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Abstract
We propose a fibred monoidal closed category of alternating tree
automata. Our notion is based on Dialectica-like categories, sug-
gested by the specific logical form of the transitions of alternating
automata. The basic monoidal closed structure gives a realizability
interpretation of proofs of a first-order multiplicative linear logic as
winning strategies in corresponding acceptance games.

Moreover, we show that the usual powerset operation translating
an alternating automaton to an equivalent non-deterministic one
satisfies the deduction rules of the ’!’ modality of linear logic. We
thus get a deduction system for intuitionistic linear logic, which in
particular gives deduction for minimal intuitionistic predicate logic
via the Girard translation. Using a suitable negative translation
based on the ’?’ modality, we can interpret proofs of minimal
classical logic, and also get a weak form of completeness of our
realizers wrt language inclusion.

1. Introduction
We propose a fibred monoidal closed category of alternating tree
automata. Alternating tree automata (see e.g. [6, 23, 29]) are equiv-
alent in expressive power to the Monadic Second-Order Logic on
infinite trees (MSO). They are easily closed under complement,
and together with the translation of alternating automata to non-
deterministic ones (the Simulation Theorem [23]) this provides a
convenient decomposition of the translation MSO formulas to au-
tomata (see e.g. [6, 29]), implying the decidability of MSO [25].

This papers shows that this decomposition corresponds to some
extent to the decomposition of intuitionistic logic in linear logic [5].
The fibred symmetric monoidal closed structure allows to organize
automata in a deduction system that we present below. Our model,
building from [26], is based on games semantics, which provides a
realizability interpretation of this deduction system.

We use Gödel’s Dialectica interpretation (see e.g. [2, 18]) in two
related ways. First, Dialectica can be seen as a constructive notion
of prenex ∃∀-formulas, on which we base the transition function of
the internal implication of tree automata. This leads to our notion
of tree automata presented in §2. Second, our notion of morphism
(issued from [26]) is based on zig-zag strategies, which can be
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represented using Dialectica-like categories (see e.g. [4, 8, 10]).
This allows to conveniently describe the dependencies on inputs
and tree directions.

Monoidal Fibrations of Tree Automata. Given an alternating
tree automaton A on alphabet Σ and a Σ-labeled tree t, one can
ask whether t is accepted by A or by ∼A, the complement of A.
We write these two possibilities respectively as

1; I ` A(t) and 1; I ` ∼A(t)

Acceptance of a tree by an automata can be defined via a two-player
acceptance game, where the Proponent P (also called Automaton or
∃loı̈se) tries to force the execution of the automaton on a successful
path, while its Opponent O (∀belard) tries to find a failing path (see
e.g. [6, 24, 28]). Then A accepts t iff P has a winning strategy
in this game. As shown in [26], using tools coming from game
semantics and categorical logic, such strategies can be organized
as categories. This means that strategies can be used as realizers
for implicative statements of the form

1;A(t) ` B(u)

satisfying the two following usual Axiom and Cut deduction rules

1;A(t) ` A(t)

1;A(t) ` B(u) 1;B(u) ` C(v)

1;A(t) ` C(v)

They correspond to the fact that there are identity strategies, and
that strategies can be composed.

Moreover, these categories are fibred in the sense that if A and
B have the same input alphabet Σ, then we can form an implication
with input alphabet Σ:

Σ;A ` B
On the other hand, there is a category of trees whose objects are
alphabet and whose morphisms from Σ to Γ are (Σ → Γ)-labeled
trees, noted Σ ` t : Γ. (So that a tree 1 ` t : Σ is essentially the
same thing as a usual Σ-labeled tree.) These trees are incorporated
in the deduction system via Substitution rules

Γ;A ` B Σ ` t : Γ

Σ;A(t) ` B(t)

Substitution can of course be iterated, e.g. as in

Σ;A(u) ` B(v) ∆ ` t : Σ

∆;A(u ◦ t) ` B(v ◦ t)
More precisely, for each alphabet Σ there is a category of games

over Σ, on which tree morphisms act as functors. In particular, the
general Axiom and Cut rules have the form

Σ;A(t) ` A(t)

Σ;A(t) ` B(u) Σ;B(u) ` C(v)

Σ;A(t) ` C(v)

The categories of [26] have a symmetric monoidal product ⊗ ,
allowing to form an automatonA⊗B on Σ from automataA and B
on Σ. This product has unit automata I and satisfies the following
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rules (here and in the following, we leave implicit input trees when
they are not relevant):

Σ;A⊗ I a` A Σ;A⊗ B a` B ⊗A

Σ; (A⊗ B)⊗ C a` A⊗ (B ⊗ C)

Σ;A1 ` B1 Σ;A2 ` B2

Σ;A1 ⊗A2 ` B1 ⊗ B2

where Σ;A a` B stands for (Σ;A ` B and Σ;B ` A). If A
and B are complete (in the sense that a move is always possible
in acceptance games), then A⊗ B satisfies the expected relation

1; I ` (A⊗ B)(t) iff (1; I ` A(t) and 1; I ` B(t))

Moreover, there are falsity automata Σ ` ⊥, which accept no tree
and satisfy the rules

Σ;A⊗ B ` ⊥
Σ;A ` ∼B and

Σ;A ` ∼B
Σ;A⊗ B ` ⊥

Finally, the fibred categories of [26] are equipped with a cate-
gorical notation of existential quantification. This means that from
an automaton A on Σ × Γ, we can form an automaton ∃ΓA on Σ
satisfying the rules

Σ; ∃ΓA ` B
Σ× Γ;A ` B(π)

and
Σ× Γ;A ` B(π)

Σ;∃ΓA ` B
where Σ×Γ ` π : Σ is a projection. If Σ = 1, so that Σ×Γ ' Γ,
we can derive

1;A(t) ` ∃ΓA
In the case of a non-deterministic automaton N , we have the
expected converse:

1; I ` ∃ΓN =⇒ 1; I ` N (t) for some t

Strategies provide a realizability semantics to this deduction
system, in the sense that from a formal derivation of Σ;A ` B
we can compute a strategy σ such that for every input tree t and
every winning strategy τ in the acceptance game for 1; I ` A(t),
the strategy σ◦τ is winning in the acceptance game for 1; I ` B(t).

Monoidal Closed Fibrations of Tree Automata. In this paper, we
extend [26] to monoidal closed fibrations.

A first consequence is that, instead of the Hilbert-like system
above, we can now make deductions using sequents of the form

Σ;A1, . . . ,An ` B
and interpreted in the old system as

Σ;A1 ⊗ · · · ⊗ An ` B
The main consequence is the introduction of a linear implica-

tion connective on automata, satisfying

Σ;A1, . . . ,An,A ` B
Σ;A1, . . . ,An ` A( B

and which is compatible with cut-elimination, in the sense that the
following two derivations are interpreted by the same strategy

∆1

Σ;A ` B
Σ; I ` A( B

∆2

Σ; I ` A Σ;B ` B
Σ;A( B ` B

Σ; I ` B

...
∆1[∆2/A]

Σ; I ` B
We thus obtain a system whose propositional connectives are
⊗ , ( , I and ⊥. The rules for these connectives are direct

adaptations of the usual rules of the multiplicative fragment of

intuitionistic linear logic (which can be found e.g. in [22]) obtained
by adding alphabets to sequents with the following proviso: the
premises and the conclusion of a propositional rule must have the
same alphabet. The rules for existential quantification are now

Σ;A1, . . . ,An, ∃ΓA ` B
Σ× Γ;A1(π), . . . ,An(π),A ` B(π)

Σ× Γ;A1(π), . . . ,An(π),A ` B(π)

Σ;A1, . . . ,An, ∃ΓA ` B

Intuitionistic Linear Logic and Non-Determinization. Finally,
we show that when restricting to positional strategies and parity
automata, the non-determinization construction !A satisfies the de-
duction rules of the ‘!’ modality of linear logic:

Σ; !A1, . . . , !An ` A
Σ; !A1, . . . , !An ` !A

Σ;A1, . . . ,An,A ` B
Σ;A1, . . . ,An, !A ` B

Σ;A1, . . . ,An ` B
Σ;A1, . . . ,An, !A ` B

Σ;A1, . . . ,An, !A, !A ` B
Σ;A1, . . . ,An, !A ` B

(1)

Unfortunately, positional strategies do not compose, so the
above rules are not compatible with cut-elimination. But we can
still interpret proofs of minimal intuitionistic logic (i.e. without the
Ex-Falso rule) using Girard’s decomposition A ⇒ B := !A( B.

Weak Completeness and Minimal Classical Logic. Our model
is weakly complete in the sense that if L(A) ⊆ L(B), then from
the strategy witnessing L(!A ⊗ !(B⊥)) = ∅, we can effectively
build a strategy realizing A ⇒ ?B, where ?B := (!(B⊥))⊥ and
(−)⊥ := (−)( ⊥.

Automata of the form ?A = A⊥ ⇒ ⊥ live in the target
of a negative translation of minimal classical logic to minimal
intuitionistic logic [27]. We can therefore interpret proofs from
minimal classical logic via this translation, for instance Peirce’s
law, whose translation is derivable:

Σ;A1, . . . ,An ` ((?A ⇒ ?B)⇒ ?A)⇒ ?A

Outline of the Paper. We present our notion of tree automata
in §2, and §3 gives a basic setting of games. In §4 we give a
Dialectica-like presentation of zig-zag strategies, which lead in §5
to our Dialectica-like fibrations. We then discuss non-deterministic
automata in §6.

A full version of this paper is available at https://perso.
ens-lyon.fr/colin.riba/papers/dialaut.pdf.

We fix a finite non-empty set D of tree directions, and let p
range over D∗. A Σ-labeled tree is a map D∗ → Σ.

2. Tree Automata
We present here our notion of tree automata. It allows to build a
linear implication automaton A( B from automata A and B.

