(K) u∗(ρKl(L)) = ρKl(K) u∗(λKl(L)) = λKl(K) u∗(γKl(L)) = γKl(K)

where αKl(−), ρKl(−), λKl(−) and γKl(−) are the symmetric monoidal structure maps of Kl(−). But by §J.3.8 each of these maps fKl(−) is
f ◦ λ ◦ (e⊗ id) (where f is the corresponding map of C), so that in C:

u∗(fKl(L)) = f ◦ λ ◦ (e⊗ id) ◦ (u⊗ id)

and we are done since e ◦ u = e as u is a comonoid morphism (see §J.3.4).
The argument is the same for the fibrewise symmetric monoidal closed structure of DialZ, since the closed structure of the fibre DialZΣ

is directly lifted by the comonad Σ from the closed structure of DZD .

B.6 The Distributive Law of Comonoid over Monoid Indexing (§4.6)

Proposition B.9 (Prop. 4.12). In DZ, the objects Σ = (Σ,1) can be equipped with a commutative comonoid structure (ẽΣ, d̃Σ) such that
eΣ = FD(ẽΣ) and dΣ = FD(ẽΣ).

Proof. This is the construction of Prop. J.9 applied to Prop. G.6.(ii).

The following is given by Prop. J.14.

Proposition B.10 (Prop. 4.13). The family of maps ΦΣ
A : Σ⊗ (A⊗D) −((Σ⊗A)⊗D forms a distributive law.

Note that the DZ-monoids Σ = (Σ,1) on which Prop. B.10 is based are directly obtained from Prop. G.6.(ii).

Remark B.11 (Rem. 4.14). The fact that the Kleisli category Kl(ΦΣ) of ΦΣ is equivalent to the Kleisli category DialZΣ of the lift ΣD of the
comonad Σ is well-known and stated in Prop. J.5.

C. Proofs of §2, §3 and §5
C.1 Proofs of §5 (Fibrations of Tree Automata)
Proposition C.1 (Prop. 5.1). Given L ∈ T[Σ,Γ], L∗ restricts to a functor DialAutWΓ → DialAutWΣ .

Proof. Assume given a DialAutWΓ -strategy σ : A → B where A = ((QA, U,X, α),ΩA) and B = ((QB , V, Y, β),ΩB). First, note that
σ : (Σ× U,X)((V, Y ×D) in DZ, so that σ↑ : (Σ× U,X ×D) −((Σ× V, Y ×D) (see Rem. 4.14).

Consider an infinite play $ of (L∗(σ))↑. Reasonning as in App. 7.2 & 8.2 of the long version of [28]8 the play $ can be mapped to an
infinite play $′ of σ, where the sequences of characters b ∈ Γ provided by O in the game a(A) (a(B) are the image under L of the
input characters a ∈ Σ (from corresponding tree positions p ∈ D∗) provided by O in the game a(L∗(A))(a(L∗(B)). It follows that the
infinite sequences in QA and QB produced by $ and $′ are the same, so that $ is P-winning iff $′ is P-winning. Hence $ is P-winning
since σ is winning.

Proposition C.2 (Prop. 5.2). The fibrations da(W) : DialAut(W) → T are fibrewise symmetric monoidal closed.

Proof. The case of DialAut follows from Prop. B.8 and fact that the operations αuβ and α A β are preserved by substitution. For DialAutW,
note in addition that all the symmetric monoidal structure maps as well as the evaluation map are (total) winning, and that the Currying map
Λ(−) preserves (total) winning strategies.

C.2 Proofs of §2 (A Curry-Howard Approach to Tree Automata)
Proposition C.3 (Prop. 2.12). Given A : Σ and B : Σ, if there is a winning P-strategy σ in A(B, then L(A) ⊆ L(B).

Proof. Let T : D∗ → Σ. Since σ is a DialAutWΣ -map, it follows from Prop. C.1 that T ∗(σ) is a DialAutW1 -map from A(T) to B(T).
Now, if T ∈ L(A), then there is a DialAutW1 -strategy τ in I1 (A(T). It follows from App. A that T ∗(σ)◦τ is winning on I1 (B(T),

hence that T ∈ L(B).

Proposition C.4 (Prop. 2.15). If A : Σ× Γ is non-deterministic then L(∃ΓA) = pΣ(L(A)).

Proof.

8 Available at https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf.

16 2016/7/7

https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf

C.3 Proofs of §3 (A Dialectica-Like Approach to Automata)
Proposition C.5 (Prop. 2.20). L(A⊗ B) = L(A) ∩ L(B).

Proof. The inclusion (⊆) follows using the projections A⊗ B → A and A⊗ B → B.
For the other direction, using Prop. C.2, tensor σ winning on I1 (A(T) with τ winning on I1 (B(T) and then precompose with a

monoidal unit map.

Proposition C.6 (Prop. 3.3). If ΩA is Borel, then T ∈ L(A‹) iff T /∈ L(A).

Proof. The argument is an adaptation of [31]. By Martin’s Theorem [22], it is equivalent to show that P wins the game A‹(T) iff O wins
A(T), where, using the notions of §A, an O-strategy is just a P-strategy on the dual game.

For (⇒), assuming given a winning P-strat σ onA(T)(‹, we build a winning O-strat τ inA(T). The strategy τ is build by induction
on plays. To each play t of τ , we associate a play s of σ such that if t leads to state qA, then s leads to state (qA, f). In the base case, both
t and s are the empty plays, and the invariant is respected. For the induction step, assume that P plays u from t in A(T). Let (f, F) be the
move of σ from s. We then let τ answer the pair (F (u, f(u)), f(u)) from s.u, andA goes to state q′A. InA(T)(‹, we let O play the pair
(f(u), u). ThenA(‹ goes to state (q′A, f) and the invariant is respected. Since σ is winning andA(‹ stays in states of the form (, f)
the infinite sequence of states produced in A(T) is rejecting, as required.

For the conversion direction, assuming given a winning O-strat τ on A(T), we build a winning P-strat σ in A(T)(‹. The strategy σ
is build by induction on plays as long as A (‹ stays in states of the form (, f) (if it switches to (, t) then P trivially wins). So to each
play s of σ which leads to state (qA, f), we associate a play t of τ which leads to state qA. The base case is trivial. For the induction step,
we build (f, F) from σ as follows: to each u, σ associates (from t) a pair (x, d). We let F (u,) := d and f(u) := x. Assume then that from
s.(f, F), O plays some (u, d). If d 6= f(u) then we are done. Otherwise, A(‹ switches to (q′A, f). We then let P play u from t, so that
by construction τ answers (F (u,), d), and A goes to state q′A. But then, since τ is winning for O, the sequence of A-states is rejecting, so
that P wins in A(T)(‹, as required.

The following proposition contains an effective strengthening of the part of Ex. 3.4. It asserts the existence of a winning P-strategy on
A⊗ B(‹ as soon as A and B are non-deterministic regular automata over Σ such that L(A) ∩ L(B) = ∅.
Proposition C.7 (Ex. 3.4). Given non-deterministic Borel A : Σ and B : Σ, if L(A) ∩ L(B) = ∅, then there are winning P-strategies in
A⊗ B(‹ and A(B‹. If moreover A and B are regular then the P-strategies can be assumed to be regular.

The effectiveness part of the statment can be seen to follow from Ex. 3.7.(ii). It is nevertheless interesting to note how the strategy can be
effectivelly computed in this particular case.

Proof. Since L(A) ∩ L(B) = ∅, we have L(A ⊗ B) = ∅ by Prop. C.5. Since A and B are non-deterministic, so is A ⊗ B. It then follows
from Prop. C.4 that L(∃Σ(A ⊗ B)) = ∅, hence, by Prop. C.6 that the automaton (∃Σ(A ⊗ B))‹ : 1 accepts the unique tree 1 : D∗ → 1.
But winning P-strategies in (∃Σ(A⊗ B))‹(1) can be lifted to winning P-strategies in

I1 −((∃Σ(A⊗ B))‹(1)

But note that since (∃Σ(A⊗ B))‹ : 1, that game is actually the same as the game

I1 −((∃Σ(A⊗ B))‹

It then follows from Prop. C.2 that there is a winning P-strategy in the game

∃Σ(A⊗ B) −(‹
and therefore by Prop. 5.5 that there is a winning P-strategy on A⊗ B(‹ and therefore also in A(B‹.

If the automata A and B are regular, then the automaton (∃Σ(A ⊗ B))‹ is regular. It is therefore effectivelly equivalent to a parity
automaton (see Ex. 2.10.(ii)). It is then well-known (see e.g. [30, Thm. 6.18]) that there is effectivelly a regular winning P-strategy in the
acceptance game (∃Σ(A ⊗ B))‹(1). It is easy to see that this strategy is lifted (as above) to regular winning P-strategies in A ⊗ B (‹
and A(B‹.

Proposition C.8 (Ex. 3.7.(iii)). L(B(A) ⊆ L(C) ⊆ L(B‹).

Proof. The inclusion L(B (A) ⊆ L(C) follows from the fact that since the games (B (A)(T) and C(T) have the same moves, any
P-strategy σ in (B (A)(T) is also a P-strategy in C(T). Moreover, if σ is winning on (B (A)(T) then it is also winning on C(T),
because the only possibility for a play to produce different state sequences on (B(A) and C (modulo the projection π used in the definition
of ΩC) is that C switches to state t, which is an accepting trap.

For the inclusion L(C) ⊆ L(B‹), consider a winning P-strategy σ in C(T). Recall that the P-moves of B‹ are DV and that its O-moves
are V , and that the P-moves of C are UV and that its O-moves are V . Recall also from see Ex. 3.7.(iii), that there is a winning P-strategy
τ on A ⊗ B (‹ (whose P-moves are D and O-moves are U × V). We define a P-strategy θ by combining σ and τ as follows: modulo
Currying, θ plays from v ∈ V the tree direction d ∈ D proposed by T ∗(τ) from v and the u ∈ U given by σ on v. Hence the strategies σ
and θ play the same moves in B (provided by O). So the sequences of QB-states produced by σ and θ are the same, unless O plays in B‹
a tree direction d ∈ D different from the one proposed by θ, i.e. different from the one proposed by τ . In this case, the play on B‹(T) is
P-winning and we are done. Assume now that the sequences ofQB-states agree. We claim that they can not be in ΩB: The play respects σ, so
the sequence ofQA-states must belong to ΩA since σ is winning. But the play also respects T ∗(τ), which is winning inA(T)⊗B(T)(‹,
so the sequence of QA-states can not belong to ΩA. It follows that the sequence of QB-states can not belong to ΩB, and we are done since
the play in B‹(T) is then P-winning.

17 2016/7/7

D. Proofs of §6 (A Deduction System for Automata)
We give here a justification to the fact that if

M ; A1 , . . . , An ` A
is derivable using the rules of Figs. 6, 7 and 8, then there is a winning P-strategy σ in

A1(M)⊗ . . .⊗An(M) ` A(M)

The justification for derivations involving the exponential rules of Fig. 9 is given in §7 and Appendix E.
The proof is as usual by induction on the derivations and by cases on the last applied rules.

• The rules of Fig. 6 follow from the facts that SAGW
Σ are categories, moreover equipped with a symmetric monoidal closed structure

(Prop. 5.4) and from Ex. 2.19.(i).
• The rules of Fig. 7 follow from the facts that SAGW is fibred over T, and from the internalization of A-maps in automata (Def. 5.3).
• The rules of Fig. 8 follow from the adjunctions ∃(−) a p∗ a ∀(−) (Prop. 5.5) and from Rem. 5.6 (consequence of the adjunctions together

with Beck-Chevalley).

E. Proofs of §7 (The Exponential Modality)
Proposition E.1 (Ex. 7.1). The law of Peirce !((?A ⇒ ?B)⇒ ?A) ` ?A, (where ?A = (!A‹)‹, see Ex 3.9. (i)) can be derived using the
exponential rules.

Proof. We can derive

!A‹ , ?A ` ‹
so that (since ?B = (!B‹)‹)

!A‹ , ?A ` ?B
from which follows that

!((?A ⇒ ?B)⇒ ?A) , !A‹ ` ?A
and thus

!((?A ⇒ ?B)⇒ ?A) , !A‹ ` ‹
and we are done since ?A = (!A‹)‹.

Proposition E.2 (Prop. 7.2). If N is regular non-deterministic and A is regular, and if there is a winning P-strategy on N (L) (A(M)
then there is a winning P-strategy onN (L)(!A(M).

Proof. Note that we can assume N and A to be parity automata. Write G for the game graph of N (L) (A(M). Thanks to [16–18, 32],
that there is a positional (w.r.t. G) winning P-strategy σ onN (L)(A(M).

We build a winning P-strategy τ onN (L)(!A(M) such that the following invariant is satisfied:

• To each play t of τ with pos(t) = ((p, a, qN) , (p, a, S)) where S = {(, q1), . . . , (, qn)}, we associate a set E(t) = {s1, . . . , sn} of
plays of σ, with pos(si) = ((p, a, qN) , (p, a, qi)),
• and if moreover t′ extends t and is such that pos(t′) = ((p.d, a.a, q′N) , (p.d, a.a, S′)) then each for all s′ ∈ E(t′) there is some
s ∈ E(t) such that s′ extends s.

The strategy τ is build by induction on plays as follows:

• For the base case (initial position ε), we have by definition S = {(qıA, qıA)} and E(ε) = {qıA}.
• For the inductive step, let t with pos(t) = ((p, a, qN) , (p, a, S)) and let O play from t some (a, v) in componentN (L) ofN (L)(!A.

For si ∈ E(t), let ui be the move of σ from position ((p, a.a, qN , v) , (p, a, qi)) (thus going to position ((p, a.a, qN , v) , (p, a.a, qi, ui))).
This defines a map ht.(a,v) : QA → U taking qi to ui (the definition of ht.(a,v) on irrelevant q’s is arbitrary), and we let τ play ht.(a,v)

in the component !A(M) of N (L) (!A(M), thus going to position ((p, a.a, qN , v) , (p, a.a, S, ht.(a,v))). Then if O answers some
d ∈ D in the component !A(M), and we let P play • in the component N (L) (recall that both !A and N are non-deterministic), the
current position inN (L)(!A(M) becomes ((p.d, a.a, q′N) , (p.d, a.a, S′))) where

q′N := δN (qN , L(a.a, p), v, •, d) and S′ := δ!A(S,M(a.a, p), ht.(a,v), •, d)

Let
t′ := t.(a, v).ht.(a,v).d.•

and write S′ = {(, q′1), . . . , (, q′m)}. By definition of !A, each q′j is δA(qij ,M(a.a, p), uij , xj , d) for fome ij and some xj (note that
there might be several such ij and xj , but we select one). For each j, we let O play (xj , d) in the componentA(M) ofN (L)(A(M)
from position ((p, a.a, qN , v) , (p, a.a, qij , uij)) thus going to position ((p, a.a, qN , v) , (p.d, a.a, q′j)). We then let P answer • in the
componentN (L), thus leading to position ((p.d, a.a, q′N) , (p.d, a.a, q′j)).
We finally put

E(t′) := {si0 .(a, v).ui0 .(x0, d).• , · · · , sim .(a, v).uim .(xm, d).•}

18 2016/7/7

This completes the definition of τ .
We now show that τ is winning. Consider an infinite play (ti)i∈N of τ , and let (qn, Sn)n∈N be the associated sequence of states in

(QN ×Q!A)ω . Assume that (qn)n ∈ ΩN . We show that (Sn)n ∈ Ω!A. Let (q′n)n be a trace in (Sn)n, so that (q′n, q
′
n+1) ∈ Sn+1. We have

to show that (q′n)n ∈ ΩA. Note that for all n ∈ N,

pos(t4n) = ((pn, an, qn) , (pn, an, Sn))

By construction, for each n ∈ N there are sn ∈ E(t4n) and s′n ∈ E(t4(n+1)) such that s′n extends sn:

s′n = sn.(an, vn).un.dn. • where an+1 = an.an and pn+1 = pn.dn

and such that moreover

pos(sn) = ((pn, an, qn) , (pn, an, q
′
n)) and pos(s′n) = ((pn+1, an+1, qn+1) , (pn+1, an+1, q

′
n+1))

so that
pos(s′n) = pos(sn+1)

Since σ is positional, it follows that the infinite sequence

$:= ε.(a0, v0).u0.d0. · · · .pn.(an, vn).un.dn. · · ·
is an infinite play of σ. Since $ produces the sequence of states (qn, q

′
n)n ∈ (QN × QA)ω , we get (q′n)n ∈ ΩA since (qn)n ∈ ΩN by

assumption.

