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Fibrations of Tree Automata

Colin Riba∗

colin.riba@ens-lyon.fr

http://perso.ens-lyon.fr/colin.riba/

We propose a notion of morphisms between tree automata based on game
semantics. Morphisms are winning strategies on a synchronous restriction of
the linear implication between acceptance games. This leads to split indexed
categories, with substitution based on a suitable notion of synchronous tree
function. By restricting to tree functions issued from maps on alphabets, this
gives a fibration of tree automata. We then discuss the (fibrewise) monoidal
structure issued from the synchronous product of automata. We also discuss
how a variant of the usual projection operation on automata leads to an
existential quantification in the fibered sense. Our notion of morphism is
correctin the sense that it respects language inclusion, and in a weaker sense
also complete.

1. Introduction

This paper proposes a notion of morphism between tree automata based on game se-
mantics. We follow the Curry-Howard-like slogan: Automata as objects, Executions as
morphisms.

We consider general alternating automata on infinite ranked trees. These automata
encompass Monadic Second-Order Logic (MSO) and thus most of the logics used in ver-
ification [8]. Tree automata are traditionally viewed as positive objects: one is primarily
interested in satisfaction or satisfiability, and the primitive notion of quantification is
existential. In contrast, Curry-Howard approaches tend to favor proof-theoretic oriented
and negative approaches, i.e. approaches in which the predominant logical connective is
the implication, and where the predominant form of quantification is universal. In order
to handle quantifications, our categories are organized in fibrations.

We consider full infinite ranked trees, built from a non-empty finite set of directions
D and labeled in non-empty finite alphabets Σ. The base category Tree has alphabets
as objects and morphisms from Σ to Γ are (Σ→ Γ)-labeled D-ary trees.

∗LIP, Université de Lyon, CNRS, École Normale Supérieure de Lyon, INRIA, Université Claude-Bernard
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1. Introduction

The fibre categories are based on a generalization of the usual acceptance games,
where for an automaton A on alphabet Γ (denoted Γ ` A), input characters can be
precomposed with a tree morphism M ∈ Tree[Σ,Γ], leading to substituted acceptance
games of type Σ ` G(A,M). Usual acceptance games, which correspond to the evaluation
of Σ ` A on a Σ-labeled input tree, are substituted acceptance games 1 ` G(A, t) with
t ∈ Tree[1,Σ]. Games of the form Σ ` G(A,M) are the objects of the fibre category
over Σ.

For morphisms, we introduce a notion of “synchronous” simple game between accep-
tance games. We rely on Hyland & Schalk’s functor (denoted HS) from simple games
to Rel [11]. A synchronous strategy Σ ` σ : G(A,M) −~ G(B, N) is a strategy in the
simple game G(A,M) ( G(B, N) required to satisfy (in Set) a diagram of the form
of (1) below, expressing that A and B are evaluated along the same path of the tree and
read the same input characters:

HS(σ) //

��

G(B, N)

��
G(A,M) // (D + Σ)∗

(1)

This gives a split fibration game of tree automata and acceptance games. When
restricting the base to alphabet morphisms (i.e. functions Σ → Γ), substitution can be
internalized in automata. By change-of-base of fibrations, this leads to a split fibration
aut. In the fibers of aut, the substituted acceptance games have finite-state winning
strategies, whose existence can be checked by trivial adaptation of usual algorithms.

Each of these fibrations is monoidal in the sense of [21], by using a natural syn-
chronous product of tree automata. We also investigate a linear negation, as well as
existential quantifications, obtained by adapting the usual projection operation on non-
deterministic automata to make it a left-adjoint to weakening, the adjunction satisfying
the usual Beck-Chevalley condition.

Our linear implication of acceptance games seems to provide a natural notion of prenex
universal quantification on automata not investigated before. As expected, if there is
a synchronous winning strategy σ  A −~ B, then L(A) ⊆ L(B) (i.e. each input tree
accepted by A is also accepted by B). Under some assumptions on A and B the converse
holds: L(A) ⊆ L(B) implies σ  A −~ B for some σ.

At the categorical level, thanks to (1), the constructions mimic relations in slices
categories Set/(D + Σ)∗ of the co-domain fibration: substitution is given by a (well
chosen) pullback, and the monoidal product of automata is issued from the Cartesian
product of plays in Set/(D + Σ)∗ (i.e. also by a well chosen pullback).

The paper is organized as follows. Section 2 presents notations for trees and tree
automata. Our notions of substituted acceptance games and synchronous arrow games
are then discussed in Sect. 3. Substitution functors and the corresponding fibrations are
presented in Sect. 4, and Section 5 overviews the monoidal structure. We then state
our main correctness results in Sect. 6. Section 7 presents existential quantifications
and quickly discusses non-deterministic automata. A short Appendix A gives some
definitions on simple games, and a long version of the paper with full proofs [20] can be
found on the webpage of the author.
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2. Preliminaries

2. Preliminaries

Fix a singleton set 1 = {•} and a finite non-empty set D of (tree) directions.

Alphabets and Trees. We write Σ,Γ, . . . for alphabets, i.e. finite non-empty sets. We let
Alph be the category whose objects are alphabets and whose morphisms β ∈ Alph[Σ,Γ]
are functions β : Σ→ Γ.

We let Tree[Σ] be the set of Σ-labeled full D-ary trees, i.e. the set of maps T : D∗ → Σ.
Let Tree be the category with alphabets as objects and with morphisms Tree[Σ,Γ] :=
Tree[(Σ → Γ)], i.e. (Σ → Γ)-labeled trees. Maps M ∈ Tree[Σ,Γ] and L ∈ Tree[Γ,∆]
are composed as

L ◦M : p ∈ D∗ 7→ (a ∈ Σ 7→ L(p)(M(p)(a)))

and the identity IdΣ ∈ Tree[Σ,Σ] is defined as IdΣ(p)(a) := a. Note that Tree[1,Σ] is
in bijection with Tree[Σ].

There is a faithful functor from Alph to Tree, mapping β ∈ Alph[Σ,Γ] to the
constant tree morphism ( 7→ β) ∈ Tree[Σ,Γ] that we simply write β.

Tree Automata. Alternating tree automata [17] are finite state automata running on
full infinite Σ-labeled D-ary trees. Their distinctive feature is that transitions are given
by positive Boolean formulas with atoms pairs (q, d) of a state q and a tree direction
d ∈ D ((q, d) means that one copy of the automaton should start in state q from the
d-th son of the current tree position).

Acceptance for alternating tree automata can be defined either via run trees or via the
existence of winning strategies in acceptance games [17]. In both cases, we can w.l.o.g.
restrict to transitions given by formulas in (irredundant) disjunctive normal form [18]. In
our setting, it is quite convenient to follow the presentation of [23], in which disjunctive
normal forms with atoms in Q×D are represented as elements of P(P(Q×D)).

An alternating tree automaton A on alphabet Σ has the form (Q, qı, δ,Ω) where Q is
the finite set of states, qı ∈ Q is the initial state, the acceptance condition is Ω ⊆ Qω

and following [23], the transition function δ has the form

δ : Q× Σ −→ P(P(Q×D))

We write Σ ` A if A is a tree automaton on Σ. Usual acceptance games are described
in Sec. 3.1. It is customary to put restrictions on the acceptance condition Ω ⊆ Qω,
typically by assuming it is generated from a Muller family F ∈ P(P(Q)) as the set of
π ∈ Qω such that Inf(π) ∈ F . We call such automata regular1. They have decidable
emptiness checking and the same expressive power as MSO on D-ary trees (see e.g. the
survey [22]).

1By adding states to A if necessary, one can describe Ω by an equivalent parity condition.
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3. Categories of Acceptance Games and Automata

3. Categories of Acceptance Games and Automata

We present in this Section the categories SAG
(W)
Σ of substituted acceptance games. Their

objects will be substituted acceptance games (to be presented in Sect. 3.1) and their
morphisms will be strategies in corresponding synchronous arrow games (to be presented
in Sect. 3.2). Substituted acceptance games and synchronous arrow games are the two

main notions we introduce in this paper. Our categories of Aut
(W)
Σ of automata will be

full subcategories of SAG
(W)
Σ , while SAG

(W)
Σ and Aut

(W)
Σ will be the total categories

of our fibrations

game(W) : SAG(W) −→ Tree aut(W) : Aut(W) −→ Alph

to be presented in Sect. 4. Appendix A summarizes the basic notion of games we are
using.

3.1. Substituted Acceptance Games

Consider a tree automaton A = (Q, qı, δ,Ω) on Γ and a morphism M ∈ Tree[Σ,Γ]. The
substituted acceptance game Σ ` G(A,M) is the positive game

G(A,M) := (D∗ × (AP +AO), E, ∗, λ, ξ,W)

whose positions are given by AP := Q and AO := Σ × P(Q ×D), whose polarized root
is ∗ := (ε, qı) with ξ(∗) = P, whose polarized moves (E, λ) are given by

from (D∗ ×AP) to (D∗ ×AO) : (p, q)
P−→ (p, a, γ) iff γ ∈ δ(q,M(p)(a))

from (D∗ ×AO) to (D∗ ×AP) : (p, a, γ)
O−→ (p.d, q) iff (q, d) ∈ γ

and whose winning condition is given by

(ε, q0) · (ε, a0, γ0) · (p1, q1) · . . . · (pn, qn) · (pn, an, γn) · . . . ∈ W iff (qi)i∈N ∈ Ω

The input alphabet of Γ ` A is Γ, and we use the tree morphism M ∈ Tree[Σ,Γ] in
a contravariant way to obtain a game with “input alphabet” Σ, that we emphasize by
writing Σ ` G(A,M). Input characters a ∈ Σ are chosen by P, directions d ∈ D are
chosen by O.

Write Σ ` σ  G(A,M) if σ is a winning P-strategy on Σ ` G(A,M), and Σ  G(A,M)
if Σ ` σ  G(A,M) for some σ.

Correspondence with usual Acceptance Games. Usual acceptance games model the
evaluation of automata Σ ` A on input trees t ∈ Tree[Σ]. They correspond to games
of the form 1 ` G(A, ṫ), where ṫ ∈ Tree[1,Σ] is the tree morphism corresponding to
t ∈ Tree[Σ].

Note that in these cases, AO is of the form 1 × P(Q ×D) ' P(Q ×D), so that the
games 1 ` G(A, ṫ) are isomorphic to the acceptance games of [23].
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3. Categories of Acceptance Games and Automata

Definition 3.1. Let Σ ` A.

(i) A accepts the tree t ∈ Tree[Σ] if there is a strategy σ such that 1 ` σ  G(A, ṫ).

(ii) Let L(A) ⊆ Tree[Σ], the language of A, be the set of trees accepted by A.

3.2. Synchronous Arrow Games

Consider games Σ ` G(A,M) and Σ ` G(B, N) with A = (QA, q
ı
A, δA,ΩA) and B =

(QB, q
ı
B, δB,ΩB). Similarly as in Sect. 3.1 above, write

AP := QA AO := Σ× P(QA ×D) BP := QB BO := Σ× P(QB ×D)

We define the synchronous arrow game

Σ ` G(A,M) −~ G(B, N)

as the negative game (V,E, ∗, λ, ξ,W) whose positions are given by

V := (D∗×AP)× (D∗×BP) + (D∗×AO)× (D∗×BP) + (D∗×AO)× (D∗×BO)

whose polarized root is ∗ := ((ε, qıA), (ε, qıB)) with ξ(∗) := O, whole polarized edges (E, λ)
are given in Table 1, and whose winning condition is given by

((ε, q0
A) , (ε, q0

B)) · . . . · ((ε, qnA) , (ε, qnB)) · . . . ∈ W
iff

(
(qiA)i∈N ∈ ΩA =⇒ (qiB)i∈N ∈ ΩB

)
Note that P-plays end in positions of the form

((p, qA) , (p, qB)) ∈ (D∗ ×AP) × (D∗ ×BP)
and ((p, a, γA) , (p, a, γB)) ∈ (D∗ ×AO) × (D∗ ×BO)

Each of these position is of homogeneous type, and moreover in each case the D∗ and Σ
components coincide. On the other hand, O-plays end in positions of the form

((p, a, γA) , (p, qA)) ∈ (D∗ ×AO) × (D∗ ×BP)
and ((p, a, γA) , (p · d, qB)) ∈ (D∗ ×AO) × (D∗ ×BP)

Each of these intermediate position is of heterogeneous type, and in the second one, the
D∗ components do not coincide.

We write Σ ` σ : G(A,M) −~ G(B, N) if σ is a P-strategy on G(A,M) −~ G(B, N),
and Σ ` σ  G(A,M) −~ G(B, N) if σ is moreover winning. Finally, we write

Σ  G(A,M) −~ G(B, N)

if there is a winning P-strategy σ on G(A,M) −~ G(B, N).

Remark 3.2. Recall that if ΩA and ΩB are Borel sets, then W is a Borel set and by
Martin’s Theorem [14], either P or O has a winning strategy. Moreover, if the automata
A and B are regular (in the sense of Sect. 2), then W is an ω-regular language. If in
addition the trees M and N are regular (in the usual sense), then the game is equivalent
to a finite regular game. By Büchi-Landweber Theorem, the existence of a winning
strategy for a given player is decidable, and the winning player has finite state winning
strategies (see e.g. [22]).
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3. Categories of Acceptance Games and Automata

λ G(A,M) −−~ G(B, N)

((p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) if γA ∈ δA(qA,M(p)(a))
P ↓

((p, a, γA) , (p, a, γB)) if γB ∈ δB(qB, N(p)(a))
O ↓

((p, a, γA) , (p.d, q′B)) if (q′B, d) ∈ γB
P ↓

((p.d, q′A) , (p.d, q′B)) if (q′A, d) ∈ γA

Figure 1: Moves of G(A,M) −~ G(B, N)

3.3. Characterization of the Synchronous Arrow Games

We now give a characterization of synchronous arrow games in traditional games seman-
tics. Our characterization involve relations in slices categories Set/J , that will give rise
to a strong analogy between our fibrations game(W) and aut(W) and substitution (a.k.a
change-of-base) in the codomain fibration cod : Set→ → Set.

Simple Games. Recall the usual notion of simple games (see e.g. [1, 9]). Simple games
are usually negative, but given positive games A and B, their negative linear arrow
A ( B can still be defined. Moreover, simple games, with linear arrows A ( B
between games A and B of the same polarity, form a category that we write SGG.
When equipped with winning conditions, winning strategies compose, giving rise to a
category that we write SGGW.

A P-strategy Σ ` σ : G(A,M) −~ G(B, N) is a morphism of SGG from the substituted
acceptance game G(A,M) to the substituted acceptance game G(B, N). If σ is moreover
winning, then it is a morphism of SGGW.

The Hyland & Schalk Functor. Hyland & Schalk have presented in [11] a faithful
functor, that we denote HS, from simple games to the category Rel of sets and relations.
This functor can easily be extended to a functor HS : SGG(W) → Rel.

Given a play s ∈ ℘(A( B) we let s�A ∈ ℘(A) be its projection on A and similarly for
B,2 so that HS(s) := (s�A, s�B). Given a P-strategy σ : A( B we have σ ⊆ ℘P(A( B)
and thus

HS(σ) := {HS(s) | s ∈ σ} ⊆ ℘(A)× ℘(B)

We write ℘Σ(A,M) for the plays of the substituted acceptance game Σ ` G(A,M).
Given Σ ` σ : G(A,M) −~ G(B, N), we thus have

HS(σ) ⊆ ℘Σ(A,M)× ℘Σ(B, N)

2We write ℘(A) for the set of plays on A, and ℘P(A) for the set of P-plays.
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3. Categories of Acceptance Games and Automata

Composition by pullbacks. An interesting of the faithful functor HS is that it allows
to compose strategies as relations. Moreover, it is easy to check (and folklore) that
composition of strategies, when seen as relations, is given by pullbacks: given σ : A( B
and τ : B( C we have, in Set:

HS(τ ◦ σ)

��

//
y HS(τ)

��
HS(σ) // ℘(B)

where HS(σ)

��

// ℘(B)

℘(A)

HS(τ)

��

// ℘(C)

℘(B)

(2)

Synchronous Relations. We will now see that P-strategies on a synchronous arrow
game can be seen as relations in slice categories Set/J . We call such relations syn-
chronous.

Given a set J , define the category Rel(Set/J) as follows:

Objects are indexed sets A
g→ J , written simply A when g is understood from the

context.

Morphisms from A
g→ J to B

h→ J are given by relations R̊ : A −p→ B such that the
following commutes:

R̊π1

tt
π2

**A
g ++

B
hssJ

Traces. For the synchronous arrow games, synchronization is performed using the fol-
lowing notion of trace. Given Γ ` A and M ∈ Tree[Γ,Σ], define

tr : ℘Σ(A,M) −→ (D + Σ)∗

inductively as follows

tr(ε) := ε tr(s→ (p, a, γ)) := tr(s) · a tr(s→ (p · d, q)) := tr(s) · d

The image of tr is the set TrΣ := (Σ ·D)∗ + (Σ ·D)∗ · Σ.

Characterization of the Synchronous Arrow. We can now characterize the synchronous
arrow games. First, via the functor HS, synchronous strategies are synchronous relations.

Proposition 3.3. Strategies on the synchronous arrow game G(A,M) −~ G(B, N) are
exactly the strategies σ : G(A,M)( G(B, N) such that

HS(σ)

��

// ℘Σ(B, N)

tr
��

℘Σ(A,M)
tr

// TrΣ

(3)
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3. Categories of Acceptance Games and Automata

Second, plays on the synchronous arrow can be obtained in a canonical way from plays
on its components.

Proposition 3.4. Let Σ ` G(A,M) and Σ ` G(B, N). The following is a pullback in
Set:

℘P
Σ(G(A,M) −~ G(B, N))

y
(−)�G(B,N) //

(−)�G(A,M)

��

℘Σ(B, N)

tr

��
℘Σ(A,M)

tr
// TrΣ

We write tr−~ for any of two equal maps

tr ◦ (−)�G(A,M) , tr ◦ (−)�G(B, N) : ℘P
Σ(G(A,M) −~ G(B, N)) −→ TrΣ

3.4. Categories of Substituted Acceptance Games and Automata

We now define our categories SAG
(W)
Σ of substituted acceptance games and their full

subcategories Aut
(W)
Σ of tree automata. That they indeed form categories follows from

the characterization Prop. 3.3, together with the fact that Rel(Set/J) and SGG(W)

are categories, and the fact that the identity strategies id : G(A,M) ( G(B, N) are
synchronous.

The Categories SAGΣ and SAGW
Σ :

Objects of SAGΣ and SAGW
Σ are games Σ ` G(A,M),

Morphisms of SAGΣ are synchronous strategies Σ ` σ : G(A,M) −~ G(B, N),

Morphisms of SAGW
Σ are synchronous winning strategies Σ ` σ  G(A,M) −~ G(B, N).

The Categories AutΣ and AutW
Σ :

Objects of AutΣ and AutW
Σ are automata Σ ` A,

Morphisms of AutΣ are synchronous strategies Σ ` σ : G(A, IdΣ) −~ G(B, IdΣ),

Morphisms of AutW
Σ are synchronous winning strategies Σ ` σ  G(A, IdΣ) −~ G(B, IdΣ).

A Lifting Property. Among the useful consequences of Prop. 3.4, we state the following
lifting property.

Proposition 3.5. Consider Σ ` G(A,M) and Σ ` G(B, N). Assume that, in Rel(Set/TrΣ)

we have an isomorphism R̊ : (℘Σ(A,M)
tr−→ TrΣ) −p→/TrΣ

(℘Σ(B, N)
tr−→ TrΣ).

There is a (unique, total) isomorphism σ : G(A,M) −→SAGΣ
G(B, N) s.t. HS(σ) = R.

In general we can not ask σ to be winning, and in particular to be a morphism of SAGW
Σ .
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4. Fibrations of Acceptance Games and Automata

4. Fibrations of Acceptance Games and Automata

A tree morphism L ∈ Tree[Σ,Γ] defines a map L∗ from the objects of SAGΓ to the
objects of SAGΣ: we let L∗(Γ ` G(A,M)) := Σ ` G(A,M ◦ L).

In this Section, we show that L∗ extends to functors L∗ : SAG
(W)
Γ −→ SAG

(W)
Σ and

that the operation (−)∗ is itself functorial and thus leads to split indexed categories
(−)∗ : Treeop −→ Cat. By applying Groethendieck completion, we obtain our split
fibrations of acceptance games game(W) : SAG(W) −→ Tree.

On the other hand, by restricting substitution to tree morphisms generated by alpha-

bet morphisms β ∈ Alph[Σ,Γ], we obtain functors β∗ : Aut
(W)
Γ −→ Aut

(W)
Σ giving rise

to split fibrations of tree automata aut(W) : Aut(W) −→ Alph.
Our substitution functors L∗ are build in strong analogy with change-of-base functors

Set/TrΓ → Set/TrΣ of the codomain fibration cod : Set→ → Set. We refer to [12] for
basic material about fibrations.

4.1. Substitution Functors

Change-of-Base in Set→. A morphism L ∈ Tree[Σ,Γ] induces a map Tr(L) : TrΣ −→
TrΓ inductively defined as follows (where (−)D is the obvious projection TrΣ → D∗):

Tr(L)(ε) := ε Tr(L)(w ·a) := Tr(L)(w) ·L(wD)(a) Tr(L)(w ·d) := Tr(L)(w) ·d

The map Tr(L) gives rise to the usual change-of-base functor L• : Set/TrΓ → Set/TrΣ,
defined using chosen pullbacks in Set:

L•(℘Γ(A,M))y
//

L•(tr)

��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

Substitution on Plays. The action of the substitution L∗ on plays can be described,
similarly as the action of L• on objects of Set/TrΓ, by a pullback property.

Consider Γ ` G(A,M), so that Σ ` G(A,M ◦ L). A position (p, a, γA) of the game
Σ ` G(A,M◦L) can be mapped to the position (p, L(p)(a), γA) of the game Γ ` G(A,M).
Moreover, since δA(qA, (M ◦ L)(p)(a)) = δA(qA,M(p)(L(p)(a))), we have

(p, qA)→ (p, a, γA) if and only if (p, qA)→ (p, L(p)(a), γA)

This gives a map

℘(L) : ℘Σ(A,M ◦ L) −→ ℘Γ(A,M)

If we are also given Γ ` G(B, N), then we similarly obtain

℘(L)−~ : ℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) −→ ℘Γ((G(A,M) −~ G(B, N))

These two maps are related via HS as expected: HS ◦ ℘(L)−~ = (℘(L) × ℘(L)) ◦ HS.
Moreover,

9



4. Fibrations of Acceptance Games and Automata

Proposition 4.1. We have, in Set:

℘Σ(A,M ◦ L)y
℘(L) //

tr
��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

y
℘(L)−~

**
tr−~

��
TrΣ

Tr(L)
**

℘P
Γ(G(A,M) −~ G(B, N))

tr−~

��
TrΓ

Substitution on Strategies. The action of L∗ on strategies is defined using Prop. 4.1:
Given Γ ` σ : G(A,M) −~ G(B, N), so that σ ⊆ ℘P

Γ(G(A,M) −~ G(B, N)), we define

L∗(σ) := ℘(L)−1
−~(σ) ⊆ ℘P

Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

Proposition 4.2. L∗(σ) is a strategy. If moreover σ is winning, then L∗(σ) is also
winning.

Functoriality of Substitution. Proposition 4.1 can be formulated by saying that the
maps 〈tr, ℘(L)〉 and 〈tr−~, ℘(L)−~〉 are bijections, respectively:

℘Σ(A,M ◦ L)
'−→ TrΣ ×TrΣ

℘Γ(A,M)

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

'−→ TrΣ ×TrΣ
℘P

Γ(G(A,M) −~ G(B, N))

These bijections are crucial to prove that

Proposition 4.3. L∗ is a functor from SAG
(W)
Γ to SAG

(W)
Σ .

Remark 4.4. Recall that L• : TrΓ → TrΣ has a left adjoint, and thus preserves limits.
Since strategies can be seen as synchronous relations, which can moreover be composed
by pullbacks (2), this suggests that the codomain fibration cod already provides enough
categorical structure to obtain substitution functors on synchronous acceptance games.
This seems however a priori not sufficient to obtain strict substitution functors, since the
limits (2) may not be preserved on the noise. This motivated the finer description pro-
vided by the pullback properties of Prop. 4.1, in which all maps involved are specifically
defined.

4.2. Fibrations of Acceptance Games

Consider now L ∈ Tree[Σ,Γ] and K ∈ Tree[Γ,∆]. Since Tr(K ◦ L) = Tr(K) ◦ Tr(L)
and ℘(K ◦ L)(−~) = ℘(K)(−~) ◦ ℘(L)(−~) we immediately get

Proposition 4.5. The operations (−)∗ : Treeop → Cat, mapping Σ to SAG
(W)
Σ , and

mapping L ∈ Tree[Σ,Γ] to L∗ : SAG
(W)
Γ → SAG

(W)
Σ are functors.

By using Groethendieck completion (see e.g. [12, §1.10]), this gives us split fibrations of
acceptance games game(W) : SAG(W) −→ Tree that we do not detail here by lack of
space.

10



5. Symmetric Monoidal Structure

4.3. Fibrations of Automata

In order to obtain fibrations of automata, we restrict substitution to tree morphisms
generated by alphabet morphisms β ∈ Alph[Σ,Γ]. The crucial point is that these
restricted substitutions can be internalized in automata.

Given Γ ` A with A = (Q, qı, δ,Ω), and β ∈ Alph[Σ,Γ], define the automaton
Σ ` A[β] as A[β] := (Q, qı, δβ,Ω) where δβ(q, a) := δ(q, β(a)).

Proposition 4.6. Σ ` G(A[β], IdΣ) = Σ ` G(A, β).

It is easy to see that (−)∗ restricts to a functor from Alphop to Cat, so that we get
fibrations

aut(W) : Aut(W) −→ Alph

5. Symmetric Monoidal Structure

We now consider a synchronous product of automata. When working on complete au-
tomata (to be defined in Sect. 5.1 below), it gives rise to split symmetric monoidal
fibrations, in the sense of [21].

According to [21, Thm. 12.7], split symmetric monoidal fibrations can equivalently be
obtained from split symmetric monoidal indexed categories. In our context, this means
that the functors (−)∗ extend to

(−)∗ : Treeop −→ SymMonCat (−)∗ : Alphop −→ SymMonCat

where SymMonCat is the category of symmetric monoidal categories and strong monoidal
functors. Hence, we equip our categories of (complete) acceptance games and automata
with a symmetric monoidal structure. Substitution turns out to be strict symmetric
monoidal.

We refer to [16] for background on symmetric monoidal categories.

5.1. Complete Tree Automata

An automaton A is complete if for every (q, a) ∈ Q×Σ, the set δ(q, a) is not empty and
moreover for every γ ∈ δ(q, a) and everydirection d ∈ D, we have (q′, d) ∈ γ for some
q′ ∈ Q.

Given an automaton A = (Q, qı, δ,Ω) its completion is the automaton Â :=
(Q̂, qı, δ̂, Ω̂) with states Q̂ := Q + {true, false}, with acceptance condition Ω̂ := Ω +
Q∗ · true · Q̂ω, and with transition function δ̂ defined as

δ̂(true, q) := {{(true, d) | d ∈ D}} δ̂(false, q) := {{(false, d) | d ∈ D}}

δ̂(q, a) := {{(false, d) | d ∈ D}} if q ∈ Q and δ(q, a) = ∅
δ̂(q, a) := {γ̂ | γ ∈ δ(q, a)} otherwise

where, given γ ∈ δ(q, a), we let γ̂ := γ ∪ {(true, d) | there is no q ∈ Q s.t. (q, d) ∈ γ}.

11



5. Symmetric Monoidal Structure

Proposition 5.1. L(A) = L(Â).

Restricting to complete automata gives rise to full subcategories ŜAG
(W)

Σ and Âut
(W)

Σ

of resp. SAG
(W)
Σ and Aut

(W)
Σ , and thus induces fibrations

ĝame : ŜAG
(W)

−→ Tree âut : Âut
(W)

−→ Alph

5.2. The Synchronous Product

Assume given complete automata Σ ` A and Σ ` B. Define Σ ` A~ B as

A~ B := (QA ×QB, (qıA, qıB), δA~B,ΩA~B)

where (qnA, q
n
B)n∈N ∈ ΩA~B iff ((qnA)n∈N ∈ ΩA and (qnB)n∈N ∈ ΩB), and where we let

δA~B((qA, qB), a) be the set of all the γA ~ γB for γA ∈ δA(qA, a) and γB ∈ δB(qB, a),
with γA ~ γB := {((q′A, q′B), d) | d ∈ D and (q′A, d) ∈ γA and (q′B, d) ∈ γB}.

Note that since A and B are complete, each γA~B ∈ δA~B((qA, qB), a) uniquely de-
composes as γA~B = γA ~ γB.

Action on Plays. The unique decomposition property of γA~B allows to define projec-
tions

$i : ℘Σ(A1 ~A2,M) −→ ℘Σ(Ai,M)
$−~i : ℘Σ (G(A1 ~ B1,M) −~ G(A2 ~ B2, N)) −→ ℘Σ (G(Ai,M) −~ G(Bi, N))

We write SP := 〈$1, $2〉 and SP−~ := 〈$−~1 , $−~2 〉.

Proposition 5.2. We have, in Set:

℘Σ(A~ B,M)y
$2 //

$1

��

℘Σ(B,M)

tr

��
℘Σ(A,M)

tr // TrΣ

℘P
Σ(G(A~ B,M) −~ G(C ~D,N))

y
$−~2 **

$−~1

��

℘P
Σ(G(B,M) −~ G(D, N))

tr
��

℘P
Σ(G(A,M) −~ G(C, N))

tr
// TrΣ

Action on Synchronous Games. The action of ~ on the objects of ŜAG
(W)

Σ is given
by

(Σ ` G(A,M))~ (Σ ` G(B, N)) := Σ ` G(A[π]~ B[π′], 〈M,N〉)

where π and π′ are suitable projections. For morphisms, let Σ ` σ : G(A0,M0) −~
G(A1,M1) and Σ ` τ : G(B0, N0) −~ G(B1, N1). Then since Σ ` G(Ai[πi], 〈Mi, Ni〉) =
Σ ` G(Ai,Mi) and Σ ` G(Bi[π′i], 〈Mi, Ni〉) = Σ ` G(Bi, Ni), thanks to Prop. 5.2 we can
simply let σ ~ τ := SP−1

−~(σ, τ).

Proposition 5.3. The product ~ gives functors ŜAG
(W)

Σ × ŜAG
(W)

Σ −→ ŜAG
(W)

Σ .

12
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5.3. Symmetric Monoidal Structure

Thanks to Prop. 5.2 and Prop. 3.5 the symmetric monoidal structure of ~ in ŜAG
(W)

Σ

can be directly obtained from the symmetric monoidal structure of the tensorial product
of Rel(Set/TrΣ).

Symmetric Monoidal Structure in Rel(Set/J). We define a product⊗ in Rel(Set/J):

On Objects: for (A, g) and (B, h) objects in Rel(Set/J) the product A⊗B is A×J B
with the corresponding map, that is

A⊗B := {(a, b) ∈ A×B | g(a) = h(b)} g◦π1=h◦π2−→ J

On Morphisms: given R ∈ Rel(Set/J)[A,C] and P ∈ Rel(Set/J)[B,D], we define
R⊗ P ∈ Rel(Set/J)[A⊗B,C ⊗D] as

R⊗ P := {((a, b), (c, d)) ∈ (A⊗B)× (C ⊗D) | (a, c) ∈ R and (b, d) ∈ P}

For the unit, we choose some I = ( : I
'−→ J). Note that  is required to be a bijection.

The natural isomorphisms are given by:

α̊A,B,C := {(((a, b), c) , (a, (b, c))) | gA(a) = gB(b) = gC(c)}
λ̊A := {((e, a) , a) | (e) = gA(a)}
ρ̊A := {((a, e) , a) | gA(a) = (e)}

γ̊A,B := {((a, b) , (b, a)) | gA(a) = gB(b)}
We easily get:

Proposition 5.4. The category Rel(Set/J), equipped with the above data, is symmetric
monoidal.

Unit Automata. The requirement that the monoidal unit  : I → J of Rel(Set/J)
should be a bijection leads us to the following unit automata. We let I := (QI , qI , δI ,ΩI)
where QI := 1, qI := •, ΩI = QωI and δI(qI , a) := {{(qI , d) | d ∈ D}}.

Note that since δI is constant, we have Σ ` G(I,M) = Σ ` G(I, Id). Moreover,

Proposition 5.5. Given M ∈ Tree[Σ,Γ], we have, in Set, a bijection

tr : ℘Σ(I,M)
'−→ TrΣ

Symmetric Monoidal Structure. Using Prop. 3.5, the structure isos of Rel(Set/TrΣ)

can be lifted to ŜAG
(W)

Σ (winning is trivial). Moreover, the required equations (natu-
rality and coherence) follows from Prop. 3.4, Prop 5.2, and the fact that ((SP × SP) ◦
HS)(σ~τ) = HS(σ)⊗HS(τ) (where composition on the left is in Set, and the expression
denotes the actions of the resulting function on the set of plays (σ ~ τ)).

All the symmetric monoidal structure restricts from ŜAG
(W)

Σ to Âut
(W)

Σ .

Proposition 5.6. The categories ŜAG
(W)

Σ and Âut
(W)

Σ equipped with the above data,
are symmetric monoidal.

13



6. Correctness w.r.t. Language Operations

5.4. Symmetric Monoidal Fibrations

In order to obtain symmetric monoidal fibrations, by [21, Thm. 12.7], it remains to
check that substitution is strong monoidal. It is actually strict monoidal: it directly
commutes with ~ and preserves the unit, as well as all the structure maps.

Proposition 5.7.

(i) Given L ∈ Tree[Σ,Γ], the functors L∗ : ŜAG
(W)

Γ → ŜAG
(W)

Σ are strict monoidal.

(ii) Given β ∈ Alph[Σ,Γ], the functors β∗ : Âut
(W)

Γ → Âut
(W)

Σ are strict monoidal.

6. Correctness w.r.t. Language Operations

This Section gathers several properties stating the correctness of our constructions w.r.t.
operations on recognized languages. We begin in Sect. 6.1 by properties on the symmetric
monoidal structure, the most important one being that the synchronous arrow is correct,
in the sense that Σ ` A −~ B implies L(A) ⊆ L(B). Then, in Sect. 6.2, we discuss
complementation of automata, and its relation with the synchronous arrow.

6.1. Correctness of the Symmetric Monoidal Structure

We begin by a formal correspondence between acceptance games and synchronous games
of a specific form. This allows to show that the synchronous arrow is correct, in the sense
that Σ ` A −~ B implies L(A) ⊆ L(B). We then briefly discuss the correctness of the
synchronous product w.r.t. language intersection.