Usually, an alternating tree automaton A with state set QA has
transitions given by a function δA mapping a state q and an input
letter a to an an irredundant disjunctive normal form1 overQA×D
([23], see also [29]). In particular, for some finite sets U,X:

δA(q, a) =
∨
u∈U

∧
x∈X

(qu,x, du,x) (2)

We therefore can see δA as being of the form

δA(q, a) : U ×X −→ QA ×D

1 That is, an element of the free distributive lattice over QA×D [14, §4.8].
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This leads to acceptance games where the Proponent P (Eloise)
plays from the

∨
’s by choosing some u ∈ U and the Opponent O

(Abelard) plays from the
∧

’s by choosing some x ∈ X .
Consider now another automaton B with transitions given by

δB(qB, b) : V × Y → QB ×D. We discuss how to build a linear
implication A ( B which runs A and B in parallel. Assume for
now that both A and B have input alphabet 1 = {•} (the general
case is presented in §5). We first stipulate thatQA(B := QA×QB.
We then want to see the transition function of A( B as a form of
implication:

δA(B((qA, qB), •) ≡ δA(qA, •) ( δB(qB, •)

This leads to a form of implication between ∨∧-forms:∨
u∈U

∧
x∈X

(qu,x, du,x) −(
∨
v∈V

∧
y∈Y

(q′v,y, d
′
v,y)

We now follow the pattern of Gödel’s Dialectica interpretation (see
e.g. [2, 18]). It consists in Skolemization for a suitable (construc-
tive) prenex form:∨

u∈U
∧
x∈X(qu,x, du,x) (

∨
v∈V

∧
y∈Y (q′v,y, d

′
v,y)

≡∧
u∈U

∨
v∈V

∧
y∈Y

∨
x∈X [(qu,x, du,x)( (q′v,y, d

′
v,y)]

≡∨
f∈V U

∧
u∈U

∧
y∈Y

∨
x∈X [(qu,x, du,x)( (q′f(v),y, d

′
f(v),y)]

≡∨
f

∨
F

∧
u

∧
y[(qu,F (u,y), du,F (u,y))( (q′f(u),y, d

′
f(u),y)]

This would suggest δA(B (denoted δ below) to be of the form:

δ(q, •) : (V U ×XU×Y )× (U × Y ) → QA(B ×D

In order forA( B to runA and B in parallel along the input tree,
we imposeD-synchronicity, that is du,F (u,y) = d′f(u),y . In particu-
lar, the choice of the tree direction should be made explicit in the ac-
ceptance games induced by (2). Moreover, with non-deterministic
automata, it is O (called then Pathfinder) who chooses the tree di-
rection. The leads to transition functions of the form:

δ(q, •) : U ×X −→ (D −→ Q)

which we read as the ∨∧-form∨
u∈U

∧
x∈X

∧
d∈D

δ(q, •, u, x, d)

In the case of A ( B, by applying the Dialectica pattern to such
∨∧-forms and imposing D-synchronicity, we can let

δA(B((qA, qB), •, (f, F ), (u, y), d) := (q′A, q
′
B)

where

q′A := δA(qA, •, u, F (u, y, d), d) and q′B := δB(qB, •, f(u), y)

We therefore have arrived at the following notion.

Definition 2.1 (Tree Automata). A tree automaton on alphabet Σ
has the form

A = (Q, qı, U,X, δ,Ω)

where Q is the finite set of states, qı ∈ Q is the initial state, U and
X are finite sets of resp. P and O-labels, Ω ⊆ Qω is the acceptance
condition, and the transition function δ has the form

δ : Q× Σ −→ U ×X −→ (D −→ Q)

We suppose for simplicity that automata are complete, in the sense
that U and X are always non-empty.

3. Games
Following [26], the morphisms of our monoidal closed categories
of automata are based on a restriction of the linear arrow of simple
games (see e.g. [1, 9]) between acceptance games.

Simple Games. Simple games are two-player games where the
Proponent P (∃loı̈se) and the Opponent O (∀belard) play in turn
moves from a specific set, producing sequences of moves which
may be subject to specified rules.

Formally, a simple game A has the form

A = (AP, AO, ξA, LA)

where AP and AO are resp. the sets of P-moves and O-moves,
ξA ∈ {+,−} is the polarity of A, and LA ⊆ ℘ξAA is a non-
empty prefix-closed set of legal plays, where the sets ℘+

A and ℘−A
of positive and negative plays are

℘+
A := (AP ·AO)∗ + (AP ·AO)∗ ·AP

℘−A := (AO ·AP)∗ + (AO ·AP)∗ ·AO

So P starts in a positive game and O starts in a negative one. We let
s, t, . . . range of over plays and m,n, . . . range over moves.

The dual of A is the game A := (AO, AP,−ξA, LA). A game
A is full if LA = ℘ξAA . We write

A = (U,X)

to denote a full positive game with AP := U and AO := X .
A play is a P-play (resp. an O-play) if it is either empty or ends

with a P-move (resp. an O-move). A P-strategy σ is a non-empty
set of legal P-plays which is

P-prefix-closed: if s.t ∈ σ and s is a P-play then s ∈ σ, and

P-deterministic: if s.n ∈ σ and s.m ∈ σ then n = m.

Games Over an Automaton. An automaton

A = (QA, q
ı
A, U,X, δA,ΩA)

generates the positive full game

a(A) = A = (U,X ×D)

Linear Arrow Games. Simple games form a category SG, in
which, given games A and B of the same polarity, the morphisms
from A to B are P-strategies in the negative linear arrow game

A( B = (BP +AO, BO +AP,−, LA(B)

LA(B ⊆ ℘−A(B consists of those negative plays s such that
s�A ∈ LA and s�B ∈ LB , where s�A is the restriction of s to
AP +AO, and similarly for s�B.

Note that the polarity of moves in component B is preserved
while the polarity of moves in A is reversed. The plays of A( B
start in component A iff A and B are both positive. Moreover,
plays satisfy the switching condition: given s.m.n ∈ ℘A(B , with
n ∈ (A ( B)O, then m and n are in the same component (i.e.
only P is allowed to switch between A and B).

The Hyland-Schalk Functor [11]. There is a faithful functor

HS : SG −→ Rel

mapping a simple game to its set of legal plays, and a strategy
σ : A( B to

HS(σ) := {(s�A, s�B) | s ∈ σ} ⊆ LA × LB
Hence strategies σ : A( B can be represented as spans

HS(σ)

uu ))
LA LB
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a(A) −( a(B)
O u

v P
(y, d) O

P (x, d)

Figure 1. A play in a synchronous σ : a(A)( a(B)

In particular, the identity strategy idA is the unique strategy such
that HS(idA) = LA ×LA LA, where LA ×LA LA is the pullback
of the identity LA → LA with itself in Set.

Synchronous and Zig-Zag Strategies. The morphisms of our cat-
egories of automata are based on the combinatorics of a restriction
of the linear arrow a(A)( a(B), similar to that of [26].

Since we want monoidal closed categories, we need a restriction
of a(A) ( a(B) which can be internalized in a automaton
A ( B, so that strategies on a(A ( B) correspond to strategies
in that restriction of a(A) ( a(B). This is possible if we restrict
to strategies on a(A)( a(B) which evaluateA and B in parallel,
and along the path of the input tree. We call such strategies D-
synchronous. They are formally defined as follows.

The plays s of a(A), have a trace trD(s) ∈ D∗, defined by
composing restriction and projection:

trD(ε) := ε trD(s.u) := trD(s) trD(s.(x, d)) := trD(s).d

A strategy
σ : a(A) −( a(B)

is D-synchronous if trD(s) = trD(t) for all (s, t) ∈ HS(σ). This
imposes the plays of σ to have the form depicted in Fig. 1.

Note that σ is D-synchronous iff the following commutes:

HS(σ)

uu ))
LA

trD ))
LB

trDuu
D∗

(3)

It follows that automata and D-synchronous strategies form a cat-
egory SAG.

Much of what is required for the monoidal closed structure in
our Dialectica-like approach actually follows from the specific zig-
zag shape of the plays in Fig. 1. Given simple games A and B, a
strategy σ : A( B is a zig-zag strategy if for all play s ∈ σ, the
restrictions s�A and s�B have the same length.

Zig-zag strategies can be characterized by diagrams similar
to (3) (by taking lengths of plays instead of their traces). Since
moreover the identity strategy onA is zig-zag, it follows that simple
games and zig-zag strategies form a category.

Note that synchronous strategies are zig-zag strategies. A zig-
zag strategy σ : A ( B always has to switch component (recall
that O can never switch). In particular, ifA andB are positive, then
the plays of σ have the same shape as those of Fig. 1.

Totality. Given games A and B, a strategy s : A( B is total if
given s ∈ σ, if s.n is legal then s.n.m ∈ σ for some move m.

It is easy to see that if σ : A ( B and τ : B ( C are both
zig-zag and total, then τ ◦ σ is zig-zag and total.

Indeed, consider (s, t) ∈ HS(τ ◦ σ) = HS(τ) ◦ HS(σ), and
u such that (s, u) ∈ HS(σ) and (u, t) ∈ HS(τ). Given a legal
(A ( C)O-move m in (say) component A, since σ is zig-zag
and total, there is some n such that (s.m, u.n) ∈ HS(σ). Since
n ∈ BP ⊆ (B ( C)O, and since τ is zig-zag and total, there is
some r ∈ CP such that (u.n, t.r) ∈ HS(τ), from which it follows
that (s.m, t.r) ∈ HS(τ ◦ σ). The case of m ∈ CO is similar.

Since identity strategies are total, it follows that simple games
and total zig-zag strategies form a category.

Winning. Simple games can be equipped with winning condi-
tions, which are infinite sequences of moves.

It is well-known (see e.g. [1, 9]), that total and winning strate-
gies compose and form a category. The case of zig-zag strategies
is particularly simple. Given (A,WA) and (B,WB), a total zig-
zag strategy σ : A ( B is winning if for all infinite sequences
of moves π such that π(0). · · · .π(n) ∈ σ for infinitely many n,
π�A ∈ WA implies π�B ∈ WB .

4. A Dialectica-Like Interpretation of Zig-Zag
Strategies

We now give a Dialectica-like presentation of total zig-zag strate-
gies σ : A ( B for A and B positive full games. It relies on
an instance of Dialectica called simple self-dualization in [12]. We
will perform it in the topos of trees S .

Simple Self Dualization. Given a category C, its simple self-
dualization is G(C) := C × Cop (also written Cd in [12]). Its
objects are pairsU,X of objects of C, and a morphism from (U,X)
to (V, Y ) is given by a pair of maps (f, F ), denoted

(f, F ) : (U,X) −p→ (V, Y )

where f : U → V and F : Y → X . If C is symmetric monoidal,
then G(C) is an instance of a Girard category, in the sense of de
Paiva [4, 12].

Assume that C is symmetric monoidal closed w.r.t. (⊗, I). Then
G(C) is symmetric monoidal closed w.r.t.

(U,X)⊗G (V, Y ) := (U ⊗ V,XV ⊗ Y U ) with unit (I, I)

The linear exponentials are given by

(U,X)(G (V, Y ) := (V U ×XY , U × Y )

Assume now that the monoidal structure (⊗, I) = (×,1) of C
is Cartesian. Then G(C) can be equipped with a co-monad (T, ε, δ)
where the action on objects of T is

T (U,X) := (U,XU )

The co-Kleiseli category D(C) := Kl(T ) is a Dialectica category
in the sense of [4, 10]. Explicitly, its objects are pairs A = (U,X)
of objects of C, and a map from A to (V, Y ) is a G(C)-morphism
(f, F ) from TA to (V, Y ), that is

(f, F ) : (U,XU ) −p→ (V, Y )

D(C) is symmetric monoidal closed w.r.t. the product

(U,X)⊗ (V, Y ) := (U × V,X × Y ) with unit (1,1)

Note that with A = (U,X) and B = (V, Y ),

T (A⊗B) = (U × V, (X × Y )U×V )

' (U × V,XUV × Y V U )
= TA⊗G TB

The linear exponentials of D(C) are given by

(U,X)( (V, Y ) := (V U ×XU×Y , U × Y )

Note that A ( B ' TA (G B, so the monoidal closure of
D(C) actually follows from that of G(C):

D(C)[A⊗B,C] = G(C)[T (A⊗B), C]
' G(C)[TA⊗G TB,C]
' G(C)[TA, TB (G C]
' D(C)[A,B ( C]
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The Topos of Trees. The topos of trees S is the presheaf category
over the order (N,≤) seen as a category, see e.g. [3].