Proposition E.3 (Prop. 7.3). If A is regular, there is a winning P-strategy ε on !A(N)(A(N).

Proof. Note that we can assumeA to be a parity automaton. We define HS(ε) by induction on plays as follows, with the following invariant:
for each (s, t) ∈ HS(ε), with s, t of even length, writing q for the state of t and S for the state of s, we have q ∈ S�2.

The base case is trivial. Let (s, t) ∈ HS(ε) with s and t even-length, and with t in state q and s in state S. Given an O-move (a, h),
we let (s.(a, h), t.h(q)) ∈ HS(ε), and for all (x, d) we further let (s.(a, h).(•, d), t.h(q).(x, d)) ∈ HS(ε). Then the invariant is insured by
definition of !A.

The strategy τ is winning since the sequence of states produced in A is a trace in the sequence of states produced in !A.

Proposition E.4 (Weak Completeness – Prop. 7.5). Given regular eutomata A and B on Σ, if L(A) ⊆ L(B) then there is an effective
winning P-strategy on !A((!(B‹))‹.

Proof. By Cor. 7.4, if L(A) ⊆ L(B) then L(!A) ∩ L(!(B‹)) = ∅, and we conclude by Prop. C.7.

F. Simple Self Dualization
In this appendix, we present som aspects of the construction called simple self dualization in [13]. We begin by basic definitions and facts,
and then give a general method to construct (lax) symmetric monoidal monads and oplax symmetric monoidal comonads in this setting,
which will be used later on in §G to explain the monoidal structure of DZ.

F.1 Some Basic Definitions and Facts
We recall here some basic material about Dialectica-like categories from [5, 13]. Given a category C, its simple self-dualization is
G(C) := C× Cop (also written Cd in [13]). Its objects are pairs U,X of objects of C, and a morphism from (U,X) to (V, Y) is given by a
pair of maps (f, F), denoted

(f, F) : (U,X) −p→ (V, Y)

where f : U → V and F : Y → X . If C is symmetric monoidal, then G(C) is an instance of a Girard category, in the sense of de
Paiva [5, 13].

Assume that C is symmetric monoidal closed w.r.t. (⊗, I). Then G(C) is symmetric monoidal closed w.r.t.

(U,X)⊗G (V, Y) := (U ⊗ V,XV ⊗ Y U) with unit (I, I)

The linear exponentials are given by

(U,X)(G (V, Y) := (V U ×XY , U × Y)

Assume now that the monoidal structure (⊗, I) = (×,1) of C is Cartesian. Then G(C) can be equipped with a comonad (T, ε, δ) where
the action on objects of T is

T (U,X) := (U,XU)

and the maps ε and δ are given by
(fε, Fε) : (U,XU) −p→ (U,X)
(fδ, Fδ) : (U,XU) −p→ (U,XU×U)

where fε = fδ = idU , Fε(u, x) = x and Fδ(h, u) = h(u, u) (see e.g. [5, Def. 15, §4.2]).
The co-Kleiseli category D(C) := Kl(T) is a Dialectica category in the sense of [5, 11] (see e.g. [5, Prop. 52, §4.3]). Explicitely, its

objects are pairs A = (U,X) of objects of C, and a map from A to (V, Y) is a G(C)-morphism (f, F) from TA to (V, Y), that is

(f, F) : (U,XU) −p→ (V, Y)

19 2016/7/7

D(C) is symmetric monoidal closed w.r.t. the product

(U,X)⊗ (V, Y) := (U × V,X × Y) with unit (1,1)

Note that with A = (U,X) and B = (V, Y),

T (A⊗B) = (U × V, (X × Y)U×V)

' (U × V,XUV × Y V U)
= TA⊗G TB

The linear exponentials of D(C) are given by

(U,X)((V, Y) := (V U ×XU×Y , U × Y)

Note that A(B ' TA(G B, so the monoidal closure of D(C) actually follows from that of G(C):

D(C)[A⊗B,C] = G(C)[T (A⊗B), C]
' G(C)[TA⊗G TB,C]
' G(C)[TA, TB (G C]
' D(C)[A,B (C]

F.2 Self Duality
The category G(C) is equipped with an isomorphism

(−)⊥ : G(C)
'−→ G(C)op

mapping the G(C)-object (U,X) to (X,U) and taking (f, F) : (U,X) −p→ (V, Y) to (F, f) : (X,U) −→G(C)op (Y, V) (that is
(F, f) : (Y, V) −p→ (X,U)). Note that (−)⊥ is a strict involution: G(C)⊥⊥ = G(C).

F.3 Monoidal Structure
Consider an SMC C. Note that Cop is also an SMC, and recall from §F.1 the tensor product ⊗ of G(C) given by

(U,X)⊗ (V, Y) = (U ⊗ V,X ⊗ Y) with unit I = (I, I)

Assuming the following structure maps of C

α : (A⊗B)⊗ C −→ A⊗ (B ⊗ C) λ : I⊗A −→ A ρ : A⊗ I −→ A γ : A⊗B −→ B ⊗A
the structure maps of (G(C),⊗, I) are given by:

α := (α, α−1) : ((U,X)⊗ (V, Y))⊗ (W,Z) −→ (U,X)⊗ ((V, Y)⊗ (W,Z))
λ := (λ, λ−1) : (I, I)⊗ (U,X) −→ (U,X)
ρ := (ρ, ρ−1) : (U,X)⊗ (I, I) −→ (U,X)
γ := (γ, γ−1) : (U,X)⊗ (V, Y) −→ (V, Y)⊗ (U,X)

Proposition F.1 ([13]). Equipped with the above data, the category G(C) is symmetric monoidal.

F.4 (Commutative) Monoids
Proposition F.2. Consider an SMC C. Given a comutative monoid (M,u,m) and a commutative comonoid (K, e, d) in C, the G(C)-object
(M,K) is a commutative monoid in G(C) with structure maps

u(M,K) := (u, e) : (I, I) −p→ (M,K)
m(M,K) := (m, d) : (M ⊗M,K ⊗K) −p→ (M,K)

Proof. The proof is trivial since (1) commutation of the required diagrams amounts to componentwise commutation of the corresponding
diagrams in C and Cop, and (2) the second components of commutative monoids diagrams in G(C) are commutative comonoids diagrams
in Cop.

F.5 (Commutative) Comonoids
Recall that a (commutative) comonoid in a category is a (commutative) monoid in the oppostive category. Since G(C)op ' G(C)⊥, it
follows that Prop. F.2 dualizes to:

Corollary F.3. Consider an SMC C. Given a comonoid (K, e, d) and a monoid (M,u,m) in C, the G(C)-object (K,M) is a commutative
comonoid in G(C) with structure maps

e(K,M) := (e, u) : (K,M) −p→ (I, I)
d(M,K) := (d,m) : (K,M) −p→ (K ⊗K,M ⊗M)

F.6 A (Lax) Symmetric Monoidal Monad
Assume now that C is Cartesian closed, and fix a functor H : C → C. Recall (from e.g. [23, §5.2]) that H lifts in a unique way to an oplax
symmetric monoidal functor, with strength

t2A,B := 〈H(π1), H(π2)〉 : H(A×B) −→ HA×HB and t0 := 1H1 : H1 −→ 1

20 2016/7/7

Note that the naturality of t2(−),(−), that is

(H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = 〈H(π1), H(π2)〉 ◦H(f × g)

follows from the universality property of the Cartesian product since (say)

π1 ◦ (H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = H(f ◦ π1) = H(π1 ◦ (f × g))

Consider now the functor
(−)H : G(C) −→ G(C)

defined as

(U,X)H := (UHX , X) and (f, F)H := (λh.f ◦ h ◦H(F) , F) : (UHX , X) −p→ (V HY , Y)

(where (f, F) : (U,X) −p→ (V, Y)), and the maps

η(U,X) = (fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UHX , X)
µ(U,X) = (fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UHX×HX , X) −p→ (UHX , X)

Proposition F.4. ((−)H , η, µ) is a (lax) symmetric monoidal monad, with strength

m2
A,B = (f2

A,B , F
2
A,B) := (λ(h, k).(h×k)◦t2X,Y , idX×Y) : (UHX×V HY , X×Y) −→ ((U×V)H(X×Y) , X×Y)

(where A = (U,X) and B = (V, Y)), and

m0 := (1,1) : (1,1) −→ (1H1,1)

The proof of Prop. F.4 is defered to §H.

F.7 An Oplax Symmetric Monoidal Comonad
Proposition F.4 can be dualized thanks to the self duality G(C)op = G(C)⊥:

Corollary F.5. Assume C is a CCC and H : C→ C is a funtor. Then ((−)H , ε, δ) is an oplax symmetric monoidal comonad on C, where

(U,X)H := (U,XHU) and (f, F)H := (f , λh.F ◦ h ◦H(f)) : (U,XHU) −p→ (V, Y HV)

(for (f, F) : (U,X) −p→ (V, Y)), and

ε(U,X) = (fε, Fε) := (idU , λx.λ .x) : (U,XHU) −p→ (U,X)
δ(U,X) = (fδ, Fδ) := (idU , λh.λu.h(u, u)) : (U,XHU) −p→ (U,XHU×HU)

and where the oplax strength of (−)H is given by

n2
A,B = (f2

A,B , F
2
A,B) := (idU×V , λ(h, k).(h×k)◦t2U,V) : (U×V , (X×Y)H(U×V)) −→ (U×V , XHU×Y HV)

where A = (U,X), B = (V, Y) and t2U,V is defined as in F.6, and

n0 := (1,1) : (1,1H1) −→ (1,1)

G. A Dialectica-Like Interpretation of Zig-Zag Strategies
We give here a Dialectica-like presentation of total zig-zag strategies σ : A(B for A and B positive full games. It relies on a distributive
law ζ in an instance of Dialectica called simple self-dualization in [13]. We will perform it in the topos of trees S .

We first instantiate the constructions and results of §H to the case of G(S). We then show in §G.4 that the category DZ of simple zig-zag
games can be obtained as a full subcategory of some category of zig-zag games in G(S). In §G.5 we present the distributive law ζ based on
the constructions of §H. Finally, using the fact that DZ can be obtained as a full subcategory of some category of zig-zag games in G(S)
described as the Kleisli category of the distributive law ζ, we discuss the monoidal structure of DZ and DZD .

G.1 The Topos of Trees
The topos of trees S is the presheaf category over the order (N,≤) seen as a category, see e.g. [3].

An object X of S is given by a family of sets (Xn)n∈N equipped with restriction maps rXn : Xn+1 → Xn. A morphism f from X to
Y is a family of functions fn : Xn → Yn compatible with restriction: rYn ◦ fn+1 = fn ◦ rXn .

As a topos, S is Cartesian closed w.r.t. to the Cartesian product of presheaves, which is given by (X × Y)n := Xn × Yn. Exponentials
are defined as usual for presheaves (see e.g. [21]) by

(XY)n := Nat[N[−, n]× Y,X]

Explicitly, (XY)n consists of sequences (ξk : Yk → Xk)k≤n which are compatible with rX and rY . The restriction map of XY takes
(ξk)k≤n+1 ∈ (XY)n+1 to (ξk)k≤n ∈ (XY)n.

We will use the functor I : S → S of [3]. On objects, it maps X to ((IX)n)n∈N where (IX)n+1 := Xn and (IX)0 := 1, with
rIXn+1 := rXn and rIX0 := 1 : X0 → 1. On morphisms, (If)n+1 := fn and (If)0 := 1 : 1→ 1. Note that I(X × Y) ' IX ×IY .

Define the family of maps predX : X ⇒ IX , natural in X , as predX0 := 1 : X0 → 1 and predXn+1 := rXn .
The functor I allows S to be equipped with fixpoint operators fixX : XIX ⇒ X , defined as

fixXn ((fm)m≤n) := (fn ◦ . . . ◦ f0)(•)

21 2016/7/7

The maps fixX are natural in X . Given f : IX × Y ⇒ X , writing f t : Y ⇒ XIX for the exponential transpose of f , fixX ◦ f t is the
unique map h : Y ⇒ X satisfying f ◦ 〈predX ◦ h, idY 〉 = h (see [3, Thm. 2.4]).

Given a sequence of setsM = (Mn)n, we also denote byM the S -object withMn :=
∏n
i=0 Mi and restriction maps rMn (m.m) := m.

(rM is an epi). Note thatM ×N 'M ×N , whereM ×Nn :=
∏n
i=0 Mi×Ni. IfMn = M for all n, then we writeM? for the S -object

M .

G.2 The Monoidal Structure of G(S)

Following §G.1, we take for S the monoidal structure given by its Cartesian product (so that⊗ := × with I := 1). Since (An)n× (Bn)n =
(An × Bn)n the structure maps of (S ,⊗, I) (induced from its Cartesian structure) have as components the corresponding structure maps
of Set:

αn := α : (An×Bn)×Cn → An×(Bn×Cn) λn := λ : 1×An → An ρn := ρ : An×1→ An γn := γ : An×Bn → Bn×An
The required diagrams follow as usual from the fact that Cartesian categories are monoidal (using the universal property of the Cartesian
product).

G.3 Monoids and Comonoids in G(S)

Prop. F.2 and Cor. F.3 (on monoid and comonoid objects in categories of the form G(C)) specialize to:

Proposition G.1. Let X be an object of S .

(i) The G(S)-object (1, X) is a commutative monoid of G(S), with structure maps

u := (1,1) : (1,1) −p→ (1, X)
m := (1, 〈id, id〉) : (1× 1, X ×X) −p→ (1, X)

(ii) The G(S)-object (X,1) is a commutative comonoid of G(S), with structure maps

e := (1,1) : (X,1) −p→ (1,1)
d := (〈id, id〉,1) : (X,1) −p→ (X ×X,1× 1)

Proof. By Prop. F.2 and Cor. F.3, since the terminal object 1 of a Cartesian category is a commutative monoid, and since any object of a
Cartesian category is a commutative comonoid.

G.4 A Dialectica-Like Interpretation of Zig-Zag Strategies
We now show that DZ is equivalent to a category obtained from a distributive law in G(S). We first show (Prop. G.2) that total zig-zag
strategies are in 1-1 correspondence with G(S) morphisms

(f, F) : (U?, X?U?

) −p→ (V ?
IY ?

, Y ?)

We then describe a composition of these morphisms respecting composition of strategies. The distributive law ζ is presented in §G.5.

G.4.1 Total Zig-Zag Strategies in G(S)

Consider a positive full game A = (U,X). Recall from App. A the bijection

∂ = 〈∂U , ∂X〉 : ℘even
A −→ ∪n∈N(Un ×Xn)

with ∂(ε) = (•, •) and ∂(s.u.x) = (∂U (s).u, ∂X(s).x).
Consider now another positive full game B = (V,X) and let σ : A(B be a total zig-zag strategy. By induction on n ∈ N, it is easy to

see that for all (u, y) ∈ Un × Y n, there is a unique (s, t) ∈ HS(σ) such that u = ∂U (s) and y = ∂Y (t).
The property vacuously holds for n = 0. Assuming it for n, given (u.u, y.y) ∈ Un+1×Y n+1, by induction hypothesis, there is a unique

(s, t) ∈ HS(σ) such that u = ∂U (s) and y = ∂Y (t). Now, since σ is total and zig-zag, there is a unique v ∈ V such that (s.u, t.v) ∈ HS(σ).
Similarly, there is a unique x ∈ X such that (s.u.x, t.v.y) ∈ HS(σ), and the property follows.

Furthermore, since u.u and y uniquely determine v = ∂V (t) and v, and since u.u and y.y uniquely determine x = ∂X(s) and x, we
obtain functions

fn+1 : Un+1 × Y n −→ V n+1

Fn+1 : Un+1 × Y n+1 −→ Xn+1

It follows that σ uniquely determine a G(S)-morphism

σG(S) = (f, F) : (U?, X?U?

) −p→ (V ?
IY ?

, Y ?)