Proposition 6.1. Given Σ ` A and t ∈ Tree[Σ], there is a bijection:

{σ | 1 ` σ  G(A, ṫ)} ' {θ | 1 ` θ  G(I, Id1) −~ G(A, ṫ)}

Remark 6.2. The above correspondence is only possible for acceptance games over 1:

• In Σ ` σ  G(A,M), σ is a positive P-strategy, hence chooses the input characters
in Σ.

• In Σ ` θ  G(IΣ, IdΣ) −~ G(A,M), the strategy θ is a negative. It plays pos-
itively in Σ ` G(A,M), but must follow the input characters chosen by O in
Σ ` G(IΣ, IdΣ).

We now check that the arrow G(A,M) −~ G(B, N) is correct w.r.t. language inclusion:

Proposition 6.3 (Correctness of the Arrow). Assume given Σ ` σ  G(A,M) −~
G(B, N).

(i) For all t ∈ Tree[Σ], we have ṫ∗(σ)  G(A,M ◦ ṫ) −~ G(B, N ◦ ṫ).

(ii) If 1  G(A,M ◦ ṫ) then 1  G(B, N ◦ ṫ).

14



7. Projection and Fibred Simple Coproducts

(iii) For all tree t ∈ Tree[Σ], if M(t) ∈ L(A) then N(t) ∈ L(B).

The converse property will be discussed in Sect. 7. We finally check that the synchronous
product is correct.

Proposition 6.4. L(Â~ B̂) = L(A) ∩ L(B).

6.2. Complementation and Falsity

Complementation. Given an automaton A = (Q, qı, δ,Ω), following [23], we let its
complement be ∼A := (Q, qı, δ∼A,Ω∼A), where Ω∼A := Qω \ Ω and

δ∼A(q, a) := {γ∼ ∈ P(Q×D) | ∀γ ∈ δ(q, a), γ∼ ∩ γ 6= ∅}

The idea is that P on ∼A simulates O on A, so that the correctness of ∼A relies on
determinacy of acceptance games. In particular, thanks to Borel determinacy [14], we
have:

Proposition 6.5 ([23]). Given A with ΩA a Borel set, we have L(∼A) = Tree[Σ]\L(A).

Note that if A is complete, then ∼A is not necessarily complete, but δ∼A is always not
empty and so are the γ’s in its image.

The Falsity Automaton ‹. We let ‹ := (Q‹, q‹, δ‹,Ω‹) where Q‹ := 1, q‹ := •,
Ω‹ = ∅ and δ‹(q‹, a) := {{(q‹, d)} | d ∈ D}. Note that I = ∼‹. In particular, it is
actually P who guides the evaluation of ‹, by choosing the tree directions.

Proposition 6.6. Let A and B be complete. Then Σ  A~ B −~ ‹̂ iff Σ  A −~ ∼̂B.

Corollary 6.7. Let A be a complete automaton on Σ. Then 1  ∼̂A iff 1  A −~ ‹̂.

7. Projection and Fibred Simple Coproducts

We now check that automata can be equipped with existential quantifications in the
fibered sense. Namely, given a projection π ∈ Alph[Σ × Γ,Σ], the induced weakening

functor π∗ : Âut
(W)

Σ → Âut
(W)

Σ×Γ has a left-adjoint qΣ,Γ, and moreover this structure is
preserved by substitution, in the sense of the Beck-Chevalley condition (see e.g. [12]).
This will lead to a (weak) completeness property of the synchronous arrow on non-
deterministic automata, to be discussed below.

Recall from [13, Thm. IV.1.2.(ii)] than an adjunction qΣ,Γ a π∗, with π∗ a functor,
is completely determined by the following data: To each object Σ × Γ ` A, an object
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7. Projection and Fibred Simple Coproducts

Σ ` qΣ,ΓA, and a map ηA : Σ× Γ ` A −→ Σ× Γ ` (qΣ,ΓA)[π] satisfying the following
universal lifting property:

For every
σ : Σ× Γ ` A −→ Σ× Γ ` B[π]
there is a unique

τ : Σ ` qΣ,ΓA −→ Σ ` B

s.t. A ηA //

σ
''

(qΣ,ΓA)[π]

π∗(τ)

��
B[π]

(4)

In our context, the Beck-Chevalley condition amounts to the equalities

∆ ` (qΣ,ΓA)[β] = ∆ ` q∆,Γ(A[β × IdΓ]) ηA[β×IdΓ] = (β × IdΓ)∗(ηA) (5)

It turns out that the usual projection operation on automata (see e.g. [23]) is not func-
torial. Surprisingly, this is independent from whether automata are non-deterministic
or not3. We devise a lifted projection operation, which indeed leads to a fibered exis-
tential quantification, and which is correct, on non-deterministic automata, w.r.t. the
recognized languages.

The Lifted Projection. Consider Σ× Γ ` A with A = (Q, qı, δ,Ω). Define Σ ` qΣ,ΓA
as qΣ,ΓA := (Q× Γ + {qı}, qı, δqA,ΩqA) where

δqA(qı, a) :=
⋃
b∈Γ{γ+b | γ ∈ δ(qı, (a, b))}

δqA((q, ), a) :=
⋃
b∈Γ{γ+b | γ ∈ δ(q, (a, b))}

and, given γ ∈ P(Q × D) and b ∈ Γ, we let γ+b := {((q+b, d) | (q, d) ∈ γ} with
q+b := (q, b).
For the acceptance condition, we let qı · (q0, b0) · . . . · (qn, bn) · . . . in ΩqA iff qı · q0 · . . . ·
qn · . . . ∈ Ω.

Action on Plays of The Lifted Projection. The action on plays of qΣ,Γ is characterized
by the map ℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA) inductively defined as ℘(q)(ε, qı) := (ε, qı)
and

℘(q)((ε, qı)→∗ (p, q)→ (p, (a, b), γ)) := ℘(q)((ε, qı)→∗ (p, q))→ (p, a, γ+b)
℘(q)((ε, qı)→∗ (p, (a, b), γ)→ (p.d, q)) := ℘(q)((ε, qı)→∗ (p, (a, b), γ))→ (p.d, q+b)

Proposition 7.1. If A is a complete automaton, then ℘(q) is a bijection.

The Unit Maps η(−). Consider the injection ιΣ,Γ : ℘Σ(qΣ,ΓA) −→ ℘Σ×Γ((qΣ,ΓA)[π])

inductively defined as ιΣ,Γ((ε, qıA)) := (ε, qıA) and ιΣ,Γ(s→ (p, q+b)) := ιΣ,Γ(s)→ (p, q+b)
and ιΣ,Γ(s→ (p, a, γ+b)) := ιΣ,Γ(s)→ (p, (a, b), γ+b).

If Σ×Γ ` A is complete, we let the unit ηA be the unique strategy of ŜAG
W

Σ×Γ such that
HS(ηA) = {(t, ιΣ,Γ ◦ ℘(q)(t)) | t ∈ ℘Σ×Γ(A)}. We do not detail the B.-C. condition (5).

3It is well-known that the projection operation is correct w.r.t. the recognized languages only on non-
deterministic automata.
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The Unique Lifting Property (4). Consider some Σ× Γ ` σ : A −~ B[π] with A com-
plete. We let τ be the unique strategy such that HS(τ) = {(℘(q)(s), ℘(π)(t)) | (s, t) ∈
HS(σ)}. It is easy to see that τ is winning whenever σ is winning. Moreover

Lemma 7.2. σ = π∗(τ) ◦ ηA.

For the unicity part of the lifting property of ηA, it is sufficient to check:

Lemma 7.3. If π∗(θ) ◦ ηA = π∗(θ′) ◦ ηA then θ = θ′.

Non-Deterministic Tree Automata. An automaton A is non-deterministic if for every
γ in the image of δ and every direction d ∈ D, there is at most one state q such that
(q, d) ∈ γ.

Remark 7.4. If A and B are non-deterministic, then so are A~ B and q(A).

Proposition 7.5 ([6, 18, 23]). For each regular automaton Σ ` A there is a complete
non-deterministic automaton Σ ` ND(A) such that L(A) = L(ND(A)).

Proposition 7.6. If Σ × Γ ` A is non-deterministic and complete, then L(qΣ,ΓA) =
πΣ,Γ(L(A)) where πΣ,Γ ∈ Alph[Σ× Γ,Σ] is the first projection.

Proposition 7.7. Consider complete regular automata Σ ` A and Σ ` B.
If L(A) ⊆ L(B) then Σ  ND(A) −~ ∼̂C with C := ND(∼B).

8. Conclusion

We presented monoidal fibrations of tree automata and acceptance games, in which the
fibre categories are based on a synchronous restriction of linear simple games.

For technical simplicity, we did not yet consider monoidal closure, but strongly ex-
pect that it holds. One of the main question is whether suitable restrictions of these
categories are Cartesian closed, so as to interpret proofs from intuitionistic variants of
MSO. Among other questions are the status of non-determinization (i.e. whether it can
be made functorial, or even co-monadic), as well as relation with the Dialectica inter-
pretation (in the vein of e.g. [10]). Our result of weak completeness (Prop. 7.7) suggests
strong connections with the notion of guidable non-deterministic automata of [4]. On a
similar vein, connections with game automata [5, 7] might be relevant to investigate.

Acknowledgments. This work benefited from numerous discussions with Pierre Clairam-
bault and Thomas Colcombet.
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A. Simple Graph Games

A. Simple Graph Games

We work on simple graph games with winning, of the form G = (V,E, ∗, λ, ξ,W). They
are played by Opponent (O) and Proponent (P) on the graph with vertices in V , edges
in E, root ∗, edge labeling λ : E → {O,P}, polarity ξ : {∗} → {O,P} and winning
conditionW ⊆ V ω. Vertices are game positions, while edges are moves: Opponent plays
O-labeled moves and Proponent plays P-labeled moves. We write v → w if (v, w) ∈ E.

We assume that games are alternating, in the sense that u → v → w implies λ(u →
v) 6= λ(v → w), and polarized in the sense that λ(u → v) = λ(u → w) for all coinitial
edges u→ v, u→ w, and moreover λ(∗ → u) = ξ(∗) for all ∗ → u. A game is positive if
ξ(∗) = P and negative otherwise. A play is a finite path starting from the root ∗. It is a
P-play (resp. an O-play) if it is either empty or ends with a P-move (resp. an O-move).
A P-strategy is a non-empty set σ of P-plays which is

P-prefix-closed: if s→∗ v ∈ σ and s is a P-play then s ∈ σ, and

P-deterministic: if s→ w ∈ σ and s→ w′ ∈ σ then w = w′.

Consider a P-strategy σ and an O-play s. We say that s is an O-interrogation of σ if
either s = ∗ and G is a positive game, or if s = t → u for some P-play t ∈ σ. We say
that σ is total if for every O-interrogation s of σ, we have s → v ∈ σ for some v. A
P-strategy σ is winning if it is total and moreover, for all infinite path π ∈ V ω, we have
π ∈ W whenever π(0)→ . . .→ π(n) ∈ σ for infinitely many n ∈ N.
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B. Graph Games

We briefely discuss here graph games inspired from Melliès’ presentation of Conway
games (see e.g. [15, 16]). The two main differences are that we do not assume here that
graphs are well-founded, nor that strategies are winning.

B.1. Basic Graph Games

Basic Graph Games are played by Opponent (O) and Proponent (P) on edge-labeled
rooted graphs of the form A = (V,E, ∗, λ), where V is the set of vertices, E ⊆ V × V
is the edge relation, ∗ ∈ V is the root, and λ : E → {O,P} is the labelling function.
Vertices are game positions, while edges are moves: Opponent plays O-labeled moves
and Proponent plays P-labeled moves. We write v → w if (v, w) ∈ E.

A path from position v to position w is a non-empty sequence s of the form

s : v0 → v1 → . . .→ vn where v0 = v and vn = w

In particular, for each position v, there is a unique empty path ε : v, that we also write
v. We write s : v→∗ w when s is a path from v to w or v→∗ w when s is understood
from the context.

Note that a basic graph game can have no edge, but must have at least one vertex,
namely its root. Let 1SGG := ({∗}, ∅, ∗, ∅).

Dualization. The dual of the basic graph game A = (V,E, ∗, λ) is

A⊥ := (V,E, ∗, λ⊥) where λ⊥(v → w) = P iff λ(v → w) = O

Plays. A finite play in A = (V,E, ∗, λ) is a finite path v0 → v1 → . . .→ vn which starts
from the root (v0 = ∗). A play as above is alternating if λ(vi−1 → vi) = λ⊥(vi → vi+1)
whenever n ≥ 2 and 1 ≤ i < n. Note that the empty path on the initial position ε : ∗ is
a play. We let ℘(A) be the set of plays on A.

We say that a play is a P-play (resp. O-play) if it is either empty or its last move is a
P-move (resp. an O-move). We write ℘P(A) and ℘O(A) for the sets of resp. P-plays and
O-plays on A.

Strategies. A P-strategy is a non-empty set σ of P-plays which is

P-prefix-closed: if s→∗ v ∈ σ and s is a P-play then s ∈ σ, and

P-deterministic: if s→ w ∈ σ and s→ w′ ∈ σ then w = w′.

An O-strategy is defined similarly, by exchanging P and O. Formally, an O-strategy on
A is a P-strategy on A⊥.
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Tensor Product. The product of A = (VA, EA, ∗A, λA) and B = (VB, EB, ∗B, λB) is

A×B := (VA × VB, EA×B, (∗A, ∗B), λA×B)

where EA×B and λA×B are given by

if u→A u
′ then (u, v)→A×B (u′, v) with polarity λA(u→ u′)

if v →B v′ then (u, v)→A×B (u, v′) with polarity λB(v → v′)

Note that (λA×B)⊥ = λA⊥×B⊥ , so that dualization commutes with the tensor product:

(A×B)⊥ = A⊥ ×B⊥

Arrow Type. Given basic graph games A and B, we let A( B := (A×B⊥)⊥ = A⊥×B.

B.2. Graph Games (with Legal Plays)

We discuss here a simple notion of graph games, which are basic graph games equipped
with legal plays. This notion will be most useful to analyse composition in simple graph
games (see Sect. D), but it is conventient to introduce it here.

Games with Legal Plays. Formally, a graph game with legal plays (or graph game in
short) has the form A = (V,E, ∗, λ, L) where (V,E, ∗, λ) is a basic graph game and
L ⊆ ℘(A) is a prefix-closed set legal plays. We write LP and LO for resp. the set of legal
P-plays and O-plays of A.

Strategies σ on A are required to play only legal plays (i.e. σ ⊆ LP for a P-strategy
σ).

Projections. Given graph games A1, . . . , An and a play t ∈ ℘(A1 × · · · × An), the
projection t�Ai1 , . . . , Aik is inductively defined as usual:

(∗A1 , . . . , ∗An)�Ai1 , . . . , Aik := (∗Ai1 , . . . , ∗Aik )

and if j ∈ {i1, . . . , ik} then

(t→∗ (u1, . . . , uj , . . . , un)→ (u1, . . . , vj , . . . , un))�Ai1 , . . . , Aik :=

(t→∗ (u1, . . . , un))�Ai1 , . . . , Aik → (ui1 , . . . , vj , . . . , uik)

and otherwise

(t→∗ (u1, . . . , uj , . . . , un)→ (u1, . . . , vj , . . . , un))�Ai1 , . . . , Aik :=

(t→∗ (u1, . . . , un))�Ai1 , . . . , Aik

Lemma B.1. If t ∈ ℘(A1 × · · · ×An) then t�Ai1 , . . . , Aik ∈ ℘(Ai1 × · · · ×Aik).
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The Hyland-Schalk Map. Given graph games A and B, and following [11] (see also [2]),
we let

HS := 〈(−)�A, (−)�B〉 : ℘(A×B)→ ℘(A)× ℘(B)

Polarized Plays and Strategies. The polarity of a proper play is that of its first move,
namely: a proper play is positive (resp. negative) if it begins with a P-move (resp. an
O-move).

Similarly, a strategy is positive (resp. negative) if all its proper plays are positive (resp.
negative).

Arrow Type. Let A = (VA, EA, ∗A, λA, LA) and B = (VB, EB, ∗B, λB, LB) be graph
games. We let:

A( B := (VA(B, EA(B, ∗A(B, λA(B, LA(B)

where LA(B is the set of alternating and negative plays s ∈ ℘(A ( B) such that
HS(s) ∈ LA × LB.

Hence, a legal strategy σ on A( B is alternating and negative: its plays begin with
an O-move, end with a P-move and in between alternate polarities.

Lemma B.2. LA(B is closed under prefix.

Definition B.3. Given graph games A and B, write σ : A → B if σ is a legal (hence
negative) P-strategy on A( B.

B.3. Conway-Like Games

We briefly review here Melliès’ presentation of Conway-like games [15, 16].
A Conway-like game is a basic graph game, but a morphism of Conway-like games

σ : A→ B, with A = (VA, EA, ∗A, λA) and B = (VB, EB, ∗B, λB) is a morphism of graph
games σ : A0 → B0, whereA0 = (VA, EA, ∗A, λA, ℘(A)) andB0 = (VB, EB, ∗B, λB, ℘(B)).

A Conway game is a Conway-like game which is well-founded, in the sense that there
is no infinite path starting from the root. A morphism of Conway games σ : A → B is
a morphism of Conway-like games, which is moreover total, in the sense that:

• given t = ∗ →∗ u ∈ σ, for every O-move u→ v such that t→ v is legal, there is a
P-move v → w such that t→ v → w ∈ σ.

We discuss in Sect. E (Prop. E.4) the fact that totality is preserved by composition for
Conway games.

C. Composition of Strategies on Graph Games (with Legal
Plays)

We gather here some usual and useful results on the composition of strategies on graph
games.
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Consider graph games A, B and C and strategies σ : A→ B and τ : B → C. Following
the usual pattern we let:

σ ‖ τ := {t ∈ ℘(A×B × C) | t�A,B ∈ σ ∧ t�B,C ∈ τ}
τ ◦ σ := {s ∈ LP

A(C | ∃t ∈ σ ‖ τ. t�A,C = s}

We now recall the usual way to show that τ ◦ σ is a strategy on A( C.

Lemma C.1. Let t ∈ ℘(A×B × C) be such that t�A,B ∈ LA(B, t�B,C ∈ LB(C and
t�A,C ∈ LA(C .

Then the word obtained from t by replacing each move by the name of its component
(A, B, or C), together with its polarity in that component (beware that we take A and
not A⊥ etc) is accepted by the following automaton (with initial state (OOO) and all
states accepting), where the states correspond to the player allowed to play next in the
corresponding components:

A( B B( C A( C

O O O

O P P

P O P

(C,O) (C,P)

(B,O) (B,P)

(A,P)(A,O)

Lemma C.2 (Zipping). Let s, t ∈ σ ‖ τ such that s�A,C and t�A,C have the same
O-moves. Then s = t.

Proof. Assume that s 6= t and let p = ∗A×B×C →∗ u be their maximal comon prefix.
Hence there are positions v 6= w in A×B ×C such that p→ v (resp. p→ w) is a prefix
of s (resp. of t). We reason by cases on the last state on p of the diagram of Lem. C.1.

(OOO) In this case, both u→ v and u→ w are O-moves in A( C and we are done.

(OPP) In this case, u→ v and u→ w are both P-moves in B( C, so that (p→ v)�B,C
and (p→ u)�B,C are plays of τ of the same length, hence u = v, a contradiction.

(POP) Similarly as in the case of (OPP), this case leads to a contradiction since u→ v
and u→ w are both P-moves in A( B.

Proposition C.3. Given graph games A, B and C and strategies σ : A → B and
τ : B → C, the composite τ ◦ σ is a strategy on A( B.
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D. Simple Graph Games

Proof. We have τ ◦ σ ⊆ LP
A(C by definition, and τ ◦ σ contains the empty play since

both σ and τ contain the empty play.
We now show that τ ◦ σ is P-prefix-closed. Let s → u → v ∈ τ ◦ σ. If s is the empty

play ε : ∗A(B then we are done. Otherwise, let t ∈ σ ‖ τ such that

t�A,C = s→ u→ v

Write t := t′ → u→∗ v, so that t′�A,C = s. Now, since s ∈ LP
A(C , by definition s ends

with a P-move and is alternating, hence the last state of the diagram of Lem. C.1 on
t′ is (OOO). By alternation in LA(B and LB(C , it follows that t′�A,B ∈ LP

A(B and
t′�B,C ∈ LP

B(C . By P-prefix closure of strategies, it follows that t′�A,B and t′�B,C
are plays of σ and τ respectively. Hence t′ ∈ σ ‖ τ and s ∈ τ ◦ σ.

It remains to show that τ ◦ σ is P-deterministic. Assume that s → u and s → v are
two plays of τ ◦ σ. Then they have the same O-moves, and it follows from the Zipping
Lemma C.2 that u = v.

D. Simple Graph Games

Simple graph games are graph games with legal plays, which are required to satisfy
alternation and polarity conditions.

D.1. Simple Graph Games

D.1.1. Simple Graph Games.

A simple graph game is a graph game with legal plays A = (V,E, ∗, λ, L) where L is
subject to the following two additional requirements:

Alternance: all plays in L are alternating, and

Polarization: all plays in L have the same polarity.

The polarity of A is the polarity of the plays of L.

Example D.1 (Linear Arrow of Graph Games with Legal Plays). If A and B are graph
games with legal plays, then the linear arrow game A( B in the sense of Sect. C is a
simple graph game.

Example D.2 (Substituted Acceptance Games).

Definition D.3 (Total Strategies). Let σ be a P-strategy on a game A, and consider an
O-play s. We say that s is an O-interrogation of σ if either s = ∗A and A is a polarized
positive game, or if s = t→ u for some P-play t ∈ σ.

We say that σ is total if for every O-interrogation s of σ, we have s
P→ v ∈ σ for some

v.
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D. Simple Graph Games

D.1.2. The Category SGG of Simple Graph Games.

In the category SGG of simple graph games, we only consider morphisms between games
of the same polarity.

Objects of SGG are simple graph games.

Morphisms in SGG[A,B], with A and B of the same polarity are negative legal P-
strategies σ : A→ B.

D.1.3. The Hyland-Schalk Functor.

Given a strategy σ : A→ B, let

HS(σ) := {HS(s) | s ∈ σ}

Recall that by definition, HS restricts to a map from LA(B to LA × LB, and that
σ ⊆ LA(B by assumption. Hence HS(σ) ⊆ LA × LB.

Proposition D.4 ([11]). HS is a faithfull functor from SGG to Rel, the category of
sets and relations.

It follows that strategies are faithfully represented by the corresponding spans in Set:

σ

~~   
LA LB

(6)

where the arrows σ −→ LA and σ −→ LB are given resp. by

σ �
� // LA(B

(−)�A // LA and σ �
� // LA(B

(−)�B // LB

We will detail the argument of Prop. D.4, and show that composition in SGG is
faithfully represented in Set by pullbacks of spans of the form (6).

D.2. Relational Decomposition of Strategies

We now discuss how the polarization and alternation assumptions in SGG imply that
HS is faithful.

We first recall the following well-known basic fact about SGG.

Lemma D.5 (Switching). Let A and B be simple graph games of the same polarity.

(i) Consider a legal play s = ∗A(B →∗ u→ v → w ∈ LA(B. If the moves u→A(B v
and v →A(B w are not both in the same component, then λA(B(v → w) = P.

(ii) Consider a legal play s = ∗A(B →∗ (u, v) ∈ LA(B. If there are moves u →A⊥ u
′

and v →B v′ such that both plays s → (u′, v) and s → (u, v′) are legal in A( B,
then λA(B((u, v)→A(B (u′, v)) = λA(B((u, v)→A(B (u, v′)) = P.
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D. Simple Graph Games

(iii) Consider two legal plays s, t ∈ LA(B:

s = ∗A(B → u1 → . . .→ un
t = ∗A(B → v1 → . . .→ vn

Assume that s 6= t but HS(s) = HS(t). Then for the least i < n such that ui+1 6=
vi+1, we have λA(B(ui → ui+1) = λA(B(vi → vi+1) = P.

Proof. (i) Since s is alternating, the moves u→A(B v and v →A(B w have opposite
polarity. Since moreover they are not in the same component, it follows that the
projections s�A⊥ and s�B end with moves of opposite polarity. Hence s�A and
s�B end with moves of the same polarity.

Since A and B have the same polarity, and since s�A and s�B are alternating, we
get that the lengths of s�A and of s�B have the same parity. It follows that the
length of s is even, and since s is a negative alternating play, it ends with a P-move.

(ii) Since the plays s → (u′, v) and s → (u, v′) are both alternating and negative,
the moves (u, v) →A(B (u′, v) and (u, v) →A(B (u, v′) have the same polarity.
It follows that λA(u →A u′) = λB(v →B v′)⊥, and moreover that s�A and s�B
end with moves of opposite polarity since s�A →A u′ and s�B →B v′ are both
alternating.

Since A and B have the same polarity, and again since s�A and s�B are alternating,
we get that the lengths of s�A and of s�B have opposite parity. It follows that
the length of s is odd, and since s is a negative alternating play, it ends with an
O-move. We conclude by alternation of LA(B.

(iii) Note that since s and t are both alternating and negative, the moves ui →A(B ui+1

and vi →A(B vi+1 have the same polarity. Since

∗A(B → u1 → . . .→ ui = ∗A(B → v1 → . . .→ vi

we have

HS(∗A(B → u1 → . . .→ ui) = HS(∗A(B → v1 → . . .→ vi)

Since moreover HS(s) = HS(t) by assumption, it follows that ui → ui+1 and
vi → vi+1 can not be both in the same component, and the result follows from
Lem. D.5.(i).

Remark D.6 (Definition of LA(B for graph games in Sect. C). Note that a play s ∈
℘(A ( B) such that s�A ∈ LA and s�B ∈ LB needs not be negative nor alternating.
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Consider for instance the following plays where A and B are both negative:

A −→ B

(∗A , ∗B)
P ↓

(a0 , ∗B)
O ↓

(a1 , ∗B)

A −→ B

(∗A , ∗B)
O ↓

(∗A , b0)
P ↓

(a0 , b0)
P ↓

(a0 , b1)

Lemma D.7. Let A and B be simple graph games of the same polarity.

(i) Given σ : A→ B, in Set we have HS(σ) ' σ.

(ii) HS is injective on strategies: given σ, τ : A→ B, if HS(σ) = HS(τ) then σ = τ .

Proof. (i) By definition, we have in Set a surjective map

σ −→ HS(σ)
s 7→ HS(s) = (s�A, s�B)

The injectivity of this map follows from the following property: Given legal plays
t ∈ LA and t′ ∈ LB there is at most one play s ∈ σ such that HS(s) = (t, t′). This
property is a direct consequence of Lem. D.5.(iii).

(ii) Let σ and τ be strategies on A → B such that HS(σ) = HS(τ). We show that
σ ⊆ τ by induction on plays s ∈ σ. First, both σ and τ contain the empty play
ε : ∗A(B.

For the induction step, consider s ∈ σ of the form

u0 → . . .→ un → un+1 → un+2

with u0 = ∗A(B and such that u0 → . . .→ un ∈ σ ∩ τ .

By assumption, HS(s) = HS(t) for some t ∈ τ . Note that s and t have the same
length. Hence t is of the form

v0 → . . .→ vn → vn+1 → vn+2 with v0 = ∗A(B

If s 6= t, then by Lem. D.5.(iii) they first differ at a P move, say ui+1 6= vi+1.
Since u0 →∗ un and v0 →∗ vn both belong to τ , we can not have i+ 1 ≤ n, hence
i+ 1 = n+ 2 since s and t are both alternating and negative.

But then
u0 → . . .→ un = v0 → . . .→ vn

hence
HS(u0 → . . .→ un) = HS(v0 → . . .→ vn)

and since HS(s) = HS(t), it follows that un+2 = vn+2, contradicting s 6= t.
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D.3. Relational Composition of Strategies

Let A, B and C be simple games of the same polarity. Given σ : A→ B and τ : B → C,
consider the following composite, in the category Rel of sets and relations:

HS(τ) ◦HS(σ) = {(s, s′) ∈ LA × LC | ∃t ∈ LB. (s, t) ∈ HS(σ) ∧ (t, s′) ∈ HS(τ)}

Lemma D.8. Assume that A, B and C have the same polarity. Given s ∈ LA(B and
s′ ∈ LB(C with s�B = s′�B, there is t ∈ ℘(A × B × C) such that t�A,B = s and
t�B,C = s′.

Moreover, t is accepted by the state diagram:

A( B B( C

O O

O P

P O

(C,O) (C,P)

(B,O) (B,P)

(A,P)(A,O)

Proof. We build t by induction on the sum of the lengths of s and s′.
In the base case, s and s′ are both empty, and we let t be the empty play from ∗A×B×C .

By definition of LA(B and LB(C , the diagram is in state (OO).
For the induction step, there are three cases according to wether either s or s′ are

empty or s and s′ are both non-empty.

If s is non-empty and s′ is empty with say s = ∗A(B →∗ u → v. Then by induction
hypothesis there is t ∈ ℘(A×B×C) with t�A,B = ∗A(B →∗ u and t�B,C = s′ = ε.

Since s′ is empty, the move u → v must be in component A. Writing t =
∗A×B×C→∗u′, we extend it to t′ with the corresponding move u′ → v′ in A×B×C.

Moreover, the diagram must be either in state (OO) or (PO) on t according to the
polarity of the length of t, and it goes either to state (PO) or (OO) on t′.

If s is empty and s′ is non-empty then we reason similarly, in component C instead of
A.

Otherwise, both s and s′ are non-empty. We first claim that at least one move of s
and s′ is in component B.

• Proof. Assume that no move of s (and thus of s′) occurs in component B.
Recall that s and s′ are both non-empty. But their first moves are in com-
ponent A and C respectively, contradicting that s ∈ LA(B and s′ ∈ LB(C
since A, B and C are of the same polarity.
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Let b0 → b1 (resp. b′0 → b′1) be the last move of s (resp. s′) in component B. Note
that by assumption, these two moves project to the same B-move. Hence s and s′

are of the form:
s : ∗A(B →∗ b0 → b1 →ε s1

s′ : ∗B(C →∗ b′0 → b′1 →ε s′1

Consider first the case where b1 →ε s1 and b′1 →ε s′1 are both empty:

s : ∗A(B →∗ b0 → b1
s′ : ∗B(C →∗ b′0 → b′1

Now, we have (∗A(B →∗ b0)�B = (∗B(C →∗ b′0)�B and by induction hypothesis,
we get t0 ∈ ℘(A × B × C) such that t0�A,B = ∗A(B →∗ b0 and t0�B,C =
∗B(C →∗ b′0.

Moreover t0 is accepted by the state diagram. It can not be in state (OO) since the
B-move corresponding to b0 → b1 and b′0 → b′1 has opposite polarities in A( B
and B ( C. Hence t0 must either be in state (OP) or in state (PO), according
to the polarity of b0 → b1 (which is the opposite to that of b′0 → b′1). We extend
t0 to t1 with the B-move corresponding to b0 → b1 and b′0 → b′1. The state of the
diagram is now either (PO) or (OP).

Consider now the case of b1 →ε s1 and b′1 →ε s′1 not both empty. We obtain t1 as
above. We claim that either b1 →ε s1 or b′1 →ε s′1 is empty.

• Proof. Assume that both are non-empty. Then they must respectively begin
with an A-move and a C-move. But either b0 → b1 or b′0 → b′1 is a P-move,
contradicting Switching (Lem. D.5.(i)).

We can thus extend t1 by reasonning as in the case of s or s′ empty above.

Lemma D.9. Let t ∈ ℘(A×B × C) be such that t�A,B ∈ LA(B and t�B,C ∈ LB(C .
Then t�A,C is negative.

Proof. We consider two cases, according to the polarity of A, B and C.

A, B and C are negative. In this case, the first move in A of t comes after its first move
in B, which itself comes after the first move in C of t. It follows that t�A,C begins
by an initial move in C, hence a negative move in A( B.

A, B and C are positive. Similarly, the first move in C of t comes after its first move
in B, which itself comes after the first move in A of t. It follows that t�A,C begins
by an initial move in A, hence a negative move in A( C.

Corollary D.10. Given plays sA ∈ LA, sB ∈ LB and sC ∈ LC such that (sA, sB) ∈
HS(σ) and (sB, sC) ∈ HS(τ), there exists t ∈ σ ‖ τ such that HS(t�A,B) = (sA, sB) and
HS(t�B,C) = (sB, sC), and moreover t�A,C ∈ LA(C .
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Proof. Take t ∈ ℘(A × B × C) obtained by Lem. D.8 from s ∈ σ and s′ ∈ τ such that
HS(s) = (sA, sB) and HS(s′) = (sB, sC).

In order to show that t�A,C ∈ LP
A(C , we first get that t�A,C is negative by Lem. D.9.

Then, since the transition of the diagram in Lem. D.8 respect the polarity in the A( C
part, we obtain that t is accepted by the state diagram of Lem. C.1. It then follows
that t�A,C is alternating, since in the diagram of Lem. C.1, all transitions in A and C
preserve alternation in A( C, and transitions in B preserve polarity in A( C.

It remains to show that t�A,C ends by a P move. Note that both t�A,B and t�B,C
have even length. Hence the lengths of t�A, t�B and t�C have the same parity, and
t�A,C has even length. It follows that it ends by a P-move since it is negative and
alternating.

Proposition D.11 (Relational Composition of Strategies). Let A, B and C be simple
games of the same polarity. Given σ : A → B and τ : B → C, we have HS(τ ◦ σ) =
HS(τ) ◦HS(σ).

Proof. The inclusion HS(τ ◦ σ) ⊆ HS(τ) ◦HS(σ) is trivial.
For the other direction, let (sA, sC) ∈ HS(τ) ◦ HS(σ), so that there is sB ∈ LB such

that (sA, sB) ∈ HS(σ) and (sB, sC) ∈ HS(τ). By Cor. D.10, there is t ∈ ℘(A × B × C)
such that t�A,B ∈ σ, t�B,C ∈ τ , and t�A = sA, t�B = sB and t�C = sC . We moreover
get t�A,C ∈ τ ◦ σ since t�A,C ∈ LP

A(C .

Proposition D.12. Given a simple game A, there is a unique strategy id such that
HS(id) = LA ×LA LA, where, in Set, the following is a pullback:

idy //

��

LA

1
��

LA 1
// LA

Proof. Consider the following pullback diagram in Set, where LA ×LA LA ' LA:

LA ×LA LAy
π1 //

π2

��

LA

1
��

LA 1
// LA

We define id ⊆ LP
A(A such that HS(id) = LA ×LA LA ' LA by induction on s ∈ LA as

follows:

• For s = ∗A, we let ∗A(A ∈ id, and we indeed have HS(∗A(A) = (∗A, ∗A) and
∗A(A ∈ LP

A(A.

• Let now s = s′ → a ∈ LA. By induction hypothesis, there is t ∈ id such that
HS(t) = (s′, s′). Write A( A = A(1) ( A(2).
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If s′ → a is an O-move in A, then we extend t with a in component A(2) and then
by a in component A(1) (hence a P-move in A(1) ( A(2)). Otherwise, s′ → a is a
P-move in A, and we first extend t with a in component A(1) (hence an O-move in
A(1) ( A(2)) and then with a in component A(2).