An object X of S is given by a family of sets (Xn)n∈N
equipped with restriction maps rXn : Xn+1 → Xn. A morphism f
from X to Y is a family of functions fn : Xn → Yn compatible
with restriction: rYn ◦ fn+1 = fn ◦ rXn .

As a topos, S is Cartesian closed w.r.t. to the Cartesian product
of presheaves, which is given by (X × Y )n := Xn × Yn. Expo-
nentials are defined as usual for presheaves (see e.g. [20]) by

(XY )n := Nat[N[−, n]× Y,X]

Explicitly, (XY )n consists of sequences (ξk : Yk → Xk)k≤n
which are compatible with rX and rY . The restriction map of XY

takes (ξk)k≤n+1 ∈ (XY )n+1 to (ξk)k≤n ∈ (XY )n.
We will use the functor I : S → S of [3]. On objects, it

mapsX to (I(Xn))n∈N whereI(Xn+1) = Xn andI(X0) = 1,
with I(rXn+1) = rXn and I(rX0 ) = 1 : X0 → 1. On morphisms,
I(fn+1) = fn and I(f0) = 1 : 1→ 1.

Define the family of maps predX : X ⇒ IX , natural in X , as
predX0 := 1 : X0 → 1 and predXn+1 := rXn .

The functor I allows S to be equipped with fixpoint operators
fixX : XIX ⇒ X , defined as

fixXn ((fm)m≤n) := (fn ◦ . . . ◦ f0)(•)

The maps fixX are natural inX . Given f : IX×Y ⇒ X , writing
f t : Y ⇒ XIX for the exponential transpose of f , fixX ◦f t is the
unique map h : Y ⇒ X satisfying f ◦ 〈predX ◦ h, idY 〉 = h (see
[3, Thm. 2.4]).

Given a set M , write M? for the object of S with M?
n := Mn

and rn(m.m) := m. Note that M0 ' 1 and that rn is surjective.

A Dialectica-Like Interpretation of Zig-Zag Strategies. Con-
sider a positive full game A = (U,X). There is a bijection

∂ = 〈∂U , ∂X〉 : ℘even
A −→ ∪n∈N(Un ×Xn)

with ∂(ε) = (•, •) and ∂(s.u.x) = (∂U (s).u, ∂X(s).x).
Consider now another positive full game B = (V,X) and let

σ : A ( B be a total zig-zag strategy. By induction on n ∈ N,
it is easy to see that for all (u, y) ∈ Un × Y n, there is a unique
(s, t) ∈ HS(σ) such that u = ∂U (s) and y = ∂Y (t).

The property vacuously holds for n = 0. Assuming it for n,
given (u.u, y.y) ∈ Un+1 × Y n+1, by induction hypothesis, there
is a unique (s, t) ∈ HS(σ) such that u = ∂U (s) and y = ∂Y (t).
Now, since σ is total and zig-zag, there is a unique v ∈ V such that
(s.u, t.v) ∈ HS(σ). Similarly, there is a unique x ∈ X such that
(s.u.x, t.v.y) ∈ HS(σ), and the property follows.

Furthermore, since u.u and y uniquely determine v = ∂V (t)
and v, and since u.u and y.y uniquely determine x = ∂X(s) and
x, we obtain functions

fn+1 : Un+1 × Y n −→ V n+1

Fn+1 : Un+1 × Y n+1 −→ Xn+1

It follows that σ uniquely determine a G(S )-morphism

(f, F ) : (U?, X?U?

) −p→ (V ?
IY ?

, Y ?)

Conversely, each (f, F ) uniquely determine a total zig-zag
strategy σ, with, for all u.u ∈ Un+1, and all y ∈ Y n,

(∂−1(u, x).u , ∂−1(v, y).v) ∈ HS(σ)

where v.v = fn+1(u.u, y) and x = Fn(u, y); and for all y,

(∂−1(u, x).u.x , ∂−1(v, y).v.y) ∈ HS(σ)

where x.x = Fn+1(u.u, y.y).
We therefore have shown:

Proposition 4.1. Given positive full games A = (U,X) and
B = (V, Y ), total zig-zag strategies σ : A ( B are in 1-1
correspondence with G(S )-morphisms

(f, F ) : (U?, X?U?

) −p→ (V ?
IY ?

, Y ?)

Note that given (u, x, v, y) ∈ (U × X × V × Y )n, we have
((u, x), (v, y)) ∈ HS(σ) if and only if v = fn(u,I(y)) and
x = Fn(u, y). Here, we have written ((u, x), (v, y)) ∈ HS(σ) for
(∂−1(u, x), ∂−1(v, y)) ∈ HS(σ). We adopt the same convention
in the following.

Consider positive full games A = (U,X), B = (V, Y ) and
C = (W,Z), and G(S )-morphisms

(f, F ) : (U?, X?U?

) −p→ (V ?IY
?

, Y ?)

(g,G) : (V ?, Y ?V
?

) −p→ (W ?IZ?

, Z?)

We want to define their composite

(h,H) : (U?, X?U?

) −p→ (W ?IZ?

, Z?)

Write σ and τ for the total zig-zag strategies corresponding to
resp. (f, F ) and (g,G). Then the relational composite

HS(τ ◦ σ) = HS(τ) ◦HS(σ)

must be such that ((u, x), (w, z)) ∈ HS(τ) ◦ HS(σ) if and only if
there are (v, y) such that

((u, x), (v, y)) ∈ HS(σ) and ((v, y), (w, z)) ∈ HS(τ)

But this is possible iff the following equations are satisfied:

v = fn(u,I(y)) w = gn(v,I(z))
x = Fn(u, y) y = Gn(v, z)

The derived equation

y = Gn(fn(u,I(y)), z)

uniquely defines y from u and z as

y = y(u, z) = fixYn (λy.Gn(fn(u, y), z))

(We have here tacitly used the fact that ξ ∈ (M?IM?

)n is
completely determined by its last component ξn.) Now, since
I(y(u, z)) = y(Iu,Iz), we can define

hn+1(uu, z) := gn+1(fn+1(uu, y(u, z))) , z)
Hn+1(uu, zz) := Fn+1(uu, y(uu, zz))

More generally, given G(S )-objects (U,X), (V, Y ), (W,Z),
and G(S )-morphisms

(f, F ) : (U,XU ) −p→ (V IY , Y )
(g,G) : (V, Y V ) −p→ (WIZ , Z)

we can define their composite

(g,G) ◦ (f, F ) = (h,H) : (U,XU ) −p→ (WIZ , Z)

as, modulo exponential transpose and again using the internal λ-
calculus of S :

h(u, z) := g(f(u, y(Iu, z)), z)
H(z, u) := F (u, y(u, z))

where y(u, z) := fixY (λy.G(f(u, y), z))

It is possible to directly check that this composition is associative
and preserves identities. We can actually do better: the operation

(−)I : (U,X) 7−→ (UIX , X)

is the action on objects of a functor part of a monad, and the
composition of G(S )-morphisms

(f, F ) : TA −p→ BI

(g,G) : TB −p→ CI
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can be described by a distributive law of T over (−)I.

Distributive Laws. A distributive law λ of a co-monad G over a
monad T on a category C is given by a natural transformation

λ : G ◦ T =⇒ T ◦G
subject to some coherence conditions, which can be found e.g.
in [7]. These coherence conditions ensure that we can define a
category Kl(λ), whose objects are the objects of C, and whose
morphisms are given by Kl(λ)[A,B] := C[GA, TB].

In our case, the co-monad is the co-monad T of [4], and the
monad (−)I = ((−)I, η, µ) is given by

(fη, Fη) : (U,X) −p→ (UIX , X)
(fµ, Fµ) : (UIX×IX , X) −p→ (UIX , X)

where Fη = Fµ = idX , fη(u, x) = u and fµ(h, x) = h(x, x).
Given a G(S )-object A = (U,X), define the G(S )-map

λA = (fλ, Fλ) : (UIX , XUIX

) −p→ (UI(XU ), XU )
where fλ : UIX × I(XU ) −→ U

Fλ : UIX ×XU −→ X

as follows. Let fλ0 (θ0, •) := θ0. Given ξ ∈ (XU )n, θ ∈ (UIX)n
and θ′ ∈ (UIX)n+1,

Fλn (θ, ξ) := fixXn (ξ ◦ θ)
fλn+1(θ′, ξ) := θ′n+1(fixXn (ξ ◦ rn(θ′)))

= θ′n+1(Fn(rn(θ′), ξ))

Proposition 4.2. The family of maps λA : T (AI) −p→ (TA)I

forms a distributive law.

We write DZS for Kl(λ) and DZ for the full subcategory of
DZS whose objects are of the form (U?, X?).

Corollary 4.3. The category of positive full games and total zig-
zag strategies is equivalent to the category DZ.

Symmetric Monoidal Structure. The categories DZS and DZ
inherit the monoidal structure of D(S ), which is given by the
monoidal product ⊗ of G(S ). It acts on DZS -maps as follows:
Given (Ui, Xi), (Vi, Yi) for i ∈ {1, 2} and

(fi, Fi) : (Ui, X
Ui
i ) −p→ (V IYi

i , Yi)

let (f1, F2)⊗ (f2, F2) be (h,H) where

h : (U1 × U2) × I(Y1 × Y2) −p→ (V1 × V2)
H : (U1 × U2) × (Y1 × Y2) −p→ (X1 ×X2)

are defined as follows. First, note that I(Y1 × Y2) = IY1 ×IY2.
Then let

h((u1, u2), (y1, y2)) := (f1(u1, y1), f2(u2, y2))
H((u1, u2), (y1, y2)) := (F1(u1, y1), F2(u2, y2))

The bifunctoriality of ⊗ follows from the fact that

fixX×Y (λ(x, y).(f(x), g(x)) = (fixX(f),fixY (g))

Proposition 4.4. The category DZS is symmetric monoidal.

Since (M ×N)? 'M? ×N?, we also get

Corollary 4.5. The category DZ is symmetric monoidal.

Symmetric Monoidal Closed Structure of DZ. For the monoidal
closed structure of DZ, first note that

DZ[A⊗B,C] = G(S )[T (A⊗B), CI]
' G(S )[TA⊗G TB,CI]
' G(S )[TA, TB (G CI]

Hence, given A = (U?, X?) and B = (V ?, Y ?), we are looking
for a linear exponent (A(DZ B) = (W ?, Z?) such that we have

(A(DZ B)I ' (TA(G BI), that is (modulo some S -isos)

(W ?IZ , Z?) ' (V ?
U?×IY ?

×X?(U×Y )?
, (U × Y )?)

The obvious choice for Z is to take U × Y . For W , it is natural to
look for W = W1 ×W2, so that (modulo some S -isos)

W ?IZ?

' W ?
1
IU?×IY ?

×W ?
2
I(U×Y )?

We can actually take W1 := V U and W2 := XU×Y since, in S ,

N?M?

' (NM )
?IM?

(4)

Indeed, first note that ξ ∈ (N?M?

)n is completely determined by
ξn : Mn → Nn. Moreover, a map (IM?)n+1 → (NM )n+1 is
just an Mn-indexed family of sequences of maps (M → N)n+1.
Also, given ξ ∈ (N?M?