Conversely, each (f, F) uniquely determine a total zig-zag strategy σ, with, for all u.u ∈ Un+1, and all y ∈ Y n,

(∂−1(u, x).u , ∂−1(v, y).v) ∈ HS(σ)

where v.v = fn+1(u.u, y) and x = Fn(u, y); and for all y,

(∂−1(u, x).u.x , ∂−1(v, y).v.y) ∈ HS(σ)

where x.x = Fn+1(u.u, y.y).
We therefore have shown:

22 2016/7/7

Proposition G.2. Given positive full games A = (U,X) and B = (V, Y), the map (−)G(S) is a bijection from total zig-zag strategies
σ : A(B to G(S)-morphisms

(f, F) : (U?, X?U?

) −p→ (V ?
IY ?

, Y ?)

G.4.2 Composition of Total Zig-Zag Strategies in G(S)

Note that given (u, x, v, y) ∈ (U ×X × V × Y)n, we have ((u, x), (v, y)) ∈ HS(σ) if and only if v = fn(u,I(y)) and x = Fn(u, y).
Here, we have written ((u, x), (v, y)) ∈ HS(σ) for (∂−1(u, x), ∂−1(v, y)) ∈ HS(σ). We adopt the same convention in the following.

Consider positive full games A = (U,X), B = (V, Y) and C = (W,Z), and G(S)-morphisms

(f, F) : (U?, X?U?

) −p→ (V ?IY
?

, Y ?)

(g,G) : (V ?, Y ?V
?

) −p→ (W ?IZ?

, Z?)

We want to define their composite

(h,H) : (U?, X?U?

) −p→ (W ?IZ?

, Z?)

Write σ and τ for the total zig-zag strategies corresponding to resp. (f, F) and (g,G). Then the relational composite

HS(τ ◦ σ) = HS(τ) ◦HS(σ)

must be such that ((u, x), (w, z)) ∈ HS(τ) ◦HS(σ) if and only if there are (v, y) such that

((u, x), (v, y)) ∈ HS(σ) and ((v, y), (w, z)) ∈ HS(τ)

But this is possible iff the following equations are satisfied:

v = fn(u,I(y)) w = gn(v,I(z))
x = Fn(u, y) y = Gn(v, z)

The derived equation

y = Gn(fn(u,I(y)), z)

uniquely defines y from u and z as

y = y(u, z) = fixYn (λy.Gn(fn(u, y), z))

(We have here tacitly used the fact that ξ ∈ (M?IM?

)n is completely determined by its last component ξn.) Now, since I(y(u, z)) =
y(Iu,Iz), we can define

hn+1(uu, z) := gn+1(fn+1(uu, y(u, z))) , z)
Hn+1(uu, zz) := Fn+1(uu, y(uu, zz))

More generally, given G(S)-objects (U,X), (V, Y), (W,Z), and G(S)-morphisms

(f, F) : (U,XU) −p→ (V IY , Y)
(g,G) : (V, Y V) −p→ (WIZ , Z)

we can define their composite

(g,G) ◦ (f, F) = (h,H) : (U,XU) −p→ (WIZ , Z)

as, modulo exponential transpose and again using the internal λ-calculus of S :

h(u, z) := g(f(u, y(Iu, z)), z)
H(z, u) := F (u, y(u, z))

where y(u, z) := fixY (λy.G(f(u, y), z))

G.5 The Distributive Law ζ

It is possible to directly check that the composition described in the previous paragraph is associative and preserves identities. We can actually
do better: The category DZ of simple zig-zag games can be obtained as a full subcategory of some category of zig-zag games in G(S)
described as the Kleisli category of a distributive law ζ.

The law ζ is based on the constructions of §H. It distributes an oplax symmetric monoidal comonad obtained from Cor. F.5 over a (lax)
symmetric monoidal monad obtained from Prop. F.4:

• The oplax symmetric monoidal comonad, denoted T = (T, ε, δ), is obtained from Cor. F.5 by taking H := IdS .

Explicitely, T (U,X) := (U,XU) and the action of T on morphisms is given by:

(f, F) : (U,X) −p→ (V, Y)
T7−→ (f , λh.F ◦ h ◦ f) : (U,XU) −p→ (V ,Y V)

The maps ε and δ are given by:

(fε, Fε) := (idU , λx.λ .x) : (U,XU) −p→ (U,X)
(fδ, Fδ) := (idU , λh.λu.h(u, u)) : (U,XU) −p→ (U,XU×U)

23 2016/7/7

• The (lax) symmetric monoidal monad, denoted (−)I = ((−)I, ε, δ), is obtained from Prop. F.4 by taking H(−) := I(−) (see §G.1
and [3]).
Explicitely, (U,X)I := (UIX , X) and the action of (−)I on morphisms is given by:

(f, F) : (U,X) −p→ (V, Y)
(−)I7−→ (λh.f ◦ h ◦IF , F) : (UIX ,X) −p→ (V IY ,Y)

The maps η and µ are given by:

(fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UIX , X)
(fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UIX×IX , X) −p→ (UIX , X)

The distributive law
ζ : T ((−)I) =⇒ (T (−))I

is given by

ζA = (fζ , F ζ) : (UIX , XUIX

) −p→ (UI(XU), XU)

where the maps
fζ : UIX ×I(XU) −→ U and F ζ : UIX ×XU −→ X

are defined as follows. Let fζ0 (θ0, •) := θ0. Given ξ ∈ (XU)n, θ ∈ (UIX)n and θ′ ∈ (UIX)n+1,

F ζn(θ, ξ) := fixXn (ξ ◦ θ)
fζn+1(θ′, ξ) := θ′n+1(fixXn (ξ ◦ rn(θ′)))

= θ′n+1(Fn(rn(θ′), ξ))

The maps ζA form a distributive law of T over (−)I, which is moreover monoidal in the sense of Prop. J.6. These facts are summarized
in the following Proposition whose proof is defered to §I.
Proposition G.3.

(i) The family of maps ζA : T (AI) −p→ (TA)I forms a distributive law.
(ii) Moreover, ζ(−) is monoidal in the sense of Prop. J.6, that is:

T (AI ⊗BI)

g2
AI,BI

��

T (m2
A,B)

// T ((A⊗B)I)

ζA⊗B

��
T (AI)⊗ T (BI)

ζA⊗ζB
��

(T (A⊗B))I

(g2
A,B)I

��
(TA)I ⊗ (TB)I

m2
TA,TB

// (TA⊗ TB)I

(8)

where (m2,m0) is the (lax) strength of (−)I defined as in Prop. F.4, and (g2, g0) is the oplax strength of T defined as in Cor. F.5, so
that:
• For (−)I:

m2
A,B := (λ(h, k).(h×k)◦〈I(π1),I(π2)〉 , idX×Y) : (UIX×V IY , X×Y) −→ ((U×V)I(X×Y) , X×Y)

(where A = (U,X) and B = (V, Y)), and m0 := (1,1) : (1,1) −→ (1I1,1).
• For T :

g2
A,B := (idU×V , λ(h, k).(h× k)) : (U × V , (X × Y)U×V) −→ (U × V , XU × Y V)

(where A = (U,X) and B = (V, Y)), and g0 := (1,1) : (1,11) −→ (1,1).

It then follows from Prop. G.3 and Cor. J.7 that Kl(ζ) is symmetric monoidal.

• Its monoidal product is that of G(S) on objects, so that

(U,X)⊗Kl(ζ) (V, Y) = (U,X)⊗ (V, Y) = (U × V,X × Y) and I = (1,1)

and on maps, given (f, F) ∈ Kl(ζ)[A0, B0] and (g,G) ∈ Kl(ζ)[A1, B1], we let

(f, F)⊗Kl(ζ) (g,G) := m2
B0,B1

◦ ((f, F)⊗ (g,G)) ◦ g2
A0,A1

• The structure maps are the image under λhA→B .ηB ◦ h ◦ εA of the structure maps of G(S).

From now on, if no ambiguity arises, we write ⊗ for the monoidal product of Kl(ζ).
We write Kl(ζ?) for the full subcategory of Kl(ζ) whose objects are of the form (U?, X?). Together with §G.4, Prop. G.3 gives:

Proposition G.4. The category DZ is equivalent to Kl(ζ?).

24 2016/7/7

G.6 The Symmetric Monoidal Structure of DZ

Recall from Prop. G.4 that DZ is isomorphic to Kl(ζ?) the full subcategory of Kl(ζ) whose objects are of the form (U?, X?).
Note that I is an object of Kl(ζ?), as well as A⊗B as soon as A and B are objects of Kl(ζ?). It thus follows from Prop. G.4, Prop. G.3

and Cor. J.7 that:

Proposition G.5. Equipped with the above data, the category Kl(ζ?) (and thus DZ) is symmetric monoidal.

G.7 Monoids and Comonoids in DZ

Thanks to Prop. J.9, we therefore get from Prop. G.3 and Prop. G.1:

Proposition G.6 (Prop. B.3).

(i) Objects of the form M = (1,M) equipped with structure maps

I
u
−(M

O •
• P
m O

P •

M ⊗M
m
−(M

O (•, •)
• P
m O

P (m,m)

are monoids in DZ.
(ii) Objects of the form Σ = (Σ,1) equipped with structure maps

Σ
e
−(I

O a
• P
• O

P •

Σ
d
−(Σ⊗ Σ

O a
(a, a) P
(•, •) O

P •
are comonoids in DZ.

G.8 Comonoids in DZD

From Prop. G.6.(ii) together with Prop. J.9 applied to Prop. J.10 and Prop. G.6.(i) we get:

Proposition G.7 (Prop. B.5). Objects of the form Σ = (Σ,1) are comonoids in DZD , with structure maps

Σ
e
−(I

O a
• P

(•, d) O
P •

Σ
d
−(Σ⊗ Σ

O a
(a, a) P

((•, •), d) O
P •

G.9 The Base Category T

Proposition G.8 (Prop. B.7). The category T embeds to Comon(DZD) via the functor ET mapping an object Σ of T to the comonoid
(Σ, eΣ, dΣ) and a morphism M : T[Γ,Σ] to itself.

G.9.1 Proof of Proposition G.8
Fix M ∈ T[Σ,Γ], so that

M ' (fM ,1) : (Σ,1Σ) −p→ (ΓI(1×D),1×D)

The comonoid structure mpas can be explicitelly defined as

eΣ ' (1,1) : (Σ,1Σ) −p→ (1I(,1×D),1×D)

and
dΣ ' (λa.λ .(a, a),1) : (Σ,1Σ) −p→ ((Σ× Σ)I(1×1×D) , 1× 1×D)

We check the required diagrams:

• First,

Σ
M //

dΣ

��

Γ

dΓ

��
Σ⊗ Σ

M⊗M // Γ⊗ Γ

Note that all maps involved are 1 on the second component, so we only check the first one.
We then compute (leaving implicit the monad maps used for composition in DZD):

(fM × fM) ◦ (λa.λ .(a, a)) = λa.λI(p).〈fM (a,I(p)), fM (a,I(p)〉

25 2016/7/7

and we are done since on the other hand

(λa.λ .(a, a)) ◦ fM = λa.λI(p).(fM (a,I(p)), fM (a,I(p)))

• Second, the coherence diagram

Σ
M //

eΣ

��

Γ

eΓ

��
I

trivially holds since all involved maps are in the second component are 1, and, for the first component, since 1 is terminal in S .

H. Proof of Proposition F.4
In this appendix we give a proof of Prop. F.4. We first recall its statment.

Assume that C is Cartesian closed, and fix a functor H : C → C. Recall (from e.g. [23, §5.2]) that H lifts in a unique way to an oplax
symmetric monoidal functor, with strength

t2A,B := 〈H(π1), H(π2)〉 : H(A×B) −→ HA×HB and t0 := 1H1 : H1 −→ 1

Note that the naturality of t2(−),(−), that is

(H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = 〈H(π1), H(π2)〉 ◦H(f × g)

follows from the universality property of the Cartesian product since (say)

π1 ◦ (H(f)×H(g)) ◦ 〈H(π1), H(π2)〉 = H(f ◦ π1) = H(π1 ◦ (f × g))

Consider now the functor

(−)H : G(C) −→ G(C)

defined as

(U,X)H := (UHX , X) and (f, F)H := (λh.f ◦ h ◦H(F) , F) : (UHX , X) −p→ (V HY , Y)

(where (f, F) : (U,X) −p→ (V, Y)), and the maps

η(U,X) = (fη, Fη) := (λu.λ .u , idX) : (U,X) −p→ (UHX , X)
µ(U,X) = (fµ, Fµ) := (λh.λx.h(x, x) , idX) : (UHX×HX , X) −p→ (UHX , X)

Proposition H.1 (Prop. F.4). ((−)H , η, µ) is a (lax) symmetric monoidal monad, with strength

m2
A,B = (f2

A,B , F
2
A,B) := (λ(h, k).(h×k)◦t2X,Y , idX×Y) : (UHX×V HY , X×Y) −→ ((U×V)H(X×Y) , X×Y)

(where A = (U,X) and B = (V, Y)), and

m0 := (1,1) : (1,1) −→ (1H1,1)

H.1 (−)H is a lax symmetric monoidal functor

(−)H is a functor. First, given A = (U,X) we have

(idA)H = (λh.idU ◦ h ◦H(idX) , idX) = (λh.h , idX) = idAH

Moreover, given (f, F) : (U,X) −p→ (V, Y) and (g,G) : (V, Y) −p→ (W,Z), we have

((g,G) ◦ (f, F))H = (g ◦ f , F ◦G)H = (λh.g ◦ f ◦h ◦H(F ◦G) , F ◦G) = (λh.g ◦h ◦HG,G) ◦ (λh.f ◦h ◦HF,F)

since

λh.g ◦ f ◦ h ◦H(F ◦G) = λh.g ◦ f ◦ h ◦H(F) ◦H(G) = λh.(λk.g ◦ k ◦H(G))(f ◦ h ◦H(F))

The maps m2
(−),(−) are natural. We have to check that given (f, F) : (U,X) −p→ (V, Y) and (g,G) : (U ′, X ′) −p→ (V ′, Y ′) we have

m2
B,B′ ◦ ((f, F)H ⊗ (g,G)H) = ((f, F)⊗ (g,G))H ◦m2

A,A′

26 2016/7/7

(where A = (U,X), B = (V, Y), A′ = (U ′, X ′) and B′ = (V ′, Y ′)). We compute

m2
B,B′ ◦ ((f, F)H ⊗ (g,G)H) = m2

B,B′ ◦ ((λh.f ◦ h ◦H(F), F)⊗ (λk.g ◦ k ◦H(G), G))

= m2
B,B′ ◦ ((λh.f ◦ h ◦H(F))× (λk.g ◦ k ◦H(G)) , F ×G)

= ((λ(h, k).(h× k) ◦ t2Y,Y ′) ◦ ((λh.f ◦ h ◦H(F))× (λk.g ◦ k ◦H(G))) , F ×G)

= ((λ(h, k).(h× k) ◦ t2Y,Y ′) ◦ (λ(h, k).〈f ◦ h ◦H(F) , g ◦ k ◦H(G)〉) , F ×G)

= (λ(h, k).((f ◦ h ◦H(F))× (g ◦ k ◦H(G))) ◦ t2Y,Y ′ , F ×G)

= (λ(h, k).(f × g) ◦ (h× k) ◦ (H(F)×H(G)) ◦ t2Y,Y ′ , F ×G)

= (λ(h, k).(f × g) ◦ (h× k) ◦ t2X,X′ ◦H(F ×G) , F ×G)

= (λ(h, k).(λp.(f × g) ◦ p ◦H(F ×G)) ◦ ((h× k) ◦ t2X,X′) , F ×G)

= ((f, F)⊗ (g,G))H ◦m2
A,A′

(−)H is lax symmetric monoidal. Note that (−)H is the identity on the second components, so we only have to check diagrams for the
first components.