Let t′ be the obtained extension of t. In both cases, we have HS(t′) = (s′ → a, s′ →
a) and t′ ends by a P-move by construction. Alternation is preserved in A( A,
hence by induction hypothesis t′ is alternating. Moreover, t′ is negative since either
t = ∗A(A and t′ begins with an O-move, or t 6= ∗A(A is negative by induction
hypothesis. We thus get t′ ∈ LP

A(A since s′ → a ∈ LA by assumption.

We now check that id is a strategy. First, id is P-prefix-closed by construction. Moreover,
id is P-deterministic since its P-moves are uniquely determined by their immediately
preceding O-moves.

The fact that the diagram is a pullback as well as the unicity of id follows from the
fact that in Set, we have HS(id) ' id thanks to Lem. D.7.(i).

Remark D.13. A direct definition of id as follows (where LA ×LA LA ' LA)

id := HS−1(LA ×LA LA) ∩ LP
A(A

does not work since there might be t 6= t′ in LP
A(A such that HS(t) = HS(t′).

Remark D.14 (Associativiy of Composition in SGG). Proposition D.11 can be read in
two direction. The original one [11], is that given the categories SGG and Rel, the map
HS : SGG→ Rel is functorial.

The other one, is that together with the injectivity of the map HS (Lem D.7.(ii)),
Prop. D.11, can be used to show that composition in SGG is associative, and in partic-
ular that SGG is a category.

Indeed, from Prop. D.11 and the associativity of composition in Rel we get:

HS(τ ◦ (σ ◦ θ)) = HS(τ) ◦ (HS(σ) ◦HS(θ)) = (HS(τ) ◦HS(σ)) ◦HS(θ) = HS((τ ◦ σ) ◦ θ)

and it follows from Lem D.7.(ii) that

τ ◦ (σ ◦ θ) = (τ ◦ σ) ◦ θ

D.4. Composition by Pullbacks

We now show that composition of strategies form pullback squares in Set based on the
the repsentation of strategies as spans (6):

τ ◦ σ

��

//y τ //

��

LC

σ

��

// LB

LA
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where the arrows
τ ◦ σ −→ σ and τ ◦ σ −→ τ

are obtained thanks to the following unicity property (which follows form the usual
Zipping Lemma C.2):

Lemma D.15 (Relational Zipping). Given sA ∈ LA and sC ∈ LC , there is at most one
sB ∈ LB such that (sA, sB) ∈ HS(σ) and (sB, sC) ∈ HS(τ).

Proof. Let s, s′ ∈ LB such that (sA, s), (sA, s
′) ∈ HS(σ) and (s, sC), (s′, sC) ∈ HS(τ).

Let t, t′ ∈ ℘(A×B×C) the corresponding plays obtained by Cor. D.10. Then t�A,C
and t′�A,C are two plays of τ ◦ σ with the same image under HS(−). It follows from
Lem. D.7.(i) that t�A,C = t′�A,C and by Zipping (Lem. C.2) that t = t′. Hence
s = t�B = t′�B = s′.

Let now τ ◦ σ −→ σ map s ∈ τ ◦ σ to (s�A, s′) where s′ is by Lem D.15 unique in
LB such that (s�A, s′) ∈ HS(σ) and (s′, s�C) ∈ HS(τ). The map τ ◦ σ −→ τ is defined
similarly.

Note that this immediately implies the commutation of the diagram

τ ◦ σ

��

// τ

��
σ // LB

Proposition D.16 (Composition as Pullback). The following is a pullback in Set:

τ ◦ σ
��

//y τ //

��

LC

σ

��

// LB

LA

Proof. We only have to show that τ ◦ σ is in bijection with

σ ×LB τ = {(s, t) ∈ σ × τ | s�B = t�B}

But in Set, we have:

σ ×LB τ ' {((sA, sB), (tB, tC)) ∈ HS(σ)×HS(τ) | sB = tB} (by Lem. D.7.(i))
= {(sA, sB, sC) | (sA, sB) ∈ HS(σ) ∧ (sB, sC) ∈ HS(τ)}
' {(sA, sC) | ∃sB ∈ LB. (sA, sB) ∈ HS(σ) ∧ (sB, sC) ∈ HS(τ)} (by Lem. D.15)
= HS(τ) ◦HS(σ)
= HS(τ ◦ σ) (by Prop. D.11)
' τ ◦ σ (by Lem. D.7.(i))
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E. Simple Graph Games with Winning

E.1. Graph Games with Winning

We discuss a notion of winning conditions on infinite plays in graph games. The basic
mechanism of this notion is very simple and well-known [1, 9], as well as the fact that
winning (including totality) is preserved by composition.

E.1.1. Graph Games with Winning

have the form A = (V,E, ∗, λ, L,W) where (V,E, ∗, λ, L) is a graph game and W ⊆ V ω

is a winning condition.
We let W+ be the union of W with the set of finite legal P-plays on A.

Remark E.1 (Finite Winning). The finite part of winning conditions (here the finite
part of the sets W+) must be formulated in terms of the polarities of plays, and not
in terms of their lengths since we want to handle, in the composition of strategies (see
Prop. E.4) the case of positive constituent games. This contrasts with [3], which is based
on “negative” (i.e. O-starting) HO-games.

E.1.2. Winning Strategies.

A P-strategy σ on A = (V,E, ∗, λ, L,W) is winning if

it is total in the sense of Def. D.3, and

all its infinite plays are winning: if (tn)n∈N is a sequence of pairwise compatible plays
of σ such that

⋃
n∈N tn is infinite, then

⋃
n∈N tn ∈ W.

Note that in the second condition above it is equivalent to require tn ∈ σ for infinitely
many n ∈ N, instead of for all n ∈ N.

E.1.3. Arrow Type with Winning.

Given games with winning A and B, the game with winning A( B is the graph game
A( B equipped with the winning condition WA(B ⊆ (VA × VB)ω defined as follows.
Given an infinite sequence ρ ∈ (VA × VB)ω, let

ρ�A :=
⋃
n∈N

(ρ(0)→ . . .→ ρ(n))�A

Let now WA(B be the set of ρ ∈ V ω
A(B such that ρ�A ∈ W+

A implies ρ�B ∈ W+
B .

Lemma E.2. Given simple graph games with winning A and B of the same polarity,
and a legal (hence negative) strategy σ on A( B, let (tn)n∈N be a sequence of pairwise
compatible plays of σ, and let ρ :=

⋃
n∈N tn.

Then ρ ∈ W+
A(B iff (ρ�A ∈ W+

A implies ρ�B ∈ W+
B ).
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Proof. If ρ is infinite, then ρ ∈ W+
A(B iff WA(B and the result follows by definition

of WA(B. If ρ is finite, then ρ ∈ σ, hence ρ ∈ W+
A(B. Moreover, ρ has even-length

since it is a negative alternating P-play, hence the lengths of ρ�A and ρ�B have the same
parity, and ρ�A ∈ W+

A implies ρ�B ∈ W+
B since A and B are simple games of the same

polarity.

Definition E.3. Given graph games with winning A and B, write σ  A→ B if σ is a
winning legal (hence negative) P-strategy on A( B.

Proposition E.4. Assume that A, B and C are graph games with winning which are
either all well-founded or all simple and of the same polarity.

If σ  A→ B and τ  B → C then τ ◦ σ  A→ C.

Proof. Assume that τ ◦ σ is not total. In this case, there is some t ∈ σ ‖ τ and a
position v in A × B × C such that (t → v)�A,C is a legal O-play in A ( C and
t�A,C is maximal in τ ◦ σ. The last move of t → v is either an O-move in component
A ( B or an O-move in component B ( C. In either cases, since σ and τ are
total, for some u0 we have (t → v → u0)�A,B ∈ σ or (t → v → u0)�B,C ∈ τ . In
the first case, v → u0 is a P-move in component B, hence an O-move in component
B ( C, and by totality of τ there is a move u0 → u1 in component B such that
(t → v → u0 → u1)�B,C ∈ τ . Similarly, the second case leads to a move u0 → u1 in
component B such that (t → v → u0 → u1)�A,B ∈ σ. By induction on n ∈ N we thus
obtain a sequence of moves un → un+1 in component B. This leads to a contradiction
in case B is well-founded. Otherwise, let

tn := (t→ v → u0 → u1 → . . .→ un)

Note that tn�A,B and tn�B,C are plays for all n ∈ N and tn�A,B ∈ σ (resp. tn�B,C ∈ τ)
for infinitely many n ∈ N. Consider the infinite sequence of positions ρ :=

⋃
n∈N tn. Note

that ρ�B is infinite, so that ρ�A,B and ρ�B,C are also infinite. Since σ and τ are winning
and

ρ�A,B =
⋃
n∈N

tn�A,B and ρ�B,C =
⋃
n∈N

tn�B,C

it follows that ρ�A,B ∈ WA(B and ρ�B,C ∈ WB(C . We therefore have

ρ�A = (t→ u0)�A ∈ W+
A =⇒ ρ�C = (t→ u0)�C ∈ W+

C

On the other hand, ρ�A,C = (t → u0)�A,C is a finite O-play in A ( C directly
extending t�A,C, and its last move is either a P-move in component A or an O-move in
component C. Since t�A,C has even length, the projections t�A and t�C have length of
the same parity. Hence t�A ∈ W+

A iff t�C ∈ W+
C since A and B are simple games of the

same polarity. Now, if the last move of (t→ u0)�A,C is a P-move in component A, then
(t→ u0)�A ∈ W+

A . Since A is a simple game, by alternation we get t�A /∈ W+
A , hence

t�C = (t → u0)�C /∈ W+
C , a contradiction. Hence the last move of (t → u0)�A,C must

be an O-move in component C, hence (t→ u0)�C /∈ W+
C . But by alternation again we

have t�C ∈ W+
C , hence t�A = (t→ u0)�A ∈ W+

A , a contradiction again.
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Let now (sn)n∈N be an infinite sequence of pairwise compatible plays of τ ◦ σ such
that π :=

⋃
n∈N sn is infinite. Note that we are in the case of A, B and C simple games

of the same polarity. Then there is a sequence (tn)n∈N ∈ σ ‖ τ such that tn�A,C = sn,
and the projections of tn on A( B and B( C are resp. plays of σ and τ . By Zipping
(Lem C.2), ti is compatible with tj for all i, j ∈ N. Consider the sequence ρ :=

⋃
n∈N tn.

Note that ρ�A,C = π. Since ρ�A,B =
⋃
n∈N tn�A,B and since σ is winning we have

ρ�A,B ∈ W+
A(B. Similarly, ρ�B,C ∈ W+

B(C since τ is winning. It then follows from
Lem E.2 that

ρ�A = π�A ∈ W+
A =⇒ ρ�B ∈ W+

B =⇒ ρ�C = π�C ∈ W+
C

Proposition E.5. Given a simple graph game A, we have id  A→ A.

Proof. Totality directly follows from the definition of id (see Prop. D.12).
Consider now a sequence (tn)n∈N of pairwise compatible plays of id such that ρ :=⋃
n∈N tn is infinite. Write A( A as A(1) ( A(2). For all n ∈ N, by Prop. D.12 we have

(ρ(0)→ . . .→ ρ(2n)�A(1) , ρ(0)→ . . .→ ρ(2n)�A(2)) ∈ HS(id)

hence
ρ(0)→ . . .→ ρ(2n)�A(1) = ρ(0)→ . . .→ ρ(2n)�A(2)

It follows that ρ�A(1) are both infinite ρ�A(2) and moreover that

ρ�A(1) = ρ�A(2)

hence
ρ�A(1) ∈W+

A(1) ⇐⇒ ρ�A(2) ∈W+
A(2)

E.1.4. The Category SGGW of Simple Graph Games with Winning.

Objects of SGGW are simple graph games with winning.

Morphisms in SGGW[A,B], with A and B of the same polarity are winning P-strategies
σ  A→ B.

E.2. Subgames

Consider a graph game with winning A = (V,E, ∗, λ, L,W), and consider a set of legal
plays L0 ⊆ L. The graph game with winning A0 = (V,E, ∗, λ, L0,W) is a P-imposed
subgame of A if for all P-play s = ∗ →∗ u ∈ LP

0 and all O-move u→ v such that s→ v
is legal in A, we have s→ v ∈ L0.
O-imposed subgames are defined similarly. The main point of these notions is the

following:
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Lemma E.6. If A0 is a P-imposed subgame of A and σ be a winning P-strategy on A0,
then

(i) σ is total on A,

(ii) σ is winning on A.

Proof. (i) Consider a play s = ∗ →∗ u ∈ σ and an O-move u → v such that s → v is
legal in A. Since s → v is also legal in A0 and since σ is total on A0, there is a
P-move v → w such that s→ v → w ∈ σ.

(ii) Since the winning condition of A is the same as that of A0.

Example E.7. Synchronized arrow games

G(A,M) −~ G(B, N)

are P-imposed subgames of
G(A,M)( G(B, N)

E.3. Reduction Games

In this Section we consider games equipped with a symmetric notion of winning. These
games are meant to be used for reductions (see Sect. F.3).

E.3.1. Arrow Type with Symmetric Winning.

Given games with winning A and B, the game with symmetric winning A (⇔ B is
the graph game A ( B equipped with the winning condition WA(⇔B ⊆ (VA × VB)ω

defined as follows. Given an infinite sequence ρ ∈ (VA × VB)ω, let

ρ�A :=
⋃
n∈N

(ρ(0)→ . . .→ ρ(n))�A

Let now WA(⇔B be the set of ρ ∈ V ω
A(B such that

ρ�A ∈ W+
A ⇐⇒ ρ�B ∈ W+

B

Note that WA(⇔B ⊆ WA(B.
We are now going to show that simple reduction games form a category. The method

is the same as in Sect. E.1 above.

Lemma E.8. Given simple graph games with symmetric winning A and B of the same
polarity, and a legal (hence negative) strategy σ on A( B, let (tn)n∈N be a sequence of
pairwise compatible plays of σ, and let ρ :=

⋃
n∈N tn.

Then ρ ∈ W+
A(⇔B

iff (ρ�A ∈ W+
A iff ρ�B ∈ W+

B ).

The proof is a direct and straightforward adaptation of Lem. E.2.
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Proof. If ρ is infinite, then ρ ∈ W+
A(B iff WA(⇔B and the result follows by definition

of WA(⇔B. If ρ is finite, then ρ ∈ σ, hence ρ ∈ W+
A(⇔B

. Moreover, ρ has even-length
since it is a negative alternating P-play, hence the lengths of ρ�A and ρ�B have the
same parity, and ρ�A ∈ W+

A iff ρ�B ∈ W+
B since A and B are simple games of the same

polarity.

Definition E.9. Given graph games with winning A and B, write σ  A(⇔ B if σ is
a winning legal (hence negative) P-strategy on A(⇔ B.

Proposition E.10. Assume that A, B and C are simple graph games with symmetric
winning which are of the same polarity.

If σ  A(⇔ B and τ  B(⇔ C then τ ◦ σ  A(⇔ C.

Proof. Since WA(⇔B ⊆ WA(B, the totality of τ ◦ σ can be proved exactly as for
Prop. E.4.

As for the winning condition, we again reason as in the proof of Prop. E.4. Consider an
infinite sequence (sn)n∈N of pairwise compatible plays of τ ◦σ such that π :=

⋃
n∈N sn is

infinite. Similarly as in Prop. E.4, we obtain an infinite sequence ρ such that ρ�A,C = π
and ρ�A,B ∈ W+

A(⇔B
and ρ�B,C ∈ W+

B(⇔C
. It then follows from Lem E.8 that

ρ�A = π�A ∈ W+
A ⇐⇒ ρ�B ∈ W+

B ⇐⇒ ρ�C = π�C ∈ W+
C

Proposition E.11. Given a simple graph game A, we have id  A ⇐⇒ A.

Proof. The proof of Prop. E.5 actually gives the result.

E.3.2. The Category GR of Reduction Games.

Objects of GR are simple graph games with winning.

Morphisms in GR[A,B], with A and B of the same polarity are winning P-strategies σ
on the symmetric arrow: σ  A(⇔ B.
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F. Categories of Substituted Acceptance Games

We define the categories SAGΣ, SAGW
Σ and SAGR

Σ. for each alphabet Σ. The

categories SAGΣ and SAG
W/R
Σ will have as objects substituted acceptances games Σ `

G(A,M). Morphisms in SAGΣ will be synchronous strategies σ : G(A,M)( G(B,M),
while morphisms in SAGW

Σ will synchronous strategies which are moreover total and
winning in the sense of Sect. E.

As for SAGR
Σ, we consider an notion of symmetric winning, which leads to a notion

of synchronous reduction, while winning in SAGW
Σ correspond to a form of implication.

F.1. The Categories SAGΣ

F.1.1. Traces.

Given Γ ` A and M ∈ Tree[Γ,Σ], define

tr : ℘Σ(A,M) −→ (D + Σ)∗

follows:
tr(ε : ∗G(A,M)) := ε

tr(s→ (p, a, γ)) := tr(s) · a
tr(s→ (p · d, q)) := tr(s) · d

The image of tr is the set

TrΣ := (Σ ·D)∗ + (Σ ·D)∗ · Σ

Write (−)D and (−)Σ for the projections

TrΣ −→ D∗ and TrΣ −→ Σ∗

and let
trD := (−)D ◦ tr and trΣ := (−)Σ ◦ tr

Lemma F.1.

trD(∗G(A,M) →∗ (p, a, γ)) = p and trD(∗G(A,M) →∗ (p, q)) = p

Proof. We show by induction on the length of s ∈ ℘Σ(A,M) that[
s = ∗G(A,M) →∗ (p, a, γ) =⇒ trD(s) = p

]
and

[
s = ∗G(A,M) →∗ (p, q) =⇒ trD(s) = p

]
In the base case, we have

s = ε : ∗G(A,M) = ε : (ε, qı)
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and we are done since
trD(s) = εD = ε

For the induction step we consider two cases:

• If
s = ∗ →∗ (p, q)→ (p, a, γ)

then
trD(s) = trD(∗ →∗ (p, q)) · trD(a) = trD(∗ →∗ (p, q))

and we are done since by induction hypothesis

trD(∗ →∗ (p, q)) = p

• Otherwise
s = ∗ →∗ (p, a, γ)→ (p.d, q′)

and we have
trD(s) = trD(∗ →∗ (p, a, γ)) · d

and we are done since by induction hypothesis

trD(∗ →∗ (p, a, γ)) = p

F.1.2. Synchronous Strategies.

Given Σ ` G(A,M) and Σ ` G(B, N), and a strategy

σ : G(A,M)( G(B, N)

consider the following span:

σ
vv ((

℘Σ(A,M) ℘Σ(B, N)

where ℘Σ(A,M) := ℘(Σ ` G(A,M)) and, writting A for G(A,M), the arrow σ −→
℘Σ(A,M) is

σ �
� // ℘Σ(G(A,M)( G(B, N))

(−)�A // ℘Σ(A,M)

and similarly for ℘Σ(B, N) and σ −→ ℘Σ(B, N).
We say that σ is synchronous, and write

Σ ` σ : G(A,M) −~ G(B, N) (or simply σ : G(A,M) −~ G(B, N))

when the following diagram commutes:

σ
uu ((

℘Σ(A,M)

tr ((

℘Σ(B, N)

trvv
TrΣ

(7)
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F.1.3. Relations in Slice Categories Set/J .

Given a set J , define the category Rel(Set/J) as follows:

Objects are indexed sets A
g→ J , written simply A when g is understood from the

context.

Morphisms from A
gA→ J to B

gB→ J are given by relations R : A −p→ B such that the
following commutes:

R
π1

zz
π2

$$
A

gA $$

B

gBzz
J

(8)

Write
R : (A, gA) −p→/J (B, gB)

when R ∈ Rel(Set/J)[(A, gA), (B, gB)]

For the identity, note that

1A = {(a, a) | a ∈ A} ∈ Rel(Set/J)[(A, g), (A, g)]

since g(a) = g(a).
For composition, note that given R ∈ Rel(Set/J)[A,B] and P ∈ Rel(Set/J)[B,C]

with C
gC→ J , we have P ◦R ∈ Rel(Set/J)[A,C] since given (a, c) ∈ P ◦R, by definition

there is b ∈ B such that (a, b) ∈ R and (b, c) ∈ P , hence gA(a) = gB(b) = gC(c).

Remark F.2. We will see below that the relational structure in Set/TrΣ issued from
SAGΣ via HS(−) satisfies the stronger property:

P ◦R

��

//y P
π2 //

π1

��

C

k
��

R

π1

��

π2 // B

h
��

h // J

A g
// J J

F.1.4. Composition and Identities by Pullback in Set.

Substituted acceptance games are simple positive games, in the sense of Sect. D. We
now recall some properties of the category SGG of simple games discussed.

First, Prop. D.12 tells us that identities satisfy the following pullback square:

idG(A,M)y
//

��

℘Σ(A,M)

1
��

℘Σ(A,M)
1
// ℘Σ(A,M)

(9)
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Moreover, we know from Prop. D.16 (see App. D.4) that composition in SGG is given
by the following pullback square in Set:

θ ◦ σ

��

//y τ //

��

℘Σ(C, P )

σ

��

// ℘Σ(B, N)

℘Σ(A,M)

(10)

where θ ◦ σ −→ σ map s ∈ θ ◦ σ to (s�(G(A,M)), s′) where s′ is by Lem D.15 unique
in ℘Σ(B, N) such that (s�(G(A,M)), s′) ∈ HS(σ) and the map θ ◦ σ −→ θ, is defined
similarly.

F.1.5. The Categories SAGΣ:

Objects are games Σ ` G(A,M)

Morphisms from G(A,M) to G(B, N) are synchronous strategies σ : G(A,M) −~ G(B, N).

We now discuss identities and composition in SAGΣ.
Write id(A,M) for idG(A,M) : G(A,M) ( G(A,M). It immediately follows from (9)

that
id(A,M)

//

��

℘Σ(A,M)

tr

��
℘Σ(A,M)

tr
// TrΣ

(11)

Remark F.3. We actually here only need the commutation of the diagram, not the fact
that it is a pullback. Hence the assumption that G(A,M) is a simple game is not
necessary.

Consider now Σ ` σ : G(A,M) −~ G(B, N) and Σ ` θ : G(B, N) −~ G(C, P ), so that

σ //

��

℘Σ(B, N)

tr

��
℘Σ(A,M)

tr
// TrΣ

and θ //

��

℘Σ(C, P )

tr

��
℘Σ(B, N)

tr
// TrΣ
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It follows from (10) that

θ ◦ σ

��

// τ //

��

℘Σ(C, P )

tr

��
σ

��

// ℘Σ(B, N)

tr

��

tr // TrΣ

℘Σ(A,M)
tr

// TrΣ TrΣ

and by definition of θ ◦ σ −→ σ and θ ◦ σ −→ θ we deduce that

θ ◦ σ : G(A,M) −−~ G(C, P )

We thus have shown:

Proposition F.4. (i) Σ ` id(A,M) : G(A,M) −~ G(B, N).

(ii) If Σ ` σ : G(A,M) −~ G(B, N) and Σ ` θ : G(B, N) −~ G(C, P ) then

Σ ` θ ◦ σ : G(A,M) −~ G(C, P )

F.1.6. The HS Functor.

By definition of strategies in SAGΣ, given

Σ ` σ : G(A,M) −~ G(B, N)

we have
HS(σ) ⊆ ℘Σ(A,M)×TrΣ

℘Σ(C, N)

It follows that the HS functor from SGG to Rel (see Sect. D.3) restricts to a functor
from SAGΣ to Rel(Set/TrΣ) (see Sect. J.1):

Proposition F.5. HS restricts to a functor from SAGΣ to Rel(Set/TrΣ).

F.2. Concrete Description of the Synchronous Arenas

We now concretely define the synchronous game arenas

Σ ` G(A,M) −~ G(B, N)

as subgames of
G(A,M)( G(B, N)

so that strategies on
Σ ` G(A,M) −~ G(B, N)

are exactly the synchronous strategies on

G(A,M)( G(B, N)

43



F. Categories of Substituted Acceptance Games

G(A,M) −−~ G(B, N)

((p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) if γA ∈ δA(qA,M(p)(a))
P ↓

((p, a, γA) , (p, a, γB)) if γB ∈ δB(qB, N(p)(a))
O ↓

((p, a, γA) , (p.d, q′B)) if (q′B, d) ∈ γB
P ↓

((p.d, q′A) , (p.d, q′B)) if (q′A, d) ∈ γA

Figure 2: Moves of G(A,M) −~ G(B, N)

F.2.1. The Synchronous Arrow −~ .

Consider
Σ ` G(A,M) and Σ ` G(B, N)

where
ΓA ` A ΓB ` B Σ `M : ΓA Σ ` N : ΓB

Write
A := G(A,M) = (VA, EA, ∗A, λA,WA)

and B := G(B, N) = (VB, EB, ∗B, λB,WB)

where
VA := D∗ × (AP +AO) ∗A := (ε, qıA)
VB := D∗ × (BP +BO) ∗B := (ε, qıB)

AP := QA AO := Σ× P(QA ×D)
BP := QB BO := Σ× P(QB ×D)

The game
Σ ` G(A,M) −~ G(B, N)

is the subgame of A( B

G(A,M) −~ G(B, N) := (VA(B, E, ∗A(B, λA(B,WA(B)

where E ⊆ EA(B is defined in Fig. 2.

F.2.2. Characterization of −~ .

We are now going to see that in Set,

℘P
Σ(G(A,M) −~ G(B, N))

y
(−)�G(B,N) //

(−)�G(A,M)

��

℘Σ(B, N)

tr

��
℘Σ(A,M)

tr
// TrΣ
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First, an easy induction on t ∈ ℘P
Σ(G(A,M) −~ G(B, N)) shows that

Proposition F.6.

℘P
Σ(G(A,M) −~ G(B, N))

(−)�G(B,N) //

(−)�G(A,M)

��

℘Σ(B, N)

tr

��
℘Σ(A,M)

tr
// TrΣ

It follows that

HS : ℘Σ(G(A,M) −~ G(B, N)) −→ ℘Σ(A,M)× ℘Σ(B, N)

restricts to

HS : ℘P
Σ(G(A,M) −~ G(B, N)) −→ ℘Σ(A,M)×TrΣ

℘Σ(B, N)

Lemma F.7. The map

HS : ℘P
Σ(G(A,M) −~ G(B, N)) −→ ℘Σ(A,M)×TrΣ

℘Σ(B, N)

is surjective.

Proof. Note that (s, t) ∈ ℘Σ(A,M)×TrΣ
℘Σ(B, N) implies |s| = |t|.

By induction on |s| = |t| for (s, t) ∈ ℘Σ(A,M)×℘Σ(B, N) with tr(s) = tr(t), we show
that there is w ∈ ℘P

Σ(G(A,M) −~ G(B, N)) such that HS(w) = (s, t).
In the base case |s| = |t| = 0, and we take w := ε : ∗. In the inductive step, by

definition of tr there are two cases:

• Assume s = s′ → (p, a, γA) and t = t′ → (p′, a′, γB).

Since tr(s) = tr(t), we have a = a′ and tr(s′) = tr(t′). By Lem F.1, we get p = p′.
Moreover, s′ and t′ are of the form:

s′ = ∗ →∗ (p, qA) and t′ = ∗ →∗ (p, qB)

Let w′ be obtained by induction hypothesis applied to s′ and t′. Then we are done
by taking

w = w′ → ((p, a, γA), (p, qB)) → ((p, a, γA), (p′, a′, γB))

• Otherwise s = s′ → (p.d, qA) and t = t′ → (p′.d′, qB).

Since tr(s) = tr(t), we have p = p′, d = d′ and tr(s′) = tr(t′). Moreover, s′ and t′

are of the form:

s′ = ∗ →∗ (p, a, γA) and t′ = ∗ →∗ (p, a, γB)

Let w′ be obtained by induction hypothesis applied to s′ and t′. Then we are done
by taking

w = w′ → ((p, a, γA), (p.d, qB)) → ((p.d, qA), (p.d, qB))
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Lemma F.8. The map

HS : ℘Σ(G(A,M) −~ G(B, N)) −→ ℘Σ(A,M)× ℘Σ(B, N)

is injective.

Proof. We have to show that:

∀s, t ∈ ℘Σ(G(A,M) −~ G(B, N)), HS(s) = HS(t) =⇒ s = t

Note that if HS(s) = HS(t), then |s| = |t|. We reason by induction on |s| = |t|.
In the base case, |s| = |t| = 0, hence s = t = ε : ∗ and we are done.
Consider now the inductive step. First, since |s| = |t|, and since −~ is negative,

either both s and t end with an O-move or they both end with a P-move. Moreover, by
definition of −~ , |s| = |t| implies that s and t end by a move in the same component,
and hence by the same move since HS(s) = HS(t). But then, writing

s = s′ → m and t = t′ → m

we must have HS(s′) = HS(t′), hence s′ = t′ by induction hypothesis and we are done.

Corollary F.9 (Prop. 3.4). In Set,

℘P
Σ(G(A,M) −~ G(B, N))

y
(−)�G(B,N) //

(−)�G(A,M)

��

℘Σ(B, N)

tr

��
℘Σ(A,M)

tr
// TrΣ

Proof. Commutation is given by Prop. F.6. Moreover, thanks to Lemmas F.8 and F.7,
HS is a bijection in Set:

HS : ℘P
Σ(G(A,M) −~ G(B, N))

'−→ ℘Σ(A,M)×TrΣ
℘Σ(B, N)

Since moreover by definition

℘P
Σ(G(A,M) −~ G(B, N)) ⊆ ℘P(G(A,M)( G(B, N))

it follows that we get:

Corollary F.10. Strategies on Σ ` G(A,M) −~ G(B, N) are exactly the synchronous
strategies on G(A,M)( G(B, N).
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F.2.3. Traces on the Synchronous Arrow.

Thanks to Prop. F.6, that is commutation of

℘P
Σ(G(A,M) −~ G(B, N))

(−)�G(B,N) //

(−)�G(A,M)

��

℘Σ(B, N)

tr

��
℘Σ(A,M)

tr
// TrΣ

we extend traces of plays on acceptance games (given by tr : ℘Σ(A,M)→ TrΣ) to traces
of P-plays on synchronous arrow games.

Definition F.11. Define

tr−~ : ℘P
Γ(G(A,M) −~ G(B, N)) −→ TrΓ

as any of two following maps, which coincide by Prop. F.6:

℘P
Σ(G(A,M) −~ G(B, N))

�G(A,M)−→ ℘Σ(A,M)
tr−→ TrΣ

℘P
Σ(G(A,M) −~ G(B, N))

�G(B,N)−→ ℘Σ(B, N)
tr−→ TrΣ

Remark F.12. Note that tr−~ can only be defined on P-plays of G(A,M) −~ G(B, N)
since the following diagram does not commute:

℘Σ(G(A,M) −~ G(B, N))
(−)�G(B,N) //

(−)�G(A,M)
��

℘Σ(B, N)

tr

��
℘Σ(A,M)

tr
// TrΣ

F.3. The Categories SAGW
Σ and SAGR

Σ

F.3.1. Winning and Total Synchronous Strategies.

Consider
Σ ` σ : G(A,M) −~ G(B, N)

Write

Σ ` σ  G(A,M) −~ G(B, N) (or simply σ  G(A,M) −~ G(B, N))

if σ is total and winning in the game

G(A,M) ( G(B, N)

(i.e. in sense of Sect.E.1), and write

Σ ` σ  G(A,M) ~−~ G(B, N) (or simply σ  G(A,M) ~−~ G(B, N))

if σ is total and winning in the game

G(A,M) (⇔ G(B, N)

(i.e. in sense of Sect.E.3).
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F.3.2. The Categories SAGW
Σ :

Objects are games Σ ` G(A,M)

Morphisms from G(A,M) to G(B, N) are synchronous total and winning strategies σ 
G(A,M) −~ G(B, N).

Since id(A,M) is total and winning (Prop. E.5), and since winning total strategies are
preserved by composition (Prop. E.4), we obtain:

Corollary F.13. (i) id(A,M)  G(A,M) −~ G(B, N)

(ii) If σ  G(A,M) −~ G(B, N) and θ  G(B, N) −~ G(C, P ) then

θ ◦ σ  G(A,M) −~ G(C, P )

F.3.3. The Categories SAGR
Σ:

Objects are games Σ ` G(A,M)

Morphisms from G(A,M) to G(B, N) are synchronous total and winning strategies σ 
G(A,M) ~−~ G(B, N).

Since id(A,M) is total and winning for ~−~ (Prop. E.11), and since ~−~ -winning
total strategies are preserved by composition (Prop. E.10), we obtain:

Corollary F.14. (i) id(A,M)  G(A,M) ~−~ G(B, N)

(ii) If σ  G(A,M) ~−~ G(B, N) and θ  G(B, N) ~−~ G(C, P ) then

θ ◦ σ  G(A,M) ~−~ G(C, P )

F.4. Relational Lifting

We now describe how synchronuous relational isomorphisms (i.e. isos of Rel(Set/J))
can be lifted to strategies.

Proposition F.15 (Prop 3.5). Consider Σ ` G(A,M) and Σ ` G(B, N).
Assume that, in Rel(Set/TrΣ) we have an isomorphism

R : ℘Σ(A,M) −p→/TrΣ
℘Σ(B, N)

Then there is a (unique, total) isomorphism

σ : G(A,M) −→SAGΣ
G(B, N)

such that HS(σ) = R.
Here, ℘Σ(A,M) and ℘Σ(B, N) are understood, as objects of Rel(Set/TrΣ), as resp.

℘Σ(A,M)
tr−→ TrΣ and ℘Σ(B, N)

tr−→ TrΣ.
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In general we can not ask σ to be winning, and in particular to be a morphism of

SAG
W/R
Σ

Proof. First, note that since R is synchronous, for all (s, t) ∈ R we have tr(s) = tr(t),
which implies that s and t have the same length, and finish by the same kind of moves.

By induction on |s| = |t| for (s, t) ∈ R we define a strategy σ such that (s, t) ∈ HS(σ).
In the base case, we have

s = (ε, qıA) and t = (ε, qıB)

and we put
((ε, qıA) , (ε, qıB)) ∈ σ

For the induction step, there are two cases:

Case of s = ∗ →∗ (p, qA)
P→ (p, a, γA) and t = ∗ →∗ (p′, qB)

P→ (p′, a′, γB).

Since tr(s) = tr(t) we have a = a′ and it moreover follows from Lem. F.1 that
p = p′. By induction hypothesis there is u′ ∈ σ such that HS(u′) = (s′, t′). Hence
we have

u′ = ∗ →∗ ((p, qA) , (p, qB))

We can then extend u′ to

u := ∗ →∗ ((p, qA) , (p, qB))
O→ ((p, a, γA) , (p, qB))

P→ ((p, a, γA) , (p, a, γB))

and we indeed have HS(u) = (s, t).

Case of s = ∗ →∗ (p, a, γA)
O→ (p · d, qA) and t = ∗ →∗ (p′, a′, γB)

O→ (p′ · d′, qB).