)n+1, the map ξn+1 : Mn+1 → Nn+1 is
uniquely determined by

ξn+1(m.m) := ξn(m).ξm(m)

where ξm is an Mn-indexed family of maps M → N .
Then, the S -isomorphism takes ξ ∈ (N?M?

)n to the family
(θk)k≤n ∈ (NM )

?IM?

defined by induction on k as:

θ0 := 1
θk+1 := (m 7→ θk(Im).ξm)

We thus get the following.

Proposition 4.6. The category DZ is symmetric monoidal closed,
with linear exponent

(U?, X?)(DZ (V ?, Y ?) := ((V U ×XU×Y )
?
, (U × Y )?)

5. Dialectica-like Categories of Tree Automata
We describe our Dialectica-like categories DialAut of tree au-
tomata, starting from DZ. This involves two steps: we first deal
with D-synchronicity, and then handle the fibred structure. We fi-
nally discuss the logical connectives presented in §1.

Since we will not make use of DZS anymore, from now on we
leave implicit the (−)? in the denotation of DZ-objects.

5.1 D-Synchronicity in DZ

We express D-synchronicity in DZ using a monad. Given au-
tomata A and B, a D-synchronous total strategy a(A) ( a(B)
generates via Prop. 4.1 a DZ-morphism

(f, F ) : (U,X ×D) −→ (V, Y ×D)

where F is the identity on D. We can therefore restrict to DZ-
morphisms of the form

(U,X) −→ (V, Y ×D) (5)

Now, note that in DZ,

(V, Y ×D) = (V, Y )⊗ (1, D)

The object D = (1, D) is a commutative monoid in DZ, and we
can use the Kleiseli category of the monad of monoid indexing with
D (see [11, 12], which actually use the co-monad of comonoid
indexing).

Monoid Indexing [11, 12]. Let (C,⊗, I) be a symmetric monoidal
category and let Mon(C) be its category of commutative monoids.
Its objects are objects M of C equipped with structure maps

I
u−→ M

m←− M ⊗M
subject to some coherence conditions (see e.g. [22]). A morphism
from (M,u,m) to (N,u′,m′) is a C-morphism M → N which
commutes with the structure maps.
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Given a commutative monoid (M,u,m) in C, define the monad
M = (M,η, µ) as follows. The functor M acts on objects by
tensoring with M on the right and on morphisms by

(f : A→ B) 7−→ (f ⊗ idM : A⊗M → B ⊗M)

The natural maps η and µ are given by

ηA = (e, idA) : K ⊗A −→ A
µA = (m, idA) : K ⊗K ⊗A −→ K ⊗A

(we leave here implicit the coherence isos of C).
The structure maps of the commutative monoid D = (1, D) of

DZ are given, modulo S -isomorphism, by

u = (1,1) : (1,1) −p→ (1, D)
m = (1, 〈id, id〉) : (1, D ×D) −p→ (1, D)

We let DZD be the Kleiseli category Kl(D).

Symmetric Monoidal Closed Structure. The monoidal product⊗
of DZD acts on objects as the monoidal product ⊗ of DZ. It acts
on maps as follows: Given (Ui, Xi), (Vi, Yi) for i ∈ {1, 2} and

(fi, Fi) : (Ui, X
Ui
i ) −p→ (V

I(Yi×D)
i , Yi ×D)

let (f1, F2)⊗ (f2, F2) be (h,H) where

h : (U1 × U2) × I(Y1 × Y2 ×D) −p→ (V1 × V2)
H : (U1 × U2) × (Y1 × Y2 ×D) −p→ (X1 ×X2)

are defined explicitly as

h((u1, u2), (y1, y2, p)) := (f1(u1, y1, p), f2(u2, y2, p))
H((u1, u2), (y1, y2, p)) := (F1(u1, y1, p), F2(u2, y2, p))

Concerning monoidal closure, since

DZD[A⊗B,C] = DZ[A⊗B,C ⊗D]
' DZ[A,B (DZ C ⊗D]

we should have (A (DZD B) ⊗ D ' (A (DZ B ⊗ D). This
leads to ((U,X)(DZD (V, Y )) = (W,Z) with

(W,Z ×D) ' (V U ×XU×Y×D, U × Y ×D)

We therefore let

(U,X)(DZD (V, Y ) := (V U ×XU×Y×D, U × Y )

Proposition 5.1. DZD is symmetric monoidal closed.

5.2 Indexed Structure
We discussed some Dialectica-like categories in §4 in order to give
a presentation of total zig-zag strategies. In full generality, these
Dialectica-like constructions are based on fibrations (see e.g. [13]),
which allow to handle some logic on top of the combinatorics of the
morphisms. We will use this framework to handle input alphabets
and a form of quantification.

Quantification in usual Dialectica-like categories can be added
along a pattern similar to the simple fibration s : s(B) → B
over a Cartesian base category B (see e.g. [8, 10]). Recall (from
e.g. [13]) that s(B) has pairs (I,X) of B-objects as objects, with
maps (I,X)→ (J, Y ) given by a pairs of B-maps f0 : I → J and
f : I ×X → Y . The functor s : s(B) → B is the first projection.
We would like to use as base the category DZD and its monoidal
product, which is not Cartesian. However, it is well-known (1) that
the fibre category of s(B) over say I , is the co-Kleiseli category
of a co-monad whose functor is I × (−), and (2) that commutative
comonoids form a Cartesian category. Comonoid indexing [11, 12],
allows to get a fibration whose fiber over K, for K a commutative
comonoid, is the co-Kleiseli category for K ⊗ (−).

The Base Category T. Let T be the category whose objects are
finite sets and whose morphisms are given by

T[Σ,Γ] := S [Σ×ID,Γ] ' DZD[(Σ,1), (Γ,1)]

Explicitly, the T-composite t′ ◦ t of t : Σ→ Γ and t′ : Γ→ Λ is

(t′ ◦ t)(a, p) := u(t(a, p), p)

Note that a function t : D∗ → (Σ → Γ) induces the T-
map t : Σ → Γ inductively defined as t0 := 1 and tn+1 :=
λ(a.a, p).tn(a,Ip).t(a, p). Also, a Σ-labeled tree t corresponds
to an S -map ID → Σ, hence to a T-map ṫ : 1→ Σ.

Comonoid Indexing [11, 12]. This is dual to monoid indexing
used above. Let Comon(C) be the category of commutative
comonoids on a symmetric monoidal category C. Its objects are
objects K of C equipped with structure maps

I
e←− K

m−→ K ⊗K
subject to some condition dual to those of Mon(C). A morphism
from (K, e,m) to (L, e′,m′) is also a C-morphism K → L
compatible with the structure maps. It is well-known (see e.g. [22,
Cor. 18, §6.5]) that Comon(C) is Cartesian.

Given a commutative comonoid (K, e,m) in C, define a
comonad K = (K, ε, δ) whose functor K acts on objects by ten-
soring on the left and on morphisms by

(f : A→ B) 7−→ (idK ⊗ f : K ⊗A→ K ⊗B)

The natural maps ε and δ are given by

εA = (e, idA) : K ⊗A −→ A
δA = (m, idA) : K ⊗A −→ K ⊗K ⊗A

Now, any comonoid morphism u : K → L induces a functor
u∗ : Kl(L) → Kl(K) acting as the identity on objects and taking
f : L ⊗ A → B to f ◦ (u ⊗ idA) : K ⊗ A → B. It readily
follows that id∗K = idKl(K) and that (u ◦ v)∗ = v∗ ◦ u∗. In other
words, we have a functor CI(C) : Comon(C)op → Cat. Its
Grothendieck completion sCI(C) :=

∫
CI(C) (see e.g. [13]) is

the category whose objects are pairs (K,A) of an object K of
Comon(C) and an object A of C, and whose morphisms from
(K,A) to (L,B) are pairs (u, f) where u : K → L is a comonoid
morphism and f : K ⊗ A → B. As usual, sCI(C) is fibred over
Comon(C) via the first projection. Its is a split fibration since
CI(C) is strict.

The Fibration DialZ. The fibred category DialZ is a full subcat-
egory of sCI(DZD). It consists in the fibers of sCI(DZD) over
commutative comonoids of the form Σ = (Σ,1) with structure
maps given, modulo S -isomorphism, by

eΣ = (1,1) : (Σ,1) −p→ (1, D)
dΣ = (〈id, id〉,1) : (Σ,1) −p→ (Σ× Σ, D)

Note that Σ⊗ (U, V ) ' (Σ× U, V ) in DZD .
Explicitly, the objects of DialZ are triples (Σ, U,X) of finite

non-empty sets. Its morphisms from (Σ, U,X) to (Γ, V, Y ) are
triples (t, f, F ) consisting of an S -map t : Σ×ID → Γ, together
with a DZD-map (f, F ) : (Σ× U,X)→ (V, Y ), that is

(f, F ) : (Σ× U,XΣ×U ) −p→ (V I(Y×D), Y ×D)

Note that Comon(DZD)-morphisms Γ → Σ are in 1-to-1
with T-maps Γ→ Σ, so that DialZ is fibred over T.

We write DialZΣ for the fibre of DialZ over Σ. Its objects have
the form (Σ, U,X), and a DialZΣ-morphism from (Σ, U,X) to
(Σ, V, Y ) is a DZD-map (f, F ) : (Σ× U,X)→ (V, Y ).

Symmetric Monoidal Closed Structure. The fibers of DialZ are
symmetric monoidal closed. The monoidal product ⊗ acts as the
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monoidal product of DZD on objects (that is as that of DZ). On
maps, given (Ui, Xi), (Vi, Yi) for i ∈ {1, 2} and

(fi, Fi) : (Σ× Ui, XUi
i ) −p→ (V

I(Yi×D)
i , Yi ×D)

let (f1, F2)⊗ (f2, F2) be (h,H) where

h(a, u, (y, p)) := (f1(a, u1, y1, p), f2(a, u2, y2, p))
H(a, u, (y, p)) := (F1(a, u1, y1, p), F2(a, u2, y2, p))

Substitution functors are strong monoidal, with structure maps
given by the structure maps (eΣ, dΣ) of Σ = (Σ,1).

Monoidal closure follows from
DialZΣ[A⊗B,C] = DZD[Σ⊗A⊗B,C]

' DZD[Σ⊗A,B (DZD C]

5.3 The Fibered Category DialAut

Consider an automaton on Σ, say

A = (QA, q
ı
A, U,X, δA,ΩA)

We have seen that the sets U and X of P and O-labels generate a
positive full game (U,X), and that A can be seen as inducing the
DialZ-object (Σ, U,X). In order to deal with acceptance, we have
handle its transition function δA.

We see the evaluation of A on a Σ-labeled tree t as producing
an S -map (we here explicit the (−)?)