• The associativity diagram leads to check

(UHX × V HY)×WHZ
α
UHX,V HY ,WHZ

//

(λ(h,k).(h×k)◦t2X,Y)×id
WHZ

��

UHX × (V HY ×WHZ)

id
UHX×(λ(h,k).(h×k)◦t2Y,Z)

��
(U × V)H(X×Y) ×WHZ

λ(h,k).(h×k)◦t2X×Y,Z

��

UHX × (V ×W)H(Y×Z)

λ(h,k).(h×k)◦t2X,Y×Z

��
((U × V)×W)H((X×Y)×Z)

λh.αU,V,W ◦h◦H(α−1
X,Y,Z

)

// (U × (V ×W))H(X×(Y×Z))

(where A = (U,X), B = (V, Y) and C = (W,Z)). Note that since C is Cartesian closed:

α = 〈π1 ◦ π1 , 〈π2 ◦ π1, π2〉〉 = λ((u, v), w).(u, (v, w))

We have to check

λ((h, k), l).αU,V,W ◦ (((h× k) ◦ t2X,Y)× l) ◦ t2X×Y,Z ◦H(α−1
X,Y,Z) = λ((h, k), l).(h× ((k × l) ◦ t2Y,Z)) ◦ t2X,Y×Z

But we are done since it follows from the universal property of the Cartesian product of C that we have

(HX ×HY)×HZ
αHX,HY,HZ // HX × (HY ×HZ)

H(X × Y)×HZ

t2X,Y ×idHZ

OO

HX ×H(Y × Z)

idHX×t2Y,Z

OO

H((X × Y)× Z)

t2X×Y,Z

OO

H(X × (Y × Z))

t2X,Y×Z

OO

H(α−1
X,Y,Z

)

oo

• The unit diagrams are dealt-with similarly. We only check the diagram for the unit λ(−), which lead to check

1× UHX
λ
UHX //

1×id
UHX

��

UHX

11 × UHX
λ(h,k).(h×k)◦t2I,X

// (1× U)H(1×X)

λh.λU◦h◦H(λ−1
X

)

OO

Since λ(−) = π2, we have to show

λ(•, h).h = λ(•, h).λU ◦ (• × h) ◦ t21,X ◦H(λ−1
X)

27 2016/7/7

It follows from the unversal property of the Cartesian product of C that we have have

1×HX HX

H(λ−1
X

)

��

λ−1
HXoo

H1×HX

1×idHX

OO

H(1×X)
t21,X

oo

We are therefore lead to check
λ(•, h).h = λ(•, h).λU ◦ (• × h) ◦ λ−1

HX

and we are done since λ−1
(−) = 〈1, id(−)〉.

• The symmetry diagram is dealt-with similarly.

H.2 ((−)H , η, µ) is a monad
The maps η(−) are natural. Let (f, F) : (U,X) −p→ (V, Y). We have to check

η(V,Y) ◦ (f, F) = (λh.f ◦ h ◦H(F) , F) ◦ η(U,X)

which amounts to
(λu.λ .u) ◦ f = (λh.f ◦ h ◦H(F)) ◦ (λu.λ .u)

that is
λu.λ .f(u) = λu.f ◦ (λ .u) ◦H(F)

and we are done.

The maps µ(−) are natural. Let (f, F) : (U,X) −p→ (V, Y). We have to check

µ(V,Y) ◦ (λh.(λk.f ◦ k ◦H(F)) ◦ h ◦H(F) , F) = (λh.f ◦ h ◦H(F) , F) ◦ µ(U,X)

which amounts to

(λh.λx.h(x, x)) ◦ (λh.λx.f ◦ (h(H(F)(x))) ◦H(F)) = (λh.f ◦ h ◦H(F)) ◦ (λh.λx.h(x, x))

that is
(λh.λx.h(x, x)) ◦ (λh.λx.λy.f(h(H(F)(x)), H(F)(y))) = λh.f ◦ (λx.h(x, x)) ◦H(F)

which reduces to
λh.λx.(λx.λy.f(h(H(F)(x)), H(F)(y)))(x, x) = λh.λx.f(h(H(F)(x), H(F)(x)))

and we are done.

Associativity Law. Since µ(−) is the identity on the second component, we only have to check

UHX×HX×HX
λh.λx.h(x,x) //

λh.(λk.λy.k(y,y))◦h
��

UHX×HX

λh.λx.h(x,x)

��
UHX×HX

λh.λx.h(x,x)
// UHX

that is
λh.λy.(λx.h(x, x))(y, y) = λh.λx.((λk.λy.k(y, y)) ◦ h)(x, x)

We compute
λh.λy.(λx.h(x, x))(y, y) = λh.λy.h(y, y, y)

and we are done since

λh.λx.((λk.λy.k(y, y)) ◦ h)(x, x) = λh.λx.(λz.λy.h(z)(y, y))(x, x) = λh.λx.(λy.h(x)(y, y))x = λh.λx.h(x, x, x)

Unit Laws. Since η(−) and µ(−) are the identity on the second component, we only have to check

UHX
λu.λ .u // UHX×HX

λh.λx.h(x,x)

��

UHX
λh.(λu.λ .u)◦hoo

UHX

We are done since

(λh.λx.h(x, x)) ◦ (λu.λ .u) = λu.λx.(λ .u)(x, x) = λu.λx.ux = idUHX

28 2016/7/7

and
(λh.λx.h(x, x)) ◦ (λh.(λu.λ .u) ◦ h) = λh.λx.((λu.λ .u) ◦ h)(x, x)

= λh.λx.(λy.λ .h(y))(x, x)
= λh.λx.(λ .h(x))x
= λh.λx.hx
= idUHX

H.3 ((−)H , η, µ) is lax symmetric monoidal
It remains to show that η and µ are lax monoidal natural transformations. Once again, we only check the second components, which amount
to the following.

η(−) is lax monoidal. We have to check

U × V
(λu.λ .u)×(λv.λ .v) // UHX × V HY

λ(h,k).(h×k)◦t2X,Y

��
U × V

λp.λ .p
// (U × V)H(X×Y)

and 1

1

!!
1

λu.λ .u
// 1H1

The second diagram is obvious. The first one amounts to

λp.λ .p = λ(u, v).((λ .u)× (λ .v)) ◦ 〈H(π1), H(π2)〉

and we are done since

λ(u, v).((λ .u)× (λ .v)) ◦ 〈H(π1), H(π2)〉 = λ(u, v).〈λ .u,λ .v〉 = λ(u, v).λ .〈u, v〉 = λp.λ .p

µ(−) is lax monoidal.

• Preservation of the binary strength amounts to

UHX×HX × V HY×HY
(λh.λx.h(x,x))×(λk.λy.k(y,y)) //

n

��

UHX × V HY

λ(h,k).(h×k)◦t2X,Y

��
(U × V)H(X×Y)×H(X×Y)

λh.λx.h(x,x)
// (U × V)H(X×Y)

where n is the first component of (m2
A,B)H ◦m2

AH ,BH (for A = (U,X) and B = (V, Y)), so that

n = (λl.((λ(h, k).(h× k) ◦ t2X,Y) ◦ l) ◦ ((λ(h, k).(h× k) ◦ t2X,Y)

= λ(h, k).(λ(h′, k′).(h′ × k′) ◦ t2X,Y) ◦ ((h× k) ◦ t2X,Y)

= λ(h, k).(λ(h′, k′).(h′ × k′) ◦ t2X,Y) ◦ 〈h ◦H(π1) , k ◦H(π2)〉
= λ(h, k).λp.((h(H(π1)p))× (k(H(π2)p))) ◦ t2X,Y
= λ(h, k).λp.((h(H(π1)p))× (k(H(π2)p))) ◦ 〈H(π1) , H(π2)〉
= λ(h, k).λ(p, q).〈h(H(π1)p), H(π1)q) , k(H(π2)p,H(π2)q)〉

and therefore
(λh.λx.h(x, x)) ◦ n = λ(h, k).λx.n(h, k)(x, x)

= λ(h, k).λx.〈h(H(π1)x,H(π1)x) , k(H(π2)x,H(π2)x)〉

But now we are done since on the other hand,

(λ(h, k).(h× k) ◦ t2X,Y) ◦ ((λh.λx.h(x, x))× (λk.λy.k(y, y))) = λ(h, k).((λx.h(x, x))× (λy.k(y, y))) ◦ t2X,Y
= λ(h, k).((λx.h(x, x))× (λy.k(y, y))) ◦ 〈H(π1), H(π2)〉
= λ(h, k).λp.〈h(H(π1)p,H(π1)p) , k(H(π2)p,H(π2)p)〉

• Preservation of the unit strength amounts to

1

1

ww
n0

&&
1H1×H1

λ(h,k).(h×k)◦t21,1

// 1H1

29 2016/7/7

where n0 is the first component of (m0)H ◦m0, so that n0 = (λh.1 ◦ h) ◦ 1 = 1 and we are done since

(λ(h, k).(h× k) ◦ t21,1) ◦ 1 = 1

I. Proof of Proposition G.3
This appendix is devoted to the proof of Prop. G.3. We first recall its statment.

Proposition I.1 (Prop. G.3).

(i) The family of maps ζA : T (AI) −p→ (TA)I forms a distributive law.
(ii) Moreover, ζ(−) is monoidal in the sense of Prop. J.6, that is:

T (AI ⊗BI)

g2
AI,BI

��

T (m2
A,B)

// T ((A⊗B)I)

ζA⊗B

��
T (AI)⊗ T (BI)

ζA⊗ζB
��

(T (A⊗B))I

(g2
A,B)I

��
(TA)I ⊗ (TB)I

m2
TA,TB

// (TA⊗ TB)I

(9)

where (m2,m0) is the (lax) strength of (−)I defined as in Prop. F.4, and (g2, g0) is the oplax strength of T defined as in Cor. F.5, so
that:
• For (−)I:

m2
A,B := (λ(h, k).(h×k)◦〈I(π1),I(π2)〉 , idX×Y) : (UIX×V IY , X×Y) −→ ((U×V)I(X×Y) , X×Y)

(where A = (U,X) and B = (V, Y)), and m0 := (1,1) : (1,1) −→ (1I1,1).
• For T :

g2
A,B := (idU×V , λ(h, k).(h× k)) : (U × V , (X × Y)U×V) −→ (U × V , XU × Y V)

(where A = (U,X) and B = (V, Y)), and g0 := (1,1) : (1,11) −→ (1,1).

I.1 Proof of Proposition I.1.(i)
We have to check that ζ : T ((−)I)→ (T−)I is natural and that the following four coherence diagrams commute (see e.g. [8]):

(TA)I

(δA)I

**
T (AI)

ζA

44

δAI $$

(TTA)I

TT (AI)
TζA

// T ((TA)I)

ζTA

88

(10)

T (AI)

ζA

**
T (AII)

T (µA)

44

ζAI %%

(TA)I

(T (AI))I
(ζA)I

// (TA)II

µTA

::

(11)

(TA)I

(εA)I

""
T (AI)

ζA

::

εAI
// AI

(12)

30 2016/7/7

T (AI)

ζA

$$
TA

T (ηA)

<<

ηTA

// (TA)I

(13)

Recall that T is the comonad T = (T, ε, δ) and that (−)I is the monad ((−)I, η, µ) on G(S). We repeat the definitions of the functors T
and (−)I:

(f, F) : (U,X) −p→ (V, Y)
T7−→ (f , λh.F ◦ h ◦ f) : (U,XU) −p→ (V ,Y V)

(f, F) : (U,X) −p→ (V, Y)
(−)I7−→ (λh.f ◦ h ◦IF , F) : (UIX ,X) −p→ (V IY ,Y)

and of the natural maps η and µ:
(fη, Fη) : (U,X) −p→ (UIX , X)
(fµ, Fµ) : (UIX×IX , X) −p→ (UIX , X)

where Fη = Fµ = idX , fη(u, x) = u and fµ(h, x) = h(x, x).
Moreover, the natural maps ε and δ are given by

(fε, Fε) : (U,XU) −p→ (U,X)
(fδ, Fδ) : (U,XU) −p→ (U,XU×U)

where fε = fδ = idU , Fε(u, x) = x and Fδ(h, u) = h(u, u).
We check in turn the required diagrams.

Lemma I.2. ζ is natural, that is, given (g,G) : A −p→ B, we have

T (AI)
T ((g,G)I) //

ζA

��

T (BI)

ζB

��
(TA)I

(T (g,G))I
// (TB)I

Proof. Let A = (U,X) and B = (V, Y), and consider (g,G) : (U,X) −p→ (V, Y). Note that

(g,G)I = (λh.ghIG , G) : (UIX , X) −p→ (V IY , Y)

T ((g,G)I) = (λh.ghIG , λh.Gh(λh.ghIG)) : (UIX , XUIX

) −p→ (V IY , Y V
IY

)
T (g,G) = (g , λh.Ghg) : (U,XU) −p→ (V, Y V)

(T (g,G))I = (λh.ghI(λh.Ghg) , λh.Ghg) : (UI(XU), XU) −p→ (V I(Y V), Y V)

We have to show that
(T (g,G))I ◦ ζA = ζB ◦ T ((g,G)I)

that is

(λh.ghI(λh.Ghg)) ◦ fζA = fζB ◦ (λh.ghIG) and F ζA ◦ (λh.Ghg) = λh.Gh(λh.ghIG) ◦ F ζB

For the first equation, which has type UIX → V I(Y V), given θn+1 ∈ (UIX)n+1 and ξn ∈ (Y V)n, one has to show the following
(where some ◦ are replaced by juxtaposition)

((λh.gn+1hI(λh.Gn+1hgn+1)) ◦ fζAn+1)(θn+1)(ξn) = (fζBn+1 ◦ (λh.gn+1hIGn+1))(θn+1)(ξn)

that is
((λh.gn+1 ◦ h ◦ (λh.Gnhgn))(fζAn+1(θn+1)))(ξn) = (fζBn+1((λh.gn+1 ◦ h ◦Gn)(θn+1)))(ξn)

that is
(gn+1 ◦ (fζAn+1(θn+1)) ◦ (λh.Gnhgn))(ξn) = (fζBn+1(gn+1θn+1Gn))(ξn)

that is
gn+1(fζAn+1(θn+1)((λh.Gnhgn)ξn)) = fζBn+1(gn+1θn+1Gn , ξn)

that is
gn+1(fζAn+1(θn+1 , Gnξngn)) = fζBn+1(gn+1θn+1Gn , ξn)

that is
gn+1 ◦ θn+1 ◦ fixn(Gnξnθn) = gn+1 ◦ θn+1 ◦Gn ◦ fixn(ξngnθnGn−1)

which is easily seens to hold, when unfolding the fixpoints, thanks to associativity of composition.
The second equation, of type Y V → XUIX

, amounts, for ξn ∈ (Y V)n and θn ∈ (UIX)n, to the following (where some ◦ are replaced
by juxtaposition)

F ζAn (Gnξngn , θn) = ((λh.Gh(λh.ghIG))(F ζB (ξn)))(θn)

31 2016/7/7

that is
F ζAn (Gnξngn , θn) = (Gn ◦ (F ζBn (ξn)) ◦ (λh.gnhIGn))(θn)

that is
F ζAn (Gnξngn , θn) = Gn(F ζBn (ξn)((λh.gnhIGn)(θn)))

that is
F ζAn (Gnξngn , θn) = Gn(F ζBn (ξn , gnθnIGn))

which also holds thanks to associativity of composition (when unfolding the fixpoints).

Lemma I.3. Diagram (10) commutes.

Proof. Let A = (U,X), so that

T (AI) = T (UIX , X) = (UIX , XUIX

) and (TA)I = (U,XU)I = (UI(XU), XU)

The diagram has type

T (AI) −p→ (TTA)I = (UIX , XUIX

) −p→ (UI(XU×U) , XU×U)

Moreover,
(δA)I = (idU , λhu.h(u, u))I = (λh.hI(λhu.h(u, u)) , λhu.h(u, u))
TζA = T (fζA , F ζA) = (fζA , λh.F ζAhfζA)

We have to check the following two equations:

fδAI ◦ fζA = fζTA ◦ fTζA ◦ fδAI and F ζA ◦ FδAI = FδAI ◦ FTζA ◦ F
ζTA

The first one, of type UIX → UI(XU×U), amounts, for θn+1 ∈ (UIX)n+1 and ξn+1 ∈ XU×U
n+1 , to the following

((λh.hI(λhu.h(u, u))) ◦ fζAn+1)(θn+1)(ξn+1) = (fζTA
n+1 f

ζA
n+1)(θn+1)(Iξn+1)

that is
(fζAn+1(θn+1) ◦I(λhu.h(u, u)))(ξn+1) = fζTA

n+1 (fζAn+1(θn+1) , ξn)

that is
fζAn+1(θn+1 , λu.ξn(u, u)) = fζAn+1(θn+1 , fixX

U

n (ξn ◦ fζAn (θn)))

Write
ln := fζAn+1(θn+1 , λu.ξn(u, u)) and rn := fζAn+1(θn+1 , fixX

U

n (ξn ◦ fζAn (θn)))

The proof is then by induction on n. In the base case n = 0, both sides unfold to θ1(•). For the induction step, assuming the property for
rn = ln, we show ln+1 = rn+1.