Since tr(s) = tr(t) we have a = a′ and d = d′ and it moreover follows from Lem. F.1
that p = p′. By induction hypothesis there is u′ ∈ σ such that HS(u′) = (s′, t′).
Hence we have

u′ = ∗ →∗ ((p, a, γA) , (p, a, γB))

We can then extend u′ to

u := ∗ →∗ ((p, a, γA) , (p, a, γB))
O→ ((p, a, γA) , (p·d, qB))

P→ ((p·d, qA) , (p·d, qB))

and we indeed have HS(u) = (s, t).

We now have to check that σ is indeed a strategy. P-prefix-closure follows from the
definition. P-determinism follows from the fact that R is an iso. Consider P-plays of σ:

u : ∗ →∗ ((p, qA) , (p, qB))
O→ ((p, a, γA) , (p, qB))

P→ ((p, a, γA) , (p, a, γB))

u′ : ∗ →∗ ((p, qA) , (p, qB))
O→ ((p, a, γA) , (p, qB))

P→ ((p, a, γA) , (p, a, γ′B))
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Then by construction we have HS(u) = HS(u′) ∈ R. But HS(u) = (s, t) and HS(u′) =
(s′, t′) with s = s′, hence t = t′ since R is an iso. It follows that u = u′ by Lem. ii.(ii).

For plays:

u : ∗ →∗ ((p, a, γA) , (p, a, γB))
O→ ((p, a, γA) , (p · d, qB))

P→ ((p · d, qA) , (p · d, qB))

u′ : ∗ →∗ ((p, a, γA) , (p, a, γB))
O→ ((p, a, γA) , (p · d, qB))

P→ ((p · d, qA) , (p · d, q′B))

Similarly as above, we have HS(u) = (s, t) ∈ R and HS(u′) = (s′, t′) ∈ R with t = t′

hence s = s′ since R is an iso, from which it follows that u = u′.
We now show that σ is total. Let u ∈ σ of the form

u : ∗ →∗ ((p, qA) , (p, qB))

and consider
u

O→ ((p, a, γA) , (p, qB))

By construction, we have HS(u) = (s, t) ∈ R. Since t→ (p, a, γA) ∈ ℘Σ(A,M) and since
R is a synchronous iso, for some γB ∈ δB(qB, N(p)(a)) we have

(s→ (p, a, γA) , t→ (p, a, γB)) ∈ R = HS(σ)

and follows that

u
O→ ((p, a, γA) , (p, qB))

P→ ((p, a, γA) , (p, a, γB)) ∈ σ

Similarly, if

u : ∗ →∗ ((p, a, γA) , (p, a, γB)) and u
O→ ((p, a, γA) , (p · d, qB))

then there is some qA such that (qA, d) ∈ γA and

(s→ (p · d, qA) , t→ (p · d, qB)) ∈ R = HS(σ)

hence
u

O→ ((p, a, γA) , (p · d, qB))
P→ ((p · d, dA) , (p · d, qB)) ∈ σ

Finally, we chek that σ is an isomorphism. First, since R is a morphism, reasoning as
above we obtain from R−1 a strategy

Σ ` σ−1 : G(B, N) −~ G(A,M)

such that HS(σ−1) = R−1. Now, by functoriality of HS (Prop. D.11), it follows that

HS(σ ◦ σ−1) = 1
℘(A,M)

tr→TrΣ
and HS(σ−1 ◦ σ) = 1

℘(B,N)
tr→TrΣ

and Prop. D.12 together with (11) give

σ ◦ σ−1 = 1G(A,M) and σ−1 ◦ σ = 1G(B,N)
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G. Change-of-Base

In this Section, we discuss the basic machinery behind to substitution functors to be
define in Sect. H.

The main idea is that substitutions functors on strategies will be obtained from the ef-
fect of substitution on plays, which, thanks to the synchronuous setting, can be expressed
in a way very similar to usual change-of-base in slice categories.

Our notion of change-of-base on plays is obtained by pullbacks along maps on traces
extending tree morphisms:

Definition G.1 (Trace Lifting). Consider a tree morphism L ∈ Tree[Σ,Γ] = Tree[Σ→
Γ], and define:

Tr(L) : TrΣ −→ TrΓ

as
Tr(L)(ε) := ε

Tr(L)(w · a) := Tr(L)(w) · L(wD)(a)
Tr(L)(w · d) := Tr(L)(w) · d

On the other hand, write L• for the change-of-base functor Set/TrΓ → Set/TrΣ

induced by Tr(L).
Recall that L• is given by pullbacks. In particular:

L•(℘Γ(A,M))y
//

L•(tr)

��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

Our notion of change-of-base will satisfy a similar property. In particuler we will get
(Cor. G.18):

L•(℘Γ(A,M)
tr→ TrΓ) 'Set/TrΣ

℘Σ(A,M ◦ L)
tr→ TrΣ

We briefly come back on this point in Sect. G.4.

G.1. Change-of-Base on Acceptance Games

Consider ∆ ` A and M ∈ Tree[Γ,∆], so that Γ ` G(A,M). Given a morphism L ∈
Tree[Σ,Γ] as above (so that Σ ` G(A,M ◦ L)), a move

(p, q)
P−→ (p, a, γ) in Σ ` G(A,M ◦ L) with γ ∈ δA(q, (M ◦ L)(p)(a))

51



G. Change-of-Base

can be mapped to a move

(p, q)
P−→ (p, L(p)(a), γ) in Γ ` G(A,M) with γ ∈ δA(q,M(p)(L(p)(a)))

Similarly, a move

(p, a, γ)
O−→ (p.d, q) in Σ ` G(A,M ◦ L) with (q, d) ∈ γ

can be mapped to a move

(p, L(p)(a), γ)
O−→ (p.d, q) in Γ ` G(A,M) with (q, d) ∈ γ

We homomorphically extend this to a map

℘(L) : ℘Σ(A,M ◦ L) −→ ℘Γ(A,M)

The map ℘(L) is formally defined as:

℘(L)(ε) := ε
℘(L)(s→ (p, q)) := ℘(L)(s)→ (p, q)

℘(L)(s→ (p, a, γ)) := ℘(L)(s)→ (p, L(p)(a), γ)

Remark G.2. For the correctness of the last case, remember that in Σ ` G(A,M ◦ L)
and Γ ` G(A,M), P-moves are respectively of the form:

(p, q)
P→ (p, a, γ) iff γ ∈ δA(q, (M ◦ L)(p)(a))

(p, q)
P→ (p, b, γ) iff γ ∈ δA(q,M(p)(b))

where (M ◦ L)(p)(a) = M(p)(L(p)(a)).

In this Section, we elaborate on the connection between the map

℘(L) : ℘Σ(A,M ◦ L) −→ ℘Γ(A,M)

and the usual change-of-base in Set→:

L• : Set/TrΓ −→ Set/TrΣ

defined by pullbacks, which in particular satisfies:

L•(℘Γ(A,M))y
//

L•(tr)

��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

A crucial property, given by Prop. G.9 is the following pullback:

℘Σ(A,M ◦ L)y
℘(L) //

tr
��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

This leads in particluar to the lifting property of Lem. G.16, which is crucial for the
functoriality of substitution (Prop. H.4).
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G.2. Change-of-Base on the Synchronous Arrow

We now extend the map ℘(L) on Acceptance Games to a map ℘(L)−~ on Synchronous
Arrow Games.

Given L ∈ Tree[Σ,Γ], the map

℘(L)−~ : ℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) −→
℘Γ(G(A,M) −~ G(B, N))

is defined inductivelly as follows:

℘(L)−~(ε : ∗) := ε

℘(L)−~(s→ ((p, a, γA), (p, qB))) :=

℘(L)−~(s)→ ((p, L(p)(a), γA), (p, qB))

℘(L)−~(s→ ((p, a, γA), (p, a, γB))) :=

℘(L)−~(s)→ ((p, L(p)(a), γA), (p, L(p)(a), γB))

℘(L)−~(s→ ((p, a, γA), (p.d, qB))) :=

℘(L)−~(s)→ ((p, L(p)(a), γA), (p.d, qB))

℘(L)−~(s→ ((p.d, qA), (p.d, qB))) := ℘(L)−~(s)→ ((p.d, qA), (p.d, qB))

Lemma G.3.

℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L))
℘(L)−~ //

HS
��

℘Γ(G(A,M) −~ G(B, N))

HS
��

℘Σ(A,M ◦ L)× ℘Σ(B, N ◦ L)
℘(L)×℘(L) // ℘Γ(A,M)× ℘Σ(B, N)

Proof. Let s ∈ ℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) be the sequence:

G(A,M ◦ L) −−~ G(B, N ◦ L) where

((p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) γA ∈ δA(qA, (M ◦ L)(p)(a))
P ↓

((p, a, γA) , (p, a, γB)) γB ∈ δB(qB, (N ◦ L)(p)(a))
O ↓

((p, a, γA) , (p.d, q′B)) (q′B, d) ∈ γB
P ↓

((p.d, q′A) , (p.d, q′B)) (q′A, d) ∈ γA

We have HS(s) is the pair(
(p, qA)→ (p, a, γA)→ (p.d, q′A), (p, qB)→ (p, a, γB)→ (p.d, q′B)

)
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where

γA ∈ δA(qA, (M◦L)(p)(a)) and γB ∈ δB(qB, (N◦L)(p)(a)) and (q′A, d) ∈ γA and (q′B, d) ∈ γB
It follows that (℘(L)× ℘(L)) ◦HS(s) is(

(p, qA)→ (p, L(p)(a), γA)→ (p.d, q′A), (p, qB)→ (p, L(p)(a), γB)→ (p.d, q′B)
)

where

γA ∈ δA(qA,M(p)(L(p)(a))) and γB ∈ δB(qB, N(p)(L(p)(a))) and (q′A, d) ∈ γA and (q′B, d) ∈ γB
On the other hand, ℘(L)−~(s) is

G(A,M) −−~ G(B, N) where

((p, qA) , (p, qB))
O ↓

((p, L(p)(a), γA) , (p, qB)) γA ∈ δA(qA,M(p)(L(p)(a)))
P ↓

((p, L(p)(a), γA) , (p, L(p)(a), γB)) γB ∈ δB(qB, N(p)(L(p)(a)))
O ↓

((p, L(p)(a), γA) , (p.d, q′B)) (q′B, d) ∈ γB
P ↓

((p.d, q′A) , (p.d, q′B)) (q′A, d) ∈ γA
It follows that we indeed have

HS ◦ ℘(L)−~(s) = (℘(L)× ℘(L)) ◦HS(s)

and same holds for prefixes of s.

G.3. Universal Properties of Change-of-Base on Plays

G.3.1. Acceptance Games.

Lemma G.4.

℘Σ(A,M ◦ L)
℘(L) //

trD &&

℘Γ(A,M)

trDyy
D∗

Proof. By induction on s ∈ ℘Σ(A,M ◦L). In the base case s = ε : ∗, we have ℘(L)(s) =
s = ε and we are done.

For the induction step, we distinguish two cases:

• If s = s′ → (p, a, γ), then ℘(L)(s) = ℘(L)(s′) → (p, L(p)(a), γ). By induction
hypothesis we have

trD(s′) = trD(℘(L)(s′))

and we are done since

trD(s) = trD(s′) and trD(℘(L)(s)) = trD(℘(L)(s′))
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• Otherwise, s = s′ → (p.d, q). Then ℘(L)(s) = ℘(L)(s′) → (p.d, q). By induction
hypothesis we have

trD(s′) = trD(℘(L)(s′))

and we are done since

trD(s) = trD(s′) · d and trD(℘(L)(s)) = trD(℘(L)(s′)) · d

Lemma G.5.

TrΣ
Tr(L) //

(−)D ""

TrΓ

(−)D||
D∗

Proof. By induction on t ∈ TrΣ.
In the base case, we have t = ε and we are done since

(ε)D = ε = Tr(L)(ε)D

For the induction step, there are two cases.
Consider first the case of t = t′ ·a for some a ∈ Σ. In this case we are done by induction

hypothesis since

(t′·a)D = (t′)D = (Tr(L)(t′))D = (Tr(L)(t′)·L((t′)D)(a))D = (Tr(L)(t′·a))D

The other case is when t = t′ ·d with d ∈ D. In this case, we are also done by induction
hypothesis since:

(t′ · d)D = (t′)D · d = (Tr(L)(t′)D · d = (Tr(L)(t′ · d))D

Lemma G.6.

℘Σ(A,M ◦ L)
℘(L) //

tr
��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

Proof. We reason by induction on s ∈ ℘Σ(A,M ◦ L).
In the base case, s = ε : ∗ and we are done since

Tr(L)(tr(ε)) = ε = tr(℘(L)(ε))

For the induction step, there are two cases:
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• If s = s′ → (p, a, γ) the we have

Tr(L)(tr(s)) = Tr(L)(tr(s′)) · L(trD(s))(a)

(recall that trD(s) = tr(s)D) and

tr(℘(L)(s)) = tr(℘(L)(s′)) · L(p)(a)

Now we are done since by induction hypothsis

Tr(L)(tr(s′)) = tr(℘(L)(s′))

and by Lem. F.1 we have
trD(s) = p

• Otherwise s = s′ → (p.d, q) and we have

Tr(L)(tr(s)) = Tr(L)(tr(s′)) · d

and
tr(℘(L)(s)) = tr(℘(L)(s′)) · d

and we are done by induction hypothesis.

Lemma G.7. The following map is a bijection:

〈tr, ℘(L)〉 : ℘Σ(A,M ◦ L) −→ TrΣ ×TrΓ
℘Γ(A,M)

where TrΣ ×TrΓ
℘Γ(A,M) is

{(w, s) ∈ TrΣ × ℘Γ(A,M) | Tr(L)(w) = tr(s)} ⊆ TrΣ × ℘Γ(A,M)

Remark G.8 (On the injectivity of 〈tr, ℘(L)〉). Note that to get the injectivity of

〈tr, ℘(L)〉 : ℘Σ(A,M ◦ L) −→ TrΣ × ℘Γ(A,M)

the synchronization by traces (i.e. given by the first component tr of the pair 〈tr, ℘(L)〉)
is required, since the tree map L ∈ Tree[Σ,Γ] (hence the map ℘(L)) is not required to
be injective.

Proof. We first show the injectivity of

〈tr, ℘(L)〉 : ℘Σ(A,M ◦ L) −→ TrΣ × ℘Γ(A,M)

that is, for all s, t ∈ ℘Σ(A,M ◦ L),

〈tr, ℘(L)〉(s) = 〈tr, ℘(L)〉(t) =⇒ s = t

First note that since ℘(L) is length-preserving, we can w.l.o.g. assume |s| = |t|. We
reason by induction on n = |s| = |t|. If n = 0, then s = t = ε and we are done.

For the inductive step, note that since games in SAGΣ and SAGΓ are positive and
alternating, the plays s and t must end with the same kind of move. There are two
cases:
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• Assume s = s′ → (p, a, γ) and t = t′ → (p′, a′, γ′).

Since ℘(L)(s) = ℘(L)(t), we have

℘(L)(s′) = ℘(L)(t′) and p = p′ and γ = γ′

Moreover, since tr(s) = tr(t), we get tr(s′) = tr(t′) and a = a′ and we conclude by
induction hypothesis.

• Otherwise s = s′ → (p, q) and t = t′ → (p′, q′).

Since ℘(L)(s) = ℘(L)(t), we have

℘(L)(s′) = ℘(L)(t′) and p = p′ and q = q′

Moreover, since tr(s) = tr(t), we get tr(s′) = tr(t′) and we conclude by induction
hypothesis.

We now show the surjectivity of

〈tr, ℘(L)〉 : ℘Σ(A,M ◦ L) −→ TrΣ ×TrΓ
℘Γ(A,M) ⊆ TrΣ × ℘Γ(A,M)

By induction on s ∈ ℘Γ(A,M) we show that

• For all w ∈ TrΣ such that Tr(L)(w) = tr(s), there is a play t ∈ ℘Σ(A,M ◦L) such
that tr(t) = w, ℘(L)(t) = s and moreover, the projections of s and t on Q∗A and
on P(QA ×D)∗ coincide.

In the base case s = ε : ∗, we must have w = ε and we take t = ε. For the induction
step, we consider two cases

• Assume s = s′ → (p, b, γ).

Given w ∈ TrΣ such that Tr(L)(w) = tr(s), we must have w = w′ · a and
Tr(L)(w′) = tr(s′) and L(w′D)(a) = b.

Let t′ be obtained by applying the induction hypothesis on s′ and w′, so that
tr(t′) = s′ and ℘(L)(t′) = s′ and s′ and t′ have the same projection on Q∗A and on
P(QA ×D)∗. Take

t := t′ → (p, a, γ)

Note that s and t have the same projection on Q∗A and P(QA ×D)∗. It remains
to check that t is legal play on G(A,M ◦ L). Let q be the last state of t′ and s′.
First, note that γ ∈ δ(q,M(p)(b)) by assumption. Since trD(s) = p by Lem. F.1,
and w′D = wD = Tr(L)(w)D by Lem. G.5, it follows from Tr(L)(w) = tr(s) that
p = w′D. We thus get γ ∈ δ(q, (M ◦ L)(p)(a)).

• Otherwise, s = s′ → (p.d, q).

Given w ∈ TrΣ such that Tr(L)(w) = tr(s), we must have w = w′ · d. and
Tr(L)(w′) = tr(s′).
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Let t′ be obtained by applying the induction hypothesis on s′ and w′, so that
tr(t′) = s′ and ℘(L)(t′) = s′ and s′ and t′ have the same projection on Q∗A and on
P(QA ×D)∗.

Take
t := t′ → (p.d, q)

which is legal since t′ and s′ have the same projection on P(QA ×D)∗. Moreover,
s and t have the same projection on Q∗A and on P(QA ×D)∗.

Proposition G.9.

℘Σ(A,M ◦ L)y
℘(L) //

tr
��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

Proof. Commutation of the diagram is ensured by Lem. G.6 and Lem. G.7 gives the
isomorphism in Set:

℘Σ(A,M ◦ L) ' TrΣ ×TrΓ
℘Γ(A,M)

Remark G.10 (On the Definition of L∗ and TrΣ). It is not clear wether it is interesting
to extend Tr(L) : TrΣ → TrΓ to

L? : D∗ × Σ∗ −→ D∗ × Γ∗

so that the following is a pullback:

℘Σ(A,M ◦ L)y
℘(L) //

tr
��

℘Γ(A,M)

tr
��

D∗ × Σ∗
L? // D∗ × Γ∗

G.3.2. Synchronous Arrow.

We are now going to see that the pullback property of Prop. G.9 extends to the syn-
chronous arrow, in the sense that in Set:

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

y
℘(L)−~ //

tr−~

��

℘P
Γ(G(A,M) −~ G(B, N))

tr−~

��
TrΣ

Tr(L) // TrΓ

where the map

℘P
Γ(G(A,M) −~ G(B, N))

tr−~−→ TrΓ
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is defined in Def. F.11.
This property (actually Lem. G.12, see (13) below) will lead to Lem. G.16 and

Cor. G.17 which are crucial for the functoriality of substitution (Prop. H.4).
We will use the pullback lemma (see e.g. [12, Exercise 1.5.5, p. 30]) via the two

following properties:

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

y
℘(L)−~ //

HS
��

℘P
Γ(G(A,M) −~ G(B, N))

HS
��

℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)

℘(L)×℘(L) // ℘Γ(A,M)×TrΓ
℘Γ(B, N)

(12)

and

℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)y

℘(L)×℘(L) //

tr−~

��

℘Γ(A,M)×TrΓ
℘Γ(B, N)

tr−~

��
TrΣ

Tr(L) // TrΓ

(13)

Property (12) will be shown in Lem. G.13. As for (13), first note that

Lemma G.11. In Set,

℘Σ(A,M ◦ L)× ℘Σ(B, N ◦ L)y
℘(L)×℘(L) //

tr×tr

��

℘Γ(A,M)× ℘Γ(B, N)

tr×tr

��
TrΣ × TrΣ

Tr(L)×Tr(L) // TrΓ × TrΓ

Proof. First, by Prop. G.9 we have

℘Σ(A,M ◦ L)y
℘(L) //

tr
��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

and

℘Σ(B, N ◦ L)y
℘(L) //

tr
��

℘Γ(B, N)

tr
��

TrΣ
Tr(L) // TrΓ

Since limits commute (see e.g. [13, Sect. IX.2 & IX.8]) we have

A×A′y
//

��

B ×B′

��
C × C ′ // D ×D′

whenever Ay //

��

B

��
C // D

and A′y //

��

B′

��
C ′ // D′
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and we get

℘Σ(A,M ◦ L)× ℘Σ(B, N ◦ L)y
℘(L)×℘(L) //

tr×tr

��

℘Γ(A,M)× ℘Γ(B, N)

tr×tr

��
TrΣ × TrΣ

Tr(L)×Tr(L) // TrΓ × TrΓ

Lemma G.12. In Set,

℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)y

℘(L)×℘(L) //

tr−~

��

℘Γ(A,M)×TrΓ
℘Γ(B, N)

tr−~

��
TrΣ

Tr(L) // TrΓ

Proof. We show

℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)y

℘(L)×℘(L) //

tr×tr

��

℘Γ(A,M)×TrΓ
℘Γ(B, N)

tr×tr

��
TrΣ ×TrΣ

TrΣ
Tr(L)×Tr(L) // TrΓ ×TrΓ

TrΓ

and then conclude by definition of the maps

℘P
Γ(G(A,M) −~ G(B, N))

tr−~−→ TrΓ

and ℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

tr−~−→ TrΣ

We first check the commutation of the diagram. Given

(s, t) ∈ ℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)

since tr(s) = tr(t) we have

Tr(L) ◦ tr(s) = Tr(L) ◦ tr(t)

and by Lem. G.6 we have

tr ◦ ℘(L)(s) = tr ◦ ℘(L)(t)

hence
(℘(L)(s), ℘(L)(t)) ∈ ℘Γ(A,M)×TrΓ

℘Γ(B, N)

For the pullback property, we show that 〈(tr× tr), ℘(L)× ℘(L)〉 is a bijection from

℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)
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to
(TrΣ ×TrΣ

TrΣ)×TrΓ×TrΓ
TrΓ

(℘Γ(A,M)×TrΓ
℘Γ(B, N))

Injectivity follows from the pullback property of Lem. G.11. As for surjectivity, given

(w,w′, s, t) ∈ (TrΣ ×TrΣ
TrΣ)×TrΓ×TrΓ

TrΓ
(℘Γ(A,M)×TrΓ

℘Γ(B, N))

by the pullback property of Lem. G.11 there is some

(u, v) ∈ ℘Σ(A,M ◦ L)× ℘Σ(B, N ◦ L)

such that
tr(u) = w tr(v) = w′ ℘(L)(u) = s ℘(L)(v) = t

But w = w′ since (w,w′) ∈ TrΣ ×TrΣ
TrΣ and it follows that

(u, v) ∈ ℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)

We now turn to (12).

Lemma G.13.

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

y
℘(L)−~ //

HS
��

℘P
Γ(G(A,M) −~ G(B, N))

HS
��

℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)

℘(L)×℘(L) // ℘Γ(A,M)×TrΓ
℘Γ(B, N)

Proof. Commutation of the diagram is ensured by Lem. G.3 together with Prop. F.6.
As for the pullback property, we show that the map 〈HS, ℘(L)−~〉 is a bijection from

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) to

℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L) ×℘Γ(A,M)×TrΓ

℘Γ(B,N) ℘P
Γ(G(A,M) −~ G(B, N))

The injectivity follows from the injectivity of HS (Lem. F.8):

HS : ℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) −→ ℘Σ(A,M ◦ L)× ℘Σ(B, N ◦ L)

As for surjectivity, consider

(s, t) ∈ ℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L) and u ∈ ℘P

Γ(G(A,M) −~ G(B, N))

such that
HS(u) = (℘(L)(s), ℘(L)(t))

Since (s, t) ∈ ℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L), by Cor. F.9 there is some

v ∈ ℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))
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such that HS(v) = (s, t). Moreover, it follows from Lem G.3 that

(℘(L)× ℘(L)) ◦HS(v) = HS ◦ ℘(L)−~(v)

hence
HS ◦ ℘(L)−~(v) = HS(u)

and it follows from Lem. F.8 (injectivity of HS) that ℘(L)−~(v) = u.

Proposition G.14. We have, in Set,

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

y
℘(L)−~ //

tr−~

��

℘P
Γ(G(A,M) −~ G(B, N))

tr−~

��
TrΣ

Tr(L) // TrΓ

Proof. By the pullback lemma (see e.g. [12, Exercise 1.5.5, p. 30]), applied to Lem. G.12
and Lem. G.13.

Remark G.15. Note that for O-plays we do not have

℘Σ(G(A,M) −~ G(B, N)) //

��

℘Σ(B, N)

tr

��
℘Σ(A,M)

tr
// TrΣ

and it follows that there is no sense to ask:

℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L))y
℘(L)−~ //

��

℘Γ(G(A,M) −~ G(B, N))

��
TrΣ

Tr(L) // TrΓ

G.3.3. A Lifting Property on Plays.

The pullback properties Prop. G.9 and Prop. G.14 lead in particluar to the following
lifting property, which is crucial for the functoriality of substitution (Prop. H.4).

Lemma G.16. Given (s, t) ∈ ℘Γ(A,M) ×TrΓ
℘Γ(B, N), if s = ℘(L)(u) for some u ∈

℘Σ(A,M ◦ L), then there is v ∈ ℘Σ(B, N ◦ L) such that t = ℘(L)(v) and

(u, v) ∈ ℘Σ(A,M ◦ L)×TrΣ
℘Σ(A, N ◦ L)

Proof. Let
w := tr(u) ∈ TrΣ

By Lem. G.6, we have

tr(t) = tr(s) = tr ◦ ℘(L)(u) = Tr(L) ◦ tr(u) = Tr(L)(w)
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Lem. G.12 gives
(s′, t′) ∈ ℘Σ(A,M ◦ L)×TrΣ

℘Σ(B, N ◦ L)

such that

tr(s′) = tr(t′) = w and ℘(L)(s′) = s and ℘(L)(t′) = t

In particular, we have

tr(s′) = tr(u) and ℘(L)(s′) = ℘(L)(u)

and it follows that
s′ = u

from Prop. G.9 (actually the injectivity of

〈tr, ℘(L)〉 : ℘Σ(A,M ◦ L) → TrΣ × ℘Γ(A,M)

in Lem. G.7). Hence we are done by taking

v := t′

Corollary G.17. Assume given (s, t) ∈ ℘Σ(A,M ◦ L) ×TrΣ
℘Σ(C, P ◦ L) and u′ ∈

℘Γ(B, N) such that

(℘(L)(s), u′) ∈ ℘Γ(A,M)×TrΓ
℘Γ(B, N) and (u′, ℘(L)(t)) ∈ ℘Γ(B, N)×TrΓ

℘Γ(C, P )

There is u ∈ ℘Σ(A,M ◦ L) such that ℘(L)(u) = u′ and

(s, u) ∈ ℘Σ(A,M ◦L)×TrΣ
℘Σ(B, N ◦L) and (u, t) ∈ ℘Σ(B, N ◦L)×TrΣ

℘Σ(C, P ◦L)

Proof. We apply Lem. G.16 to

(℘(L)(s), u′) ∈ ℘Γ(A,M)×TrΓ
℘Γ(B, N)

and get some u ∈ ℘Σ(B, N ◦ L) such that ℘(L)(u) = u′ and

(s, u) ∈ ℘Σ(A,M ◦ L)×TrΣ
℘Σ(B, N ◦ L)

Since
tr(u) = tr(s) = tr(t)

we obtain
(u, t) ∈ ℘Σ(B, N ◦ L)×TrΣ

℘Σ(C, P ◦ L)
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G.4. Relation with Change-of-Base in Plays.

Recall that the change-of-base functor L• : Set/TrΓ → Set/TrΣ satisfies:

L•(℘Γ(A,M))y
//

L•(tr)

��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

where
L•(℘Γ(A,M)) = TrΣ ×TrΣ

℘Γ(A,M)

and L•(℘Γ(A,M))
L•(tr)−→ TrΓ is

π1 : TrΣ ×TrΣ
℘Γ(A,M) −→ TrΣ

and L•(℘Γ(A,M)) −→ ℘Γ(A,M) is

π2 : TrΣ ×TrΣ
℘Γ(A,M) −→ ℘Γ(A,M)

As an immediate consequence of Prop. G.9 (pullbacks in Set), we get, in Set/TrΣ:

Corollary G.18. In Set/TrΣ:

L•(℘Γ(A,M)
tr→ TrΓ) ' ℘Σ(A,M ◦ L)

tr→ TrΣ
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H. Substitution Functors

This Section is devoted to the definition of substitution functors

L∗SAG : SAGΓ −→ SAGΣ L∗W : SAGW
Γ −→ SAGW

Σ L∗R : SAGR
Γ −→ SAGR

Σ

obtained from (synchronous) tree morphisms L ∈ Tree[Σ,Γ].
When no problematic ambiguity arises, we drop the subscripts and simply write

L∗ : SAG
(W/R)
Γ −→ SAG

(W/R)
Σ

H.1. Substitution Functors on Games

Consider L ∈ Tree[Σ,Γ].
The action of L∗ on objects of SAGΓ is given by change-of-base, as described in

Sect. G:
L∗(Γ ` G(A,M)) := Σ ` G(A,M ◦ L))

where, according to Prop. G.9:

℘Σ(A,M ◦ L)y
℘(L) //

tr
��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

H.2. Definition of the Substitution Functors on Strategies

We shall now proceed to the definition of the substitution functor L∗ : SAG
(W/R)
Γ →

SAG
(W/R)
Σ induced by L.

Definition H.1. Consider

Γ ` σ : G(A,M) −~ G(B, N)

Define L∗(σ) ⊆ ℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) as

L∗(σ) := ℘(L)−1
−~(σ)

where

℘(L)−~ : ℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) −→ ℘Γ(G(A,M) −~ G(B, N))

Proposition H.2 (Prop. 4.2). (i) L∗(σ) is a strategy on G(A,M ◦L) −~ G(B,N ◦L).

(ii) If moreover σ is a morphism of SAGW
Γ (resp. SAGR

Γ ) then L∗(σ) is a morphism
of SAGW

Σ (resp. SAGR
Σ).
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H. Substitution Functors

Proof. (i) First, L∗(σ) is a set of P-plays on G(A,M ◦L) −~ G(B,N ◦L) since ℘(L)−~
is length-preserving by definition.

A play t of L∗(σ) must be of one of the two following forms:

s
O−→ ((p, a, γA), (p, qB))

P−→ ((p, a, γA), (p, a, γB))

s
O−→ ((p, a, γA), (p.d, qB))

P−→ ((p.d, qA), (p.d, qB))

By definition of L∗(σ), there is a play u ∈ σ such that ℘(L)−~(t) = u. It follows
that u is of one of the two following forms

v
O−→ ((p, L(p)(a), γA), (p, qB))

P−→ ((p, L(p)(a), γA), (p, L(p)(a), γB))

v
O−→ ((p, L(p)(a), γA), (p.d, qB))

P−→ ((p.d, qA), (p.d, qB))

with ℘(L)−~(s) = v. Since σ is closed under P-prefix, we have v ∈ σ, and it follows
that s ∈ L∗(σ).

As for P-determinism, consider a play t′ of L∗(σ), of one of the two following forms:

s
O−→ ((p, a, γA), (p, qB))

P−→ ((p, a, γA), (p, a, γ′B))

s
O−→ ((p, a, γA), (p.d, qB))

P−→ ((p.d, q′A), (p.d, qB))

Reasoning as above, we get a play u′ ∈ σ of one of the two following forms

v
O−→ ((p, L(p)(a), γ), (p, qB))

P−→ ((p, L(p)(a), γA), (p, L(p)(a), γ′B))

v
O−→ ((p, L(p)(a), γA), (p.d, qB))

P−→ ((p.d, q′A), (p.d, qB))

and it follows that γ′B = γB and q′A = qA by P-determinism of σ.

(ii) It follows from the proof of (i) above that to any play of L(σ) corresponds a play
of σ with the same projections on QA and QB. So all infinite plays of L∗(σ) are
winning w.r.t. −~ (resp. ~−~) as soon as σ is winning w.r.t. −~ (resp. ~−~).

As for totality consider the following two situations, where in both cases we assume
that the play is legal in G(A,M ◦ L) −~ G(B, N ◦ L) and that s ∈ L∗(σ)

s
O−→ ((p, a, γA), (p, qB))

s
O−→ ((p, a, γA), (p.d, qB))

Then, reasoning as in the proof of (i) above, we obtain in both cases a play v ∈ σ
with ℘(L)−~(s) = v.

In both cases, we have γA ∈ δA(qA, (M ◦ L)(p)(a)) and it follows that the two
following plays are legal in G(A,M) −~ G(B, N):

v
O−→ ((p, L(p)(a), γA), (p, qB))

v
O−→ ((p, L(p)(a), γA), (p.d, qB))
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By totality of σ, we thus get in each case a play u ∈ σ of one of the two following
forms:

v
O−→ ((p, L(p)(a), γA), (p, qB))

P−→ ((p, L(p)(a), γA), (p, L(p)(a), γB))

v
O−→ ((p, L(p)(a), γA), (p.d, qB))

P−→ ((p.d, qA), (p.d, qB))

and it follows that in each case L∗(σ) contains a play of one of the two following
forms:

s
O−→ ((p, a, γA), (p, qB))

P−→ ((p, a, γA), (p, a, γB))

s
O−→ ((p, a, γA), (p.d, qB))

P−→ ((p.d, qA), (p.d, qB))

Note that thanks to Lem. G.3 we have

L∗(σ)
℘(L)−~ //

HS
��

σ

HS
��

HS(L∗(σ))
℘(L)×℘(L) // HS(σ)

(14)

Lemma H.3. We have

L∗(σ) = HS−1
(
(℘(L)× ℘(L))−1(HS(σ))

)
= ((℘(L)× ℘(L)) ◦HS)−1(HS(σ))

where the HS’s are maps:

HS : ℘P
Γ(G(A,M) −~ G(B, N)) −→ ℘Γ(A,M)× ℘Γ(B, N)

HS : ℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) −→ ℘Σ(A,M ◦ L)× ℘Σ(B, N ◦ L)

Proof. By definition of L∗(σ), we have

℘(L)−~(L∗(σ)) ⊆ σ

hence
HS ◦ ℘(L)−~(L∗(σ)) ⊆ HS(σ)

and it follows from (14) that

(℘(L)× ℘(L)) ◦HS(L∗(σ)) ⊆ HS(σ)

hence
L∗(σ) ⊆ HS−1

(
(℘(L)× ℘(L))−1(HS(σ))

)
For the converse direction, let

t ∈ HS−1
(
(℘(L)× ℘(L))−1(HS(σ))

)
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that is
t ∈ ℘P

Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

with
((℘(L)× ℘(L)) ◦HS)(t) ∈ HS(σ)

We thus get by Lem. G.3:

HS(℘(L)−~(t)) = ((℘(L)× ℘(L)) ◦HS)(t) ∈ HS(σ)

It follows that there is u ∈ σ such that

HS(u) = HS(℘(L)−~(t))

By Lem. F.8 (injectivity of HS on ℘Γ(G(A,M) −~ G(B, N))), we get ℘(L)−~(t) = u ∈ σ
hence t ∈ ℘(L)−1

−~(σ).
We deduce that t ∈ L∗(σ) since t ∈ ℘P

Σ(G(A,M◦L) −~ G(B, N◦L)) by assumption.