α(t) : U? ×X? ×D? −→ Q?A

We define α(t)n by induction on n as follows. First, let α(t)0 := 1.
Assume now that α(t)n(u, x, p) = qA. Let qA be the last element
of qA, with the convention that qA := qıA if n = 0. Then let

α(t)n+1(u.u, x.x, p.d) := qA.δA(qA, t(p), u, x, d)

More generally, a T-morphism t : Γ→ Σ generates a map

α(t) : Γ× U ×X ×D −→ QA

defined similarly, but with

α(t)n+1(a.a, u.u, x.x, p.d) := qA.δA(qA, t(a.a, p), u, x, d)

This leads to the category DialAut. Its objects are tuples
(Σ, QA, U,X, α) where Σ, QA, U,X are finite non-empty sets
and α : Σ × U × X × D → QA is an S -map. Morphisms
from (Σ, QA, U,X, α) to (Γ, QB, V, Y, β) are DialZ-maps from
(Σ, U,X) to (Γ, V, Y ).

If t is a T-map Γ→ Σ, andA is as above, we writeA(t) for the
DialAut-object (Γ, QA, U,X, α(t)), and simply A for A(idΣ).

Fibred Structure. DialAut is fibred over T. The lifting of A =
(Σ, QA, U,X, α) along t : Γ → Σ is given by t∗(A) :=
(Γ, QA, U,X, t

∗(α)) with t∗(α)(b, u, x, p) = α(t(b,Ip), u, x, p).
The Cartesian map t(A) : t∗(A) → A is induced by lifting

along t in DialZ (that is, in
∫

CI(DZ)) so that t(A) := (t, id)
where id is the DialZΓ-identity. This leads to substitution functors
t∗ whose actions on maps are given by the their actions in DialZ.

Morphisms as Strategies We identify fibre DialAut-maps with
strategies. Let A = (Λ, QA, U,X, α) and B = (Λ, QB, V, Y, β)
be DialAutΛ-objects, and consider a DialAutΛ-morphism

(f, F ) : (Λ× U,XΛ×U ) −p→ (V I(Y×D), Y ×D)

We extend (f, F ) to a DZ-map

(f̃ , F̃ ) : (Λ× U, (X ×D)Λ×U ) −p→
((Λ× V )I(Y×D), Y ×D)

where f̃ is the identity on Λ and F̃ is the identity on D. Prop. 4.1
gives a total D-synchronous strategy σ : aΛ(A)( aΛ(B) where
aΛ(A) is the positive full game (Λ×U,X ×D), and similarly for
aΛ(B). We identify (f, F ) with σ.

Winning. Given automata A and B generating the A and B
above, let WA be the set of infinite sequences of moves π such
that π(0). · · · .π(n) ∈ ℘+

A for all n and such that the projection of
π on (Λ×U ×X ×D)ω composed with α belongs to ΩA. Define
WB similarly. We then say that (f, F ) as above is winning if σ is
winning.

Since winning total strategies form a category, it follows from
Cor. 4.3 that winning maps compose. Moreover, winning is pre-
served by substitution functors t∗, since, writing t∗(σ) for the strat-
egy corresponding to t∗(f, F ), all infinite sequences induced from
t∗(σ) are induced from σ.

The Fibration Aut. Let Aut be the subcategory of DialAut
whose objects are of the form A = A(id), and whose morphisms
are DialAut-maps (t, f, F ) where t : Γ → Σ is induced by a
FinSet-function ψ : Γ → Σ. Then Aut is fibred over FinSet.
With the same notations as above, the lifting ofA along ψ : Γ→ Σ
is the automaton A[ψ] on Γ whose transition function is given by
δA[ψ](q, b, u, x, d) := δA(q, ψ(b), u, x, d). Let AutWΣ be the sub-
category of AutΣ restricted to winning maps.

Acceptance. We now define when an automaton accepts an input
tree. First, define the unit automaton I on Σ as (1, •,1,1,1,1ω).
(where, as usual, we use 1 to denote both the singleton set and
any map to it). Note that all T-maps 1 → Σ generate the same
DialAut1-object I(t) = (1,1,1,1,1).

ThenA accepts t if there is a winning DialAut1-map from I(t)
to A(t). We let L(A), the language of A, be the set of Σ-labeled
trees accepted by A.

Note that the positive full game generated by I on alphabet 1
is of the form (1,1). It follows that A accepts t iff P has winning
strategy in a1(A(t)) with winning condition generated from α(t).

Correctness of DialAut. Our categories DialAut(−) are correct
in the following sense:

Proposition 5.2. Assume given A and B as above, where B has
also input alphabet Σ.

If there is a winning map (f, F ) : A → B then L(A) ⊆ L(B).

5.4 Logical Connectives
Symmetric Monoidal Closed Structure of DialAut. The fibred
symmetric monoidal closed structure of DialZ extends to DialAut.

Consider DialAutΣ objects A = (Σ, QA, U,X, α) and B =
(Σ, QB, V, Y, β). Following the structure in DialZ, let

A⊗B := (Σ, Q, U × V,X × Y, α u β)
A( B := (Σ, Q, V U ×XU×Y×D, U × Y, α A β)

where Q := QA × QA, and α u β and α A β are the Cartesian
products of α and β precomposed respectively with projections and
with evaluation maps.

Proposition 5.3. The fibration DialAut is symmetric monoidal
closed.

Propositional Connectives on Automata. Consider automata A
and B on Σ. Using the same notations as above, we now define

A⊗ B := (Q, q, U × V,X × Y, δA⊗B,ΩA⊗B)
A( B := (Q, q,W,Z, δA(B,ΩA(B)

whereQ := QA×QB, q := (qıA, q
ı
B),W := V U×XU×Y×D and

Z := U × Y . First, let ΩA⊗B consist of the infinite sequences ρ
such that ρ|QA ∈ ΩA and ρ|QB ∈ ΩB. Similarly, ΩA(B consists
of the ρ such that ρ|QA ∈ ΩA implies ρ|QB ∈ ΩB.

For the transition function of A⊗ B, let

δA⊗B((qA, qB), a, (u, v), (x, y), d) := (q′A, q
′
B)

where δA(qA, a, u, x, d) = q′A and δB(qB, a, v, y, d) = q′B.
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For A( B, let

δA(B((qA, qB), a, (f, F ), (u, y), d) := (q′A, q
′
B)

if δA(qA, a, u, F (u, y, d), d) = q′A and δB(qB, a, fu, y, d) = q′B.
Note that the DialAutΣ-objects A ( B, build either in

DialAutΣ from automata A and B or from automaton A ( B
coincide (and similarly for ⊗).

In order to define A ⊗ B and A ( B when A and B have
different input alphabets, say Σ and Γ, first lift A and B to A[π]
and B[π′] in AutΣ×Γ and then do the construction. In particu-
lar, referring to the notations of §1, A(t) ( B(u) is formed as
(A[π]( B[π′])(〈t, u〉) (and similarly for ⊗ ).

Proposition 5.4. The fibration Aut is symmetric monoidal closed.

There are winning fibre projection maps, say (f, F ) : A⊗B → A

(f, F ) : (U×V, (X×Y )U×V ) −p→ (UI(X×D), X×D)

where F is the identity on X and plays any y ∈ Y (recall that Y is
required to be non-empty), and f is the identity on U .

Proposition 5.5. L(A⊗ B) = L(A) ∩ L(B).

Complementation and Falsity. The falsity automaton ⊥ on Σ is
(B, ff, D,1, δ⊥,Ω⊥) where Ω⊥ is the set of sequences containing
infinitely many tt’s, and the transition function δ⊥ is defined as
follows: let δ⊥(tt, , d′, •, d) := tt, and

δ⊥(ff, , d′, •, d) :=

{
ff if d = d′

tt otherwise

Note that ⊥ accepts no tree since in an acceptance game, O can
always play the same d as P. Given an automaton A on Σ, let
A⊥ := A( ⊥. The automaton A⊥ can be seen as

(QA × B, (qıA, ff), D
U ×XU×D, δA⊥ ,ΩA ( ⊥)

with δA⊥(a, (qA, ff), (f, F ), u, d) = (q′A,b) where b = ff iff
f(u) = d, and δA⊥(a, (qA, tt), (f, F ), u, d) = (q′A, tt), where
q′A := δA(a, qA, u, F (u, d), d). Hence O looses as soon as he
does not follow the direction proposed by P via f . Thanks to the
determinacy of Borel games [21], we get:

Proposition 5.6. If ΩA is Borel, then t ∈ L(A⊥) iff t /∈ L(A).

Existential Quantification. A fibration p : E→ B has existential
quantifications (also called simple coproducts [13]) when the weak-
ening functors π∗ : EJ → EI×J (induced by the B-projections
π : I × J → I) have left adjoints

∐
I,J : EI×J → EI satisfying

some coherence conditions, called the Beck-Chevalley conditions,
insuring that the adjunction

∐
I,J a π

∗ is preserved by substitution
(see e.g. [13]). This allows to interpret the existential rules of §1.

The simple fibration s : s(B) → B has simple coproducts (see
e.g. [13, Prop. 1.9.3]). They are induced by∐

I,J

(I × J,X) := (I, J ×X)

So, for C symmetric monoidal, sCI : sCI(C) → Comon(C) has
coproducts induced, recalling that Comon(C) is Cartesian, by∐

I,J

(I × J,X) := (I, J ⊗X)

This leads in DialZ to
∐

Σ,Γ(Σ× Γ, U,X) := (Σ,Γ× U,X).
In DialAut, the action on objects of

∐
Σ,Γ is given by∐

Σ,Γ

(Σ× Γ, QA, U,X, α) := (Σ, QA,Γ× U,X,
∐
Σ,Γ

α)

where
∐

Σ,Γ(α)(a, (b, u), x, d) := α((a, b), u, x, d). Its action
on maps is inherited from sCI(DZD). It follows that the Beck-

Chevalley is reduced to, for t : Λ→ Σ,∐
Λ,Γ

(t× id)∗(A) = t∗(
∐
Σ,Γ

A)

which follows from the fact that
∐

Λ,Γ (t× id)∗(α) = t∗(
∐

Σ,Γ α).
Given an automaton A on Σ× Γ, we let

∃ΓA := (QA, q
ı
A, (Γ× U), X, δ∃ΓA,ΩA)

where δ∃ΓA(qA, a, (b, u), x, d) := δA(qA, (a, b), u, x, d), so that,
as Aut-objects,

∐
Σ,ΓA = ∃ΓA. ∃ΓA is essentially the lifted

projection of [26].

Proposition 5.7. The fibrations DialAut and Aut have existential
quantifications.

6. Non-Deterministic Automata

Regular and Parity Automata. An automaton A is (ω-)regular
if ΩA is an ω-regular set (see e.g. [6, 24, 28]). Parity automata
are ω-regular automata A such that ΩA is generated from a map
c : QA → N as the set of infinite sequences q = (qn)n such that
the least k occurring infinitely often in the sequence c◦ q is even. It
is well-known (see e.g. [6, 24, 28]) that every Ω-regular language
L can be recognized by a deterministic ω-word parity automaton
(Π(L), qıΠ(L), δΠ(L), cΠ(L)).

Given a regular tree automata A on Σ, let

A† := (QA ×Π(L), (qıA, q
ı
Π(L)), U,X, δA† ,ΩA†)

where L = ΩA, ΩA† is generated from cΠ(L) (via second projec-
tion) and the transition function δA† is defined as

δA†((qA, qΠ(L)), a, u, x, d) := (q′A, δΠ(L)(qΠ(L), q
′
A))

with q′A := δA(qA, a, u, x, d). Note that A ' A† in AutWΣ .