First, note that Note that

fixUn+1(λu.ξn+1(u, u) ◦ θn+1) = fixUn+1(λx.ξn+1(θn+1(x), θn+1(x)))
= (λx.ξn+1(θn+1(x) , θn+1(x)))(fixUn (λx.ξn(θn(x), θn(x))))
= (λu.ξn+1(u, u))(θn+1(fixUn ((λu.ξn(u, u)) ◦ θn)))
= ξn+1(ln, ln)

so that
ln+1 = θn+2(ξn+1(ln, ln))

On the other hand, note that

fixX
U

n+1(ξn+1 ◦ fζAn+1(θn+1)) = ξn+1(fζAn+1(θn+1 , fixX
U

n (ξn ◦ fζAn (θn))))
= ξn+1(rn)

and so in particular

rn = θn+1(fixn(fixX
U

n (ξn ◦ fζA(θn)) ◦ θn))
= θn+1(fixn(ξn(rn−1) ◦ θn))

We thus have
rn+1 = θn+2(fixn+1(fixX

U

n+1(ξn+1 ◦ fζAn+1(θn+1)) ◦ θn+1))
= θn+2(fixn+1(ξn+1(rn) ◦ θn+1)
= θn+2(ξn+1(rn)(θn+1(fixn(ξn(rn−1) ◦ θn))))
= θn+2(ξn+1(rn)(rn))

and we conclude by induction hypothesis.
The second equation, of type XU×U → XUIX

, amounts, for ξn ∈ (XU×U)n and θn ∈ (UIX)n, to the following:

F ζAn ◦ (λhu.h(u, u))(ξn)(θn) = ((λhk.h(k, k)) ◦ (λh.F ζAn hfζAn) ◦ F ζTA
n)(ξn)(θn)

that is
F ζAn ((λhu.h(u, u))ξn , θn) = ((λhk.h(k, k))((λh.F ζAn hfζAn)(F ζTA

n (ξn))))(θn)

32 2016/7/7

that is
F ζAn (λu.ξn(u, u) , θn) = ((λhk.h(k, k))((F ζAn ◦ F ζTA

n (ξn) ◦ fζAn)))(θn)

that is
F ζAn (λu.ξn(u, u) , θn) = (λk.(F ζAN ◦ F ζTA

n (ξn) ◦ fζAn)(k, k))θn

that is
F ζAn (λu.ξn(u, u) , θn) = (F ζAn ◦ F ζTA

n (ξn) ◦ fζAn)(θn)(θn)

that is
F ζAn (λu.ξn(u, u) , θn) = F ζAn (F ζTA

n (ξn , f
ζA
n (θn)) , θn)

Reasonning as for the first equation, write

ln := F ζAn (λu.ξn(u, u) , θn) and rn := F ζAn (F ζTA
n (ξn , f

ζA
n (θn)) , θn)

with
ln+1 = fixn+1((λu.ξn+1(u, u)) ◦ θn+1)

= ξn+1(θn+1(ln) , θn+1(ln))

and on the other hand

F ζTA
n+1 (ξn+1 , f

ζA
n+1(θn+1)) = fixX

U

n+1(ξn+1 ◦ fζAn+1(θn+1))

= ξn+1(fζAn+1(θn+1 , fixX
U

n (ξn ◦ fζAn (θn)))

= ξn+1(θn+1(F ζAn (fixX
U

n (ξn ◦ fζAn (θn)) , θn))

= ξn+1(θn+1(F ζAn (F ζTA
n (ξn, f

ζA
n (θn)) , θn))

= ξn+1(θn+1(rn))

We thus have

rn+1 = fixn+1(fixX
U

n+1(ξn+1 ◦ fζAn+1(θn+1)) ◦ θn+1)
= fixn+1(ξn+1(θn+1(rn)) ◦ θn+1)
= ξn+1(θn+1(rn) , θn+1(fixn(ξn(θn(rn−1)) ◦ θn)))
= ξn+1(θn+1(rn) , θn+1(rn))

and we conclude by induction hypothesis.

Lemma I.4. Diagram (11) commutes.

Proof. Let A = (U,X) so that the diagram has type

T (AII) −p→ (TA)I = (UIX×IX , XUIX×IX

) −p→ (UI(XU), XU)

Note that
T (µA) = T (λhx.h(x, x) , idX) = (λhx.h(x, x) , λk.(k ◦ λhx.h(x, x)))
(ζA)I = (fζA , F ζA)I = (λh.fζA ◦ h ◦IF ζA , F ζA)

We have to check the following two equations:

fζA ◦ fTµA = fµTA ◦ f(ζA)I ◦ fζAI and FTµA ◦ F
ζA = F ζAI ◦ F(ζA)I ◦ FµTA

The first equation, of type UIX×IX → UI(XU), amounts, for θn+1 ∈ (UIX×IX)n+1 and ξn ∈ (XU)n, to the following:

(fζAn+1 ◦ (λhx.h(x, x)))(θn+1)(ξn) = ((λhk.h(k, k)) ◦ (λh.fζAn+1hIF
ζA
n+1) ◦ fζAI

n+1)(θn+1)(ξn)

that is
fζAn+1(λx.θn+1(x, x) , ξn) = ((λhk.h(k, k)) ◦ (λh.fζAn+1hF

ζA
n) ◦ fζAI

n+1)(θn+1)(ξn)

that is
fζAn+1(λx.θn+1(x, x) , ξn) = (λhk.h(k, k))(fζAn+1 ◦ f

ζAI

n+1 (θn+1) ◦ F ζAn)(ξn)

that is
fζAn+1(λx.θn+1(x, x) , ξn) = (fζAn+1 ◦ f

ζAI

n+1 (θn+1) ◦ F ζAn)(ξn)(ξn)

that is
fζAn+1(λx.θn+1(x, x) , ξn) = fζAn+1(f

ζAI

n+1 (θn+1 , F
ζA
n (ξn)) , ξn)

Let
ln := fζAn+1(λx.θn+1(x, x) , ξn) and rn := fζAn+1(f

ζAI

n+1 (θn+1 , F
ζA
n (ξn)) , ξn)

Note that for all n we have
ln+1 = (λx.θn+2(x, x))fixn+1(ξn+1 ◦ λx.θn+1(x, x))

= (λx.θn+2(x, x))((λx.ξn+1(θn+1(x, x)))fixn(ξn ◦ λx.θn(x, x))))
= θn+2(ξn+1(ln), ξn+1(ln))

33 2016/7/7

On the other hand,

rn+1 = fζAn+2(f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1)) , ξn+1)

= f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1))(fixXn+1(ξn+1 ◦ f

ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

= θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , fixXn+1(ξn+1 ◦ f
ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

So we show by induction on n that

ξn+1(rn) = fixn+1(F ζAn+1(ξn+1) ◦ θn+1) = fixXn+1(ξn+1 ◦ f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)))

The base case is trivial. For the induction step, on the one hand we have

fixn+2(F ζAn+2(ξn+2) ◦ θn+2) = F ζAn+2(ξn+2 , θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1)))

= ξn+2(θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , F ζAn+1(ξn+1 , θn+1(fixn(F ζAn (ξn) ◦ θn))))

= ξn+2(θn+2(fixn+1(F ζAn+1(ξn+1) ◦ θn+1) , fixn+1(F ζAn+1(ξn+1) ◦ θn+1))

and we conclude by induction hypothesis, and on the other hand

fixXn+2(ξn+2 ◦ f
ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1))) = ξn+2 ◦ f

ζAI

n+2 (θn+2 , F
ζA
n+1(ξn+1))(fixXn+1(ξn+1 ◦ f

ζAI

n+1 (θn+1 , F
ζA
n (ξn))))

= ξn+2(θn+2(fixn(F ζAn+1(ξn+1) ◦ θn+1) , fixXn+1(ξn+1 ◦ f
ζAI

n+1 (θn+1 , F
ζA
n (ξn)))))

and we also conclude by induction hypothesis.
The second equation, of type XU → XUIX×IX

, amounts, for ξn ∈ (XU)n and θn ∈ (UIX×IX)n, to the following

((λk.(k ◦ λhx.h(x, x))) ◦ F ζAn)(ξn)(θn) = (F
ζAI
n ◦ F ζAn)(ξn)(θn)

that is
(F ζAn (ξn) ◦ λhx.h(x, x))(θn) = F

ζAI
n (F ζAn (ξn) , θn)

that is
F ζAn (ξn , λx.θn(x, x)) = F

ζAI
n (F ζAn (ξn) , θn)

This is dealt-with similarly to (but in a much simpler way than) the first equation.

Lemma I.5. Diagram (12) commutes.

Proof. Let A = (U,X), so that the diagram has type

T (AI) −p→ AI = (UIX , XUIX

) −p→ (UIX , X)

Note that
(εA)I = (idU ,λxu.x)I = (λh.(h ◦I(λxu.x)),λxu.x)

We have to show
λh.(h ◦I(λxu.x)) ◦ fζA = idUIX and F ζA ◦ λxu.x = λxu.x

For the first equation, given θn+1 ∈ (UIX)n+1, we have to show

fζAn+1(θn+1) ◦I(λxu.x) = θn+1

The result is trivial since the left-hand side unfolds to

λIx.fζAn+1(θn+1,λ .x) = λIx.θn+1(fixn(λ .x)) = λIx.θn+1(x)

The second equation is simpler and omitted.

Lemma I.6. Diagram (13) commutes.

Proof. Let A = (U,X), so that the diragram has type

TA −p→ (TA)I = (U,XU) −p→ (UI(XU), XU)

Note that
T (ηA) = T (λux.u, idX) = (λux.u,λh.h ◦ (λux.u))

We have to show
fζA ◦ (λux.u) = λux.u and (λh.h ◦ (λux.u)) ◦ F ζA = idXU

For the first equation, given u ∈ Un+1 and ξn ∈ (XU)n, we have to show

fζAn+1(λx.u , ξn) = u

which is trivial. For the second equation, given ξn ∈ Xn and u ∈ Un we have to show

F ζA(ξn , λx.u) = ξn(u)

which is also trivial.

34 2016/7/7

J. Monoids, Monads and Monoidal Categories
This appendix gathers easy and possibly well-known facts about monoidal categories, to be used in the proofs of §4. We refer to [20, 23] for
missing details.

J.1 Monads and Comonads
Monads. A monad on a category C is a triple T = (T, η, µ) consisting of a functor T : C → C and two natural transformations
ηA : A→ TA and µA : TTA→ TA satisfying:

TTTA
µTA //

TµA

��

TTA

µA

��
TTA

µA

// TA

and TA
ηTA // TTA

µA

��

TA
TηAoo

TA

The Kleisli category Kl(T) = CT of T has the same objects as C and Kl(T)[A,B] := C[A, TB]. The categories C and Kl(T) = CT are
related by an adjunction

C

FT

88> Kl(T) = CT

UT

yy

where:

• The right adjoint UT : Kl(T)→ C maps objects A of Kl(T) to TA and takes f ∈ Kl(T)[A,B] = C[A, TB] to

µB ◦ T (f) ∈ C[UTA,UTB] = C[TA, TB]

• The left adjoint FT : C→ Kl(T) is the identity on objects and takes f ∈ C[A,B] to FT (f) := ηB ◦ f ∈ Kl(T)[A,B] = C[A, TB].

Comonads. Dually a comonad on C is a monad on Cop. It is therefore given by a triple G = (G, ε, δ) where the functor G : C → C and
the natural transformations εA : GA→ A and δA : GA→ GGA satisfy:

GA
δA //

δA

��

GGA

δGA

��
GGA

GδA

// GGGA

and GA GGA
εGAoo GεA // GA

GA

δA

OO

The coKleisli category Kl(G) = CG of G has the same objects as C and Kl(G)[A,B] := C[GA,B]. The categories C and Kl(G) = CG
are related by an adjunction

Kl(G) = CG

UG

::> C

FG

xx

where:

• The left adjoint UG : Kl(G)→ C maps objects A of Kl(G) to GA and takes f ∈ Kl(G)[A,B] = C[GA,B] to

G(f) ◦ δA ∈ C[UGA,UGB] = C[GA,GB]

• The right adjoint FG : C→ Kl(G) is the identity on objects and takes f ∈ C[A,B] to FG(f) := f ◦ εA ∈ Kl(G)[A,B] = C[GA,B].

J.1.1 (Lax) (Symmetric) Monoidal Monads
There are different notions of monoidal functor (see e.g. [23]). Here we use lax monoidal functors (as the functor part of lax monoidal
monads), and the dual notion of oplax monoidal functor (as the functor part of oplax monoidal comonads).

(Lax) Symmetric Monoidal Functors. A (lax) symmetric monoidal functor on a symmetric monoidal category (C,⊗, I) is a functor F
equipped with natural transformations

m2
A,B : FA⊗ FB → F (A⊗B) and m0 : I→ F (I)

35 2016/7/7

making the following diagrams commute:

(FA⊗ FB)⊗ FC
αFA,FB,FC //

m2
A,B⊗idFC

��

FA⊗ (FB ⊗ FC)

idFA⊗m2
B,C

��
F (A⊗B)⊗ FC

m2
A⊗B,C

��

FA⊗ F (B ⊗ C)

m2
A,B⊗C

��
F ((A⊗B)⊗ C)

F (αA,B,C)
// F (A⊗ (B ⊗ C))

I⊗ FA
λFA //

m0⊗idFA

��

FA

F I⊗ FA
m2

I,A

// F (I⊗A)

F (λA)

OO FA⊗ I
ρFA //

idFA⊗m0

��

FA

FA⊗ F I
m2

A,I

// F (A⊗ I)

F (ρA)

OO FA⊗ FB
γFA,FB //

m2
A,B

��

FB ⊗ FA

m2
B,A

��
F (A⊗B)

F (γA,B)
// F (B ⊗A)

Monoidal Natural Transformations. A monoidal natural transformation between (lax) monoidal functors θ : (F,m2,m0) =⇒
(G,n2, n0) is a natural transformation θ : F =⇒ G making the following diagrams commute:

FA⊗ FB
θA⊗θB //

m2
A,B

��

GA⊗GB

n2
A,B

��
F (A⊗B)

θA⊗B

// G(A⊗B)

and I

m0

~~

n0

F I

θI

// GI

The following is [23, Prop. 10]:

Proposition J.1. Symmetric monoidal categories, (lax) symmetric monoidal functors, and monoidal natural translformations form a 2-
category SymMonCat.

Proof.

• The identity functor IdC : C→ C is monoidal (actually strict monoidal), with m2
A,B = idA⊗B and m0 = idI.

• If (F,m2,m0) and (G,n2, n0) are strong monoidal, then so is FG, with structure maps

F (n2
A,B) ◦m2

GA,GB : FGA⊗ FGB → F (GA⊗GB)→ FG(A⊗B) and F (n0) ◦m0 : I→ F I→ FGI

(Lax) (Symmetric) Monoidal Monads. A (lax) syemmtric monoidal monad on a monoidal category C is a monad (T, η, µ) such that T is
a (lax) symmetric monoidal functor and the transformations η, µ are monoidal (see e.g. [23]). It then follows from [23, §6.10] that:

Proposition J.2. If T = (T, η, µ) is a (lax) symmetric monoidal monad on (C,⊗, I) then its Kleisely category Kl(T) = CT is symmetric
monoidal. Moreover, the functor FT : C→ Kl(T) = CT is strict and the adjunction

C

FT

88> Kl(T) = CT

UT

zz

is (lax) symmetric monoidal (i.e. is an adjunction in SymMonCat).

Proof.

• The monoidal product ⊗Kl of Kl(T) is on objects the same as that of C and has the same unit I. On morphisms, given f ∈
Kl(T)[A0, B0] = C[A0, TB0] and g ∈ Kl(T)[A1, B1] = C[A1, TB1], we let f ⊗Kl g be the composite

A0 ⊗A1
f⊗g−→ TB0 ⊗ TB1

m2
B0,B1−→ T (B0 ⊗B1)

where m2 is the binary strength of T .