H.3. Functoriality of Substitution

We shall now see that L∗ is functorial, i.e. L∗(id(A,M)) = id(A,M◦L), and moreover, given

Γ ` σ : G(A,M) −~ G(B, N) and Γ ` θ : G(B, N) −~ G(C, P ))

we have
L∗(θ ◦ σ) = L∗(θ) ◦ L∗(σ)

where

Γ ` L∗(σ) : G(A,M◦L) −~ G(B, N◦L) and Γ ` L∗(θ) : G(B, N◦L) −~ G(C, P◦L)

Proposition H.4 (Functoriality of Substitution – Prop. 4.3). Given L ∈ Tree[Σ,Γ],
L∗ is a functor from SAGΓ to SAGΣ:

(i) L∗(id(A,M)) = id(A,M◦L).

(ii) L∗(θ ◦ σ) = L∗(θ) ◦ L∗(σ) whenever

Γ ` σ : G(A,M) −~ G(B, N) and Γ ` θ : G(B, N) −~ G(C, P ))

Proof. (i) Thanks to Prop. D.12 is is sufficient to show that

HS(L∗(id(A,M))) = {(s, s) | s ∈ ℘Σ(A,M ◦ L)}

For the inclusion

HS(L∗(id(A,M))) ⊆ {(s, s) | s ∈ ℘Σ(A,M ◦ L)}

by Lem H.3 we have

HS(L∗(id(A,M))) ⊆ (℘(L)× ℘(L))−1 ◦HS(id(A,M))
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Let now (s, t) ∈ HS(L∗(id(A,M))). We thus get ℘(L)(s) = ℘(L)(t) by Prop. D.12
applied to id(A,M). Since moreover tr(s) = tr(t) we get

Tr(L)(tr(s)) = Tr(L)(tr(t)) and tr ◦ ℘(L)(s) = tr ◦ ℘(L)(t)

and it follows from Prop. G.9 (actually Lem. G.7) that s = t.

Conversely, given s ∈ ℘Σ(A,M ◦ L), by Prop. D.12 we have

(℘(L)(s), ℘(L)(s)) ∈ HS(id(A,M))

hence
(s, s) ∈ (℘(L)× ℘(L))−1 ◦HS(id(A,M))

On the other hand, (s, s) ∈ idA,M◦L by Prop. D.12, and it follows that there is
w ∈ ℘P

Σ(G(A,M ◦ L) −~ G(A,M ◦ L)) such that HS(w) = (s, s). We thus get
(s, s) ∈ HS(L∗(id(A,M))) by Lem. H.3.

(ii) Thanks to Lem. D.7.(ii) it is sufficient to show that

HS(L∗(θ ◦ σ)) = HS(L∗(θ) ◦ L∗(σ))

• For the inclusion

HS(L∗(θ) ◦ L∗(σ)) ⊆ HS(L∗(θ ◦ σ))

let (s, t) = HS(w) for some w ∈ L∗(θ) ◦ L∗(σ). Since by Prop. D.11

HS(L∗(θ) ◦ L∗(σ)) = HS(L∗(θ)) ◦HS(L∗(σ)) ,

we get some u ∈ ℘Σ(B, N ◦ L) such that

(s, u) ∈ HS(L∗(θ)) and (u, t) ∈ HS(L∗(σ))

Since by Lem H.3 we have

(℘(L)× ℘(L)) ◦HS(L∗(θ)) ⊆ HS(θ)

and
(℘(L)× ℘(L)) ◦HS(L∗(σ)) ⊆ HS(σ)

using Prop. D.11 again, we get

(℘(L)(s), ℘(L)(t)) ∈ HS(θ) ◦HS(σ) = HS(θ ◦ σ)

hence
(s, t) ∈ (℘(L)× ℘(L))−1 ◦HS(θ ◦ σ)

Since HS(w) = (s, t) with w a legal P-play by assumption, it follows from
Lem. H.3 that (s, t) ∈ HS(L∗(θ ◦ σ)).
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• For the converse inclusion, using Prop. D.11 again, we show that

HS(L∗(θ ◦ σ)) ⊆ HS(L∗(θ)) ◦HS(L∗(σ))

Given w ∈ L∗(θ ◦ σ) with HS(w) = (s, t), one has to exhibit some play
u ∈ ℘Σ(B, N ◦ L) such that

(s, u) ∈ HS(L∗(θ)) and (u, t) ∈ HS(L∗(σ))

By Lem H.3, from w ∈ L∗(θ◦σ) with HS(w) = (s, t) for some s ∈ ℘Σ(A,M ◦L)
and t ∈ ℘Σ(C, P ◦ L), we have

(℘(L)(s), ℘(L)(t)) ∈ HS(θ ◦ σ)

Hence there is some u′ ∈ ℘Γ(B, N) such that

(℘(L)(s), u′) ∈ HS(θ) and (u′, ℘(L)(t)) ∈ HS(σ)

It follows from Cor. F.9 that (℘(L)(s), u′) ∈ ℘Γ(A,M)×TrΓ
℘Γ(B, N). Hence

by Cor. G.17 there is u ∈ ℘Σ(B, N ◦ L) such that ℘(L)(u) = u′ and

(s, u) ∈ ℘Σ(A,M◦L)×TrΣ
℘Σ(A, N◦L) and (u, t) ∈ ℘Σ(B, N◦L)×TrΣ

℘Σ(C, P◦L)

We thus get

(℘(L)(s), ℘(L)(u)) ∈ HS(θ) and (℘(L)(u), ℘(L)(t)) ∈ HS(σ)

so that

(s, u) ∈ (℘(L)× ℘(L))−1(HS(θ)) and (u, t) ∈ (℘(L)× ℘(L))−1(HS(σ))

On the other hand, since

(s, u) ∈ ℘Σ(A,M◦L)×TrΣ
℘Σ(B, N◦L) and (u, t) ∈ ℘Σ(B, N◦L)×TrΣ

℘Σ(C, P◦L)

by Cor. F.9 and by definition of −~ , there are

a ∈ ℘P
Σ (G(A,M ◦ L) −~ G(B, N ◦ L)) and b ∈ ℘P

Σ (G(B, N ◦ L) −~ G(C, P ◦ L))

such that
HS(a) = (s, u) and HS(b) = (u, t)

Now we are done since it follows from Lem H.3 that

(s, u) ∈ HS(L∗(θ)) and (u, t) ∈ HS(L∗(σ))

Corollary H.5. L∗ is a functor from SAG
W/R
Γ to SAG

W/R
Σ .
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H.4. A Universal Property of Substitution

Consider L ∈ Tree[Σ,Γ]. Note that by definition of L∗(σ) as ℘(L)−1
−~(σ), we have

L∗(σ)y
℘(L)−~ //

� _

��

σ� _

��
℘P

Σ(G(A,M ◦ L) −~ G(B, N ◦ L))
℘(L)−~ // ℘P

Γ(G(A,M) −~ G(B, N))

It thus follows from Prop. G.14

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

y
℘(L)−~ //

tr−~

��

℘P
Γ(G(A,M) −~ G(B, N))

tr−~

��
TrΣ

Tr(L) // TrΓ

and the pullback lemma (see e.g. [12, Exercise 1.5.5, p. 30]) that we have, in Set:

L∗(σ)y
℘(L)−~ //

tr−~

��

σ

tr−~

��
TrΣ

Tr(L) // TrΓ

(15)
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I. Fibrations of Acceptance Games and Automata

In this Section, we briefely present the split fibrations of acceptance games

game : SAG→ Tree gameW : SAGW → Tree gameR : SAGR → Tree

defined by Grothendieck completion of the split indexed categories

(−)∗SAG : Treeop → Cat (−)∗W : Treeop → Cat (−)∗R : Treeop → Cat

issued from substitution.

I.1. The Split Indexed Category of Substitution

We show that substitution leads to a split indexed category

(−)∗ : Treeop → Cat

(in the sense of [12, Def. 1.4.4, pp. 50–51]):

Proposition I.1 (Prop. 4.5). (i) With IdΣ ∈ Tree[Σ,Σ], the functors

Id∗Σ : SAG
(W/R)
Σ −→ SAG

(W/R)
Σ

is the identity functor

SAG
(W/R)
Σ −→ SAG

(W/R)
Σ

(ii) Given L ∈ Tree[Σ,Γ] and K ∈ Tree[Γ,∆], we have

(K ◦ L)∗ = L∗ ◦K∗

where K ◦ L ∈ Tree[Σ,∆] and

(K ◦ L)∗, L∗ ◦K∗ : SAG
(W/R)
∆ −→ SAG

(W/R)
Σ

Proof. (i) Since ℘−~(IdΣ) is the identity on

℘Σ(G(A,M ◦ L) −~ G(A,M ◦ L)) = ℘Σ(G(A,M) −~ G(A,M))

we have
Id∗Σ(σ) = ℘−~(IdΣ)−1(σ) = σ

(ii) Since ℘(K ◦ L)−~ = ℘(K)−~ ◦ ℘(L)−~ we have

(K ◦ L)∗(σ) = ℘(K ◦L)−1
−~(σ) = (℘(L)−1

−~ ◦ ℘(K)−1
−~)(σ) = L∗(K∗(σ))

By combining Prop. I.1 with Prop. H.4, we thus obtain that

Corollary I.2. Substitution induces a functors

(−)∗SAG : Treeop → Cat (−)∗W : Treeop → Cat (−)∗R : Treeop → Cat
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I.2. The Fibration of Acceptance Game

We now define the split fibrations

game(W/R) : SAG(W/R) → Tree

by Grothendieck completion (see e.g. [12, §1.10]) of the corresponding split indexed
category

(−)∗ : Treeop → Cat

I.2.1. The Total Categories SAG(W/R):

Objects are substituted acceptance games Σ ` G(A,M) where Γ ` A and Σ `M : Γ.

Morphisms from Σ ` G(A,M) to Γ ` G(B, N) are given by pairs (L, σ) of a tree L ∈
Tree[Σ,Γ] and a strategy

Σ ` σ : G(A,M) −~ G(B, N ◦ L)

such that, for SAGW we additionally require:

Σ ` σ  G(A,M) −~ G(B, N ◦ L)

and for SAGR we additionally require:

Σ ` σ  G(A,M) ~−~ G(B, N ◦ L)

The total categories SAG(W/R) is thus the Grothendieck completions of the corre-
sponding (−)∗ : Treeop → Cat. Thanks to the functoriality of substituion (Prop H.4),
composition is defined componentwise: if

Σ ` G(A,M)
(L,σ) // ∆ ` G(B, N)

(K,θ) // Γ ` G(C, P )

then
Σ ` σ  G(A,M) −~ G(B, N ◦ L)

and ∆ ` θ  G(B, N) −~ G(C, P ◦K)
hence Σ ` L∗(θ)  G(B, N ◦ L) −~ G(C, P ◦K ◦ L)

We let
(K, θ) ◦ (L, σ) := (K ◦ L,L∗(θ) ◦ σ)

I.2.2. The Functors game(W/R) : SAG(W/R) → Tree

maps a game Σ ` G(A,M) to the alphabet Σ, and a morphism

Σ ` G(A,M)
(L,σ) // Γ ` G(B, N)

to L ∈ Tree[Σ,Γ].

The fibre categories game−1(Σ) are isomorphic to the categories SAG
(W/R)
Σ : they have

games Σ ` G(A,M) as objects and morphisms are of the form

Σ ` G(A,M)
(IdΣ,σ)// Σ ` G(B, N)
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I.2.3. Cartesian Liftings.

Given L ∈ Tree[Γ,Σ], we let L := (L, idΓ) where

Γ ` idΓ  G(A,M ◦ L) −~ G(A,M ◦ L)

is the identity strategy. We thus have, in SAG(W/R),

L∗(Σ ` G(A,M))
L // Σ ` G(A,M)

In other words, given Σ ` G(A,M) and

L : Γ −→Tree game(W/R)(Σ ` G(A,M)) (= Σ)

we have
L : L∗(Σ ` G(A,M)) −→SAG(W/R) Σ ` G(A,M)

with game(L) = L and moreover for every

(K, θ) : ∆ ` G(B, N) −→ Σ ` G(A,M)

with
game(K, θ) = K = L ◦ P

there is a unique τ such that:

∆ ` G(B, N) (K,θ)

))(P,τ) ))
L∗(Σ ` G(A,M))

L

// Σ ` G(A,M)

∆ K

))
P

** Γ
L

// Σ

The unique τ claimed above is easily obtainable by unfolding the definitions: Since (by
Prop. H.4.(i)) we have

L ◦ (P, τ) = (L ◦ P,L∗(idΓ) ◦ τ) = (L ◦ P, τ)

the equality
(K, θ) = (L ◦ P, θ) = L ◦ (P, τ)

imposes τ := θ.
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I.2.4. The Fibration of Acceptance Game.

Thanks to the functoriality of substitution (−)∗ : Treeop → Cat (Cor. I.2), we thus get
by [12, Prop. 1.10.2(i)]:

Proposition I.3. The functors game(W/R) : SAG(W/R) → Tree, together with L 7→
L∗, L as above, forms a split fibration.

I.3. Fibration of Automata

We write Σ ` σ : A −~ B for

Σ ` σ : G(A, IdΣ) −~ G(B, IdΣ)

and Σ ` σ  A −~ B for

Σ ` σ  G(A, IdΣ) −~ G(B, IdΣ)

and finally, Σ ` σ  A ~−~ B for

Σ ` σ  G(A, IdΣ) ~−~ G(B, IdΣ)

I.3.1. The Categories Aut
(W/R)
Σ :

Objects are automata Σ ` A

Morphisms from Σ ` A to Σ ` B are strategies

Σ ` σ : A −~ B

such that, for AutW we additionally require:

Σ ` σ  A −~ B

and for AutR we additionally require:

Σ ` σ  A ~−~ B

I.3.2. The Faithful Functor Emb : Alph→ Tree

is the identity on objects and maps β ∈ Alph[Σ,Γ] to the constant tree Emb(β) ∈
Tree[Σ,Γ] with Emb(β)(p) := β for all p ∈ D∗.

We will often simply write β ∈ Tree[Σ,Γ] for the morphism Emb(β) induced by
β ∈ Alph[Σ,Γ].

According to Cor. I.2, the functor Emb : Alph → Tree induces a split indexed
category

(−)∗ : Alphop → Cat

where, for β ∈ Alph[Σ,Γ], we have

β∗ : SAG
(W/R)
Γ −→ SAG

(W/R)
Σ
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I.3.3. Substitutions induced by Alphabet Morphisms.

Substitutions issued from alphabet morphisms can be internalized in automata. Given
Γ ` A with A = (Q, qı, δ,Ω) and β ∈ Alph[Σ,Γ], define the automaton Σ ` A[β] as

A[β] := (Q, qı, δβ,Ω)

where
δβ(q, b) := δ(q, β(b))

Proposition I.4. Given Γ ` A and β ∈ Tree[Σ,Γ], we have

Σ ` G(A[β], IdΣ) = Σ ` G(A, β)

Proof. We have

(p, q)
P−→ (p, a, γ) in Σ ` G(A[β], IdΣ)

iff
γ ∈ δβ(q, IdΣ(a)) = δβ(q, a) = δ(q, β(a))

iff
(p, q)

P−→ (p, a, γ) in Σ ` G(A, β)

Moreover,

(p, a, γ)
O−→ (p.d, q) in Σ ` G(A[β], IdΣ)

iff (q, d) ∈ γ iff

(p, a, γ)
O−→ (p.d, q) in Σ ` G(A, β)

Corollary I.5. Substitution along β ∈ Alph[Σ,Γ] induce functors

β∗ : Aut
(W/R)
Γ −→ Aut

(W/R)
Σ

I.3.4. The Total Category Aut(W/R):

Objects are automata Σ ` A.

Morphisms from Σ ` A to Γ ` B are pairs (β, σ) where β ∈ Alph[Σ,Γ] and Σ ` σ 
A −~ B[β].
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J. A Synchronous Symmetric Monoidal Product

In this section, we define a synchronous monoidal product ~ (and its variant ~≡ for
reduction games) and show its basic properties. This product will be equipped in Sect. K
with a symmetric monoidal structure, leading to symmetric monoidal fibrations. The
symmetric monoidal structre actually assumes automata to be complete. Moreover, the
symmetric monoidal structure on acceptance games is easier to describe starting from
a first partial version of ~ , which only allows products of games Σ ` G(A,M) and
Σ ` G(B,M) with the same substituted tree morphism M . This variant of ~ is called
uniform.

J.1. The Relational Tensorial Product in Set→

J.1.1. Symmetric Monoidal Categories.

Following [16, 13], a symmetric monoidal category is a category C equipped with a
bifunctor ⊗ and an object I together with natural isomorphisms:

αA,B,C : (A⊗B)⊗ C −→ A⊗ (B ⊗ C)
λA : I⊗A −→ A
ρA : A⊗ I −→ A

γA,B : A⊗B −→ B ⊗A

satisfying γA,B = γ−1
B,A and usual coherence diagrams (see e.g. [16, 13]).

J.1.2. The Monoidal Category Rel of Sets and Relations.

In Rel, the monoidal product ⊗Rel is given by:

On Objects: A⊗Rel B := A×B.

On Morphisms: given R : A −p→ C and P : B −p→ D, we define R⊗RelP : A⊗RelB −p→
C ⊗Rel D as

R⊗Rel P := {((a, b), (c, d)) | (a, c) ∈ R and (b, d) ∈ P}

The unit I is the singletton set I := {•}(= 1), and the natural isomorphisms are given
by:

α̊A,B,C := {(((a, b), c) , (a, (b, c))) | a ∈ A and b ∈ B and c ∈ C}
λ̊A := {((•, a) , a) | a ∈ A}
ρ̊A := {((a, •) , a) | a ∈ A}

γ̊A,B := {((a, b) , (b, a)) | a ∈ A and b ∈ B}
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J.1.3. Monoidal Structure in Rel(Set/J).

Define, in Rel(Set/J) the operation ⊗Rel(Set/J) (simply denoted ⊗ when no con-
fusion arises):

On Objects: for (A, g) and (B, h) objects in Rel(Set/J) the tensor product A ⊗ B is
A×J B with the corresponding map, that is

A⊗B := {(a, b) ∈ A×B | g(a) = h(b)} g◦π1=h◦π2−→ J

On Morphisms: given R ∈ Rel(Set/J)[A,C] and P ∈ Rel(Set/J)[B,D], we define
R⊗ P ∈ Rel(Set/J)[A⊗B,C ⊗D] as

R⊗ P := {((a, b), (c, d)) ∈ (A⊗B)× (C ⊗D) | (a, c) ∈ R and (b, d) ∈ P}

Note that given ((a, b), (c, d)) ∈ R⊗P , writing C
k→ J andD

l→ J , we have ((a, b), (c, d)) ∈
(A ⊗ B) ×J (C ⊗ D), since (a, c) ∈ R implies g(a) = k(c) and since (b, d) ∈ P implies
h(b) = l(d).

The same holds for ((a, b), (c, d)) ∈ R ⊗Rel P , but ((a, b), (c, d)) ∈ R ⊗Rel P does not
imply ((a, b), (c, d)) ∈ R⊗ P since we may not have (a, b) ∈ A⊗B nor (c, d) ∈ C ⊗D.

Proposition J.1. The product ⊗ is a bifunctor on Rel(Set/J):

(i) 1A ⊗ 1B = 1A⊗B

(ii) Given

A
R0

−p→/J B
R1

−p→/J C and A′
R′0
−p→/J B

′
R′1
−p→/J C

′

we have
(R1 ◦R0)⊗ (R′1 ◦R′0) = (R1 ⊗R′1) ◦ (R0 ⊗R′0)

Proof. (i) Write A
g→ J and B

h→ J .

We have

1A ⊗ 1B = {((a, b), (a, b)) ∈ (A⊗B)× (A⊗B) | a ∈ A & b ∈ B}
= {((a, b), (a, b)) ∈ (A⊗B)× (A⊗B) | (a, b) ∈ A⊗B}
= 1A⊗B

(ii) Consider
((a, a′), (c, c′)) ∈ (A⊗A′)× (C ⊗ C ′)

Then we have
((a, a′), (c, c′)) ∈ (R1 ◦R0)⊗ (R′1 ◦R′0)

if and only if
(a, c) ∈ R1 ◦R0 and (a′, c′) ∈ R′1 ◦R′0
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if and only if there are b ∈ B and b′ ∈ B′ such that

(a, b) ∈ R0 (b, c) ∈ R1 (a′, b′) ∈ R′0 (b′, c′) ∈ R′1

if and only if (since ((a, a′), (b, b′)) ∈ (A ⊗ A′) × (B ⊗ B′), and similarly for
((b, b′), (c, c′)))

((a, a′), (b, b′)) ∈ R0 ⊗R′0 and ((b, b′), (c, c′)) ∈ R1 ⊗R′1

if and only if
((a, a′), (c, c′)) ∈ (R1 ⊗R′1) ◦ (R0 ⊗R′0)

For the unit, we choose some

I = (I
−→ J)

such that
 : I

'−→ J

The natural isomorphisms are given by:

α̊A,B,C := {(((a, b), c) , (a, (b, c))) | gA(a) = gB(b) = gC(c)}
λ̊A := {((e, a) , a) | (e) = gA(a)}
ρ̊A := {((a, e) , a) | gA(a) = (e)}

γ̊A,B := {((a, b) , (b, a)) | gA(a) = gB(b)}

We easily get:

Lemma J.2. We have isomorphisms

α̊A,B,C : (A⊗B)⊗ C −p→/J A⊗ (B ⊗ C)

λ̊A : I⊗A −p→/J A

ρ̊A : A⊗ I −p→/J A

γ̊A,B : A⊗B −p→/J B ⊗A

Proof. For α̊A,B,C , if ((a, b), c) ∈ (A ⊗ B) ⊗ C then we have gA(a) = gB(b) = gC(c),
hence

((a, b), c) α̊A,B,C (a, (b, c)) and (a, (b, c)) α̊−1
A,B,C ((a, b), c)

and thus
((a, b), c) (α̊−1

A,B,C ◦ α̊A,B,C) ((a, b), c)

It follows that
1(A⊗B)⊗C ⊆ α̊−1

A,B,C ◦ α̊A,B,C
Conversely, consider

((a, b), c) (α̊−1
A,B,C ◦ α̊A,B,C) ((a′, b′), c′)
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Then there are a′′, b′′ and c′′ such that

((a, b), c) α̊A,B,C (a′′, (b′′, c′′)) and (a′′, (b′′, c′′)) α̊−1
A,B,C ((a′, b′), c′)

But this implies a = a′′ = a′, b = b′′ = b′, and c = c′′ = c′, as well as gA(a) = gB(b) =
gC(c). We thus have

α̊−1
A,B,C ◦ α̊A,B,C ⊆ 1(A⊗B)⊗C

We similarly get
α̊A,B,C ◦ α̊−1

A,B,C = 1A⊗(B⊗C)

The case of γ̊A,B is dealt-with similarly.

For λ̊A, if (e, a) ∈ I ⊗ A then we have ((e, a), a) ∈ λ̊A and (a, (e, a)) ∈ λ̊−1
A , and it

follows that
1I⊗A ⊆ λ̊−1

A ◦ λ̊A
On the other hand, since  : I → J is surjective, for all a ∈ A there is some e ∈ I such
that gA(a) = (e), hence (e, a) ∈ I ⊗ A, from which it follows that ((e, a), a) ∈ λ̊A, and
(a, (e, a)) ∈ λ̊−1

A hence

1A ⊆ λ̊A ◦ λ̊−1
A

For the converse inclusions, consider

(e, a) (̊λ−1
A ◦ λ̊A) (e′, a′)

hence there is a′′ ∈ A such that

(e, a) λ̊A a
′′ and a′′ λ̊−1

A (e′, a′)

But this implies a = a′′ = a′, hence e = e′ since (e) = (e′) and  is injective, and we
get

λ̊−1
A ◦ λ̊A ⊆ 1I⊗A

Similarly, if
a (̊λA ◦ λ̊−1

A ) a′

then there are (e, a′′) ∈ I⊗A such that

a λ̊−1
A (e, a′′) and (e, a′′) λ̊A a

′

which implies a = a′′ = a′, and we get

λ̊A ◦ λ̊−1
A ⊆ 1A

The case of ρ̊A is dealt-with similarly.

Lemma J.3. We have natural transformations:

α̊A,B,C : (A⊗B)⊗ C −p→/J A⊗ (B ⊗ C)

λ̊A : I⊗A −p→/J A

ρ̊A : A⊗ I −p→/J A

γ̊A,B : A⊗B −p→/J B ⊗A
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Proof. Assume given objects (A, gA), (A′, g′A′) etc

(i) Given
P : A −p→/J A

′ Q : B −p→/J B
′ R : C −p→/J C

′

we have to check

α̊A′,B′,C′ ◦ ((P ⊗Q)⊗R) = (P ⊗ (Q⊗R)) ◦ α̊A,B,C

Proof. Consider ((a, b), c) ∈ (A⊗B)⊗C and (a′, (b′, c′)) ∈ A′⊗ (B′⊗C ′) such that

((a, b), c) α̊A′,B′,C′ ◦ ((P ⊗Q)⊗R) (a′, (b′, c′))

Note that
((a, b), c) ((P ⊗Q)⊗R) ((a′, b′), c′)

Since

gA(a) = gA′(a
′) = gB(b) = gB′(b

′) = gC(c) = gC′(c
′)

we have
(a, (b, c)) α̊A,B,C ((a, b), c)

and
((a, b), c) (P ⊗ (Q⊗R)) ◦ α̊A,B,C (a′, (b′, c′))

We thus have

α̊A′,B′,C′ ◦ ((P ⊗Q)⊗R) ⊆ (P ⊗ (Q⊗R)) ◦ α̊A,B,C

For the other direction, consider ((a, b), c) ∈ (A ⊗ B) ⊗ C and (a′, (b′, c′) ∈ A′ ⊗
(B′ ⊗ C ′) such that

((a, b), c) (P ⊗ (Q⊗R)) ◦ α̊A,B,C (a′, (b′, c′))

We have

((a, b), c) α̊A,B,C (a, (b, c)) and (a, (b, c)) (P ⊗ (Q⊗R)) (a′, (b′, c′))

Now since

gA(a) = gA′(a
′) = gB(b) = gB′(b

′) = gC(c) = gC′(c
′)

we have
((a, b), c) ((P ⊗Q)⊗R) ((a′, b′), c′)

and
((a′, b′), c′) α̊A′,B′,C′ (a′, (b′, c′))

It follows that

(P ⊗ (Q⊗R)) ◦ α̊A,B,C ⊆ α̊A′,B′,C′ ◦ ((P ⊗Q)⊗R)
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(ii) For the naturality of γ̊A,B, given

P : A −p→/J A
′ Q : B −p→/J B

′

we have to check
γ̊A′,B′ ◦ P ⊗Q = Q⊗R ◦ γ̊A,B

and this can be done similarly as for α̊A,B,C above.

(iii) As for λ̊, given
P : A −p→/J A

′

we have to check
λ̊A′ ◦ (1I ⊗ P ) = P ◦ λ̊A

Proof. Consider
((e, a), a′) ∈ (I⊗A)×J A′

Then we have
((e, a), a′) ∈ P ◦ λ̊A

if and only if
(a, a′) ∈ P

But (a, a′) ∈ P implies ((e, a), (e, a′)) ∈ 1I⊗P since gA(a) = gA′(a
′). We moreover

get ((e, a′), a′) ∈ λ̊A′ and it follows that

P ◦ λ̊A ⊆ λ̊A′ ◦ (1I ⊗ P )

Conversely, if
((e, a), a′) ∈ λ̊A′ ◦ (1I ⊗ P )

then for some (e′, a′′) ∈ I⊗A′ we get

((e, a), (e′, a′′)) ∈ 1I ⊗ P and ((e′, a′′), a′) ∈ λ̊A′

But we then get a′′ = a′ and (e′) = gA′(a
′), and since gA(a) = gA′(a

′′) it follows
that (e) = (e′), hence e = e′ since  is injective. Since moreover (a, a′) ∈ P , we
conclude that

((e, a), a′) ∈ P ◦ λ̊A

(iv) For ρ̊A given
P : A −p→/J A

′

we have to check
ρ̊A′ ◦ (P ⊗ 1I) = P ◦ ρ̊A

and this can be done similarly as for λ̊A.
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Proposition J.4. The category Rel(Set/J), equipped with the above data, is symmetric
monoidal.

Proof. According to Prop. J.1, Lem. J.2 and Lem. J.3, it remains to check the coherence
diagrams of symmetric monoidal categories. We follow [16]4.

Assume given objects (A, gA), (B, gB), (C, gC) and (D, gD) of Set/J . We have to
show:

(i) α̊A,B,(C⊗D) ◦ α̊A⊗B,C,D = (1A ⊗ α̊B,C,D) ◦ α̊A,(B⊗C),D ◦ (α̊A,B,C ⊗ 1D) in

(((A⊗B)⊗ C)⊗D) −p→/J A⊗ (B ⊗ (C ⊗D))

Proof. Consider
a ∈ A b ∈ B c ∈ C d ∈ D

with gA(a) = gB(b) = gC(c) = gD(d).

We then have

(((a, b), c), d) α̊A,B,(C⊗D) ◦ α̊A⊗B,C,D (a, (b, (c, d)))

and

(((a, b), c), d) (1A ⊗ α̊B,C,D) ◦ α̊A,(B⊗C),D ◦ (α̊A,B,C ⊗ 1D) (a, (b, (c, d)))

Now we are done since both

(((a, b), c), d) α̊A,B,(C⊗D) ◦ α̊A⊗B,C,D (a′, (b′, (c′, d′)))

and

(((a, b), c), d) (1A ⊗ α̊B,C,D) ◦ α̊A,(B⊗C),D ◦ (α̊A,B,C ⊗ 1D) (a′, (b′, (c′, d′)))

separately imply
a = a′ b = b′ c = c′ d = d′

(ii) (1A ⊗ λ̊A) ◦ α̊A,I,B = ρ̊A ⊗ 1B in

(A⊗ I)⊗B −p→/J A⊗B

Proof. Consider a, b and e such that ((a, e), b) ∈ (A⊗ I)⊗B.

We have (a, b) ∈ A⊗B and

((a, e), b) ρ̊A ⊗ 1B (a, b)

4By [16, Prop. 3], the diagram [13, VII.7.(2)] relating the braiding γ̊ with λ̊ and ρ̊ is unnecessary.
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On the other hand, we have

((a, e), b) α̊A,I,B (a, (e, b))

and since gA(a) = (e) = gB(b) we get

(a, (e, b)) (1A ⊗ λ̊A) (a, b)

Now we are done since both

((a, e), b) ρ̊A ⊗ 1B (a′, b′)

and
((a, e), b) (1A ⊗ λ̊A) ◦ α̊A,I,B (a′, b′)

separately imply
a = a′ b = b′

(iii) α̊B,C,A ◦ (̊γA,(B⊗C)) ◦ α̊A,B,C = (1B ⊗ γ̊A,C) ◦ α̊B,A,C ◦ (̊γA,B ⊗ 1C) in

(A⊗B)⊗ C −p→/J B ⊗ (C ⊗A)

Proof. Can be check similarly as (i) above.

(iv) γ̊B,A = (̊γA,B)−1 in
B ⊗A −p→/J A⊗B

Proof. Recall that

γ̊A,B = {((a, b) , (b, a)) | a ∈ A and b ∈ B and gA(a) = gB(b)}

We thus have

(̊γA,B)−1 = {((b, a) , (a, b)) | a ∈ A and b ∈ B and gA(a) = gB(b)}
= γ̊B,A

Remark J.5 (Rel(cod) : Rel(Set→)→ Set as a monoidal fibration). Because of the def-
inition of (−)• in Set→ by pullbacks, it seems that the monoidal product ⊗Rel(Set/(−))

is not preserved on the noise by substitution.
On the other hand, [19, Ex. 5.8] mentions, for C a regular category, the C-indexed

monoidal category A 7→ Sub(A), which need not be strict, since relations over C form a
bicategory rather than a category.
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J.1.4. Some Usefull Facts on Set and Rel(Set/J)

We now state two usefull easy facts concerning some interactions of Set with Rel(Set/J).

Lemma J.6. Consider, in Rel(Set/J), maps

P : A −p→/J C R : B −p→/J D

and consider, in Set/J , functions

fA : A→/J A
′ fB : B →/J B

′ fC : C →/J C
′ fD : D →/J D

′

Then we have

(fA × fC)(P )⊗ (fB × fD)(R) = ((fA × fB)× (fC × fD))(P ⊗R)

where
(fA × fC)(P ) = {(fA(a), fC(c)) | (a, c) ∈ P}

and similarly for (fB × fD)(R), and

((fA×fB)×(fC×fD))(P⊗R) = {((fA(a), fB(b)), (fC(c), fD(d))) | ((a, b), (c, d)) ∈ P⊗R}

Proof. We first check that

fA × fB : A⊗B →/J A
′ ⊗B′ fC × fD : C ⊗D →/J C

′ ⊗D′
fA × fC : A⊗ C →/J A

′ ⊗ C ′ fB × fD : B ⊗D →/J B
′ ⊗D′

It is sufficient to look at
fA × fB : A⊗B →/J A

′ ⊗B′

Recall that by definition A⊗B = A×J B and similarly for A′ ⊗B′. Now, given a ∈ A
and b ∈ B with gA(a) = gB(b), by assumption on fA and fB we get gA(a) = gA′(fA(a))
and similarly for fB, from which it follows that

gA′(fA(a)) = gB′(fB(b))

Now we have

((a′, b′), (c′, d′)) ∈ (fA × fC)(P )⊗ (fB × fD)(R)

if and only if there are

((a, b), (c, d)) ∈ (A⊗B)× (C ⊗D)

such that
fA(a) = a′ fB(b) = b′ fC(c) = c′ fD(d) = d′

and
(a, c) ∈ P (b, d) ∈ R

85



J. A Synchronous Symmetric Monoidal Product

that is
((a, b), (c, d)) ∈ P ⊗R

But this is equivalent to

((a′, b′), (c′, d′)) ∈ ((fA × fB)× (fC × fD))(P ⊗R)

Lemma J.7. Consider composable relations

p : A −p→/J B R : B −p→/J C

and maps
fA : A −→/J A

′ fB : B −→/J B
′ fC : C −→/J C

′

such that fB is a bijection.
Then we have

(fA × fC)(R ◦ P ) = [(fB × fC)(R)] ◦ [(fA × fB)(P )]

Proof. Given
(fA(a), fC(c)) ∈ (fA × fC)(R ◦ P )

we have
(a, c) ∈ R ◦ P

Hence there is some b such that

(a, b) ∈ P (b, c) ∈ R

It follows that

(fA(a), fB(b)) ∈ (fA × fB)(P ) (fB(b), fC(c)) ∈ (fB × fC)(R)

Hence
(fA(a), fC(c)) ∈ [(fB × fC)(R)] ◦ [(fA × fB)(P )]

Conversely, given

(fA(a), fC(c)) ∈ [(fB × fC)(R)] ◦ [(fA × fB)(P )]

there is b′ ∈ fB(B) such that

(fA(a), b′) ∈ (fA × fB)(P ) (b′, fC(c)) ∈ (fB × fC)(R)

Now since fB is a bijection, there ia unique b ∈ B such that b′ = fB(b), and it follows
that

(a, b) ∈ P (b, c) ∈ R

Hence
(fA(a), fC(c)) ∈ (fA × fC)(R ◦ P )
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J.2. Complete Automata

Recall from Sect.2 that an automaton A is complete if for every (q, a) ∈ Q× Σ, the set
δ(q, a) is not empty and moreover for every γ ∈ δ(q, a) and every direction d ∈ D, we
have (q′, d) ∈ γ for some q′ ∈ Q.