Positionality. Consider DialAutΣ objects A and B. An even-
length play s on aΣ(A) can be mapped (via the ∂−1 map of §4)
to some (a, u, x, p) ∈ Σn × Un × Xn × Dn, which in turn can
be mapped via α to some (qA, p). Let qA be the last element of
qA (with qA = qıA if n = 0). We then let the position of s
be pos(s) := (p, qA). Given a 4n-length play s on aΣ(A) (
aΣ(B), we let pos(s) := (pos(s�A), pos(s�B)). We extend pos
to arbitrary plays by taking the position of the longest prefix.

We say that a strategy σ is positional if it agrees on plays with
the same position, i.e. if s.m ∈ σ, t.m′ ∈ σ with pos(s) = pos(t)
implies m = m′. It is well-known (see e.g. [6, 24, 28]) that if A
is a parity automaton, then either P or O has a winning positional
strategy in a1(A(t)).

Consider now parity automata A1, . . . ,An and B. then the
acceptance condition of A1 ⊗ . . . ⊗ An ( B is a disjunction of
parity conditions, also called a Rabin condition. It has been shown
in [15–17, 30] that if P has a winning strategy σ in such a game,
then he has a winning positional strategy, which according to [30]
is recursive in σ.

Non-Deterministic Automata. An automatonA is said to be non-
deterministic if X = 1. Note that I and ⊥ are non-deterministic,
and that if A and B are non-deterministic, then so is A ⊗ B. If A
are B are non-deterministic, then a fibre map (f, F ) : A → B
is uniquely determined by f , which moreover can be seen as a
map Σ × U × ID → V . In particular, the monoidal product ⊗
is Cartesian (with unit I) on non-deterministic automata.

Non-Determinization. Given a parity automaton A, by adapting
the construction of [29], we let

!A := (Q!A, q
ı
!A, U

QA ,1, δ!A,Ω!A)
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whereQ!A := P(QA×QA), qı!A := {(qıA, qıA)} and the transition
function δ!A is defined as follows: Given a ∈ Σ, f ∈ UQA , d ∈ D
and S = {( , q1), . . . , ( , qn)} ∈ Q!A, let

δ!A(S, a, f, •, d) := T1 ∪ · · · ∪ Tn
where, for each k ∈ {1, . . . , n},

Tk := {(qk, q) | ∃x ∈ X. q = δA(qk, a, f(qk), x, d)}
Let a trace in an infinite sequence (Sn)n ∈ Qω!A be a sequence
(qn)n such that for all n, (qn, qn+1) ∈ Sn+1. We let Ω!A be the
set of sequences (Sn)n whose traces all belong to ΩA. Note that
Ω!A is ω-regular since ΩA is ω-regular.

If A is a regular automaton, we let !A := !(A†).

Interpretation of the ‘!′ Rules. We now discuss the interpretation
of the rules (1) of §1. The first rule (called Promotion) follows from:

Proposition 6.1. Given a regular non-deterministic automaton N
and a regular automaton A, if there is a winning map σ : N → A
then there is a winning map τ : N → !A.

Prop. 6.1 relies on the existence of positional winning strategies in
Rabin games. The second rule (called Deriliction) is given by:

Proposition 6.2. If A is regular, there is a winning ηA : !A → A.

Corollary 6.3. L(A) = L(!A) for a regular A.

The last two rules (Weakening and Contraction) follow from the
fact that !A is non-deterministic.

Weak Completeness. Let π : Σ× Γ→ Σ be the Set-projection.
Given a non-deterministic N , a DialAut1-map I(t) → (∃ΣN )(t)
is given by an S -map f : ID → Γ × U , hence by a pair 〈t′, g〉
where g gives a DialAut1-map I(〈t, t′〉)→ N (〈t, t′〉).

Proposition 6.4. L(∃ΓN ) = π(L(N )) forN non-deterministic.

Proposition 6.5 (Weak Completeness). Given automata A and B
on Σ, ifL(A) ⊆ L(B) then there is an effective winning AutΣ-map
!A → (!(B⊥))⊥.

7. Conclusion
We proposed fibered monoidal closed categories of tree automata.
They handle their basic constructs (closure under Boolean opera-
tions and equivalence with non-deterministic automata). Our model
is based on games, which provide a realizability semantics for tree
automata. Further work will include the interpretation of deduction
systems for MSO.
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A. Proofs of Section 4
A.1 Prop. 4.2: λ is a Distributive Law
We have to check that λ : T ((−)I)→ (T−)I is natural and that the following four coherence diagrams commute (see e.g. [7]):

(TA)I

(δA)I

**
T (AI)

λA

44

δAI $$

(TTA)I

TT (AI)
TλA

// T ((TA)I)

λTA

88

(6)

T (AI)

λA

**
T (AII)

T (µA)

44

λAI %%

(TA)I

(T (AI))I
(λA)I

// (TA)II

µTA

::

(7)

(TA)I

(εA)I

""
T (AI)

λA

::

εAI
// AI

(8)

T (AI)

λA

$$
TA

T (ηA)

<<

ηTA

// (TA)I

(9)

Here, T is the comonad T = (T, ε, δ) and (−)I is the monad ((−)I, η, µ) on G(S ). First recall the definition of the functors T and
(−)I:

(f, F ) : (U,X) −p→ (V, Y )
T7−→ (f , λh.F ◦ h ◦ f) : (U,XU ) −p→ (V ,Y V )

(f, F ) : (U,X) −p→ (V, Y )
(−)I7−→ (λh.f ◦ h ◦IF , F ) : (UIX ,X) −p→ (V IY ,Y )

and of the maps η and µ:
(fη, Fη) : (U,X) −p→ (UIX , X)
(fµ, Fµ) : (UIX×IX , X) −p→ (UIX , X)

where Fη = Fµ = idX , fη(u, x) = u and fµ(h, x) = h(x, x).
Moreover, the maps ε and δ are given by

(fε, Fε) : (U,XU ) −p→ (U,X)
(fδ, Fδ) : (U,XU×U ) −p→ (U,XU )

where fε = fδ = idU , Fε(u, x) = x and Fδ(h, u) = h(u, u).
It is routine to check that ((−)I, η, µ) is a monad on G(S ).

Lemma A.1. (−)I = ((−)I, η, µ) is monad on G(S ).

We now check in turn the required diagrams.

Lemma A.2. λ is natural, that is, given (g,G) : A −p→ B, we have

T (AI)
T ((g,G)I) //

λA

��

T (BI)

λB

��
(TA)I

(T (g,G))I
// (TB)I
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Proof. Let A = (U,X) and B = (V, Y ), and consider (g,G) : (U,X) −p→ (V, Y ). Note that

(g,G)I = (λh.ghIG , G) : (UIX , X) −p→ (V IY , Y )

T ((g,G)I) = (λh.ghIG , λh.Gh(λh.ghIG)) : (UIX , XUIX

) −p→ (V IY , Y V
IY

)
T (g,G) = (g , λh.Ghg) : (U,XU ) −p→ (V, Y V )

(T (g,G))I = (λh.ghI(λh.Ghg) , λh.Ghg) : (UI(XU ), XU ) −p→ (V I(Y V ), Y V )

We have to show that
(T (g,G))I ◦ λA = λB ◦ T ((g,G)I)

that is

(λh.ghI(λh.Ghg)) ◦ fλA = fλB ◦ (λh.ghIG) and FλA ◦ (λh.Ghg) = λh.Gh(λh.ghIG) ◦ FλB

For the first equation, which has type UIX → V I(Y V ), given θn+1 ∈ (UIX)n+1 and ξn ∈ (Y V )n, one has to show the following
(where some ◦ are replaced by juxtaposition)

((λh.gn+1hI(λh.Gn+1hgn+1)) ◦ fλA
n+1)(θn+1)(ξn) = (fλB

n+1 ◦ (λh.gn+1hIGn+1))(θn+1)(ξn)

that is
((λh.gn+1 ◦ h ◦ (λh.Gnhgn))(fλA

n+1(θn+1)))(ξn) = (fλB
n+1((λh.gn+1 ◦ h ◦Gn)(θn+1)))(ξn)

that is
(gn+1 ◦ (fλA

n+1(θn+1)) ◦ (λh.Gnhgn))(ξn) = (fλB
n+1(gn+1θn+1Gn))(ξn)

that is
gn+1(fλA

n+1(θn+1)((λh.Gnhgn)ξn)) = fλB
n+1(gn+1θn+1Gn , ξn)

that is
gn+1(fλA

n+1(θn+1 , Gnξngn)) = fλB
n+1(gn+1θn+1Gn , ξn)

that is
gn+1 ◦ θn+1 ◦ fixn(Gnξnθn) = gn+1 ◦ θn+1 ◦Gn ◦ fixn(ξngnθnGn−1)

which is easily seens to hold, when unfolding the fixpoints, thanks to associativity of composition.
The second equation, of type Y V → XUIX

, amounts, for ξn ∈ (Y V )n and θn ∈ (UIX)n, to the following (where some ◦ are replaced
by juxtaposition)

FλA
n (Gnξngn , θn) = ((λh.Gh(λh.ghIG))(FλB (ξn)))(θn)

that is
FλA
n (Gnξngn , θn) = (Gn ◦ (FλB

n (ξn)) ◦ (λh.gnhIGn))(θn)

that is
FλA
n (Gnξngn , θn) = Gn(FλB

n (ξn)((λh.gnhIGn)(θn)))

that is
FλA
n (Gnξngn , θn) = Gn(FλB

n (ξn , gnθnIGn))

which also holds thanks to associativity of composition (when unfolding the fixpoints).

Lemma A.3. Diagram (6) commutes.

Proof. Let A = (U,X), so that

T (AI) = T (UIX , X) = (UIX , XUIX

) and (TA)I = (U,XU )I = (UI(XU ), XU )

The diagram has type

T (AI) −p→ (TTA)I = (UIX , XUIX

) −p→ (UI(XU×U ) , XU×U )

Moreover,
(δA)I = (idU , λhu.h(u, u))I = (λh.hI(λhu.h(u, u)) , λhu.h(u, u))
TλA = T (fλA , FλA) = (fλA , λh.FλAhfλA)

We have to check the following two equations:

fδAI ◦ fλA = fλTA ◦ fTλA ◦ fδAI and FλA ◦ FδAI = FδAI ◦ FTλA ◦ F
λTA

The first one, of type UIX → UI(XU×U ), amounts, for θn+1 ∈ (UIX)n+1 and ξn+1 ∈ XU×U
n+1 , to the following

((λh.hI(λhu.h(u, u))) ◦ fλA
n+1)(θn+1)(ξn+1) = (fλTA

n+1 f
λA
n+1)(θn+1)(Iξn+1)

that is
(fλA
n+1(θn+1) ◦I(λhu.h(u, u)))(ξn+1) = fλTA

n+1 (fλA
n+1(θn+1) , ξn)
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that is
fλA
n+1(θn+1 , λu.ξn(u, u)) = fλA

n+1(θn+1 , fixX
U

n (ξn ◦ fλA
n (θn)))

Write
ln := fλA

n+1(θn+1 , λu.ξn(u, u)) and rn := fλA
n+1(θn+1 , fixX

U

n (ξn ◦ fλA
n (θn)))

The proof is then by induction on n. In the base case n = 0, both sides unfold to θ1(•). For the induction step, assuming the property for
rn = ln, we show ln+1 = rn+1.