36 2016/7/7

• The functor FT is strict, since its strength is given by:

f2
A,B := idKl

A⊗B = ηA⊗B ∈ Kl(T)[A⊗Kl B , A⊗Kl B] = C[A⊗B , T (A⊗B)]

and

f0 := idKl
I = ηI ∈ Kl(T)[I , I] = C[I , T I]

• The functor UT is lax symmetric monoidal. Its strength is given by:

u2
A,B := m2

A,B ∈ C[UTA⊗ UTB , UT (A⊗B)] = C[TA⊗ TB , T (A⊗B)]

and

u0 := m0 ∈ C[I , UT I] = C[I , T I]

where m2, m0 is the strength of T .
• The structure maps of Kl(T) are taken to be the image under FT of the structure maps of C. It thus directly follows that the coherence

conditions are met on C.
• It remains to check the naturality of the structural maps of Kl(T), which amounts to the following diagrams:

For the associativity structure map α(−),(−),(−):

(A⊗B)⊗ C
(f⊗g)⊗h //

ηA⊗(B⊗C)◦αA,B,C

��

(A′ ⊗B′)⊗ C′

ηA′⊗(B′⊗C′)◦αA′,B′,C′

��
T (A⊗ (B ⊗ C))

T (f⊗(g⊗h)) // T (A′ ⊗ (B′ ⊗ C′))

Proof. By naturality of η and α, we have

ηA′⊗(B′⊗C′) ◦ αA′,B′,C′ ◦ ((f ⊗ g)⊗ h) = T (f ⊗ (g ⊗ h)) ◦ ηA⊗(B⊗C) ◦ αA,B,C
and we are done.

For the unit structure maps λ(−) and ρ(−):

I⊗A
idI⊗f //

ηA◦λA

��

I⊗A′

ηA′◦λA′

��
TA

T (f) // TA′

and A⊗ I
f⊗idI //

ηA◦ρA
��

A′ ⊗ I

ηA′◦ρA′
��

TA
T (f) // TA′

Proof. By naturality of η, λ and ρ we have

ηA′ ◦ λA′ ◦ (idI ⊗ f) = T (f) ◦ ηA ◦ λA and ηA′ ◦ λA′ ◦ (f ⊗ idI) = T (f) ◦ ηA ◦ λA
and we are done.

For the symmetry structure map γ(−),(−):

A⊗B
f⊗g //

ηB⊗A◦γA,B

��

A′ ⊗B′

ηB′⊗A′◦γA′,B′

��
T (B ⊗A)

T (g⊗f) // T (B′ ⊗A′)

Proof. By naturality of η and γ, we have

ηB′⊗A′ ◦ γA′,B′ ◦ (f ⊗ g) = T (g ⊗ f) ◦ ηB⊗A ◦ γA,B
and we are done.

J.1.2 Oplax (Symmetric) Monoidal Comonads
We sketch the dual notion of oplax (symmetric) monoidal comonad. All constructions and results follow by duality from the case of lax
monads.

37 2016/7/7

Oplax Monoidal Functors. An oplax symmetric monoidal functor F on a symmetric monoidal category (C,⊗, I) is equipped with natural
transformations

m2
A,B : F (A⊗B)→ FA⊗ FB and m0 : F (I)→ I

making the following diagrams commute:

(FA⊗ FB)⊗ FC
αFA,FB,FC // FA⊗ (FB ⊗ FC)

F (A⊗B)⊗ FC

m2
A,B⊗idFC

OO

FA⊗ F (B ⊗ C)

idFA⊗m2
B,C

OO

F ((A⊗B)⊗ C)

m2
A⊗B,C

OO

F (αA,B,C)
// F (A⊗ (B ⊗ C))

m2
A,B⊗C

OO

I⊗ FA
λFA //

m0⊗idFA

��

FA

F I⊗ FA F (I⊗A)

F (λA)

OO

m2
I,A

oo

FA⊗ I
ρFA //

idFA⊗m0

��

FA

FA⊗ F I F (A⊗ I)
m2

A,I

oo

F (ρA)

OO FA⊗ FB
γFA,FB // FB ⊗ FA

F (A⊗B)

m2
A,B

OO

F (γA,B)

// F (B ⊗A)

m2
B,A

OO

Monoidal Natural Transformations. A monoidal natural transformation between oplax monoidal functors θ : (F,m2,m0) =⇒
(G,n2, n0) is a natural transformation θ : F =⇒ G making the following diagrams commute:

FA⊗ FB
θA⊗θB // GA⊗GB

F (A⊗B)
θA⊗B

//

m2
A,B

OO

G(A⊗B)

n2
A,B

OO and I

F I
θI

//

m0

>>

GI

n0

``

The following is [23, Prop. 11]:

Proposition J.3. Symmetric monoidal categories, oplax symmetric monoidal functors, and monoidal natural translformations form a 2-
category SymOplaxMonCat.

Oplax Monoidal Comonads. An oplax monoidal comonad on a monoidal category C is a comonad (G, ε, δ) such that G is an oplax
monoidal functor and the transformations ε, δ are monoidal (see e.g. [23]). It then follows from [23, §6.10] that:

Proposition J.4. If G = (G, ε, δ) is an oplax symmetric monoidal comonad on C then the coKleisely category Kl(G) = CG is symmetric
monoidal. Moreover, the functor FG : C→ Kl(G) = CG is strict and and the adjunction

Kl(G) = CG

UG

::> C

FT

xx

is oplax symmetric monoidal (i.e. is an adjunction in SymOplaxMonCat).

Proof. By Prop. J.2, since an oplax comonad on C is a lax monad on Cop, and since Cop is symmetric monoidal iff C is symmetric monoidal.
We record for future use the monoidal structure of Kl(G):

• The monoidal product ⊗Kl of Kl(G) is on objects the same as that of C and has the same unit I. On morphisms, given f ∈
Kl(G)[A0, B0] = C[GA0, B0] and g ∈ Kl(G)[A1, B1] = C[GA1, B1], we let f ⊗Kl g be the composite

G(A0 ⊗A1)
g2
A0,A1−→ GA0 ⊗GA1

f⊗g−→ B0 ⊗B1

where g2 is the binary strength of G.
• The functor FG is strict, since its strength is given by:

f2
A,B := idKl

A⊗B = εA⊗B ∈ Kl(G)[A⊗Kl B , A⊗Kl B] = C[G(A⊗B) , A⊗B]

and
f0 := idKl

I = εI ∈ Kl(G)[I , I] = C[GI , I]

38 2016/7/7

• The functor UG is oplax symmetric monoidal. Its strength is given by:

u2
A,B := g2

A,B ∈ C[UG(A⊗B) , UGA⊗ UGB)] = C[G(A⊗B) , GA⊗GB]

and
u0 := g0 ∈ C[UGI , I] = C[GI , I]

where g2, g0 is the oplax strength of G.
• The structure maps of Kl(G) are taken to be the image under FG of the structure maps of C.

J.2 Distributive Laws of a Comonad over a Monad
Consider a category C equipped with a comonad (G, ε, δ) and monad (T, η, µ).

A distributive law of G over T is a natural tranformation

Λ : G ◦ T =⇒ T ◦G
such that the following diagrams commute (see e.g. [8]):

TGA

TδA

**
GTA

ΛA

44

δTA $$

TGGA

GGTA
GΛA

// GTGA
ΛGA

99

(14)

GTA

ΛA

**
GTTA

GµA

44

ΛTA %%

TGA

TGTA
TΛA

// TTGA

µGA

::

(15)

TGA

TεA

##
GTA

ΛA

::

εTA

// TA

(16)

GTA

ΛA

$$
GA

GηA

;;

ηGA

// TGA

(17)

J.2.1 The Kleisli Category Kl(Λ)

The category Kl(Λ) has the same objects as C, and its morphisms are given by Kl(Λ)[A,B] := C[GA, TB]. Identitiy and composition laws
follow from that of C using the monad T and comonad G and the coherence properties of Λ : GT ⇒ TG.

J.2.2 Lifting of a Comonad to the Kleiseli Category of a Monad
Given a distributive law Λ : GT ⇒ TG as above, the comonad (G, ε, δ) on C lifts to a comonad (GT , εT , δT) on CT = Kl(T), where:

• GT (A) := G(A) and given f ∈ Kl(T)[A,B] = C[A, TB],

GT (f) := ΛB ◦G(f) ∈ Kl(T)[GTA,GTB] = C[GA, TGB]

• εT,A := FT (εA) ∈ Kl(T)[GA,A] = C[GA, TA] is explicitely given by

εT,A := ηA ◦ εA

• δT,A := FT (δA) ∈ Kl(T)[GA,GGA] = C[GA, TGGA] is explictitely given by

δT,A := ηGGA ◦ δA

39 2016/7/7

Proposition J.5. The category Kl(Λ) is equivalent to the coKleisli category Kl(GT).

Of course, one may alternatively consider the equivalent dual operation of lifting the monad T to the coKleiseli category Kl(G).

J.2.3 (Oplax) Monoidal Lifting
Assume now that G is an oplax (symmetric) monoidal comonad and that T is a (lax) (symmetric) monoidal monad on a symmetric monoidal
category C. It follows from Prop. J.2 that the Kleiseli category Kl(T) is symmetric monoidal. Moreover,

Proposition J.6. If Λ : GT ⇒ TG is monoidal, in the sense that

G(TA⊗ TB)

g2
TA,TB

��

G(m2
A,B)

// GT (A⊗B)

ΛA⊗B

��
GTA⊗GTB

ΛA⊗ΛB

��

TG(A⊗B)

T (g2
A,B)

��
TGA⊗ TGB

m2
GA,GB

// T (GA⊗GB)

(18)

then (GT , εT , δT) is an oplax (symmetric) monoidal comonad on Kl(T), where (m2,m0) is the strength of T and (g2, g0) is the strength
of G. The oplax monoidal strength of GT is given by

g2
T,A,B := FT (g2

A,B) = ηGA⊗GB ◦ g2
A,B ∈ Kl(T)[GT (A⊗Kl B) , GTA⊗Kl GTB] = C[G(A⊗B) , T (GA⊗GB)]

and
g0
T := FT (g0) = ηI ◦ g0 ∈ Kl(T)[GT I , I] = C[GI , T I]

where
g2
A,B : G(A⊗B)→ GA⊗GB and g0 : GI→ I

since g2, g0 is an oplax monoidal strength.

By applying now Prop. J.4 together with Prop. J.6, we thus get:

Corollary J.7. With the same assumptions, Kl(Λ) is symmetric monoidal.

Proof. We record for future use the monoidal structure of Kl(Λ) = Kl(GT):

• The monoidal product ⊗Kl of Kl(Λ) is on objects the same as that of C and has the same unit I.
On morphisms, given

f ∈ Kl(Λ)[A0, B0] = Kl(GT)[A0, B0] = Kl(T)[GA0, B0] = C[GA0, TB0] and g ∈ Kl(Λ)[A1, B1] = C[GA1, TB1]

we let f ⊗Kl g be the composite

G(A0 ⊗A1)
g2
A0,A1−→ GA0 ⊗GA1

f⊗g−→ TB0 ⊗ TB1

m2
B0,B1−→ T (B0 ⊗B1)

where g2 is the binary strength ofG andm2 that of T . Note that we could equivalently have taken the following composite (corresponding
to composition in Kl(T)):

G(A0 ⊗A1)
g2
T,A0,A1−→ T (GA0 ⊗GA1)

T (f⊗Kl(T)g)−→ TT (B0 ⊗B1)
µB0⊗B1−→ T (B0 ⊗B1)

since g2
T,A0,A1

= ηGA0,GA1 ◦ g2
A0,A1

and by the monad laws:

µB ◦ T (h) ◦ ηA = µB ◦ ηB ◦ h = h

• The structure maps of Kl(Λ) are taken to be the image under FGT of the structure maps of Kl(T), itself beeing the image under FT of
the structure maps of C. Note that on maps,

FGT (FT (h)) = ηB ◦ h ◦ εA for h : A→ B

J.2.4 Proof of Proposition J.6
Naturality of g2

T,A,B . The naturality of g2
T,A,B , that is, in Kl(T):

GT (A⊗Kl B)
GT (f⊗Klg) //

g2
T,A,B

��

GT (A′ ⊗Kl B
′)

g2
T,A′,B′

��
GTA⊗Kl GTB

GT (f)⊗KlGT (g)
// GTA′ ⊗Kl GTB

′

40 2016/7/7

(where f ∈ Kl(T)[A,B] = C[A, TB] and g ∈ Kl(T)[A′, B′] = C[A′, TB′]), amounts to, in C:

G(A⊗B)
ΛA′⊗B′◦G(m2

A′,B′◦(f⊗g)) //

ηGA⊗GB◦g2
A,B

��

TG(A′ ⊗B′)

µGA′⊗GB′◦T (ηGA′⊗GB′◦g
2
A′,B′)

��
T (GA⊗GB)

µGA′⊗GB′◦T (m2
GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g))))

// T (GA′ ⊗GB′)

By naturality of η, we have

µGA′⊗GB′◦T (m2
GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g))))◦ηGA⊗GB = µGA′⊗GB′◦ηT (GA′⊗GB′)◦m2

GA′,GB′◦((ΛA′◦G(f))⊗(ΛB′◦G(g)))

and by the unit monad law, we get:

µGA′⊗GB′ ◦ T (m2
GA′,GB′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))) ◦ ηGA⊗GB = m2

GA′,GB′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))

and therefore (by bifunctoriality of ⊗):

µGA′⊗GB′ ◦ T (m2
A′,B′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))) ◦ ηGA⊗GB = m2

GA′,GB′ ◦ (ΛA′ ⊗ ΛB′) ◦ (G(f)⊗G(g))

From which it follows (by naturality of g2) that

µGA′⊗GB′ ◦ T (m2
A′,B′ ◦ ((ΛA′ ◦G(f))⊗ (ΛB′ ◦G(g)))) ◦ ηGA⊗GB ◦ g2

A,B = m2
GA′,GB′ ◦ (ΛA′ ⊗ ΛB′) ◦ g2

TA′,TB′ ◦G(f ⊗ g)

On the other hand, also using the unit monad law we get:

µGA′⊗GB′ ◦ T (ηGA′⊗GB′ ◦ g2
A′,B′) = µGA′⊗GB′ ◦ T (ηGA′⊗GB′) ◦ T (g2

A′,B′) = T (g2
A′,B′)

We are therefore finally left with

m2
GA′,GB′ ◦ (ΛA′ ⊗ ΛB′) ◦ g2

TA′,TB′ = T (g2
A′,B′) ◦ ΛA′⊗B′ ◦G(m2

A′,B′)

which follows from (18).
Note that

G(TA′ ⊗ TB′)
g2
TA′,TB′−→ GTA′ ⊗GTB′

ΛA′⊗ΛB′−→ TGA′ ⊗ TGB′
m2

GA′,GB′−→ T (GA′ ⊗GB′)

and

G(TA′ ⊗ TB′)
G(m2

A′,B′)−→ GT (A′ ⊗B′)
ΛA′⊗B′−→ TG(A′ ⊗B′)

T (g2
A′,B′)−→ T (GA′ ⊗GB′)

Oplax Symmetric Monoidal Coherence of g2
T and g0

T . The coherence of g2
T and g0

T amount to the following diagrams.