Given an automaton A with

A = (Q, qı, δ,Ω)

its completion is the automaton

Â := (Q̂, qı, δ̂, Ω̂)

where

• Q̂ := Q+ {true, false},

• the transition function δ̂ is defined as follows:

δ̂(true, q) := {{(true, d) | d ∈ D}}
δ̂(false, q) := {{(false, d) | d ∈ D}}

δ̂(q, a) := {{(false, d) | d ∈ D}} if q ∈ Q and δ(q, a) = ∅
δ̂(q, a) := {γ̂ | γ ∈ δ(q, a)} otherwise

where, given γ ∈ δ(q, a) we let

γ̂ := γ ∪ {(true, d) | there is no q ∈ Q s.t. (q, d) ∈ γ}

• Ω̂ := Ω +Q∗ · true · Q̂ω.

Proposition J.8. L(A) = L(Â).

Full Subcategories and Fibrations. Restricting to complete automata gives rise to

full subcategories ŜAG
(W)

Σ and Âut
(W)

Σ or resp. SAGΣ and Aut(W), and thus induces
fibrations

ĝame : ŜAG
(W)

−→ Tree âut : Âut
(W)

−→ Tree

J.3. Synchronous Monoidal Product on Automata

Assume given complete automata Σ ` A and Σ ` B. Define Σ ` A~ B as follows:

A~ B := (QA ×QB, (qıA, qıB), δA~B,ΩA~B)

where
δA~B((qA, qB), a) :=

⋃
γA ∈ δA(qA, a)
γB ∈ δB(qB, a)

γA ~ γB
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and

γA ~ γB := {((q′A, q′B), d) | d ∈ D and (q′A, d) ∈ γA and (q′B, d) ∈ γB}

and moreover

(qnA, q
n
B)n∈N ∈ ΩA~B iff ((qnA)n∈N ∈ ΩA and (qnB)n∈N ∈ ΩB)

For synchronuous reductions (in categories ŜAG
R

Σ and Âut
R

Σ), we will rather use the
product Σ ` A~≡ B defined as

A~≡ B := (QA ×QB, (qıA, qıB), δA~B,ΩA~≡B)

where

(qnA, q
n
B)n∈N ∈ ΩA~≡B iff ((qnA)n∈N ∈ ΩA ⇐⇒ (qnB)n∈N ∈ ΩB)

J.4. Action on Acceptance Games of the Synchronous Monoidal Product

Given complete Σ ` A and Σ ` B as above, we define projections

$1 : ℘Σ(A~ B,M) → ℘Σ(A,M) and $2 : ℘Σ(A~ B,M) → ℘Σ(B,M)

Note that since A and B are complete:

Lemma J.9. γA ~ γB = γ′A ~ γ
′
B implies γA = γ′A and γB = γ′B.

Proof. Assume that (say) γA 6= γ′A so that (say) we have

(qA, d) ∈ γA \ γ′A

Then, since B is complete, there is qB such that (qB, q) ∈ γB. It follows that

((qA, qB), d) ∈ γA ~ γB \ γ′A ~ γ′B

Using Lem. J.9, we now define the projections

$1 : ℘Σ(A~ B,M) → ℘Σ(A,M) and $2 : ℘Σ(A~ B,M) → ℘Σ(B,M)

The projection $1 : ℘Σ(A~ B,M)→ ℘Σ(A,M) is defined by induction as follows:

$1(ε : (ε, (qıA, q
ı
B))) := ε : (ε, qıA)

$1(s→ (p, a, γA ~ γB)) := $1(s)→ (p, a, γA)
$1(s→ (p · d, (qA, qB)) := $1(s)→ (p · d, qA)

Note that in the second case above, $1 is well defined thanks to Lem. J.9. The other
projection $2 : ℘Σ(A~ B,M)→ ℘Σ(B,M) is defined similarly.
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Note that it readily follows that the following diagram commutes:

℘Σ(A~ B,M)
$2 //

$1

��

℘Σ(B,M)

tr

��
℘Σ(A,M)

tr
// TrΣ

(16)

We write

SP := 〈$1, $2〉 : ℘Σ(A~ B,M) −→ ℘Σ(A,M)×TrΣ
℘Σ(B,M)

Proposition J.10. We have, in Set:

℘Σ(A~ B,M)y
$2 //

$1

��

℘Σ(B,M)

tr

��
℘Σ(A,M)

tr
// TrΣ

Proof. We show that we have a bijection

SP : ℘Σ(A~ B,M)
'−→ ℘Σ(A,M)×TrΣ

℘Σ(B,M)

For the injectivity, consider s, t ∈ ℘Σ(A ~ B,M) such that SP(s) = SP(t). Note that
since $1 and $2 are length-preserving, we must have |s| = |t|. We thus reason by
induction on |s| = |t|. In the base case, we must have s = t = ε : (ε, (qıA, q

ı
B)) and we

are done. For the induction step, there are two cases:

• If

s = s′ → (p, a, γA ~ γB) and t = t′ → (p′, a′, γ′A ~ γ
′
B)

then we must have p = p′ and a = a′ and γA = γ′A and γB = γ′B, and we are done
by induction hypothesis.

• Otherwise, we must have

s = s′ → (p · d, (qA, qB)) and t = t′ → (p′ · d′, a′, (q′A, q′B))

and again, we are done thanks to the induction hypothesis.

For surjectivity, given

(s, t) ∈ ℘Σ(A,M)×TrΣ
℘Σ(B,M)

we must build
u ∈ ℘Σ(A~ B,M)

such that
$1(u) = s and $2(u) = t
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Note that tr(s) = tr(t) implies |s| = |t|. We thus reason by induction on |s| = |t|. In the
case case s = t = ε and we take

u := ε : (ε, (qıA, q
ı
B))

For the induction step, we consider two cases:

• If
s = s′ → (p, a, γA) and t = t′ → (p′, a′, γB)

then tr(s) = tr(t) implies p = p′ and a = a′. Moreover, we have tr(s′) = tr(t′)
and thus, by induction hypothesis, there is some u′ such that SP(u′) = (s′, t′). It
follows that s′ and t′ are of the form:

s′ = ∗A →∗ (p, qA) and t′ = ∗B →∗ (p, qB)

with γA ∈ δA(qA, a) and γB ∈ δB(qB, a). It follows that we extend u′ as follows:

u′ → (p, a, γA ~ γB)

• Otherwise, we must have

s = s′ → (p · d, qA) and t = t′ → (p′ · d′, qB)

then we must have p = p′ and d = d′ since tr(s′) = tr(t′). Moreover tr(s′) = tr(t′)
and by induction hypothesis, we have (s′, t′) = SP(u′) for some u′. On the other
hand, since tr(s′) = tr(t′), we must have, for some a ∈ Σ,

s′ = ∗A →∗ (p, a, γA) and t′ = ∗B →∗ (p, a, γB)

with (qA, d) ∈ γA and (qB, d) ∈ γB. Note that we must have

u′ = ∗A~B →∗ (p, a, γA ~ γB)

But we have ((qA, qB), d) ∈ γA ~ γB and we are done by taking

u := u′ → (p · d, (qA, qB))

J.5. Action on the Synchronous Arrow of the Synchronous Monoidal
Product

We now extend the projections $1 and $2 of Sect. J.4 to the plays of the synchronous
arrow.

In the whole Section, we assume given complete automata A, B, C and D. Using
Lem. J.9, define

$1 : ℘Σ (G(A~ B,M) −~ G(C ~D, N)) → ℘Σ (G(A,M) −~ G(C, N))
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as follows:

$1 ((ε, (qıA, q
ı
B)) , (ε, (qıC , q

ı
D))) := ((ε, qıA) , (ε, qıC))

$1 (s→ ((p, a, γA ~ γB) , (p, (qC , qD)))) := $1(s)→ ((p, a, γA) , (p, qC))
$1 (s→ ((p, a, γA ~ γB) , (p, a, γC ~ γD))) := $1(s)→ ((p, a, γA) , (p, a, γC))
$1 (s→ ((p, a, γA ~ γB) , (p · d, (qC , qD)))) := $1(s)→ ((p, a, γA) , (p · d, qC))
$1 (s→ ((p · d, (qA, qB)) , (p · d, (qC , qD)))) := $1(s)→ ((p · d, qA) , (p · d, qC))

The second projection

$2 : ℘Σ (G(A~ B,M) −~ G(C ~D, N)) → ℘Σ (G(B,M) −~ G(D, N))

is defined similarly.

Lemma J.11. We have, in Set,

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

$2 //

$1

��

℘P
Σ (G(B,M) −~ G(D, N))

tr−~

��
℘P

Σ (G(A,M) −~ G(C, N))
tr−~

// TrΣ

(17)

Proof. By induction on

s ∈ ℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

we show that
tr−~ ◦$1(s) = tr−~ ◦$2(s)

In the base case, we have

s = ((ε, (qıA, q
ı
B)) , (ε, (qıC , q

ı
D)))

with

$1(s) = ((ε, qıA) , (ε, qıC)) and $2(s) = ((ε, qıB) , (ε, qıD))

and we are done since

tr−~ ◦$1(s) = ε = tr−~ ◦$2(s)

For the induction, there are two cases:

Case of s = t
O→ P→ ((p, a, γA ~ γB) , (p, a, γC ~ γD)).

In this case,

$1(s) = $1(t)
O→ P→ ((p, a, γA) , (p, a, γC))

and $2(s) = $2(t)
O→ P→ ((p, a, γB) , (p, a, γD))

Hence
tr−~ ◦$1(s) = tr−~ ◦$1(t) · a

and tr−~ ◦$2(s) = tr−~ ◦$2(t) · a
and we are done since tr−~ ◦$1(t) = tr−~ ◦$2(t) by induction hypothesis.
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Case of s = t
O→ P→ ((p · d, (qA, qB)) , (p · d, (qC , qD))).

In this case,

$1(s) = $1(t)
O→ P→ ((p · d, qA) , (p · d, qC))

and $2(s) = $2(t)
O→ P→ ((p · d, qB) , (p · d, qD))

Hence
tr−~ ◦$1(s) = tr−~ ◦$1(t) · d

and tr−~ ◦$2(s) = tr−~ ◦$2(t) · d

and we are done since tr−~ ◦$1(t) = tr−~ ◦$2(t) by induction hypothesis.

Remark J.12. Note that Lem. J.11 can not be extended to all plays of (G(A~ B,M) −~ G(C ~D, N))
since tr−~ is only defined on P-plays (see Rem F.12).

Consider now the structure isomorphism in Set:

m : (A×B)× (C ×D)
'−→ (A× C)× (B ×D)

Note that m restricts to a bijection in Set/J : Given objects (A, g), (B, h), (C, k) and
(D, l) of Set/J , we have, in Set/J

m : (A×J B)×J (C ×J D)
'−→ (A×J C)×J (B ×J D)

Lemma J.13. In Set, we have

(HS×HS) ◦ SP−~ = m ◦ (SP× SP) ◦HS

in

℘Σ (G(A~ B,M) −~ G(C ~D, N)) −→ (℘Σ(A,M)× ℘Σ(C, N))×(℘Σ(B,M)× ℘Σ(D, N))

In diagram:

℘Σ (G(A~ B,M) −~ G(C ~D, N))
HS //

SP−~
��

℘Σ(A~ B,M)× ℘Σ(C ~D, N)

SP×SP
��

℘Σ (G(A,M) −~ G(C, N))× ℘Σ (G(B,M) −~ G(D, N))

HS×HS
��

(℘Σ(A,M)× ℘Σ(B,M))× (℘Σ(C, N)× ℘Σ(D, N))

m
qq

(℘Σ(A,M)× ℘Σ(C, N))× (℘Σ(B,M)× ℘Σ(D, N))

Proof. By induction on

t ∈ ℘Σ (G(A~ B,M) −~ G(C ~D, N))
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In the base case, we have

t = ((ε, (qıA, q
ı
B)) , (ε, (qıC , q

ı
D)))

and we have

(HS×HS)◦SP−~(t) = (((ε, qıA), (ε, qıC)), ((ε, q
ı
B), (ε, qıD))) = m◦(SP×SP)◦HS(t)

For the induction step, there are four cases.

Case of t = s→ ((p, a, γA ~ γB) , (p, (qC , qD))).

We have

SP−~(t) = ($1(t)→ ((p, a, γA), (p, qC)) , $2(t)→ ((p, a, γB), (p, qD)))

Hence (HS×HS) ◦ SP−~(t) is

( ($1(s)�G(A,M)→ (p, a, γA) , $1(s)�G(C, N)→ (p, qC)) ,
($2(s)�G(B,M)→ (p, a, γB) , $2(s)�G(D, N)→ (p, qD)) )

and (HS×HS) ◦ SP−~(s) is

( ($1(s)�G(A,M) , $1(s)�G(C, N)) ,
($2(s)�G(B,M) , $2(s)�G(D, N)) )

On the other hand,

HS(t) = (s�G(A~ B,M)→ (p, a, γA ~ γB) , s�G(C ~D, N)→ (p, (qC , qD)))

Hence, (SP× SP) ◦HS(t) is

( ($1(s�G(A~ B,M))→ (p, a, γA) , $2(s�G(A~ B,M))→ (p, a, γB))
($1(s�G(C ~D, N))→ (p, qC) , $2(s�G(C ~D, N))→ (p, qD)) )

and (SP× SP) ◦HS(s) is

( ($1(s�G(A~ B,M)) , $2(s�G(A~ B,M)))
($1(s�G(C ~D, N)) , $2(s�G(C ~D, N))) )

Now we are done since by induction hypothesis

(HS×HS) ◦ SP−~(s) = m ◦ (SP× SP) ◦HS(s)

Case of t = s→ ((p, a, γA ~ γB) , (p, a, γC ~ γD)).

We have

SP−~(t) = ($1(t)→ ((p, a, γA), (p, a, γC)) , $2(t)→ ((p, a, γB), (p, a, γD)))
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Hence (HS×HS) ◦ SP−~(t) is

( ($1(s)�G(A,M)→ (p, a, γA) , $1(s)�G(C, N)→ (p, a, γC)) ,
($2(s)�G(B,M)→ (p, a, γB) , $2(s)�G(D, N)→ (p, a, γD)) )

and (HS×HS) ◦ SP−~(s) is

( ($1(s)�G(A,M) , $1(s)�G(C, N)) ,
($2(s)�G(B,M) , $2(s)�G(D, N)) )

On the other hand,

HS(t) = (s�G(A~ B,M)→ (p, a, γA ~ γB) , s�G(C ~D, N)→ (p, a, γC ~ γD))

Hence, (SP× SP) ◦HS(t) is

( ($1(s�G(A~ B,M))→ (p, a, γA) , $2(s�G(A~ B,M))→ (p, a, γB))
($1(s�G(C ~D, N))→ (p, a, γC) , $2(s�G(C ~D, N))→ (p, a, γD)) )

and (SP× SP) ◦HS(s) is

( ($1(s�G(A~ B,M)) , $2(s�G(A~ B,M)))
($1(s�G(C ~D, N)) , $2(s�G(C ~D, N))) )

Now we are done since by induction hypothesis

(HS×HS) ◦ SP−~(s) = m ◦ (SP× SP) ◦HS(s)

Case of t = s→ ((p, a, γA ~ γB) , (p · d, (qC , qD))).

We have

SP−~(t) = ($1(t)→ ((p, a, γA), (p · d, qC)) , $2(t)→ ((p, a, γB), (p · d, qD)))

Hence (HS×HS) ◦ SP−~(t) is

( ($1(s)�G(A,M)→ (p, a, γA) , $1(s)�G(C, N)→ (p · d, qC)) ,
($2(s)�G(B,M)→ (p, a, γB) , $2(s)�G(D, N)→ (p · d, qD)) )

and (HS×HS) ◦ SP−~(s) is

( ($1(s)�G(A,M) , $1(s)�G(C, N)) ,
($2(s)�G(B,M) , $2(s)�G(D, N)) )

On the other hand,

HS(t) = (s�G(A~ B,M)→ (p, a, γA ~ γB) , s�G(C ~D, N)→ (p · d, (qC , qD)))
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Hence, (SP× SP) ◦HS(t) is

( ($1(s�G(A~ B,M))→ (p, a, γA) , $2(s�G(A~ B,M))→ (p, a, γB))
($1(s�G(C ~D, N))→ (p · d, qC) , $2(s�G(C ~D, N))→ (p · d, qD)) )

and (SP× SP) ◦HS(s) is

( ($1(s�G(A~ B,M)) , $2(s�G(A~ B,M)))
($1(s�G(C ~D, N)) , $2(s�G(C ~D, N))) )

Now we are done since by induction hypothesis

(HS×HS) ◦ SP−~(s) = m ◦ (SP× SP) ◦HS(s)

Case of t = s→ ((p · d, (qA, qB)) , (p · d, (qC , qD))).

We have

SP−~(t) = ($1(t)→ ((p · d, qA), (p · d, qC)) , $2(t)→ ((p · d, qB), (p · d, qD)))

Hence (HS×HS) ◦ SP−~(t) is

( ($1(s)�G(A,M)→ (p · d, qA) , $1(s)�G(C, N)→ (p · d, qC)) ,
($2(s)�G(B,M)→ (p · d, qB) , $2(s)�G(D, N)→ (p · d, qD)) )

and (HS×HS) ◦ SP−~(s) is

( ($1(s)�G(A,M) , $1(s)�G(C, N)) ,
($2(s)�G(B,M) , $2(s)�G(D, N)) )

On the other hand,

HS(t) = (s�G(A~ B,M)→ (p · d, (qA, qB)) , s�G(C ~D, N)→ (p · d, (qC , qD)))

Hence, (SP× SP) ◦HS(t) is

( ($1(s�G(A~ B,M))→ (p · d, qA) , $2(s�G(A~ B,M))→ (p · d, qB))
($1(s�G(C ~D, N))→ (p · d, qC) , $2(s�G(C ~D, N))→ (p · d, qD)) )

and (SP× SP) ◦HS(s) is

( ($1(s�G(A~ B,M)) , $2(s�G(A~ B,M)))
($1(s�G(C ~D, N)) , $2(s�G(C ~D, N))) )

Now we are done since by induction hypothesis

(HS×HS) ◦ SP−~(s) = m ◦ (SP× SP) ◦HS(s)
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J.6. Action on Strategies of the Synchronous Monoidal Product

We now define the action of ~ on strategies. As above, in the whole Section, we
assume given complete automata A, B, C and D. Consider

Σ ` σ : G(A,M) −~ G(C, N) and Σ ` θ : G(B,M) −~ G(D, N)

By Lem. J.11, we have

SP−~

(
℘P

Σ [G(A~ B,M) −~ G(C ~D, N)]
)
⊆ ℘P

Σ (G(A,M) −~ G(C, N))×TrΣ
℘P

Σ (G(B,M) −~ G(D, N))

Now, since

σ ⊆ ℘P
Σ(G(A,M) −~ G(C, N)) and θ ⊆ ℘P

Σ(G(B,M) −~ G(D, N))

we have
SP−1
−~(σ, τ) ⊆ ℘P

Σ (G(A~ B,M) −~ G(C ~D, N))

Definition J.14. Given

Σ ` σ : G(A,M) −~ G(C, N) and Σ ` θ : G(B,M) −~ G(D, N)

define
Σ ` σ ~ θ : G(A~ B,M) −~ G(C ~D, N)

as
σ ~ θ := SP−1

−~(σ, θ)

Proposition J.15. Consider

Σ ` σ : G(A,M) −~ G(C, N) and Σ ` θ : G(B,M) −~ G(D, N)

(i) Σ ` σ ~ θ : G(A~ B,M) −~ G(C ~D, N)

(ii) If σ and τ are both total then σ ~ τ is total.

(iii) If σ and τ are both morphisms of ŜAG
W

Σ (resp. ŜAG
R

Σ), then σ~τ is a morphism

of ŜAG
W

Σ (resp. ŜAG
R

Σ).

Proof. We show (i) that σ ~ τ is a synchronous strategy, (ii) that σ ~ τ is total when σ
and τ are both total, and (iii) that σ ~ τ is winning w.r.t. −~ as soon as σ and τ are
both winning w.r.t. −~ (resp. ~−~).

(i) We have to show that σ ~ τ is a P-deterministic P-prefix-closed set of negative
P-plays.

The last point is ensured (via Lem. J.11) by construction of σ ~ τ , and P-prefix-
closure follows from the fact that $1 and $2 are length-preserving.

It remains to check that σ ~ τ is P-deterministic. There are two cases to consider.
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• Assume that σ ~ τ contains the two following plays

s
O→ ((p, a, γA ~ γB) , (p, (qC , qD)))

P→ ((p, a, γA ~ γB) , (p, a, γC ~ γD))

s
O→ ((p, a, γA ~ γB) , (p, (qC , qD)))

P→ ((p, a, γA ~ γB) , (p, a, γ′C ~ γ
′
D))

By construction, the two following plays belong to σ

$1(s)
O→ ((p, a, γA) , (p, qC))

P→ ((p, a, γA) , (p, a, γC))

$1(s)
O→ ((p, a, γA) , (p, qC))

P→ ((p, a, γA) , (p, a, γ′C))

hence γC = γ′C by P-determinism of σ.

We similarly get γD = γ′D (using τ instead of σ).

• Assume that σ ~ τ contains the two following plays

s
O→ ((p, a, γA ~ γB) , (p · d, (qC , qD)))

P→ ((p · d, (qA, qB)) , (p · d, (qC , qD)))

s
O→ ((p, a, γA ~ γB) , (p · d, (qC , qD)))

P→ ((p · d, (q′A, q′B)) , (p · d, (qC , qD)))

By construction, the two following plays belong to σ

$1(s)
O→ ((p, a, γA) , (p · d, qC))

P→ ((p · d, qA) , (p · d, qC))
$1(s)

O→ ((p, a, γA) , (p · d, qC))
P→ ((p · d, q′A) , (p · d, qC))

hence qA = q′A by P-determinism of σ.

We similarly get qB = q′B (using τ instead of σ).

(ii) We check that σ ~ τ is total as soon as σ and τ are total.

So consider a play s ∈ σ ~ τ extended by some O-move, say:

s
O→ ((p, a, γA ~ γB) , (p, (qC , qD)))

By construction, we have

$1(s)
O→ ((p, a, γA) , (p, qC)) ∈ σ

$2(s)
O→ ((p, a, γB) , (p, qD)) ∈ τ

By totality of σ and τ , for some P-moves, we have

$1(s)
O→ ((p, a, γA) , (p, qC))

P→ ((p, a, γA) , (p, a, γC)) ∈ σ

$2(s)
O→ ((p, a, γB) , (p, qD))

P→ ((p, a, γB) , (p, a, γD)) ∈ τ

By construction of σ ~ τ , we conclude:

s
O→ ((p, a, γA~γB) , (p, (qC , qD)))

P→ ((p, a, γA~γB) , (p, a, γC~γD)) ∈ σ~τ
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The other possiblity is that

s
O→ ((p, a, γA ~ γB) , (p · d, (qC , qD))

By construction, we have

$1(s)
O→ ((p, a, γA) , (p · d, qC)) ∈ σ

$2(s)
O→ ((p, a, γB) , (p · d, qD)) ∈ τ

By totality of σ and τ , for some P-moves, we have

$1(s)
O→ ((p, a, γA) , (p · d, qC))

P→ ((p · d, qA) , (p · d, qC)) ∈ σ

$2(s)
O→ ((p, a, γB) , (p · d, qD))

P→ ((p · d, qB) , (p · d, qD)) ∈ τ

By construction of σ ~ τ , we conclude:

s
O→ ((p, a, γA~γB) , (p·d, (qC , qD)))

P→ ((p·d, (qA, qB)) , (p·d, (qC , qD))) ∈ σ~τ

(iii) Consider now an infinite play π of σ ~ τ . By construction of −~ and ~−~, the
projections of π on ℘(A ~ B,M) and ℘(C ~ D, N) must be both infinite. Let
(qnA, q

n
B)n∈N be the projection of π on the states of A ~ B (resp. A ~≡ B) and

(qnC , q
n
D)n∈N be its projection on the states of C ~D (resp. C ~≡ D).

Consider first the case of σ and τ morphisms of ŜAG
W

Σ (i.e. both winning w.r.t.
−~). If (qnA, q

n
B)n∈N ∈ ΩA~B, then we have both (qnA)n∈N ∈ ΩA and (qnB)n∈N ∈ ΩB.

By assumption on σ and τ , this implies (qnC )n∈N ∈ ΩC and (qnD)n∈N ∈ ΩD, hence
(qnC , q

n
D)n∈N ∈ ΩC~D,

Consider now the case of reduction games, that is of σ and τ both morphisms of

ŜAG
R

Σ. We have to show

(qnA, q
n
B)n∈N ∈ ΩA~≡B ⇐⇒ (qnC , q

n
D)n∈N ∈ ΩC~≡D

that is

[(qnA)n∈N ∈ ΩA ⇐⇒ (qnB)n∈N ∈ ΩB] ⇐⇒ [(qnC )n∈N ∈ ΩC ⇐⇒ (qnD)n∈N ∈ ΩD]

under the assumptions

[(qnA)n∈N ∈ ΩA ⇐⇒ (qnC )n∈N ∈ ΩC ] and [(qnB)n∈N ∈ ΩB ⇐⇒ (qnD)n∈N ∈ ΩD]

But this is a propositional tautology.
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J.7. Universal Properties

As above, in the whole Section, we assume given complete automata A, B, C and D.
Similarly to what we have done with Prop. G.14 in Sect. G.3, we are now going to

show that diagram (17) of Lem. J.11 is actually a pullback diagram. That is:

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

y
$2 //

$1

��

℘P
Σ (G(B,M) −~ G(D, N))

tr−~

��
℘P

Σ (G(A,M) −~ G(C, N))
tr−~

// TrΣ

(18)

Simlarly as for Prop. G.14, we will use the pullback lemma (see e.g. [12, Exercise 1.5.5,
p. 30]).

Lemma J.16. If

A //

��

Cy //

��

E

��
By //

��

F F

D // F

and Ay //

��

C // E

��
B

��

F F

D // F

then
Ay //

��

C

��
B // F

Proof. By applying the pullback lemma to

Ay //

��

C // E

��
B

��

F

D // F F

and

By //

��

F

D // F F

we get
Ay //

��

C // E

��
B // F F

and we conclude by a second application of the pullback lemma to

Cy //

��

E

��
F F
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In order to obtain (18) we will apply Lem. J.16, with

℘P
Σ (G(A,M) −~ G(C, N))

tr−~ //
y

HS
��

TrΣ

℘(A,M)×TrΣ
℘(C, N) // TrΣ

and ℘P
Σ (G(B,M) −~ G(D, N))

tr−~

��

y
HS // ℘(B,M)×TrΣ

℘(D, N)

��
TrΣ TrΣ

for respectively
By //

��

F

D // F

and Cy //

��

E

��
F F

It remains to show

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

y
HS◦$2 //

HS◦$1

��

℘(B,M)×TrΣ
℘(D, N)

��
℘(A,M)×TrΣ

℘(C, N) // TrΣ

(19)

Thanks to Lem. J.13, property (19) will follow from

Lemma J.17. SP2 ◦HS is a bijection from

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

to
(℘(A,M)×TrΣ

℘(B,M))×TrΣ
(℘(C, N)×TrΣ

℘(D, N))

Proof. First, it follows from Cor. F.9 that HS is a bijection from

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

to
℘(A~ B,M)×TrΣ

℘(C ~D, N)

Then we are done since by Prop. J.10 the following maps are bijections:

SP : ℘(A~ B,M) −→ ℘(A,M)×TrΣ
℘(B,M)

SP : ℘(C ~D, N) −→ ℘(C, N)×TrΣ
℘(D, N)

Lemma J.18. In Set,

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

y
HS◦$2 //

HS◦$1

��

℘(B,M)×TrΣ
℘(D, N)

��
℘(A,M)×TrΣ

℘(C, N) // TrΣ
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Proof. Commutation the diagram follows from Lem. J.11 and Prop. F.6.
We have to show that HS2 ◦ SP is a bijection from

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

to
(℘(A,M)×TrΣ

℘(C, N))×TrΣ
(℘(B,M)×TrΣ

℘(D, N))

By Lem. J.17 the map SP2 ◦HS is a bijection from

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

to
(℘(A,M)×TrΣ

℘(B,M))×TrΣ
(℘(C, N)×TrΣ

℘(D, N))

Now we are done since the structure map m restricts to a bijection in Set/TrΣ:

(℘(A,M)×TrΣ
℘(B,M))×TrΣ

(℘(C, N)×TrΣ
℘(D, N)) −→

(℘(A,M)×TrΣ
℘(C, N))×TrΣ

(℘(B,M)×TrΣ
℘(D, N))

We thus have shown

Proposition J.19. In Set,

℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

y
$2 //

$1

��

℘P
Σ (G(B,M) −~ G(D, N))

tr−~

��
℘P

Σ (G(A,M) −~ G(C, N))
tr−~

// TrΣ

J.8. Characterization of the action of ~ on Strategies

As above, in the whole Section, we assume given complete automata A, B, C and D.
Thanks to the HS functor (see Prop. F.5)

HS : SAGΣ −→ Rel(Set/TrΣ)

we relate the action of ~ on strategies to the tensorial product ⊗ of Rel(Set/TrΣ).
Consider

Σ ` σ : G(A,M) −~ G(C, N) and Σ ` θ : G(B,M) −~ G(D, N)

Note that
HS(σ ~ τ) ⊆ ℘Σ(A~ B,M)×TrΣ

℘Σ(C ~D, N)

Recall that by Prop. J.10 we have a bijection

SP : ℘Σ(A~ B,M)
'−→ ℘Σ(A,M)×TrΣ

℘Σ(B,M)
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We thus have, in Set,

(SP×SP)◦HS(σ~ τ) ⊆ [℘Σ(A,M)×TrΣ
℘Σ(B,M)]×TrΣ

[℘Σ(C, N)×TrΣ
℘Σ(D, N)]

In other words:

(SP× SP) ◦HS(σ ~ τ) : ℘Σ(A,M)⊗ ℘Σ(B,M) −p→/TrΣ
℘Σ(C,M)⊗ ℘Σ(B, N)

On the other hand, we have

HS(σ) : ℘Σ(A,M) −p→/TrΣ
℘Σ(C,M) and HS(τ) : ℘Σ(B,M) −p→/TrΣ

℘Σ(D,M)

hence

HS(σ)⊗HS(τ) : ℘Σ(A,M)⊗ ℘Σ(B,M) −p→/TrΣ
℘Σ(C,M)⊗ ℘Σ(B, N)

Lemma J.20. m−1 ◦ (HS×HS) ◦ SP−~(σ ~ τ) = HS(σ)⊗HS(τ)

Proof. Recall that

HS(σ)⊗HS(τ) ⊆ (℘Σ(A,M)⊗ ℘Σ(B,M))×TrΣ
(℘Σ(C, N)⊗ ℘Σ(D, N))

and consider

((s, t), (u, v)) ∈ (℘Σ(A,M)⊗ ℘Σ(B,M))×TrΣ
(℘Σ(C, N)⊗ ℘Σ(D, N))

Note that
tr(s) = tr(t) = tr(u) = tr(v)

By definition of the action of ⊗ on morphisms of Rel(Set/TrΣ), we have

((s, t), (u, v)) ∈ HS(σ)⊗HS(τ)

if and only if
(s, u) ∈ HS(σ) and (t, v) ∈ HS(τ)

if and only if there are

a ∈ ℘Σ(G(A,M) −~ G(C, N)) and b ∈ ℘Σ(G(B,M) −~ G(D, N))

such that

HS(a) = (s, u) and HS(b) = (t, v) and a ∈ σ and b ∈ τ

if and only if (by Prop. J.19, by definition of σ~τ , and since tr(s) = tr(t) = tr(u) = tr(v))
there is

c ∈ σ ~ τ ⊆ ℘P
Σ (G(A~ B,M) −~ G(C ~D, N))

such that SP−~(c) = (a, b).

Proposition J.21. (SP× SP) ◦HS(σ ~ τ) = HS(σ)⊗HS(τ).

Proof. By Let. J.20 we have

(HS×HS) ◦ SP−~(σ ~ τ) = m ◦ (HS(σ)⊗HS(τ))

On the other hand, by Lem. J.13 we have

(HS×HS) ◦ SP−~(σ ~ τ) = m ◦ (SP× SP) ◦HS(σ ~ τ)

and we are done since m is a bijection.
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J.9. Uniform Bifunctoriality

Proposition J.22 (Uniform Bifunctoriality of ~ in ŜAG
(W/R)

Σ ). In ŜAG
(W/R)

Σ :

(i) Given Σ ` G(A,M) and Σ ` G(B,M), we have

id(A,M) ~ id(B,M) = id(A~B,M)

in
Σ ` G(A~ B,M) −→ Σ ` G(A~ B,M)

(ii) Given

Σ ` G(A0,M)
σ0−→ Σ ` G(A1, N)

σ1−→ Σ ` G(A2, P )

and
Σ ` G(B0,M)

τ0−→ Σ ` G(B1, N)
τ1−→ Σ ` G(B2, P )

we have
(σ1 ◦ σ0)~ (τ1 ◦ τ0) = (σ1 ~ τ1) ◦ (σ0 ~ τ0)

in
Σ ` G(A0 ~ B0,M) −→ Σ ` G(A2 ~ B2, P )

Proof. (i) By Prop. J.21, we have

SP2 ◦HS(id(A,M) ~ id(B,M)) = HS(id(A,M))⊗HS(id(B,M))

By functoriality of HS (Prop. D.12) we deduce

SP2 ◦HS(id(A,M) ~ id(B,M)) = 1℘Σ(A,M) ⊗ 1℘Σ(B,M)

where 1℘Σ(A,M) and 1℘Σ(B,M) are the identity relations on ℘Σ(A,M) and ℘Σ(B,M).
By bifunctoriality of ⊗ in Rel(Set/TrΣ) (Prop. J.1) we get

SP2 ◦HS(id(A,M) ~ id(B,M)) = 1℘Σ(A,M)⊗℘Σ(B,M)

On the other hand, again by functoriality of HS (Prop. D.12) we have

SP2 ◦HS(id(A~B,M)) = SP2(1℘(A~B,M))

where
1℘(A~B,M) ⊆ ℘(A~ B,M)×TrΣ

℘(A~ B,M)

is the identity relation.