First, note that Note that

fixUn+1(λu.ξn+1(u, u) ◦ θn+1) = fixUn+1(λx.ξn+1(θn+1(x), θn+1(x)))
= (λx.ξn+1(θn+1(x) , θn+1(x)))(fixUn (λx.ξn(θn(x), θn(x))))
= (λu.ξn+1(u, u))(θn+1(fixUn ((λu.ξn(u, u)) ◦ θn)))
= ξn+1(ln, ln)

so that
ln+1 = θn+2(ξn+1(ln, ln))

On the other hand, note that

fixX
U

n+1(ξn+1 ◦ fλA
n+1(θn+1)) = ξn+1(fλA

n+1(θn+1 , fixX
U

n (ξn ◦ fλA
n (θn))))

= ξn+1(rn)

and so in particular

rn = θn+1(fixn(fixX
U

n (ξn ◦ fλA(θn)) ◦ θn))
= θn+1(fixn(ξn(rn−1) ◦ θn))

We thus have
rn+1 = θn+2(fixn+1(fixX

U

n+1(ξn+1 ◦ fλA
n+1(θn+1)) ◦ θn+1))

= θn+2(fixn+1(ξn+1(rn) ◦ θn+1)
= θn+2(ξn+1(rn)(θn+1(fixn(ξn(rn−1) ◦ θn))))
= θn+2(ξn+1(rn)(rn))

and we conclude by induction hypothesis.
The second equation, of type XU×U → XUIX

, amounts, for ξn ∈ (XU×U )n and θn ∈ (UIX)n, to the following:

FλA
n ◦ (λhu.h(u, u))(ξn)(θn) = ((λhk.h(k, k)) ◦ (λh.FλA

n hfλA
n ) ◦ FλTA

n )(ξn)(θn)

that is
FλA
n ((λhu.h(u, u))ξn , θn) = ((λhk.h(k, k))((λh.FλA

n hfλA
n )(FλTA

n (ξn))))(θn)

that is
FλA
n (λu.ξn(u, u) , θn) = ((λhk.h(k, k))((FλA

n ◦ FλTA
n (ξn) ◦ fλA

n )))(θn)

that is
FλA
n (λu.ξn(u, u) , θn) = (λk.(FλA

N ◦ FλTA
n (ξn) ◦ fλA

n )(k, k))θn
that is

FλA
n (λu.ξn(u, u) , θn) = (FλA

n ◦ FλTA
n (ξn) ◦ fλA

n )(θn)(θn)

that is
FλA
n (λu.ξn(u, u) , θn) = FλA

n (FλTA
n (ξn , f

λA
n (θn)) , θn)

Reasonning as for the first equation, write

ln := FλA
n (λu.ξn(u, u) , θn) and rn := FλA

n (FλTA
n (ξn , f

λA
n (θn)) , θn)

with
ln+1 = fixn+1((λu.ξn+1(u, u)) ◦ θn+1)

= ξn+1(θn+1(ln) , θn+1(ln))

and on the other hand

FλTA
n+1 (ξn+1 , f

λA
n+1(θn+1)) = fixX

U

n+1(ξn+1 ◦ fλA
n+1(θn+1))

= ξn+1(fλA
n+1(θn+1 , fixX

U

n (ξn ◦ fλA
n (θn)))

= ξn+1(θn+1(FλA
n (fixX

U

n (ξn ◦ fλA
n (θn)) , θn))

= ξn+1(θn+1(FλA
n (FλTA

n (ξn, f
λA
n (θn)) , θn))

= ξn+1(θn+1(rn))

We thus have
rn+1 = fixn+1(fixX

U

n+1(ξn+1 ◦ fλA
n+1(θn+1)) ◦ θn+1)

= fixn+1(ξn+1(θn+1(rn)) ◦ θn+1)
= ξn+1(θn+1(rn) , θn+1(fixn(ξn(θn(rn−1)) ◦ θn)))
= ξn+1(θn+1(rn) , θn+1(rn))

and we conclude by induction hypothesis.
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Lemma A.4. Diagram (7) commutes.

Proof. Let A = (U,X) so that the diagram has type

T (AII) −p→ (TA)I = (UIX×IX , XUIX×IX

) −p→ (UI(XU ), XU )

Note that
T (µA) = T (λhx.h(x, x) , idX) = (λhx.h(x, x) , λk.(k ◦ λhx.h(x, x)))
(λA)I = (fλA , FλA)I = (λh.fλA ◦ h ◦IFλA , FλA)

We have to check the following two equations:

fλA ◦ fTµA = fµTA ◦ f(λA)I ◦ fλAI and FTµA ◦ F
λA = FλAI ◦ F(λA)I ◦ FµTA

The first equation, of type UIX×IX → UI(XU ), amounts, for θn+1 ∈ (UIX×IX)n+1 and ξn ∈ (XU )n, to the following:

(fλA
n+1 ◦ (λhx.h(x, x)))(θn+1)(ξn) = ((λhk.h(k, k)) ◦ (λh.fλA

n+1hIF
λA
n+1) ◦ fλAI

n+1 )(θn+1)(ξn)

that is
fλA
n+1(λx.θn+1(x, x) , ξn) = ((λhk.h(k, k)) ◦ (λh.fλA

n+1hF
λA
n ) ◦ fλAI

n+1 )(θn+1)(ξn)

that is
fλA
n+1(λx.θn+1(x, x) , ξn) = (λhk.h(k, k))(fλA

n+1 ◦ f
λAI

n+1 (θn+1) ◦ FλA
n )(ξn)

that is
fλA
n+1(λx.θn+1(x, x) , ξn) = (fλA

n+1 ◦ f
λAI

n+1 (θn+1) ◦ FλA
n )(ξn)(ξn)

that is
fλA
n+1(λx.θn+1(x, x) , ξn) = fλA

n+1(f
λAI

n+1 (θn+1 , F
λA
n (ξn)) , ξn)

Let
ln := fλA

n+1(λx.θn+1(x, x) , ξn) and rn := fλA
n+1(f

λAI

n+1 (θn+1 , F
λA
n (ξn)) , ξn)

Note that for all n we have
ln+1 = (λx.θn+2(x, x))fixn+1(ξn+1 ◦ λx.θn+1(x, x))

= (λx.θn+2(x, x))((λx.ξn+1(θn+1(x, x)))fixn(ξn ◦ λx.θn(x, x))))
= θn+2(ξn+1(ln), ξn+1(ln))

On the other hand,

rn+1 = fλA
n+2(f

λAI

n+2 (θn+2 , F
λA
n+1(ξn+1)) , ξn+1)

= f
λAI

n+2 (θn+2 , F
λA
n+1(ξn+1))(fixXn+1(ξn+1 ◦ f

λAI

n+1 (θn+1 , F
λA
n (ξn))))

= θn+2(fixn+1(FλA
n+1(ξn+1) ◦ θn+1) , fixXn+1(ξn+1 ◦ f

λAI

n+1 (θn+1 , F
λA
n (ξn))))

So we show by induction on n that

ξn+1(rn) = fixn+1(FλA
n+1(ξn+1) ◦ θn+1) = fixXn+1(ξn+1 ◦ f

λAI

n+1 (θn+1 , F
λA
n (ξn)))

The base case is trivial. For the induction step, on the one hand we have

fixn+2(FλA
n+2(ξn+2) ◦ θn+2) = FλA

n+2(ξn+2 , θn+2(fixn+1(FλA
n+1(ξn+1) ◦ θn+1)))

= ξn+2(θn+2(fixn+1(FλA
n+1(ξn+1) ◦ θn+1) , FλA

n+1(ξn+1 , θn+1(fixn(FλA
n (ξn) ◦ θn))))

= ξn+2(θn+2(fixn+1(FλA
n+1(ξn+1) ◦ θn+1) , fixn+1(FλA

n+1(ξn+1) ◦ θn+1))

and we conclude by induction hypothesis, and on the other hand

fixXn+2(ξn+2 ◦ f
λAI

n+2 (θn+2 , F
λA
n+1(ξn+1))) = ξn+2 ◦ f

λAI

n+2 (θn+2 , F
λA
n+1(ξn+1))(fixXn+1(ξn+1 ◦ f

λAI

n+1 (θn+1 , F
λA
n (ξn))))

= ξn+2(θn+2(fixn(FλA
n+1(ξn+1) ◦ θn+1) , fixXn+1(ξn+1 ◦ f

λAI

n+1 (θn+1 , F
λA
n (ξn)))))

and we also conclude by induction hypothesis.
The second equation, of type XU → XUIX×IX

, amounts, for ξn ∈ (XU )n and θn ∈ (UIX×IX)n, to the following

((λk.(k ◦ λhx.h(x, x))) ◦ FλA
n )(ξn)(θn) = (F

λAI
n ◦ FλA

n )(ξn)(θn)

that is
(FλA
n (ξn) ◦ λhx.h(x, x))(θn) = F

λAI
n (FλA

n (ξn) , θn)

that is
FλA
n (ξn , λx.θn(x, x)) = F

λAI
n (FλA

n (ξn) , θn)

This is dealt-with similarly to (but in a much simpler way then) the first equation.

Lemma A.5. Diagram (8) commutes.
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Proof. Let A = (U,X), so that the diagram has type

T (AI) −p→ AI = (UIX , XUIX

) −p→ (UIX , X)

Note that

(εA)I = (idU , λxu.x)I = (λh.(h ◦I(λxu.x)), λxu.x)

We have to show

λh.(h ◦I(λxu.x)) ◦ fλA = idUIX and FλA ◦ λxu.x = λxu.x

For the first equation, given θn+1 ∈ (UIX)n+1, we have to show

fλA
n+1(θn+1) ◦I(λxu.x) = θn+1

The result is trivial since the left-hand side unfolds to

λIx.fλA
n+1(θn+1, λ .x) = λIx.θn+1(fixn(λ .x)) = λIx.θn+1(x)

The second equation is simpler and omitted.

Lemma A.6. Diagram (9) commutes.

Proof. Let A = (U,X), so that the diragram has type

TA −p→ (TA)I = (U,XU ) −p→ (UI(XU ), XU )

Note that

T (ηA) = T (λux.u, idX) = (λux.u, λh.h ◦ (λux.u))

We have to show

fλA ◦ (λux.u) = λux.u and (λh.h ◦ (λux.u)) ◦ FλA = idXU

For the first equation, given u ∈ Un+1 and ξn ∈ (XU )n, we have to show

fλA
n+1(λx.u , ξn) = u

which is trivial. For the second equation, given ξn ∈ Xn and u ∈ Un we have to show

FλA(ξn , λx.u) = ξn(u)

which is also trivial.

A.2 The Category DZ is Symmetric Monoidal Closed
Proposition A.7 (Prop. 4.6). The category DZ is symmetric monoidal closed.

We only detail monoidal closure. We rely on Prop. 4.1 and on the faithfulness of HS : SG → Rel (see [11], but also Lemma 4.6 in
the Appendix of the long version of [26], available at https://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf). We omit the
(−)? in writing objects of DZ.