• The associativity diagram:

(GTA⊗Kl GTB)⊗Kl GTC
αKl
GT A,GT B,GT C // GTA⊗Kl (GTB ⊗Kl GTC)

GT (A⊗Kl B)⊗Kl GTC

g2
T,A,B⊗Klid

Kl
GT C

OO

GTA⊗Kl GT (B ⊗Kl C)

idKl
GT A⊗Klg

2
T,B,C

OO

GT ((A⊗Kl B)⊗Kl C)

g2
T,A⊗KlB,C

OO

GT (αKl
A,B,C)

// GT (A⊗Kl (B ⊗Kl C))

g2
T,A,B⊗KlC

OO

(19)

First, recall that g2
T,A,B = FT (g2

A,B) by definition and that on objects GTA = GA, and also FT (A) = A and A ⊗Kl B = A ⊗ B.
Moreover, αKl

A,B,C = FT (αA,B,C) and idKl
A = ηA = FT (idA). Also, since η(−) is monoidal, given C-maps f and g we have

(ηA ◦ f)⊗Kl (ηB ◦ g) = m2
A,B ◦ ((ηA ◦ f)⊗ (ηB ◦ g)) = ηA⊗B ◦ (f ⊗ g) = FT (f ⊗ g)

Finally, thanks to the coherence diagram (17) of distributive laws, for the bottom horizontal map we have

GT (αKl
A,B,C) = ΛA⊗(B⊗C) ◦G(ηA⊗(B⊗C)) ◦G(αA,B,C) = ηG(A⊗(B⊗C)) ◦G(αA,B,C) = FT (G(αA,B,C))

41 2016/7/7

It follows that (19) amounts to the following diagram in Kl(T):

(GA⊗GB)⊗GC
FT (αGA,GB,GC) // GA⊗ (GB ⊗GC)

G(A⊗B)⊗GC

FT (g2
A,B⊗idGC)

OO

GA⊗G(B ⊗ C)

FT (idGA⊗g2
B,C)

OO

G((A⊗B)⊗ C)

FT (g2
A⊗B,C)

OO

FT (G(αA,B,C))
// G(A⊗ (B ⊗ C))

FT (g2
A,B⊗C)

OO

Now we are done since the above diagram is the image under the functor FT of the associativity coherence diagram of oplax the monoidal
functor G.
• The coherence diagrams for units and symmetry are:

I⊗Kl GTA
λKl
GT A //

g0
T⊗KlidGT A

��

GTA

GT I⊗Kl GTA GT (I⊗Kl A)

GT (λKl
A)

OO

g2
T,I,A

oo

GTA⊗Kl I
ρKl
GT A //

idGT A⊗Klg
0
T

��

GTA

GTA⊗Kl GT I GT (A⊗Kl I)
g2
T,A,I

oo

GT (ρKl
A)

OO

GTA⊗Kl GTB
γKl
GT A,GT B // GTB ⊗Kl GTA

GT (A⊗Kl B)

g2
T,A,B

OO

GT (γKl
A,B)

// GT (B ⊗Kl A)

g2
T,B,A

OO

They are dealt-with similarly. We only detail the case of the unit λKl. First, as above, we have g2
T,I,A = FT (g2

A,B) and g0
T = FT (g0), and

on objects: GT (A) = A, FT (A) = A and A⊗Kl B = A⊗B. Moreover, λKl
A = FT (λA) and idKl

A = FT (idA). Again by monoidality of
η(−) we have

g0
T⊗Klid

Kl
GTA = m2

I,A◦(FT (g0)⊗FT (idGA)) = m2
I,A◦((ηI◦g0)⊗(ηGA◦idGA)) = ηI⊗GA◦(g0⊗idGA) = FT (g0⊗idGA)

Again by the coherence diagram (17) of distributive laws, we have

GT (λKl
A) = ΛA ◦G(ηA) ◦G(λA) = ηGA ◦G(λA) = FT (λA)

Then, as for the associativity coherence law above, we are done since we get the image under the functor FT of the corresponding unit
coherence diagram for the oplax strength of G in C.

The natural maps εT,A are monoidal. The corresponding diagrams are:

GTA⊗Kl GTB
εT,A⊗KlεT,B //

g2
T,A,B

��

A⊗Kl B

GT (A⊗Kl B)
εT,A⊗KlB

// A⊗Kl B

and I
g0
T

}}
GT I

εT,I

// I

Reasonning as above (and in part. using the lax monoidality of η(−)), these diagrams are quivalent to

GA⊗GB
FT (εA⊗εB) //

FT (g2
A,B)

��

A⊗B

G(A⊗B)
FT (εA⊗B)

// A⊗Kl B

and I

FT (g0)

~~
GI

F(εI)
// I

Now we are done since recalling that FT is the identity on objects, the above diagrams are the image under FT of the oplax monoidal
coherence digrams of ε(−).

42 2016/7/7

The natural maps δT,A are monoidal.

GTA⊗Kl GTB
δT,A⊗KlδT,B //

g2
T,A,B

��

GTGTA⊗Kl GTGTB

GT (g2
T,A,B)◦g2

T,GT A,GT B

��
GT (A⊗Kl B)

δT,A⊗KlB

// GTGT (A⊗Kl B)

and I
g0
T

}}

GT (g0
T)◦g0

T

##
GT I

θI

// GTGT I

Reasonning as above, using coherence diagram (17) of distributive laws, we have

GT (g2
T,A,B) = ΛGA⊗GB ◦G(ηGA⊗GB) ◦ g2

A,B = ηG(GA⊗GB) ◦G(g2
A,B) = FT (g2

A,B)

and we then conclude as in the case of ε(−) above.

J.3 Monoids and Comonoids
J.3.1 Monoids
Recall from e.g. [23] that a commutative monoid in an SMC (C,⊗, I) is a triple M = (M,u,m) where M is an object of C and u and m
are morphisms

I
u−→ M

m←− M ⊗M
subject to the following coherence diagrams:

(M ⊗M)⊗M α //

m⊗idM

��

M ⊗ (M ⊗M)
idM⊗m // M ⊗M

m

��
M ⊗M

m
// M

(20)

I⊗M

λ
''

u⊗idM // M ⊗M

m

��

M ⊗ I

ρ

ww

idM⊗uoo

M

(21)

M ⊗M
γ //

m

&&

M ⊗M
m

xx
M

(22)

It is well-known (see e.g. [23, Prop. 2]) that we always have λI = ρI in a monoidal category.

Proposition J.8. If M = (M,u,m) is a monoid object in C, then

I⊗ I
u⊗u //

ρI=λI

��

M ⊗M

m

��
I

u
// M

Proof. By bifunctoriality of ⊗, it is equivalent to show

I⊗ I
idI⊗u //

λI

��

I ⊗M
u⊗idM// M ⊗M

m

��
I

u
// M

But m ◦ (u⊗ idM) = λM by the unit law (21), and we are done since by naturality of λ we have

λM ◦ (idI ⊗ u) = u ◦ λI

43 2016/7/7

J.3.2 The Category Mon(C) of Commutative Monoids
The category Mon(C) of commutative monoids of C has monoids as objects, and as morphisms from (M,u,m) to (M ′, u′,m′), C-
morphisms f : M →M ′ making the following two diagrams commute:

M ⊗M
f⊗f //

m

��

M ′ ⊗M ′

m′

��
M

f
// M ′

and I

u

�� u′
M

f
// M ′

J.3.3 Comonoids
Dually, a commutative monoid in C is a triple K = (K, e, d) where

I
e←− K

d−→ M ⊗M

subject to the following coherence diagrams:

K
d //

d

��

K ⊗K

d⊗idK

��
K ⊗K

idK⊗d // K ⊗ (K ⊗K) (K ⊗K)⊗Kαoo

(23)

I⊗K

λ
''

K ⊗K
(e⊗idK)oo (idK⊗e) // K ⊗ I

ρ

ww
K

d

OO (24)

K

d

xx

d

&&
K ⊗K

γ // K ⊗K

(25)

J.3.4 The Category Comon(C) of Commutative Comonoids
The category Comon(C) of commutative comonoids of C has comonoids as objects, and as morphisms from (K, e, d) to (K′, e′, d′),
C-morphisms f : K → K′ making the following two diagrams commute:

K
f //

d

��

K′

d′

��
K ⊗K

f⊗f
// K′ ⊗K′

and K
f //

e

��

K′

e′��
I

J.3.5 Lifting of Monoids and Comonoids to Kleiseli Categories
We note here the following proposition, to be used in §G (together with Prop. I.1).

Proposition J.9. Let C be a symmetric monoidal category.

(a) Let T = (T, η, µ) be a (lax) symmetric monoidal monad on C.
(i) If (M,u,m) is a commutative monoid in C, then (M,FT (u),FT (m)) is a commutative monoid in Kl(T).

(ii) If (K, e, d) is a commutative comonoid in C, then (K,FT (e),FT (d)) is a commutative comonoid in Kl(T).
(b) Let G = (G, ε, δ) be an oplax symmetric monoidal comonad on C.

(i) If (M,u,m) is a commutative monoid in C, then (M,FG(u),FG(m)) is a commutative monoid in Kl(G).
(ii) If (K, e, d) is a commutative comonoid in C, then (K,FG(e),FG(d)) is a commutative comonoid in Kl(G).

We only prove Prop. J.9.(a) since the case J.9.(b) follows by duality.

Proof of Proposition J.9.(ai). Write (t2, t0) for the (lax) strength of T . Thanks to Prop. J.2, the coherence diagrams of (M,FT (u),FT (m))
amount to the following in Kl(T).

44 2016/7/7

• Coherence w.r.t. associativity amounts in Kl(T) to:

(M ⊗M)⊗M
FT (α) //

FT (m)⊗Klid
Kl
M

��

M ⊗ (M ⊗M)
idKl

M⊗KlFT (m) // M ⊗M

FT (m)

��
M ⊗M

FT (m)
// M

Note that
FT (m) ◦Kl (FT (m)⊗Kl idKl

M) = µM ◦ T (ηM⊗M) ◦ T (m) ◦ t2M,M ◦ ((ηM ◦m)⊗ (ηM))

Reasonning similarly as in the proof of Prop. J.6, we have

FT (m) ◦Kl (FT (m)⊗Kl idKl
M) = T (m) ◦ ηM⊗M ◦ (m⊗ idM) = ηM ◦m ◦ (m⊗ idM) = FT (m ◦ (m⊗ idM))

We similarly obtain
FT (m) ◦Kl (idK lM ⊗Kl FT (m)) = FT (m ◦ (idM ⊗m))

and we are done using the functoriality of FT and the associativity coherence diagram (20) of monoids.
• Coherence w.r.t. units amounts in Kl(T) to:

I⊗M

FT (λ)

**

FT (u)⊗Klid
Kl
M // M ⊗M

FT (m)

��

M ⊗ I

FT (ρ)

tt

idKl
M⊗KlFT (u)oo

M

Reasonning as above, we obtain:

FT (m) ◦Kl (FT (u)⊗Kl idKl
M) = FT (m ◦ (u⊗ idM)) and FT (m) ◦Kl (idKl

M ⊗Kl FT (u)) = FT (m ◦ (idM ⊗ u))

and we are done using the units cohrence diagram (21)
• Coherence w.r.t. symmetry amounts in Kl(T) to:

M ⊗M
FT (γ) //

FT (m)

**

M ⊗M
FT (m)

uu
M

and follows directly from diagram (22).

Proof of Proposition J.9.(aii). We proceed similarly as in the case (ai). We only detail the case of coherence w.r.t. associativity, which
amounts in Kl(T) to:

K
FT (d) //

FT (d)

��

K ⊗K

FT (d)⊗KlidK

��
K ⊗K

idKl
K⊗KlFT (d) // K ⊗ (K ⊗K) (K ⊗K)⊗K

FT (α)oo

Note that
(idKl

K ⊗Kl FT (d)) ◦Kl FT (d) = µK⊗(K⊗K) ◦ T (idKl
K ⊗Kl FT (d)) ◦ ηK⊗K ◦ d

= µK⊗(K⊗K) ◦ ηT (K⊗(K⊗K)) ◦ (idKl
K ⊗Kl FT (d)) ◦ ◦d

= (idKl
K ⊗Kl FT (d)) ◦ d

= ηK⊗(K⊗K) ◦ (idK ⊗ d) ◦ d
= FT ((idK ⊗ d) ◦ d)

We similarly obtain
(FT (d)⊗Kl idKl

K) ◦Kl FT (d) = FT ((d⊗ idK) ◦ d)

and we conclude using the functoriality of FT and the associativity coherence diagram (23) of comonoids.

J.3.6 The Monad of Monoid Indexing
Following [13, §2.5], a monoid (M,u,m) in a monoidal category C gives rise to a monad T = (T, η, µ) where T (−) := (−)⊗M ,

ηA := (idA ⊗ u) ◦ ρ−1
A : A→ A⊗M and µA := (idA ⊗m) ◦ αA,M,M : (A⊗M)⊗M → A⊗M

45 2016/7/7

It is well-known (see e.g. [13, §2.5] or [23, §6.6]) that (T, η, µ) is a monad. We show here that T is actually a monoidal monad. The strength
of T is

m2
A,B : (A⊗M)⊗ (B ⊗M)→ (A⊗B)⊗M and m0 : I→ I⊗M

where m2
A,B is the composite

(A⊗M)⊗ (B ⊗M)
θA,B−→ (A⊗B)⊗ (M ⊗M)

id⊗m−→ (A⊗B)⊗M

where θA,B is a natural map made of identities and structure maps of C, and where m0 is the composite

I
λ−1
I−→ I⊗ I

idI⊗u−→ I⊗M

The map θA,B is explicitely defined as the following composite:

(A⊗M)⊗ (B ⊗M)
α−→ A⊗ (M ⊗ (B ⊗M))

idA⊗γ−→ A⊗ ((B ⊗M)⊗M)
idA⊗α−→ A⊗ (B ⊗ (M ⊗M))

α−1

−→
(A⊗B)⊗ (M ⊗M)

Note that (T, η, µ) is only a lax monad, since the structure maps of monoid objects are in general not isos.

Proposition J.10. (T, η, µ) is a (lax) symmetric monoidal monad.

By applying Prop. J.2 to Prop. J.10 we thus get:

Corollary J.11. Kl(T) is symmetric monoidal.

J.3.7 Proof of Proposition J.10
T (−) = (−)⊗M is a (strong) symmetric monoidal functor. The diagrams to check amount to the following:

((A⊗M)⊗ (B ⊗M))⊗ (C ⊗M)
αTA,TB,TC //

((idA⊗B⊗m)◦θA,B)⊗idC⊗M

��

(A⊗M)⊗ ((B ⊗M)⊗ (C ⊗M))

idA⊗M⊗((idA⊗B⊗m)◦θB,C)

��
((A⊗B)⊗M)⊗ (C ⊗M)

(idA⊗B⊗m)◦θA⊗B,C

��

(A⊗M)⊗ ((B ⊗ C)⊗M)

(idA⊗B⊗m)◦θA,B⊗C

��
((A⊗B)⊗ C)⊗M

αA,B,C⊗idM

// (A⊗ (B ⊗ C))⊗M

which follows from the monoid coherence law (20) of (M,u,m) and the monoidal coherence C, and to

I⊗ (A⊗M)
λA⊗M //

((idI⊗u)◦λ−1
I

)⊗idA⊗M

��

A⊗M

(I⊗M)⊗ (A⊗M)
(idA⊗B⊗m)◦θI,A

// (I⊗A)⊗M

λA⊗idM

OO (A⊗M)⊗ I
ρA⊗M //

idA⊗M⊗((idI⊗u)◦λ−1
I

)

��

A⊗M

(A⊗M)⊗ (I⊗M)
(idA⊗B⊗m)◦θA,I

// (A⊗ I)⊗M

ρA⊗idM

OO

which follow from the monoid coherence laws (21) of (M,u,m) and the monoidal coherence of C and finally

(A⊗M)⊗ (B ⊗M)
γTA,TB //

(idA⊗B⊗m)◦θA,B

��

(B ⊗M)⊗ (A⊗M)

(idA⊗B⊗m)◦θB,A

��
(A⊗B)⊗M

γA,B⊗idM

// (B ⊗A)⊗M

which follows from commutative monoid coherence law (22) of (M,u,m) together with the symmetric monoidal coherence of C.

The map ηA : A→ A⊗M is monoidal. We have to check:

A⊗B
((idA⊗u)◦ρ−1

A
)⊗((idB⊗u)◦ρ−1

B
)
// (A⊗M)⊗ (B ⊗M)

(id⊗m)◦θA,B

��
A⊗B

(idA⊗B⊗u)◦ρ−1
A⊗B

// (A⊗B)⊗M

and I
(idI⊗u)◦λ−1

I

''
I

(idI⊗u)◦ρ−1
I

// I⊗M

The first diagram follows from Prop. J.8. The second one directly follows from the fact that λI = ρI (see e.g. [23, Prop. 2]).

46 2016/7/7

The map µA : (A⊗M)⊗M → A⊗M is monoidal. We check:

((A⊗M)⊗M)⊗ ((B ⊗M)⊗M)
µA⊗µB //

(m2
A,B⊗idM)◦m2

A⊗M,B⊗M

��

(A⊗M)⊗ (B ⊗M)

m2
A,B

��
((A⊗B)⊗M)⊗M

µA⊗B

// (A⊗B)⊗M

and I

(m0⊗idM)◦m0

yy

m0

""
(I⊗M)⊗M

µI

// I⊗M

for

m2
A,B = (idA⊗B ⊗m) ◦ θA,B and m0 = (idI ⊗ u) ◦ λ−1

I and µA = (idA ⊗m) ◦ αA,M,M
The first diagram follows from the monoid coherence laws (20) and (22) together with the symmetric monoidal coherence of C. The second
diagram follows from Prop. J.8.