Note that by definition of SP and of 1℘(A~B,M) we have

((s, t), (u, v)) ∈ SP2(1℘(A~B,M))
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if and only if there is a ∈ ℘(A~ B,M) such that SP(a) = (s, t) = (u, v). It then
follows from Prop. J.10 that

SP2(1℘(A~B,M)) = {((s, t), (s, t)) | (s, t) ∈ ℘(A,M)×TrΣ
℘(B,M)}

= {((s, t), (s, t)) | (s, t) ∈ ℘(A,M)⊗ ℘(B,M)}
= 1℘(A,M)⊗℘(B,M)

Hence we are done since

SP2(1℘(A~B,M)) = 1℘(A,M)⊗℘(B,M)

(ii) By Prop. J.21, we have

SP2 ◦HS ((σ1 ◦ σ0)~ (τ1 ◦ τ0)) = HS(σ1 ◦ σ0)⊗HS(τ1 ◦ τ0)

By functoriality of HS (Prop. D.11) we deduce

SP2 ◦HS ((σ1 ◦ σ0)~ (τ1 ◦ τ0)) = (HS(σ1) ◦HS(σ0))⊗ (HS(τ1) ◦HS(τ0))

and by bifunctoriality of ⊗ in Rel(Set/TrΣ) (Prop. J.1) we get (where compo-
sition on the right is in Rel(Set/TrΣ)):

SP2 ◦HS ((σ1 ◦ σ0)~ (τ1 ◦ τ0)) = (HS(σ1)⊗HS(τ1)) ◦ (HS(σ0)⊗HS(τ0))

By Prop. J.21 again, we deduce

SP2 ◦HS ((σ1 ◦ σ0)~ (τ1 ◦ τ0)) =
[
SP2(HS(σ1 ~ τ1))

]
◦
[
SP2(HS(σ0 ~ τ0))

]
Since the maps SP are bijections (Prop. J.10), it follows from Lem. J.7 the family
of maps SP2 = SP× SP preserves relational composition, hence

SP2 ◦HS ((σ1 ◦ σ0)~ (τ1 ◦ τ0)) = SP2 (HS(σ1 ~ τ1) ◦HS(σ0 ~ τ0))

and again by functoriality of HS (Prop. D.11) we obtain

SP2 ◦HS ((σ1 ◦ σ0)~ (τ1 ◦ τ0)) = SP2 ◦HS ((σ1 ~ τ1) ◦ (σ0 ~ τ0))

Now we are done since SP2 ◦ HS is bijective on plays of strategies, thanks to
Lem. D.7.(i) and Prop. J.10.

J.10. Structure Maps and Coherence

We now provide the synchronous product with symmetric monoidal structure.
As explained above, for the moment we only discuss the first partial variant of −~ ,

which only deals-with acceptance games Σ ` G(A,M) and Σ ` G(B,M) with the same
substituted tree M . As above, we only consider complete automata.

We build on the monoidal structure of Rel(Set/J) (see Sect. J.1, in part. Lem. J.3
and Prop. J.4).

The natural structure maps of ~ will be defined from those of Rel(Set/J) in a
way similar to the definition of the identity strategy via from the identity synchronuous
relation in Prop. D.12.
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J.10.1. Monoidal Unit.

For the monoidal unit of alphabet Σ we will take the game

Σ ` G(I, IdΣ)

Recall that
I = (QI , q

ı
I , δI ,ΩI)

where the state set if QI = 1 = {•}, the initial state is qıI = •, the transition function is

δI(q
ı
I , a) = {{(qıI , d) | d ∈ D}} for all a ∈ Σ

and the acceptance condition is ΩI := {qıI}ω.
In the following, it will be at some point notationally convenient to use the game

Σ ` G(I,M) as monoidal unit (rather than Σ ` G(I, IdΣ). We actually have:

Lemma J.23. Σ ` G(I,M) = Σ ` G(I, Id)

Proof. The positions of the two games are the same, as well as the O-labelled edges. The
same holds for the P-labelled edges, since the transition function of I is constant.

Recall from Sect. J.1 that in Rel(Set/TrΣ), the unit of the monoidal product ⊗
must be an object of the form I

'−→ TrΣ. The corresponding property holds for I,
namely tr : ℘Σ(I,M) ' TrΣ in Set.

Proposition J.24. Given M ∈ Tree[Σ,Γ], we have, in Set,

tr : ℘Σ(I,M)
'−→ TrΣ

Proof. We first show that tr is injective. Note that if tr(s) = tr(t), then s and t must
have the same length and end by the same kind of moves. We thus show by induction
on |s| = |t| that tr(s) = tr(t) implies s = t.

In the case case, we have |s| = |t| = 0 and we are done since we must have

s = (ε, qıI) = t

For the inductive step, there are two cases:

Case of s = s′ → (p, a, γ) and t = t′ → (p′, a′, γ′)

Then tr(s) = tr(t) implies a = a′, and by Lem. F.1 we also get p = p′.

We moreover have γ = γ′ since δI(q
ı
I , b) is always a singletton, and we conclude

by induction hypothesis, since tr(s) = tr(t) implies tr(s′) = tr(t′).

Case of s = s′ → (p · d, qıI) and t = t′ → (p′ · d′, qıI)

Then tr(s) = tr(t) implies d = d′ and by Lem. F.1 we moreover get p = p′.

We can then conclude by induction hypothesis, since tr(s) = tr(t) implies tr(s′) =
tr(t′).
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We now show that tr is surjective, i.e. that for all trace

t ∈ TrΣ = (Σ ·D)∗ + (Σ ·D)∗ · Σ

there is s ∈ ℘Σ(I,M) such that tr(s) = t. We reason by induction on t. For the base
case t = ε, we take s := (ε, qıI). For the induction step, there are two cases:

Case of t = t′ · a. By induction hypothesis, there is s′ such that tr(s′) = t′. But in this
case, s′ must be of the form

s′ : ∗ →∗ (p, qıI)

Since δI is constant, it follows that we are done by taking

s := s′ → (p, a, γ) ∈ ℘Σ(I,M)

Case of t = t′ · d. By induction hypothesis, there is s′ such that tr(s′) = t′. Then s′ is
of the form

s′ : ∗ →∗ (p, a, γ)

Now, by definition of δI , we have (qıI , d) ∈ γ, hence we are done by taking:

s := s′ → (p · d, qıI) ∈ ℘Σ(I,M)

Remark J.25. Note that Prop. J.24 fails for the unit automata Σ ` ‹ (see also Sect. M.2):
tr is not injective since we can have two distinct γ and γ′ in δ‹( , ).

Moreover, w.r.t. surjectivity, for the case of t = t′ · d, not every play s′ of ‹ with
tr(s′) = t can be extended to a play s such that tr(s) = t.

J.10.2. Symmetric Monoidal Structure Maps.

Consider Σ ` G(A,M), Σ ` G(B,M), and Σ ` G(C,M), where A, B and C are complete
auotmata.

Proposition J.4 provides us with a symmetric monoidal structure in Rel(Set/TrΣ) for
⊗ with (thanks to Prop. J.24) unit ℘(I,M):

α̊A,B,C : (℘(A,M)⊗ ℘(B,M))⊗ ℘(C,M) −p→TrΣ
℘(A,M)⊗ (℘(B,M)⊗ ℘(C,M))

λ̊A : ℘(I,M)⊗ ℘(A,M) −p→TrΣ
℘(A,M)

ρ̊A : ℘(A,M)⊗ ℘(I,M) −p→TrΣ
℘(A,M)

γ̊A,B : ℘(A,M)⊗ ℘(B,M) −p→TrΣ
℘(B,M)⊗ ℘(A,M)

Recall that by construction we have

([(Σ ` G(A,M))~ (Σ ` G(B,M))]~ (Σ ` G(C,M))) = Σ ` G((A~ B)~ C , M)

and similarly for G(A~ (B ~ C),M).
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Moreover by Prop. J.10 we have bijections

((SP× 1)× (1× SP)) ◦ (SP× SP) :

℘ (G((A~ B)~ C,M)) × ℘ (G(A~ (B ~ C),M)) −→
(℘(A,M)⊗ ℘(B,M))⊗ ℘(C,M) × ℘(A,M)⊗ (℘(B,M)⊗ ℘(C,M))

(SP× 1) :

℘ (G(I ~A,M)) × ℘ (G(A,M)) −→
℘(I,M)⊗ ℘(A,M) × ℘(A,M)

(SP× 1) :

℘ (G(A~ I,M)) × ℘ (G(A,M)) −→
℘(A,M)⊗ ℘(I,M) × ℘(A,M)

(SP× SP) :

℘ (G(A~ B,M)) × ℘ (G(B ~A,M)) −→
℘(A,M)⊗ ℘(B,M) × ℘(B,M)⊗ ℘(A,M)

Now, thanks to Lem. J.2, Prop. F.15 gives us total isomorphisms

αA,B,C : G((A~ B)~ C,M) −→
ŜAGΣ

G(A~ (B ~ C),M)

λA : G(I ~A,M) −→
ŜAGΣ

G(A,M)

ρA : G(A~ I,M) −→
ŜAGΣ

G(A,M)

γA,B : G(A~ B,M) −→
ŜAGΣ

G(B ~A,M)

(20)

such that

α̊A,B,C = ((SP× 1)× (1× SP)) ◦ (SP× SP) ◦HS(αA,B,C)

λ̊A = (SP× 1) ◦HS(λA)
ρ̊A = (SP× 1) ◦HS(ρA)

γ̊A,B = (SP× SP) ◦HS(γA,B)

Lemma J.26. The above strategies are isomorphisms of ŜAG
(W/R)

Σ .

Proof. Since totality was ensured by Prop. F.15, we only have to check that these strate-

gies are winning w.r.t. their respective winning conditions in ŜAG
W

Σ and ŜAG
R

Σ. Sim-
ilarly as with Prop. J.15, expanding the winning conditions gives propositionnal tau-

tologies. Note that for the associativity maps α̊, winning w.r.t. ŜAG
R

Σ requires classical
logic.
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J.10.3. Naturality and Coherence.

Lemma J.27. The maps αA,B,C, λA, ρA and γA are natural in A, B and C (when
applicable).

Proof. For

αA,B,C : G((A~ B)~ C,M) −→ G(A~ (B ~ C),M)

given

σ : G(A,M) −→ G(A′,M ′) τ : G(B,M) −→ G(B′,M ′) θ : G(C,M) −→ G(C′,M ′)

we have to show that

αA′,B′,C′ ◦ ((σ ~ τ)~ θ) = (σ ~ (τ ~ θ)) ◦ αA,B,C

By Cor. F.9 and Prop. J.10 we have a bijection

((SP× 1)× (1× SP)) ◦ (SP× SP) ◦HS

Hence, by Prop. D.11 it suffices to show (where the outer compositions are taken in
Set/J and the inner in Rel(Set/J))

((SP× 1)× (1× SP)) ◦ (SP× SP)
(
HS(αA′,B′,C′) ◦HS((σ ~ τ)~ θ)

)
=

((SP× 1)× (1× SP)) ◦ (SP× SP) (HS(σ ~ (τ ~ θ)) ◦HS(αA,B,C))

We now perform four applications of Lem. J.7 (relational composition by maps with cen-
tral bijections), with central bijections. The first two ones are consecutively performed
in the l.-h.s., with central bijections SP and then (SP×1). The last two are consecutively
performed in the r.-h.s., with central bijections SP and then (1× SP).
By defintion of α−,−,−, we are left to show (where the outer compositions are taken in
Rel(Set/J) and the inner in Set/J)

αA′,B′,C′ ◦ [((SP× 1)× (SP× 1)) ◦ (SP× SP) ◦HS((σ ~ τ)~ θ)] =

[((1× SP)× (1× SP)) ◦ (SP× SP) ◦HS(σ ~ (τ ~ θ))] ◦ αA,B,C

But now, by Prop. J.21, and because Cartesian products of maps of Set/TrΣ commute
over ⊗ (Lem. J.6) we have

((SP× 1)× (SP× 1)) ◦ (SP× SP) ◦HS((σ ~ τ)~ θ)
= ((SP× 1)× (SP× 1)) [HS(σ ~ τ)⊗HS(θ)]
= (SP× SP) ◦HS(σ ~ τ)⊗ (1× 1) ◦HS(θ)
= (HS(σ)⊗HS(τ))⊗HS(θ)

and
((1× SP)× (1× SP)) ◦ (SP× SP) ◦HS(σ ~ (τ ~ θ))

= ((1× SP)× (1× SP)) [HS(σ)⊗HS(τ ~ θ)]
= (1× 1) ◦HS(σ)⊗ (SP× SP) ◦HS(τ ~ θ)
= HS(σ)⊗ (HS(τ)⊗HS(θ))
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and we conclude by Lem. J.3.
The case of

γA,B : G(A~ B,M) −→ G(B ~A,M)

can be handled similarly.
For

λA : G(I ~A,M) −→ G(A,M)

given
σ : G(A,M) −→ G(A′,M ′)

we have to show
λA′ ◦ (idI ~ σ) = σ ◦ λA′

We proceed similarly as with α above. Thanks to the bijection

(SP× 1) ◦HS

it is sufficient to show

(SP× 1) ◦HS(λA′ ◦ (idI ~ σ)) = (SP× 1) ◦HS(σ ◦ λA′)

that is

(SP× 1)(HS(λA′) ◦HS(idI ~ σ)) = (SP× 1)(HS(σ) ◦HS(λA′))

We now apply Lem. J.7, with, as central bijections, SP on the l.-h.s. and 1 on the r.-h.s.
By defintion of λ−, we are left to show

λA′ ◦ (HS(idI)⊗HS(σ)) = HS(σ) ◦ λ̊A′

And we are done by Prop. D.12 and Lem. J.3.
The case of ρ̊A can be dealt-with similarly.

Can be shown using the same techniques as for Lem. J.27, but relying on Prop. J.4
instead of Lem. J.3, we can show that the expected coherence digrams are satisfied by
the maps α(−),(−),(−), λ(−), ρ(−) and γ(−),(−). As in Prop J.4 above, we only discuss the
diagrams required by [16].

Lemma J.28.

(i) αA,B,(C~D) ◦ αA~B,C,D = (idA ~ αB,C,D) ◦ αA,(B~C),D ◦ (αA,B,C ~ idD)

in

G((((A~ B)~ C)~D),M) −→
ŜAG

(W)

Σ

G(A~ (B ~ (C ~D)),M)

(ii) (idA ~ λA) ◦ αA,I,B = ρA ~ idB

in
G((A~ I)~ B,M) −→

ŜAG
(W)

Σ

G(A~ B,M)
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(iii) αB,C,A ◦ (γA,(B~C)) ◦ αA,B,C = (idB ~ γA,C) ◦ αB,A,C ◦ (γA,B ~ idC)

in
G((A~ B)~ C,M) −→

ŜAG
(W)

Σ

G(B ~ (C ~A),M)

(iv) γB,A = (γA,B)−1

in
G(B ~A,M) −→

ŜAG
(W)

Σ

G(A~ B,M)
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K. Symmetric Monoidal Fibrations of Games and Automata

In this section, we define a synchronous product ~ and show that substitutions restrict
to split indexed symmetric monoidal categories (in the sense of [21]):

(−)∗ : Alphop → SymMonCat
(−)∗ : Treeop → SymMonCat

leading to symmetric monoidal fibrations.

K.1. Symmetric Monoidal Categories of Automata

We first discuss the symmetric monoidal structure of the categories Âut
(W)

Σ .
The bifunctoriality of ~ directly follows from Prop. J.15 and Prop. J.22. The

monoidal unit of Âut
(W)

Σ is Σ ` I, and the symmetric monoidal structure maps are as
follows, following Sect. J.10.2:

αA,B,C : G((A~ B)~ C,M) −→
ŜAGΣ

G(A~ (B ~ C),M)

λA : G(I ~A,M) −→
ŜAGΣ

G(A,M)

ρA : G(A~ I,M) −→
ŜAGΣ

G(A,M)

γA,B : G(A~ B,M) −→
ŜAGΣ

G(B ~A,M)

Hence, using Lem. J.26, Lem. J.27 and Lem. J.28 we get

Proposition K.1 (Symmetric Monoidal Structure in ÂutΣ). The categories Âut
(W)

Σ ,
equipped with the above data, are symmetric monoidal.

K.2. Compatibility of the Synchronuous Product with Substitution

In this Section, we discuss the compatibility with substitution of the partial version of the
monoidal product ~ . This will give the symmetric monoidal structure of the categories
of acceptance games, as well as the strict symmetric monoidality of substitution.

Recall that a (strong) symmetric monoidal functor F : (C,⊗, u) → (D, •, e) comes
with natural isomorphisms

m0 : e −→ F (u) and m2
A,B : F (A) • F (B) −→ F (A⊗B)

subject to some coherence diagram (see e.g. [16]). Note that naturality means that for
all f ∈ C[A,C], g ∈ C[B,D], we have

F (A) • F (B)

F (f)•F (g)
��

m2
A,B // F (A⊗B)

F (f⊗g)
��

F (C) • F (D)
m2
C,D // F (C ⊗D)
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In our cases, we will define, for Σ ` G(A,M) and Σ ` G(B,M), the action of synchronous
product as

(Σ ` G(A,M))~ (Σ ` G(B,M)) := Σ ` G(A~ B,M)

from which we immediatelly get, for L ∈ Tree[Γ,Σ]:

L∗(Σ ` G(A,M)~ Σ ` G(B,M)) = L∗(Σ ` G(A,M))~ L∗(Σ ` G(B,M))

It will follow that the mediating maps m2
−,− are identities.

As for the units, recall from Lem. J.23 that we have

L∗(Σ ` G(I,M)) = Γ ` G(I,M ◦ L) = Γ ` G(I, IdΓ)

Moreover, the strategies α−,−,−, γ−,−, λ− and ρ−, from which structure maps will be
defined, are preserved by substitution.

The following gathers all the relevant properties we will need to obtain strong sym-
metric monoidal fibrations:

Proposition K.2. Consider L ∈ Tree[Γ,Σ].

(i) We have
L∗(Σ ` G(I, Id)) = Γ ` G(I, IdΓ)

(ii) We have

L∗((Σ ` G(A,M))~ (Σ ` G(B,M))) = L∗(Σ ` G(A,M))~ L∗(Σ ` G(B,M))

(iii) Given

Σ ` σ : G(A,M) −~ G(C, N) and Σ ` θ : G(B,M) −~ G(D, N)

we have
L∗(σ ~ θ) = L∗(σ)~ L∗(θ)

(iv) Given
Σ ` G(A,M) Σ ` G(B,M) Σ ` G(C,M)

we have
L∗(α(A,M),(B,M),(C,M)) = α(A,M◦L),(B,M◦L),(C,M◦L)

L∗(λ(A,M)) = λ(A,M◦L)

L∗(ρ(A,M)) = ρ(A,M◦L)

L∗(γ(A,M),(B,M)) = γ(A,M◦L),(B,M◦L)

Proof of Prop. K.2.(i). Recall from Lem. J.23 that we have

L∗(Σ ` G(I,M)) = Γ ` G(I,M ◦ L) = Γ ` G(I, IdΓ)
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Proof of Prop. K.2.(ii). By definition we have

L∗((Σ ` G(A,M))~ (Σ ` G(B,M))) = L∗(Σ ` G(A~ B,M))
= Γ ` G(A~ B,M ◦ L)
= (Γ ` G(A,M ◦ L))~ (Γ ` G(B,M ◦ L))
= L∗(Σ ` G(A,M ◦ L))~ L∗(Σ ` G(B,M ◦ L))

Poof of Prop. K.2.(iii). For Prop. K.2.(iii) we rely on the following simple property:

Lemma K.3. We have in Set (and similarly for $2):

℘Γ ((A~ B,M ◦ L) −~ (C ~D,M ◦ L))
$1

++
℘(L)−~

��

℘Γ ((A,M ◦ L) −~ (C,M ◦ L))

℘(L)−~

��

℘Σ ((A~ B,M) −~ (C ~D,M))
$1

++
℘Σ ((A,M) −~ (C,M))

Proof. By induction on

s ∈ ℘Γ ((A~ B,M ◦ L) −~ (C ~D,M ◦ L))

For the base case, we have

s = ((ε, (qıA, q
ı
B)) , (ε, (qıC , q

ı
D)))

and we are done since

$1 ◦ ℘(L)−~(s) = ((ε, qıA) , (ε, qıC)) = ℘(L)−~ ◦$1(s)

For the inductive step, there are four cases:

Case of s = t
O→ ((p, a, γA ~ γB) , (p, (qC , qD))).

We have

℘(L)−~(s) = ℘(L)−~(t)→ ((p, L(p)(a), γA ~ γB) , (p, (qC , qD)))
$1 ◦ ℘(L)−~(s) = $1 ◦ ℘(L)−~(t)→ ((p, L(p)(a), γA) , (p, qC))

and

$1(s) = $1(t)→ ((p, a, γA) , (p, qC))
℘(L)−~ ◦$1(s) = ℘(L)−~ ◦$1(t)→ ((p, L(p)(a), γA) , (p, qC))

and we conclude by induction hypothesis.
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Case of s = t
P→ ((p, a, γA ~ γB) , (p, a, γC ~ γD)).

We have

℘(L)−~(s) = ℘(L)−~(t)→ ((p, L(p)(a), γA ~ γB) , (p, L(p)(a), γC ~ γD))
$1 ◦ ℘(L)−~(s) = $1 ◦ ℘(L)−~(t)→ ((p, L(p)(a), γA) , (p, L(p)(a), γC))

and

$1(s) = $1(t)→ ((p, a, γA) , (p, a, γC))
℘(L)−~ ◦$1(s) = ℘(L)−~ ◦$1(t)→ ((p, L(p)(a), γA) , (p, L(p)(a), γC))

and we conclude by induction hypothesis.

Case of s = t
O→ ((p, a, γA ~ γB) , (p · d, (qC , qD))).

We have

℘(L)−~(s) = ℘(L)−~(t)→ ((p, L(p)(a), γA ~ γB) , (p · d, (qC , qD)))
$1 ◦ ℘(L)−~(s) = $1 ◦ ℘(L)−~(t)→ ((p, L(p)(a), γA) , (p · d, qC))

and

$1(s) = $1(t)→ ((p, a, γA) , (p · d, qC))
℘(L)−~ ◦$1(s) = ℘(L)−~ ◦$1(t)→ ((p, L(p)(a), γA) , (p · d, qC))

and we conclude by induction hypothesis.

Case of s = t
P→ ((p · d, (qA, qB)) , (p · d, (qC , qD))).

We have

℘(L)−~(s) = ℘(L)−~(t)→ ((p · d, (qA, qB)) , (p · d, (qC , qD)))
$1 ◦ ℘(L)−~(s) = $1 ◦ ℘(L)−~(t)→ ((p · d, qA) , (p · d, qC))

and

$1(s) = $1(t)→ ((p · d, qA) , (p · d, qC))
℘(L)−~ ◦$1(s) = ℘(L)−~ ◦$1(t)→ ((p · d, qA) , (p · d, qC))

and we conclude by induction hypothesis.

Proof of Prop. K.2.(iii). We show that

s ∈ L∗(σ ~ θ) iff s ∈ L∗(σ)~ L∗(θ)

for all
s ∈ ℘P

Σ (G(A~ B,M ◦ L) −~ G(C ~D, N ◦ L))

By definition of L∗(σ ~ τ), we have

s ∈ L∗(σ ~ θ) iff ℘(L)−~(s) ∈ σ ~ θ
iff SP ◦ ℘(L)−~(s) ∈ (σ, θ)
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On the other hand, we have:

s ∈ L∗(σ)~ L∗(θ) iff SP(s) ∈ (L∗(σ), L∗(θ))
iff ℘(L)2

−~ ◦ SP(s) ∈ (σ, θ)

and we are done since it follows from Lem. K.3 that

SP ◦ ℘(L)−~(s) = ℘(L)2
−~ ◦ SP(s)

Poof of Prop. K.2.(iv). We rely on the following simple commutation lemma:

Lemma K.4. Consider L ∈ Tree[Γ,Σ].

℘Γ(A~ B,M ◦ L)y
℘(L)

((

$2 //

$1

��

℘Γ(B,M ◦ L)

℘(L)

''
℘Γ(A,M ◦ L)

℘(L)

((

℘Σ(A~ B,M)y
$1

��

$2 // ℘Σ(B,M)

tr

��
℘Σ(A,M)

tr // TrΣ

Proof. We show

℘Γ(A~ B,M ◦ L)
℘(L) //

$1

��

℘Σ(A~ B,M)

$1

��
℘Γ(A,M ◦ L)

℘(L)
// ℘Σ(A,M)

The other diagram (involving B instead of A) is shown similarly. Commutation of the
lower-left diagramm, which is not essential here, follows from PropJ.10.

We reason by induction on

s ∈ ℘Γ(A~ B,M ◦ L)

The base case
s = (ε, (qıA, q

ı
B))

is trivial since
℘(L) ◦$1(s) = (ε, qıA) = $1 ◦ ℘(L)(s)

For the induction step, there are two cases:
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Case of s = t
O→ (p, a, γA ~ γB).

By definition of A~ B, we have

γA ∈ δA(qA,M ◦ L(a)) and γB ∈ δB(qB,M ◦ L(a))

with
t = ε→∗ (p, (qA, qB))

It follows that
γA ~ γB ∈ δA~B((qA, qB),M(p)(L(p)(a)))

hence
℘(L)(s) = ℘(L)(t)

O→ (p, L(p)(a), γA ~ γB)

and
$1 ◦ ℘(L)(s) = $1 ◦ ℘(L)(t)

O→ (p, L(p)(a), γA)

On the other hand, we have

℘(L) ◦$1(s) = ℘(L) ◦$1(t)
O→ (p, L(a), qA)

and we are done since by induction hypothesis we have

$1 ◦ ℘(L)(t) = ℘(L) ◦$1(s)

Case of s = t
P→ (p · d, (qA, qB)).

We directly conclude from the induction hypothesis since

$1 ◦ ℘(L)(s) = $1 ◦ ℘(L)(t)
O→ (p · d, qA)

and
℘(L) ◦$1(s) = ℘(L) ◦$1(t)

O→ (p · d, qA)

Proof of Prop. K.2.(iv). We have to show that given

Σ ` G(A,M) Σ ` G(B,M) Σ ` G(C,M)

we have
L∗(α(A,M),(B,M),(C,M)) = α(A,M◦L),(B,M◦L),(C,M◦L)

L∗(λ(A,M)) = λ(A,M◦L)

L∗(ρ(A,M)) = ρ(A,M◦L)

L∗(γ(A,M),(B,M)) = γ(A,M◦L),(B,M◦L)

By Lem.D.7.(ii) (or Cor. F.9) it is sufficient to show

HS(L∗(α(A,M),(B,M),(C,M))) = HS(α(A,M◦L),(B,M◦L),(C,M◦L))

HS(L∗(λ(A,M))) = HS(λ(A,M◦L))

HS(L∗(ρ(A,M))) = HS(ρ(A,M◦L))

HS(L∗(γ(A,M),(B,M))) = HS(γ(A,M◦L),(B,M◦L))

116



K. Symmetric Monoidal Fibrations of Games and Automata

By Lem. H.3 this is equivalent to

((℘(L)−1 × ℘(L)−1) ◦HS)(α(A,M),(B,M),(C,M)) = HS(α(A,M◦L),(B,M◦L),(C,M◦L))

((℘(L)−1 × ℘(L)−1) ◦HS)(λ(A,M)) = HS(λ(A,M◦L))

((℘(L)−1 × ℘(L)−1) ◦HS)(ρ(A,M)) = HS(ρ(A,M◦L))

((℘(L)−1 × ℘(L)−1) ◦HS)(γ(A,M),(B,M)) = HS(γ(A,M◦L),(B,M◦L))

We now claim that in this situation we have

SP ◦ ℘(L)−1 = (℘(L)−1 × ℘(L)−1) ◦ SP

• Proof. The inclusion SP ◦ ℘(L)−1 ⊆ (℘(L)−1 × ℘(L)−1) ◦ SP

directly follows from the commutation of the diagram of Lem. K.4.

For the other incusion (℘(L)−1 × ℘(L)−1) ◦ SP ⊆ SP ◦ ℘(L)−1 we rely on the
universal properties Prop. G.9 and Prop. J.10 and the fact that SP preserves the
traces.

We can then conclude using the definition of the maps α(−),(−),(−), λ(−), ρ(−) and
γ(−),(−), and again using Prop. G.9.

K.3. Symmetric Monoidal Fibrations of Acceptance Games

We now give the symmetric monoidal structure to the categories ŜAG
(W)

Σ .
On objects, we let

(Σ ` G(A,M))~ (Σ ` G(B, N)) := Σ ` G(A[π]~ B[π′], 〈M,N〉)

where ΣA ` A and ΣB ` B and π and π′ are suitable projections:

π ∈ Alph[ΣA × ΣB,ΣA] π′ ∈ Alph[ΣA × ΣB,ΣB]

For the action on morphisms, consider

Σ ` G(A0,M0)
σ−→ Σ ` G(A1,M1)

and
Σ ` G(B0, N0)

τ−→ Σ ` G(B1, N1)

where, in Tree,

M0 : Σ→ Σ0 M1 : Σ→ Σ1 N0 : Σ→ Γ0 N1 : Σ→ Γ1

We define

σ~τ : (Σ ` G(A0,M0))~(Σ ` G(B0, N0)) −→ (Σ ` G(A1,M1))~(Σ ` G(B1, N1))

as follows.
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First, note that we actually have

Σ ` G(A0[π0], 〈M0, N0〉)
σ−→ Σ ` G(A1[π1], 〈M1, N1〉)

and
Σ ` G(B0[π′0], 〈M0, N0〉)

τ−→ Σ ` G(B1[π′1], 〈M1, N1〉)

where π0, π1, π′0 and π′1 are suitable projections.
On the other hand, we must actually have

σ~τ : (Σ ` G(A0[π0]~B0[π′0], 〈M0, N0〉)) −→ (Σ ` G(A1[π1]~B1[π′1], 〈M1, N1〉))

Hence we are done by defining σ ~ τ as in Def. J.14.
For the unit, according to Lem. J.23 can we take Σ ` G(I, IdΣ).
For the structure map, we have to give

α(A,M),(BN),(C,L) : (G(A,M)~ G(B, N))~ G(C, L) −→
ŜAGΣ

G(A,M)~ (G(B, N)~ G(C, L)))

λ(A,M) : G(I, IdΣ)~ G(A,M) −→
ŜAGΣ

G(A,M)

ρ(A,M) : G(A,M)~ G(I, IdΣ) −→
ŜAGΣ

G(A,M)

γ(A,M),(B,N) : G(A,M)~ G(B, N) −→
ŜAGΣ

G(B, N)~ G(A,M)

For

α(A,M),(BN),(C,L) : (G(A,M)~ G(B, N))~ G(C, L) −→
G(A,M)~ (G(B, N)~ G(C, L)))

Note that, for suitable projections π1, π2, π′1 and π′2 we have

(G(A,M)~ G(B, N))~ G(C, L)
= G ((A[π1 ◦ π2]~ B[π′1 ◦ π2])~ C[π′2] , 〈〈M,N〉, L〉)

and for suitable projections π3, π3, π′4 and π′4 we have

G(A,M)~ (G(B, N)~ G(C, L))
= G (A[π4]~ (B[π′3 ◦ π4]~ C[π′3 ◦ π′4]) , 〈M, 〈N,L〉〉)

But

G(A[π1 ◦ π2], 〈〈M,N〉, L〉) = G(A[π4], 〈M, 〈N,L〉〉 = G(A,M)

and similarly for B and C. It follows that we actually have

G(A,M)~ (G(B, N)~ G(C, L))
= G (A[π1 ◦ π2]~ (B[π′1 ◦ π2]~ C[π′2]) , 〈〈M,N〉, L〉)

and we can take a suitable α(−),(−),(−) as defined in (20) (Sect. J.10). The same holds
for the other structure maps, and we get:

Proposition K.5. The categories ŜAG
(W/R)

Σ are symmetric monoidal.
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K.4. Symmetric Monoidal Fibrations of Acceptance Games and Automata

In order to get symmetric monoidal fibrations, we follow [21, Thm. 12.7], and show that
for each L ∈ Tree[Γ,Σ], the functors

L∗ : ŜAG
(W/R)

Σ −→ ŜAG
(W/R)

Γ

is strong symmetric monoidal. But according to the defintion of the structure maps in
Sect. K.3, this is provided by Prop. K.2.

We thus get

Proposition K.6. Given L ∈ Tree[Γ,Σ], the functors

L∗ : ŜAG
(WR)

Σ −→ ŜAG
(W/R)

Γ

are strict symmetric monoidal.
In particular, we have a split indexed symmetric monoidal category

(−)∗ : Treeop → SymMonCat

The case of

âut
(W/R)

: Âut
(W/R)

−→ Alph

is simpler, adn we get

Proposition K.7. Given β ∈ Alph[Γ,Σ], the functors

β∗ : Âut
(WR)

Σ −→ Âut
(W/R)

Γ

are strict symmetric monoidal.
In particular, we have a split indexed symmetric monoidal category

(−)∗ : Alphop → SymMonCat
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L. Correctness w.r.t. Language Operations

This Section gathers the proofs of Sect. 6.1.
Sections L.1 and L.2 assert the correctness of the synchronous arrow −~ w.r.t.

language inclusion. The main point is the proof of Prop. 6.1. Proposition 6.3 is then an
immediate corollary of substitution (Prop. 4.3).

L.1. Correspondence with Acceptance Games

Consider Σ ` A and t ∈ Tree[Σ]. In this Section, we describe a bijection between total
winning strategies 1 ` G(A, ṫ) and total winning strategies on 1 ` G(I, ṫ) −~ G(A, ṫ),
thus proving Prop 6.1.