Recall from e.g. [22] that a symmetric monoidal category C is closed if for every object A, the functor A⊗ (−) has a right adjoint (−)A.
Since A ⊗ (−) is already a functor, according to [19, Thm. IV.1.2] it is sufficient to show that for every object C there is an object AB and
map

evalC : A⊗ CA −→ C

such that for every f : A⊗B → C there is a unique h : B → CA such that

A⊗ CA
evalC // C

A⊗B
f

88

idA⊗h

OO

Proof of Prop. 4.6. Let A = (U,X), B = (V, Y ) and C = (W,Z). Recall that A(DZ C = (WU ×XU×Z , U × Z). We define the total
zig-zag strategy evalC : A⊗ (A(DZ C)( C as follows:

A⊗ (A(DZ C)
evalC
−( C

O (u, (f, F ))
f(u) P
z O

P (F (u, z), (u, z))
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Given any τ ′ : B ( (A(DZ C), the composition evalC ◦ (idA ⊗ τ ′) is given by:

A⊗B
idA⊗τ ′
−( A⊗ (A(DZ C)

evalC
−( C

O (u, v)
(u, (f ′, F ′))

f ′(u) P
z O

(F ′(u, z), (u, z))
P (F ′(u, z), y′)

It follows that evalC ◦ (idA ⊗ τ ′) = evalC ◦ (idA ⊗ τ ′′) implies τ ′ = τ ′′.
We show this by induction on pairs of even-length plays (s, t) ∈ ℘even

A × ℘even
A(DZC

. Assume toward a contradiction that for some such
(s, t) ∈ HS(τ ′) ∩ HS(τ ′′), for some v ∈ V we have (s.v, t.(f ′, F ′)) ∈ HS(τ ′) and (s.v, t.(f ′′, F ′′)) ∈ HS(τ ′′) with f ′ 6= f ′′. Then for
some u ∈ U , we have say f ′(u) 6= f ′′(u). Then, for some r we have

evalC ◦ (idA ⊗ τ ′) 3 r.(u, v).f ′(u) 6= r.(u, v).f ′′(u) ∈ evalC ◦ (idA ⊗ τ ′′)
Hence a contradiction. The case of F ′ 6= F ′′ is dealt-with similarly.

Fix now some total zig-zag σ : A⊗B ( C.
We define τ : B ( (A(DZ C) by induction on plays. To each (s, t) ∈ HS(τ), with s and t even-length, we associate (s′, t′) ∈ HS(σ),

with s′ and t′ of the same length, and such that, for (v, y) = ∂(s) and ((f, F ), (u, z)) = ∂(t), we have ∂(s′) = ((u, v), (F (u, z), y)) and
∂(t′) = (f(u), z), where we take the pointwise application of sequences of functions.

For the base case, we put (ε, ε) ∈ HS(τ), and associate it to (ε, ε) ∈ HS(σ).
Assume now (s, t) ∈ HS(τ), associated to (s′, t′) ∈ HS(σ). For each v ∈ V , we define the functions fv : U → W and

Fv : U × Z → X as follows: given u ∈ U , let w such that (s′.(u, v), t′.w) ∈ HS(σ), and for each z ∈ Z, let x and yu,z such that
(s′.(u, v).(x, yu,z), t

′.w.z) ∈ HS(σ). We then let fv(u) := w and Fv(u, z) := x. We now let (s.v.yu,z, t.(fv, Fv).(u, z)) ∈ HS(τ), and
associate it to (s′.(u, v).(x, yu,z), t

′.w.z) = (s′.(u, v).(Fv(u, z), yu,z), t
′.fv(u).z) so that the invariant is satisfied.

This conclude the definition of τ .
It then follows from the invariant that we indeed have evalC ◦ idA ⊗ τ = σ.
First note that the map (s, t) ∈ HS(τ) 7→ (s′, t′) ∈ HS(σ) is surjective. The property then follows from the fact that (s, t) ∈ HS(τ)

iff (s′, t′) ∈ HS(evalC ◦ idA ⊗ τ). This is shown by induction on pairs of plays (s, t) ∈ ℘even
B × ℘even

A(DZC
. The base case is

trivial. For the induction step, given such (s.v.yu,z, t.(fv, Fv).(u, z)), we have (s.v.yu,z, t.(fv, Fv).(u, z)) ∈ HS(τ) if and only if
(s′.(u, v).(Fv(u, z), yu,z), t

′.f)v(u).z) ∈ HS(evalC ◦ idA ⊗ τ).
This concludes the proof of Prop. 4.6

B. Proofs of Section 5
Proposition B.1 (Prop. 5.2). Assume given A and B as above, where B has also input alphabet Σ.

If there is a winning map A → B then L(A) ⊆ L(B).

Proof. Write σ for the strategy corresponding to the winning map. Let t ∈ L(A), with winning strategy τ : I(t) → A(t). Then ṫ∗σ is a
winning DialAut1-map from (1, QA, U,X, ṫ

∗(αA)) to (1, QB, V, Y, ṫ
∗(αB)). But

ṫ∗(αA)(•, u, x, p) = αA(ṫ(•,Ip), u, x, p)
= α(ṫ)(•, u, x, p)

The same holds for B, and it follows that ṫ∗σ ◦ τ is winning from I(t) to B(t). Hence t ∈ L(B).

Proposition B.2 (Prop. 5.5). L(A⊗ B) = L(A) ∩ L(B).

Proof. The inclusion (⊆) follows using the projections A⊗ B → A and A⊗ B → B.
For the other direction, tensor σ : I(t)→ A(t) with τ : I(t)→ B(t) and then precompose with a monoidal unit map.

Proposition B.3 (Prop. 5.6). If ΩA is Borel, then t ∈ L(A⊥) iff t /∈ L(A).

Proof. The argument is an adaptation of [29]. By Martin’s Theorem [21], it is equivalent to show that P wins the acceptance game ofA⊥ on
t iff O wins that of A on t, where, using the notions of §3, an O-strategy is just a P-strategy on the dual game.

For (⇒), assuming given a winning P-strat σ on A(t)( ⊥, we build a winning O-strat τ in A(t). The strategy τ is build by induction
on plays. To each play t of τ , we associate a play s of σ such that if t leads to state qA, then s leads to state (qA, ff). In the base case, both
t and s are the empty plays, and the invariant is respected. For the induction step, assume that P plays u from t in A(t). Let (f, F ) be the
move of σ from s. We then let τ answer the pair (F (u, f(u)), f(u)) from s.u, and A(t) goes to state q′A. In A(t)( ⊥, we let O play the
pair (f(u), u). ThenA(t)( ⊥ goes to state (q′A, ff) and the invariant is respected. Since σ is winning andA(t)( ⊥ stays in states of the
form ( , ff) the infinite sequence of states produced in A(t) is rejecting, as required.

For the conversion direction, assuming given a winning O-strat τ on A(t), we build a winning P-strat σ in A(t)( ⊥. The strategy σ is
build by induction on plays as long as A(t) ( ⊥ stays in states of the form ( , ff) (if it switches to ( , tt) the P trivially wins). So to each
play s of σ which leads to state (qA, ff), we associate a play t of τ which leads to state qA. The base case is trivial. For the induction step,
we build (f, F ) from σ as follows: to each u, σ associates (from t) a pair (x, d). We let F (u, ) := d and f(u) := x. Assume then that from
s.(f, F ), O plays some (u, d). If d 6= f(u) then we are done. Otherwise,A(t)( ⊥ switches to (q′A, d). We then let P play u from t, so that
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by construction τ answers (F (u, ), d), and A(t) goes to state q′A. But then, since τ is winning for O, the sequence of A-states is rejecting,
so that P wins in A(t)( ⊥, as required.

C. Proofs of Section 6
Proposition C.1. Given a regular non-deterministic automatonN and a regular automatonA, if there is a winning mapN → A then there
is a winning mapN → !A.

Proof. Note that we can assume the automata to be parity automata, and thanks to [15–17, 30], that there is a positional winning P-strategy
σ : N ( A.

We build a winning P-strategy τ by induction on plays as follows. To each play t of τ with position (p, qN , S), S = {( , q1), . . . , ( , qn)},
we associate a set {s1, . . . , sn} of plays of σ, with si of position (p, qN , qi). The case of the initial position is trivial. For the inductive step,
let O play from t some (a, y) in component N of N → !A. For i ∈ N, let ui be the answer of σ from si.(a, y). This defines a partial map
QA ⇀ U mapping qi to ui that we extend to a total map h, and we let τ play s.(a, y).h. Then if O answers by t.(a, y).h.d, the position in
N → !A becomes (p, d, q′N , S

′) where S′ = {( , q′1), . . . , ( , q′m)}. Now, each q′j is δA(qij , a, uij , xj , d) for fome ji and some xj (note
that there might be several such ji and xj , but we select one). For each j, we let O play sij .(a, y).uij .(xij , d) in the game N → A. Since
N is non-deterministic, it goes to the same q′N for all j.

In an infinite play of τ played like this, all traces of theQ!A component are sequences of states produced by σ. Since moreover sequences
of states onN agree, it follows that τ is winning since σ is winning.

Proposition C.2 (Prop. 6.2). If A is regular, there is a winning ηA : !A → A.

Proof. Note that we can assumeA to be a parity automaton. We define HS(η) by induction on plays as follows, with the following invariant:
for each (s, t) ∈ HS(η), with s, t of even length, writing q for the state of t and S for the state of s, we have q ∈ S�2.

The base case is trivial. Let (s, t) ∈ HS(η) with s and t even-length, and with t in state q and s in state S. Given an O-move (a, h), we
let (s.(a, h), t.h(q)) ∈ HS(η), and for all (x, d) we further let (s.(a, h).(•, d), t.h(q).(x, d)) ∈ HS(η). Then the invariant is insured by
definition of !A.

The strategy τ is winning since the sequence of states produced in A is a trace in the sequence of states produced in !A.

Proposition C.3 (Weak Completeness – Prop. 6.5). Given automata A and B on Σ, if L(A) ⊆ L(B) then there is an effective winning
AutΣ-map !A → (!(B⊥))⊥.

Proof. By Prop. 5.6, Cor. 6.3, Prop. 5.5 and Prop. 6.4, if L(A) ⊆ L(B), we have

L(∃Σ(!A⊗ !(B⊥))) = ∅

Hence, again using Prop. 5.6, L(∃Σ((!A⊗ !(B⊥)))⊥) contains the unique 1-labelled tree 1 : D∗ → 1.
Since the game of ∃Σ((!A⊗ !(B⊥)))⊥(t) is regular it follows that P has a regular winning strategy (see e.g. [24, Thm. IV.4.9]).

We thus get an effective winning DialAut1-map

(∃Σ(!A⊗ !(B⊥)))(1) −→ ⊥(1)

hence an effective winning DialAut1-map

∃Σ((!A⊗ !(B⊥))) −→ ⊥
This map is lifted by Prop. 5.7 to an effective winning DialAutΣ-map

!A⊗ !(B⊥) −→ ⊥
hence by Prop. 5.3 to an effective winning DialAutΣ-map

!A −→ (!(B⊥)( ⊥)
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