J.3.8 The Comonad of Comonoid Indexing
Dually, a comonoid (K, e, d) in a monoidal category C gives rise to a comonad G = (G, ε, δ) where G(−) := K ⊗ (−), and

εA := λA ◦ (e⊗ idA) : K ⊗A→ A and δA := αK,K,A ◦ (d⊗ idA) : K ⊗A→ K ⊗ (K ⊗A)

Since a comonoid on C is a monoid on Cop, it is also well-known (again from e.g. [13, §2.5] or [23, §6.8]) that G is a comonad. Dually to
§J.3.6, G is actually oplax symmetric monoidal. Its strength is

g2
A,B : K ⊗ (A⊗B) −→ (K ⊗A)⊗ (K ⊗B) and g0 : K ⊗ I −→ I

where g2
A,B is the composite

K ⊗ (A⊗B)
d⊗id−→ (K ⊗K)⊗ (A⊗B)

ϑA,B−→ (K ⊗A)⊗ (K ⊗B)

where ϑA,B is a natural map made of identities and structure maps of C, and where g0 is the composite

K ⊗ I
e⊗idI−→ I⊗ I

λI−→ I

The map ϑA,B is explicitely defined as the following composite:

(K ⊗K)⊗ (A⊗B)
α−→ K ⊗ (K ⊗ (A⊗B))

idA⊗α−1

−→ K ⊗ ((K ⊗A)⊗B)
γ−→ ((K ⊗A)⊗B)⊗K α−→

(K ⊗A)⊗ (K ⊗B)

By duality, from Prop. J.10 we get:

Proposition J.12. (G, ε, δ) is an oplax symmetric monoidal comonad.

Similarly to Cor. J.11, by applying Prop. J.4 to Prop. J.12 we get:

Corollary J.13. Kl(G) is symmetric monoidal.

J.3.9 The Distributive Law of Comonoid over Monoid Indexing
We now check that there is distributive law Φ of (the comonad of) comonoid indexing over (the monad of) monoid indexing. Moreover, Φ is
monoidal in the sense of Prop. J.6.

Proposition J.14. Consider, in an SMC (C,⊗, I), a comonoid (K, e, d) and a monoid (M,u,m), inducing respectivelly the comonad
(G, ε, δ) with

GA := K ⊗A εA := λA ◦ (e⊗ idA) : K ⊗A −→ A δA := αK,K,A ◦ (d⊗ idA) : K ⊗A −→ K ⊗ (K ⊗A)

and the monad (T, η, µ) with

TA := A⊗M ηA := (idA ⊗ u) ◦ ρ−1
A : A −→ A⊗M µA := (idA ⊗m) ◦ αA,M,M : (A⊗M)⊗M −→ A⊗M

Then,

(i) the associativity structure map

ΦA := α−1
K,A,M : GTA = K ⊗ (A⊗M) =⇒ (K ⊗A)⊗M = TGA

is a distributive law of G over T ,

47 2016/7/7

(ii) and it is moreover monoidal (in the sense of Prop. J.6), that is:

G(TA⊗ TB)

g2
TA,TB

��

G(m2
A,B)

// GT (A⊗B)

ΦA⊗B

��
GTA⊗GTB

ΦA⊗ΦB

��

TG(A⊗B)

T (g2
A,B)

��
TGA⊗ TGB

m2
GA,GB

// T (GA⊗GB)

(26)

where (m2,m0) is the (lax) strength of T and (g2, g0) is the oplax strength of G.

Proof of Proposition J.14.(i). First, note that Φ(−) is natural by assumption. The diagrams of §J.2 unfold to:

(K ⊗A)⊗M
δA⊗idM

,,
K ⊗ (A⊗M)

ΦA

22

δA⊗M))

(K ⊗ (K ⊗A))⊗M

K ⊗ (K ⊗ (A⊗M))
idK⊗ΦA

// K ⊗ ((K ⊗A)⊗M)

ΦK⊗A

55

(27)

K ⊗ (A⊗M)

ΦA

,,
K ⊗ ((A⊗M)⊗M)

idK⊗µA

22

ΦA⊗M **

(K ⊗A)⊗M

(K ⊗ (A⊗M))⊗M
ΦA⊗idM

// ((K ⊗A)⊗M)⊗M

µK⊗A

55

(28)

(K ⊗A)⊗M
εA⊗idM

&&
K ⊗ (A⊗M)

ΦA

66

εA⊗M

// A⊗M

(29)

K ⊗ (A⊗M)

ΦA

((
K ⊗A

idK⊗ηA
88

ηK⊗A

// (K ⊗A)⊗M

(30)

• Diagram (27) amounts to

(K ⊗A)⊗M
(αK,K,A◦(d⊗idA))⊗idM

,,

αK,A,M

rr
K ⊗ (A⊗M)

αK,K,A⊗M◦(d⊗idA⊗M)))

(K ⊗ (K ⊗A))⊗M
αK,K⊗A,M

uu
K ⊗ (K ⊗ (A⊗M)) K ⊗ ((K ⊗A)⊗M)

idK⊗αK,A,Moo

By functoriality of ⊗ we have

(αK,K,A ◦ (d⊗ idA))⊗ idM = (αK,K,A ◦ (d⊗ idA))⊗ (idM ◦ idM) = (αK,K,A ⊗ idM) ◦ ((d⊗ idA)⊗ idM)

48 2016/7/7

and therefore

(idK⊗αK,A,M)◦αK,K⊗A,M ◦((αK,K,A◦(d⊗idA))⊗idM) = (idK⊗αK,A,M)◦αK,K⊗A,M ◦(αK,K,A⊗idM)◦((d⊗idA)⊗idM)

From the pentagon law, it follows that

(idK ⊗ αK,A,M) ◦ αK,K⊗A,M ◦ ((αK,K,A ◦ (d⊗ idA))⊗ idM) = αK,K,A⊗M ◦ αK⊗K,A,M ◦ ((d⊗ idA)⊗ idM)

and from by naturality of α we get

(idK ⊗ αK,A,M) ◦ αK,K⊗A,M ◦ ((αK,K,A ◦ (d⊗ idA))⊗ idM) = αK,K,A⊗M ◦ (d⊗ (idA ⊗ idM)) ◦ αK,A,M
and we are done since idA ⊗ idM = idA⊗M by bifunctoriality of ⊗.
• Diagram (28), which unfolds to

K ⊗ (A⊗M)

K ⊗ ((A⊗M)⊗M)

idK⊗µA

22

(K ⊗A)⊗M

αK,A,M

ll

(K ⊗ (A⊗M))⊗M

αK,A⊗M,M

jj

((K ⊗A)⊗M)⊗M

µK⊗A

55

αK,A,M⊗idM

oo

is dealt-with similarly.
• Diagram (29) amounts to

(K ⊗A)⊗M
(λA◦(e⊗idA))⊗idM

&&

αK,A,M

vv
K ⊗ (A⊗M)

λA⊗M◦(e⊗idA⊗M)

// A⊗M

By bi-functoriality of ⊗, we have idA⊗M = idA ⊗ idM , and by naturality of α it follows that

λA⊗M ◦ (e⊗ idA⊗M) ◦ αK,A,M = λA⊗M ◦ αI,A,M ◦ ((e⊗ idA)⊗ idM)

On the other hand, by functoriality of ⊗, we have

(λA ◦ (e⊗ idA))⊗ idM = (λA ◦ (e⊗ idA))⊗ (idM ◦ idM) = (λA ⊗ idM) ◦ ((e⊗ idA)⊗ idM)

and we are done since λA⊗M ◦ αI,A,M = λA ⊗ idM by [23, Prop. 1].
• Diagram (30) unfolds to

K ⊗ (A⊗M)

K ⊗A

idK⊗((idA⊗u)◦ρ−1
A

)
88

(idK⊗A⊗u)◦ρ−1
K⊗A

// (K ⊗A)⊗M

αK,A,M

hh

and is dealt-with similarly, but with [23, Prop. 1] used as follows: Reasoning as for Diagram (29), we are left to show that

αK,A,I ◦ ρ−1
K⊗A = idK ⊗ ρ−1

A

which amounts to
ρ−1
K⊗A = α−1

K,A,I ◦ (idK ⊗ ρ−1
A)

and we are done by applying [23, Prop. 1].

49 2016/7/7

Contents

1 Introduction 1

2 A Curry-Howard Approach to Tree Automata 2
2.1 Tree Automata and Games 2
2.2 Linear Synchronous Arrow Games 3

2.2.1 Deterministic Linear Implications 4
2.3 Indexed Structure 4
2.4 Projection and Existential Quantification 4
2.5 Monoidal Structure 4

3 A Dialectica-Like Approach to Automata 5
3.1 Monoidal Closed Structure 5
3.2 Complementation and Falsity 5
3.3 Universal Quantifications and the ∃∀-Normal Form 6
3.4 Alternating v.s.Non-Deterministic Tree Automata . 6

4 Simple Zig-Zag Games 6
4.1 Simple Zig-Zag Games 6
4.2 Monoidal Closed Structure 7
4.3 D-Synchronicity 7
4.4 Fibred Structure in DZD 7

4.4.1 The Fibred Structure of Comonoid Indexing 7
4.4.2 Comonoid Indexing in DZD 8
4.4.3 The Fibred Category DialZ 8

4.5 Quantification in DialZ 8
4.6 The Distributive Law of Comonoid over Monoid

Indexing . 9

5 Fibrations of Tree Automata 9
5.1 The Fibred Categories DialAut and DialAutW . . 9
5.2 Automata and Substituted Acceptance Games . . . 9
5.3 Quantification 10

6 A Deduction System for Automata 10

7 The Exponential Modality 10

8 Conclusion 11

A Simple Games 12

B Proofs of §4 (Simple Zig-Zag Games) 14
B.1 The Monoidal Structure of DZ 14
B.2 The Monoidal Closed Structure of DZ 14
B.3 D-Synchronicity (§4.3) 15
B.4 Comonoid Indexing in DZD (§4.4.2) 15
B.5 The Fibred Category DialZ (§4.4.3) 15
B.6 The Distributive Law of Comonoid over Monoid

Indexing (§4.6) 16

C Proofs of §2, §3 and §5 16
C.1 Proofs of §5 (Fibrations of Tree Automata) 16
C.2 Proofs of §2 (A Curry-Howard Approach to Tree

Automata) . 16
C.3 Proofs of §3 (A Dialectica-Like Approach to Au-

tomata) . 17

D Proofs of §6 (A Deduction System for Automata) 18

E Proofs of §7 (The Exponential Modality) 18

F Simple Self Dualization 19
F.1 Some Basic Definitions and Facts 19
F.2 Self Duality . 20
F.3 Monoidal Structure 20

F.4 (Commutative) Monoids 20
F.5 (Commutative) Comonoids 20
F.6 A (Lax) Symmetric Monoidal Monad 20
F.7 An Oplax Symmetric Monoidal Comonad 21

G A Dialectica-Like Interpretation of Zig-Zag Strategies 21
G.1 The Topos of Trees 21
G.2 The Monoidal Structure of G(S) 22
G.3 Monoids and Comonoids in G(S) 22
G.4 A Dialectica-Like Interpretation of Zig-Zag Strate-

gies . 22
G.4.1 Total Zig-Zag Strategies in G(S) 22
G.4.2 Composition of Total Zig-Zag Strategies in

G(S) 23
G.5 The Distributive Law ζ 23
G.6 The Symmetric Monoidal Structure of DZ 25
G.7 Monoids and Comonoids in DZ 25
G.8 Comonoids in DZD 25
G.9 The Base Category T 25

G.9.1 Proof of Proposition G.8 25

H Proof of Proposition F.4 26
H.1 (−)H is a lax symmetric monoidal functor 26
H.2 ((−)H , η, µ) is a monad 28
H.3 ((−)H , η, µ) is lax symmetric monoidal 29

I Proof of Proposition G.3 30
I.1 Proof of Proposition I.1.(i) 30

J Monoids, Monads and Monoidal Categories 35
J.1 Monads and Comonads 35

J.1.1 (Lax) (Symmetric) Monoidal Monads . . . 35
J.1.2 Oplax (Symmetric) Monoidal Comonads . 37

J.2 Distributive Laws of a Comonad over a Monad . . 39
J.2.1 The Kleisli Category Kl(Λ) 39
J.2.2 Lifting of a Comonad to the Kleiseli Cate-

gory of a Monad 39
J.2.3 (Oplax) Monoidal Lifting 40
J.2.4 Proof of Proposition J.6 40

J.3 Monoids and Comonoids 43
J.3.1 Monoids 43
J.3.2 The Category Mon(C) of Commutative

Monoids 44
J.3.3 Comonoids 44
J.3.4 The Category Comon(C) of Commuta-

tive Comonoids 44
J.3.5 Lifting of Monoids and Comonoids to

Kleiseli Categories 44
J.3.6 The Monad of Monoid Indexing 45
J.3.7 Proof of Proposition J.10 46
J.3.8 The Comonad of Comonoid Indexing . . . 47
J.3.9 The Distributive Law of Comonoid over

Monoid Indexing 47

50 2016/7/7

	Introduction
	A Curry-Howard Approach to Tree Automata
	Tree Automata and Games
	Linear Synchronous Arrow Games
	Deterministic Linear Implications

	Indexed Structure
	Projection and Existential Quantification
	Monoidal Structure

	A Dialectica-Like Approach to Automata
	Monoidal Closed Structure
	Complementation and Falsity
	Universal Quantifications and the -Normal Form
	Alternating v.s. Non-Deterministic Tree Automata

	Simple Zig-Zag Games
	Simple Zig-Zag Games
	Monoidal Closed Structure
	D-Synchronicity
	Fibred Structure in DZD
	The Fibred Structure of Comonoid Indexing
	Comonoid Indexing in DZD
	The Fibred Category DialZ

	Quantification in DialZ
	The Distributive Law of Comonoid over Monoid Indexing

	Fibrations of Tree Automata
	The Fibred Categories DialAut and DialAutW
	Automata and Substituted Acceptance Games
	Quantification

	A Deduction System for Automata
	The Exponential Modality
	Conclusion
	Simple Games
	Proofs of §4 (Simple Zig-Zag Games)
	The Monoidal Structure of DZ
	The Monoidal Closed Structure of DZ
	D-Synchronicity (§4.3)
	Comonoid Indexing in DZD (§4.4.2)
	The Fibred Category DialZ (§4.4.3)
	The Distributive Law of Comonoid over Monoid Indexing (§4.6)

	Proofs of §2, §3 and §5
	Proofs of §5 (Fibrations of Tree Automata)
	Proofs of §2 (A Curry-Howard Approach to Tree Automata)
	Proofs of §3 (A Dialectica-Like Approach to Automata)

	Proofs of §6 (A Deduction System for Automata)
	Proofs of §7 (The Exponential Modality)
	Simple Self Dualization
	Some Basic Definitions and Facts
	Self Duality
	Monoidal Structure
	(Commutative) Monoids
	(Commutative) Comonoids
	A (Lax) Symmetric Monoidal Monad
	An Oplax Symmetric Monoidal Comonad

	A Dialectica-Like Interpretation of Zig-Zag Strategies
	The Topos of Trees
	The Monoidal Structure of G(S)
	Monoids and Comonoids in G(S)
	A Dialectica-Like Interpretation of Zig-Zag Strategies
	Total Zig-Zag Strategies in G(S)
	Composition of Total Zig-Zag Strategies in G(S)

	The Distributive Law
	The Symmetric Monoidal Structure of DZ
	Monoids and Comonoids in DZ
	Comonoids in DZD
	The Base Category T
	Proof of Proposition G.8

	Proof of Proposition F.4
	(-)H is a lax symmetric monoidal functor
	((-)H,,) is a monad
	((-)H,,) is lax symmetric monoidal

	Proof of Proposition G.3
	Proof of Proposition I.1.(i)

	Monoids, Monads and Monoidal Categories
	Monads and Comonads
	(Lax) (Symmetric) Monoidal Monads
	Oplax (Symmetric) Monoidal Comonads

	Distributive Laws of a Comonad over a Monad
	The Kleisli Category Kl()
	Lifting of a Comonad to the Kleiseli Category of a Monad
	(Oplax) Monoidal Lifting
	Proof of Proposition J.6

	Monoids and Comonoids
	Monoids
	The Category Mon(C) of Commutative Monoids
	Comonoids
	The Category Comon(C) of Commutative Comonoids
	Lifting of Monoids and Comonoids to Kleiseli Categories
	The Monad of Monoid Indexing
	Proof of Proposition J.10
	The Comonad of Comonoid Indexing
	The Distributive Law of Comonoid over Monoid Indexing