The main point is that G(I, ṫ) provides a monoidal unit in the fibered sense. According
to Sect. J.1, in Rel(Set/Tr1) this is provided by Prop. J.24, that is

tr : ℘1(I, ṫ) '−→ Tr1

L.1.1. Monoidal Lifting of Strategies

We define a map taking a total5 1 ` τ : G(A, ṫ) to a total

1 ` I −~ τ : G(I, ṫ) −~ G(A, ṫ)

The map is defined by induction on plays. By construction we will have

↓((I −~ τ)�G(A, ṫ)) = ↓τ (21)

where ↓ denotes prefix-closure.
For the base case, let ((ε, qıI), (ε, qıA)) ∈ I −~ τ and by definition of a strategy, we have

((ε, qıI), (ε, qıA))�G(A, ṫ) = (ε, qıA) ∈ τ

For the induction step, assume given

s := ((ε, qıI), (ε, qıA)) →∗ ((p, qıI), (p, qA)) ∈ I −~ τ

with
s�G(A, ṫ) = (ε, qıA) →∗ (p, qA) ∈ ↓τ

It is O’s turns to play in G(I, ṫ) −~ G(A, ṫ) and P’s turns to play in G(A, ṫ).
Since τ is total by assumption, it makes a P-move in G(A, ṫ), say:

∗ →∗ (p, qA)
P→ (p, •, γA) ∈ τ

On the other hand, the only possible O-move in G(I, ṫ) −~ G(A, ṫ) is

∗ →∗ ((p, qıI), (p, qA))
O→ ((p, •, γI), (p, qA))

5Totality is not required, but makes the presentation simpler.
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(where γI := {(qıI , d) | d ∈ D}), after which we make I −~ τ copy τ ’s move, that is we
let

∗ →∗ ((p, •, γI), (p, qA))
P→ ((p, •, γI), (p, •, γA)) ∈ I −~ τ

Note that this P-move of I −~ τ is completely determined by τ ’s reaction to the projec-
tion of the corresponding play. only depends on
Now, consider an O-move in G(I, ṫ) −~ G(A, ṫ), say

∗ →∗ ((p, •, γI), (p, •, γA))
O→ ((p, •, γI), (p · d, q′A))

We make I −~ τ play the only possible P-move, that is:

∗ →∗ ((p, •, γI), (p · d, q′A))
P→ ((p · d, qıI), (p · d, q′A)) ∈ I −~ τ

and we get (21) since by assumption[
∗ →∗ ((p · d, qıI), (p · d, q′A))

]
�G(A, ṫ) = ∗ →∗ (p · d, q′A) ∈ ↓τ

This completes the definition of I −~ τ . Note that I −~ τ is total and P-deterministic.

Proposition L.1. If 1 ` τ  G(A, ṫ) then I −~ τ is a morphism of SAG
W/R
1 .

Proof. Given any infinite play π of I −~ τ , it follows from (21) that π�G(A, ṫ) is an
infinite play of τ , hence π�G(A, ṫ) ∈ WG(A,ṫ), so that I −~ τ is winning w.r.t. −~ .

Moreover, by definition of ΩI , we have

π�G(I, ṫ) ∈ Wπ�G(I,ṫ)

and it follows that I −~ τ is also winning w.r.t. ~−~ .

L.1.2. Completeness of the Monoidal Lifting.

Lemma L.2. The map I −~ (−) is injective.

Proof. If I −~ θ = I −~ τ , we have

↓((I −~ θ)�G(A, ṫ)) = ↓((I −~ τ)�G(A, ṫ))

hence θ = τ by definition of I −~ (−).

We now define an inverse to I −~ (−).

Lemma L.3. Given a strategy

1 ` σ : G(I, ṫ) −~ G(A, ṫ)

the set of plays

σ�G(A, ṫ)P := {s ∈ ℘P(A, ṫ) | s ∈ σ�G(A, ṫ)} = σ�G(A, ṫ) ∩ ℘P(A, ṫ)

is a strategy on 1 ` G(A, ṫ).
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Proof. By definition, σ�G(A, ṫ)P is a set of P-plays. Moreover, closure under P-prefix
follows from the closure under P-prefix of σ.

It remains to show that σ�G(A, ṫ)P is P-deterministic. This crucially rely on Prop. J.24.
Consider two plays of σ�G(A, ṫ)P

s→ (p, •, γA) and s→ (p, •, γ′A)

and let u, v ∈ σ with

u�G(A, ṫ) = s→ (p, •, γA) and v�G(A, ṫ) = s→ (p, •, γ′A)

Then, since σ is synchronous, we must have

tr(u�G(I, ṫ)) = tr(s→ (p, •, γA)) = tr(v�G(I, ṫ))

But by Prop. J.24 this implies

u�G(I, ṫ) = v�G(I, ṫ)

We thus have HS(u) = HS(v), which implies u = v by Cor. F.9 (the more general
Lem. i.(i) would also have done the job since u, v ∈ σ).

For the preservation of totality we strongly rely on the completeness of I.

Lemma L.4. If
σ�G(A, ṫ)P = θ�G(A, ṫ)P

then σ = θ.

Proof. Reasoning as in the proof of Lem. L.3, by Prop. J.24 and Cor. F.9, for every
s ∈ ℘P

1(A, ṫ), there is a unique

u ∈ ℘P
1(G(I, ṫ) −~ G(A, ṫ))

such that u = HS(v, s) for some v.

Lemma L.5. σ�G(A, ṫ)P is total if σ is total.

Proof. Write τ := σ�G(A, ṫ)P. Let s be an O-interrogation of τ . There are two cases:

Case of s = (ε, qıA). We have
((ε, qıI), (ε, q

ı
A)) ∈ σ

Since σ is total, it must answer the O-move given by γI ∈ δI(qI , ṫ(ε)(•)). Hence,
for some γA ∈ δA(qA, ṫ(ε)(•)) we have

((ε, qıI), (ε, q
ı
A))

O→ ((ε, •, γI), (ε, qıA))
P→ ((ε, •, γI), (ε, •, γA)) ∈ σ

and it follows that
s

P→ (ε, •, γA) ∈ τ
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Case of s = t
O→ (p · d, qA). We have by assumption t ∈ τ . Let v be a play such that

u := (v, t) ∈ HS(σ).

By construction of I, the play

u
O→ ((p, •, γI), (p · d, qA)

is an O-interrogation of σ, and by totality of σ, we have

u
O→ ((p, •, γI), (p · d, qA)

P→ ((p · d, qıI), (p · d, qA)) ∈ σ

Again by construction of I, the play

u
O→ ((p, •, γI), (p · d, qA)

P→ ((p · d, qıI), (p · d, qA))
O→ ((p · d, •, γI), (p · d, qA))

is an O-interrogation of σ, and by totality of σ again, for some γA we have

u
O→ ((p, •, γI), (p · d, qA)

P→ ((p · d, qıI), (p · d, qA))

O→ ((p · d, •, γI), (p · d, qA))
P→ ((p · d, •, γI), (p · d, •, γA)) ∈ σ

It follows that
t

O→ (p · d, qA)
P→ (p · d, •, γA) ∈ τ

Proposition L.6. Let
1 ` σ : G(I, ṫ) −~ G(A, ṫ)

If σ is a morphism of SAGW/R, then

1 ` σ�G(A, ṫ)P  G(A, ṫ)

Proof. The totality part follows from Lem. L.5.
As for winning note that any infinite play of σ�G(A, ṫ)P is the projection on G(A, ṫ)

of an infinite play π of σ. But by definition of ΩI , for such a π we have

π�G(I, ṫ) ∈ Wπ�G(I,ṫ)

It follows that π is winning for P w.r.t. −~ iff π is winning for P w.r.t. ~−~ , iff its
projection on G(A, ṫ) is winning for P.

L.1.3. Correspondence with Acceptance Games

We now prove Prop. 6.1:

Proposition L.7 (Prop. 6.1). Given Σ ` A and t ∈ Tree[Σ], the map σ 7→ I −~ σ
gives bijections

{σ | σ  G(A, ṫ)} ' {θ | 1 ` θ  G(I, ṫ) −~ G(A, ṫ)}
' {θ | 1 ` θ  G(I, ṫ) ~−~ G(A, ṫ)}
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Proof. We first prove that I −~ − is a bijection. According to Lem. L.2 it remains to
show that I −~ − is surjective. Consider

1 ` σ : G(I, ṫ) −~ G(A, ṫ)

and
I −~ (σ�G(A, ṫ)P)

Then by (21) (construction of I −~ −), we have

↓
[
I −~ (σ�G(A, ṫ)P)

]
�G(A, ṫ) = ↓(σ�G(A, ṫ)P)

and in particular [
I −~ (σ�G(A, ṫ)P)

]
�G(A, ṫ)P = σ�G(A, ṫ)P

But by Lem. L.4 this implies

I −~ (σ�G(A, ṫ)P) = σ

The part concerning winning (and totality) follows from Prop. L.1 and Prop. L.6.

L.2. Correctness of the Synchronous Arrow w.r.t. Language Inclusion

We can now check that the arrow G(A,M) −~ G(B, N) is correct w.r.t. language inclu-
sion: if

Σ  G(A,M) −~ G(B, N)

then
∀t ∈ Tree[Σ], M(t) ∈ L(A) =⇒ N(t) ∈ L(B)

Proposition L.8 (Correctness of the Arrow). Assume given Σ ` σ  G(A,M) −~
G(B, N).

(i) For all t ∈ Tree[Σ], we have t∗(σ)  G(A,M(t)) −~ G(B, N(t)).

(ii) If θ  G(A,M(t)) then σ ◦ (I −~ θ)  G(B, N(t)).

(iii) For all tree t ∈ Tree[Σ], if M(t) ∈ L(A) then N(t) ∈ L(B).

Proof. (i) Since t∗ : SAGW
Σ → SAGW

1 Prop. H.2.(ii) (Prop. 4.3).

(ii) By (i) and Prop. L.7 (actually Prop. L.1).

(iii) By (ii), by definition of L(−) and Prop. L.7 (actually Prop. L.6).
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L.3. Correctness of the Synchronous Product

We now check that the synchronous product ~ implements the intersection on the
languages recognized by automata. Consider complete automata Σ ` A and Σ ` B.

We first show that
L(A) ∩ L(B) ⊆ L(A~ B)

Let t ∈ L(A) ∩ L(B). By definition, there are strategies

1 ` τA  G(A, ṫ) and 1 ` τB  G(B, ṫ)

By Prop. L.7 (a.k.a. Prop. 6.1), we get

1 ` I −~ τA  G(I, ṫ) −~ G(A, ṫ)
1 ` I −~ τA  G(I, ṫ) −~ G(B, ṫ)

and since I, A and B are complete, by Prop. J.15 and Prop. J.26 we obtain

1  G(I, ṫ) −~ G(A~ B, ṫ)

and thus, by Prop. L.7 (Prop. 6.1) again, t ∈ L(A~ B).
The converse direction is a bit more technical. We have to go from

1 ` τ  G(A~ B, ṫ)

to
1 ` τA  G(A, ṫ) 1 ` τB  G(B, ṫ)

We only discuss the case of τA. The point is that the direct projection of τ (using the
projections of Sect. J.4) need not be a strategy. It will be total, winning and P-prefix-
closed, by P-determinism may fail: since A and B need not be non-deterministic, given
a P-play

s : ∗ →∗ (p, •, γA ~ γB) ∈ ℘P(A~ B, ṫ)

and an O-move in G(A, ṫ):

(p, •, γA)
O→ (p · d, qA)

there might be several qB ∈ QB such that (qB, d) ∈ γA, i.e. such that, in G(A~B, ṫ), the
play s can be extended as

s
O→ (p · d, (qA, qB))

In other words, a choice has to be made, for all (qA, d) ∈ QA × D and all γB in the
codomain of δB, of some (qB, d) ∈ γB. Note that this choice is always possible since B is
assumed to be complete. We assume that this choice is made by a map

`A : (QA ×D)× P(QB ×D) −→ QB
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Now equipped with `A, given a total

1 ` τ : G(A~ B, ṫ)

we build
1  τA : G(A, ṫ)

The strategy τA is defined by induction on plays. It is defined together with a map
u 7→ su where

u ∈ τA ⊆ ℘P(A, ṫ)

and
su ∈ τ ⊆ ℘P(A~ B, ṫ)

are such that
u = $1(su)

and moreover, if v extends u, then sv extends su.
For the base case, we let

u := (ε, qıA) ∈ τA
and

su := (ε, (qıA, q
ı
B))

For the first step, since τ is total, for some γA, γB we have

s := (ε, (qıA, q
ı
B))

P→ (ε, •, γA ~ γB) ∈ τ

We put

u := (ε, qıA)
P→ (ε, •, γA) ∈ τA

Since s is unique (by P-determinism of τ), we let

us := s

For the induction step, by induction hypothesis we have u ∈ τA, of the form

u : ∗ →∗ (p, •, γA)

and su ∈ τ , with $1(su) = u, hence of the form:

su : ∗ →∗ (p, •, γA ~ γB)

Consider now some O-move extending u, say

u
O→ (p · d, qA)

Since B is complete we have (qB, d) ∈ γB for

qB := `A((qA, d), γB)
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We then extend su with the corresponding O-move, and let τ answer (by completeness
of A and totality of τ), say

s′ := s
O→ (p · d, (qA,qB))

P→ (p · d, •, γA ~ γB) ∈ τ

We then put

u′ := u
O→ (p · d, qA)

P→ (p · d, •, γA) ∈ τA

Thanks to `A, the play s′ is uniquely determined from u′ and su, and moreover extends
su. We let

s′u′ := s′

This completes the construction of τA. Note that τA is total and P-prefix-closed by
construction. As for P-determinism given P-plays:

u : v
O→ (p, qA)

P→ (p, •, γA) ∈ τA
u′ : v

O→ (p, qA)
P→ (p, •, γ′A) ∈ τA

by construction we have γA = γ′A.
As for winning, since the map u 7→ su respects the prefix order, infinite plays of τA

are projections of infinite plays of τ . Hence τA is winning as soon as τ is winning. We
thus have shown:

Proposition L.9. If A and B are complete automata, then L(A~ B) = L(A) ∩ L(B).
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M. Complementation of Alternating Automata

This Section gathers the proofs of Sect. 6.2.

M.1. The Operation of Complementation

Given sets S, S′ ⊆ P(P ), write

S ‚ S′ whenever ∀a ∈ S, ∀a′ ∈ S′, a ∩ a′ 6= ∅

and let
S‚ := {a′ ∈ P(P ) | ∀a ∈ S, a‚ a′}

Given an automaton Σ ` A with

A = (Q, qı, δ,Ω)

define Σ ` ∼A as
∼A := (Q, qı, δ∼A,Ω∼A)

where
δ∼A(q, a) := δ(q, a)‚

and
Ω∼A := Qω \ Ω

Note that if A is complete, then ∼A is not necesserarily complete. However, δ∼A is
always not empty, and so are the γ’s in its codomain (given q ∈ Q and a ∈ Σ, δ(q, a) is
not empty, and moreover if γ ∈ δ(q, a), then γ is not empty as well).

Thanks to Borel determinacy [14], we have:

Proposition M.1 ([23]). Given Σ ` A with ΩA a Borel set, we have L(∼A) = Tree[Σ]\
L(A).

M.2. The Falsity Automaton ‹
We define Σ ` ‹ as

‹ := ({q‹}, q‹, δ‹,Ω‹)

where:
δ‹(q‹, a) := {{(q‹, d)} | d ∈ D}

and
Ω‹ := ∅

Note that I = ∼‹.
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M.3. Dialogue Properties

Proposition M.2. Let A and B be complete automata on Σ. Then

(i) Σ  A −~ ∼̂B implies Σ  A~ B −~ ‹̂.

(ii) Σ  A~ B −~ ‹̂ implies Σ  A −~ ∼̂B.

Corollary M.3. Let A and B be complete automata on Σ.

(i) Σ  A −~ ∼̂B iff Σ  B −~ ∼̂A.

(ii) Σ  A −~ ∼̂∼̂A.

(iii) if Σ  A −~ B then Σ  ∼̂B −~ ∼̂A.

(i) Use Prop. M.2.(i) twice together with the monoidal braiding γ (Lem. J.26).

(ii) Use (i) twice.

(iii) Apply (i) to Σ  A −~ ∼̂∼̂A obtained by composition and (ii).

Corollary M.4. Given a complete automaton 1 ` A,

1  ∼A ⇐⇒ 1  A −~ ‹
Proof. First, by Prop. J.8 we have

1  ∼A ⇐⇒ 1  ∼̂A

Then, by Prop. L.7 we have

1  ∼A ⇐⇒ 1  I −~ ∼A

It follows from Prop. M.2 that

1  ∼A iff 1  I ~A −~ ‹
and we conclude using the monoidal structure isomorphisms (Lem. J.26).
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M.4. Proof of Prop. M.2.(i)

M.4.1. Construction of the Strategy

Given a total strategy
Σ ` σ : A −~ ∼̂B

we define a total strategy
Σ ` σ̃ : A~ B −~ ‹̂

We inductively map positions

((p, (qA, qB)), (p, q̂‹)) ∈ σ̃ ⊆ ℘(A~ B −~ ‹̂)

to positions
((p, qA), (p, q̂B)) ∈ σ ⊆ ℘(A −~ ∼̂B)

such that q̂B = qB whenever q̂‹ = q‹.

Base Case. For the base case, we let

((ε, (qıA, q
ı
B)), (ε, q‹)) ∈ σ̃

and we have
((ε, qıA), (ε, qıB)) ∈ σ

Inductive Step. For the induction step, we proceed as follows. Consider some O-
interrogation of σ̃:

A~ B −−~ ‹̂ σ̃

((p, (qA, qB)) , (p, q̂‹))
O ↓

((p, a, γA ~ γB) , (p, q̂‹)) γA ~ γB ∈ δA~B((qA, qB), a)

There are two cases, according to whether q̂‹ = q‹ ∈ Q‹. If q̂‹ = true, then we
complete σ̃ by completeness of A and B, regardless of σ. Then σ̃ will be winning since
all its infinite plays will be winning on ‹̂.

Consider now the case of q̂‹ = q‹ ∈ Q‹ By induction hypothesis, we have q̂B = qB ∈
QB.
Since B is complete and σ is total by assumption, we let σ answer some γ∼B on the
corresponding O-interrogation in A:

A −−~ ∼̂B σ

(p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) γA ∈ δA(qA, a)
P ↓

((p, a, γA) , (p, a, γ̂∼B)) γ∼B ∈ δ∼B(qB, a)
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By construction, γB∩γ∼B 6= ∅. We thus build σ̃’s response from some (q′B, d) ∈ γB∩γ∼B,
and consider a further O-interrogation:

A~ B −−~ ‹̂ σ̃

((p, (qA, qB)) , (p, q‹))
O ↓

((p, a, γA ~ γB) , (p, q‹))
P ↓

((p, a, γA ~ γB) , (p, a, ̂{(q‹, d)}))
O ↓

((p, a, γA ~ γB) , (p · d, q̂′‹))

But now again there are two cases, again according to whether q̂′‹ = q‹ ∈ Q‹.

Assume first that q̂′‹ = q‹ ∈ Q‹. In order to build σ’s response, we interrogate σ on
(q′B, d) (recall that (q′B, d) ∈ γB ∩ γ∼B):

A −−~ ∼̂B σ

(p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) γA ∈ δA(qA, a)
P ↓

((p, a, γA) , (p, a, γ∼B)) γ∼B ∈ δ∼B(qB, a)
O ↓

((p, a, γA) , (p · d, q′B)) (q′B, d) ∈ γ∼B
P ↓

((p · d, q′A) , (p · d, q′B)) (q′A, d) ∈ γA

Since (q′A, d) ∈ γA and (q′B, d) ∈ γB, we get ((q′A, q
′
B), d) ∈ γA ~ γB and let σ̃ play this

move:

A~ B −−~ ‹̂ σ̃

((p, (qA, qB)) , (p, q‹))
O ↓

((p, a, γA ~ γB) , (p, q‹))
P ↓

((p, a, γA~B) , (p, a, ̂{(q‹, d)}))
O ↓

((p, a, γA ~ γB) , (p · d, q‹))
P ↓

((p · d, (q′A, q′B)) , (p · d, q‹))}

In the other case, O plays (true, d′) for some d′ 6= d. We can then conplete σ̃ by
completeness of A~ B, and the play will be winning since it will be winning on ‹̂.

131



M. Complementation of Alternating Automata

M.4.2. Proof of Correctness

The totality of σ̃ follows easily from the totality of σ.
As for winning, if at the some point the state true of ‹̂ is seen in a play of σ̃, then

all further plays see no other state of ‹̂ than true, and the corresponding infinite play is
winning for σ̃.

Otherwise, the inductive invariant ensures that given an infinite play of σ̃, the projec-
tions on the states of A and B (which has the same states as ∼B) are the same as those
of the corresponding play of σ. Hence if the projection on A ~ B is winning, then the
projection on ∼̂B is loosing, contradicting the assumption that σ is winning.

M.5. Proof of Prop. M.2.(ii)

M.5.1. Construction of the Strategy

Given a total strategy
Σ ` σ : A~ B −~ ‹̂

we define a total strategy
Σ ` σ̃ : A −~ ∼̂B

We inductively map positions

((p, qA), (p, q̂B)) ∈ σ̃ ⊆ ℘(A −~ ∼̂B)

to positions
((p, (qA, qB)), (p, q̂‹)) ∈ σ ⊆ ℘(A~ B −~ ‹̂)

with either q̂B = qB and q̂‹ = q‹, or q̂B = q̂‹ = true.

Base Case. For the base case, we let

((ε, qıA), (ε, qıB)) ∈ σ̃

and we have
((ε, (qıA, q

ı
B)), (ε, q‹)) ∈ σ

Induction Step. For the induction step, we proceed as follows. Consider some O-
interrogation:

A −−~ ∼̂B σ̃

(p, qA) , (p, q̂B))
O ↓

((p, a, γA) , (p, q̂B)) γA ∈ δA(qA, a)

There are two cases, according to whether q̂B = qB ∈ QB. If q̂B = true, then we let σ̃
play arbitrarily, relying on the completeness of A, and regardless of σ. Then all further
plays on ∼̂B will be on state true.
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Otherwise, we have by induction hypothesis q̂B = qB ∈ QB. In order to build σ̃’s
response, we first build a map

` : γB ∈ δB(qB, d) 7→ (q′B, d) ∈ γB

Definition of `. Let γB ∈ δB(qB, d), and consider σ’s response to the O-interrogation
γA ~ γB, followed by the unique O-move staying in ‹ and σ’s response to that
second move:

A~ B −−~ ‹̂ σ

((p, (qA, qB)) , (p, q‹))
O ↓

((p, a, γA ~ γB) , (p, q‹)) γA ~ γB ∈ δA~B((qA, qB), a)
P ↓

((p, a, γA ~ γB) , (p, a, ̂{(q‹, d)}))
O ↓

((p, a, γA ~ γB) , (p · d, q‹))
P ↓

((p · d, (q′A, q′B)) , (p · d, q‹))
(22)

Now, we have (q′B, d) ∈ γB by definition, so we let

`(γB) := (q′B, d)

This completes the definition of `.

Write γ∼B for the image of `. By definition of ∼B, we have γ∼B ∈ δ∼B(qB, a), and we let
σ̃ play the corresponding move:

A −−~ ∼̂B σ̃

(p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) γA ∈ δA(qA, a)
P ↓

((p, a, γA) , (p, a, γ̂∼B))

Consider now some further O-move:

A −−~ ∼̂B σ̃

(p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) γA ∈ δA(qA, a)
P ↓

((p, a, γA) , (p, a, γ̂∼B))
O ↓

((p, a, γA) , (p · d, q̂′B))

Once again there are two cases, according to whether q̂′B ∈ QB.
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Case of q̂′B = q′B ∈ QB. By construction, (q′B, d) is in the image of `, and it follows that
there are γB and q′A such that, in (22), σ answers

((p · d, (q′A, q′B)) , (p · d, q‹))

Note that (q′A, d) ∈ γA. We let σ̃ answer the corresponding move:

A −−~ ∼̂B σ̃

(p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) γA ∈ δA(qA, a)
P ↓

((p, a, γA) , (p, a, γ̂∼B))
O ↓

((p, a, γA) , (p · d, q′B))
P ↓

((p · d, q′A) , (p · d, q′B))

Case of q̂′B = true. In this case, by defintion of `, there is no state q′B such that, in (22),
σ answers

((p · d, (q′A, q′B)) , (p · d, q‹))

We therefore interrogate σ on the O-move (true, d):

A~ B −−~ ‹̂ σ

((p, (qA, qB)) , (p, q‹))
O ↓

((p, a, γA ~ γB) , (p, q‹)) γA ~ γB ∈ δA~B((qA, qB), a)
P ↓

((p, a, γA ~ γB) , (p, a, ̂{(q‹, d′)}))
O ↓

((p, a, γA ~ γB) , (p · d, true))
P ↓

((p · d, (q′A, q′B)) , (p · d, true))

And let σ̃ copy σ’s response in A:

A −−~ ∼̂B σ̃

(p, qA) , (p, qB))
O ↓

((p, a, γA) , (p, qB)) γA ∈ δA(qA, a)
P ↓

((p, a, γA) , (p, a, γ̂∼B))
O ↓

((p, a, γA) , (p · d, true))
P ↓

((p · d, q′A) , (p · d, true))
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M.5.2. Proof of Correctness

The totality of σ̃ follows easily from the totality of σ. If at some point true is played
in ∼̂B, then no other state of ∼̂B than true will be seen on further moves. Then the
corresponding infinite play is winning for σ̃ since its projection on ∼̂B is winning.

Otherwise, the inductive invariant ensures that given an infinite play of σ̃, the pro-
jections on the states of A and B (which has the same states as ∼B) are the same as
those of the corresponding play of σ. Hence the projections on A and B can not be both
winning, ensuring winning for σ̃.
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N. Existential Quantification on Complete Automata

In this Section, we show that the fibrations aut(W/R) : Âut
(W/R)

→ Alph have existen-
tial quantifications, in the sense of the simple coproducts of [12]: Given alphabets Σ and
Γ, the weakening functor

π∗ : Âut
(W/R)

Σ −→ Âut
(W/R)

Σ×Γ

induced (by Prop. H.4) by the left projection

πΣ,Γ
Σ ∈ Alph[Σ× Γ,Σ]

has a left adjoint:

qΣ,Γ : Âut
(W/R)

Σ×Γ −→ Âut
(W/R)

Σ

and the Beck-Chevalley condition holds.
Recall (from e.g. [13]) that an adjunction q a π as above is given by a natural

isomorphism

φA,B : Âut
(W/R)

Σ [qA,B]
'−→ Âut

(W/R)

Σ×Γ [A,B[π]]

(We drop the subscripts and superscript from q and π when convenient.)
Recall also from [13, Thm. IV.1.2.(ii)] that an adjunction as above is completely

determined by the functor π∗ together with, for each Σ× Γ ` A, an object

Σ ` qΣ,ΓA

and a map
ηA : Σ× Γ ` A −→ Σ× Γ ` (qΣ,ΓA)[π]

satisfying the following universal lifting property: For every

σ : Σ× Γ ` A −→ Σ× Γ ` B[π]

there is a unique
τ : Σ ` qΣ,ΓA −→ Σ ` B

such that in Âut
(W/R)

Σ×Γ :

A ηA //

σ
''

(qΣ,ΓA)[π]

π∗(τ)

��
B[π]

(23)

In this setting, the natural isomorphisms

φA,B : Âut
(W/R)

Σ [qA,B]
'−→ Âut

(W/R)

Σ×Γ [A,B[π]]
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are defined as
φA,B(τ) := π∗(τ) ◦ ηA

Using the universal lifting property of ηA, its inverse φ−1(σ) is the unique τ satifying (23).
The Beck-Chevalley condition reads as follows (see e.g. [12, 1.8.9]). Consider β ∈

Alph[∆,Σ], so that

(β × IdΓ)∗ : Âut
(W/R)

Σ×Γ −→ Âut
(W/R)

∆×Γ

Then we have

(β × IdΓ)∗(ηA) : ∆ × Γ ` A[β × IdΓ] −→ ∆ × Γ ` (qΣ,ΓA)[π][β × IdΓ]

Note that, for π′ ∈ Alph[∆× Γ,∆],

∆× Γ ` (qΣ,ΓA)[π][β × IdΓ] = ∆× Γ ` (qΣ,ΓA)[π ◦ (β × IdΓ)]
= ∆× Γ ` (qΣ,ΓA)[β ◦ π′]
= ∆× Γ ` (qΣ,ΓA)[β][π′]

Then, the Beck-Chevalley condition is that the natural maps

φ−1((β × IdΓ)∗(ηA)) : ∆ ` q∆,Γ(A[β × IdΓ]) −→ ∆ ` (qΣ,ΓA)[β]

are the identity.
But by definition of φ−1, this means that the unique

τ : ∆ ` q∆,ΓA[β × IdΓ] −→ ∆ ` (qΣ,ΓA)[β]

such that

A[β × IdΓ]
ηA[β×IdΓ] //

(β×IdΓ)∗(ηA) ++

(q∆,ΓA[β × IdΓ])[π′]

π∗(τ)

��
(qΣ,ΓA)[β][π′]

is the identity.
This amounts to showing

∆ ` (qΣ,ΓA)[β] = ∆ ` q∆,Γ(A[β × IdΓ]) (24)

and

ηA[β×IdΓ] = (β × IdΓ)∗(ηA)

: ∆× Γ ` A[β × IdΓ] −→ ∆× Γ ` (q∆,ΓA[β × IdΓ])[π′] (25)
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N.1. The Lifted Projection q

Consider Σ× Γ ` A with
A = (Q, qı, δ,Ω)

Define Σ ` qΣ,ΓA as

qΣ,ΓA := (Q× Γ + {qı}, qı, δqA,ΩqA)

where
δqA(qı, a) :=

⋃
b∈Γ{γ+b | γ ∈ δ(qı, (a, b))}

δqA((q, ), a) :=
⋃
b∈Γ{γ+b | γ ∈ δ(q, (a, b))}

and, given γ ∈ P(Q×D) and b ∈ Γ,

γ+b := {((q+b, d) | (q, d) ∈ γ}
q+b := (q, b)

and
qı · (q0, b0) · . . . · (qn, bn) · . . . ∈ ΩqA

iff
qı · q0 · . . . · qn · . . . ∈ Ω

N.2. Action on Acceptance Games of the Lifted Projection

Let π := πΣ,Γ ∈ Alph[Σ× Γ,Σ], and Σ× Γ ` A. Write Σ ` q(A) for Σ ` qΣ,ΓA.
We now define a map

℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA)

such that if
s = (ε, qı)→∗ (p, q)

then
℘(q)(s) = (ε, qı)→∗ (p, q++)

where

either q++ = q = qı or q++ = q+b = (q, b) for some b ∈ Γ

Consider the map

℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA)

defined as

℘(q)(ε : (ε, qı)) := ε : (ε, qı)
℘(q)((ε, qı)→∗ (p, q)→ (p, (a, b), γ)) := ℘(q)((ε, qı)→∗ (p, q))→ (p, a, γ+b)

℘(q)((ε, qı)→∗ (p, (a, b), γ)→ (p.d, q)) := ℘(q)((ε, qı)→∗ (p, (a, b), γ))→ (p.d, q+b)
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Lemma N.1. (i) If
s = (ε, qı)→∗ (p, q)

then
℘(q)(s) = (ε, qı)→∗ (p, q++)

where

either q++ = q = qı or q++ = q+b = (q, b) for some b ∈ Γ

and if
s = (ε, qı)→∗ (p, (a, b), γ)

then
℘(q)(s) = (ε, qı)→∗ (p, a, γ+b)

(ii) ℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA)

Proof. (i) By induction on s.

(ii) By induction on s. In the base case s = ε : (ε, qı) and we are done since ℘(q)(s) =
ε : (ε, qı). For the induction step we consider two cases:

• If s = (ε, qı)→∗ (p, q)→ (p, (a, b), γ), then

℘(q)(s) = ℘(q)((ε, qı)→∗ (p, q))→ (p, a, γ+b)

By induction hypothesis, we have

℘(q)((ε, qı)→∗ (p, q)) ∈ ℘Σ(qΣ,ΓA)

Moreover, by (i)

℘(q)((ε, qı)→∗ (p, q)) = (ε, qı)→∗ (p, q++)

where

either q++ = q = qı or q++ = q+c = (q, c) for some c ∈ Γ

Since γ ∈ δ(q, (a, b)), we have γ+b ∈ δqA(q, a) in both cases, hence ℘(q)(s) ∈
℘Σ(qΣ,ΓA).

• Otherwise, s = (ε, qı)→∗ (p, (a, b), γ)→ (p.d, q). Hence

℘(q)(s) = ℘(q)((ε, qı)→∗ (p, (a, b), γ))→ (p.d, q+b)

By induction hypothesis, we have

℘(q)((ε, qı)→∗ (p, (a, b), γ)) ∈ ℘Σ(qΣ,ΓA)

and moreover, by (i)

℘(q)((ε, qı)→∗ (p, (a, b), γ)) = (ε, qı)→∗ (p, a, γ+b)

hence (q+b, d) ∈ γ+b and we are done.
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Lemma N.2.

℘Σ×Γ(A)

tr

��

℘(q) // ℘Σ(qΣ,ΓA)

tr

��
TrΣ×Γ

Tr(π)
// TrΣ

Proof. We show that for all s ∈ ℘Σ×Γ(A), we have

Tr(π) ◦ tr(s) = tr ◦ ℘(q)(s)

We reason by induction on s. In the base case, s = ε : (ε, qı) and we are done since:

Tr(π)(tr(s)) = ε = tr(℘(q)(s))

For the induction step, we consider two cases:

• If s = (ε, qı)→∗ (p, q)→ (p, (a, b), γ), then

tr(s) = tr((ε, qı)→∗ (p, q)) · (a, b)

hence, by definition of π ∈ Alph[Σ× Γ,Σ], we have

Tr(π)(tr(s)) = Tr(π)(tr((ε, qı)→∗ (p, q))) · a

On the other hand,

℘(q)(s) = ℘(q)((ε, qı)→∗ (p, q))→ (p, a, γ+b)

hence
tr(℘(q)(s)) = tr(℘(q)((ε, qı)→∗ (p, q))) · a

and we are donce since by induction hypothesis we have

Tr(π)(tr((ε, qı)→∗ (p, q))) = tr(℘(q)((ε, qı)→∗ (p, q)))

• Otherwise, s = (ε, qı)→∗ (p, (a, b), γ)→ (p.d, q). Hence

tr(s) = tr((ε, qı)→∗ (p, (a, b), γ)) · d

and thus
Tr(π)(tr(s)) = Tr(π)(tr((ε, qı)→∗ (p, (a, b), γ))) · d

On the other hand,

℘(q)(s) = ℘(q)((ε, qı)→∗ (p, (a, b), γ))→ (p.d, q+b)

hence
tr(℘(q)(s)) = tr(℘(q)((ε, qı)→∗ (p, (a, b), γ))) · d

and we are done, since by induction hypothesis

Tr(π)(tr((ε, qı)→∗ (p, (a, b), γ))) · d = tr(℘(q)((ε, qı)→∗ (p, (a, b), γ)))
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Lemma N.3. If A is a complete automaton, then the map

℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA)

is an injection.

Proof. For injectivity, we have to check that given s, t ∈ ℘Σ×Γ(A), if ℘(q)(s) = ℘(q)(t)
then s = t. Since ℘(q) is length-preserving, ℘(q)(s) = ℘(q)(t) implies |s| = |t|. We
reason by induction on |s| = |t|. In the base case |s| = |t| = 0, and we must have
s = t = ε : (ε, qı). For the induction step, there are two cases:

• In the first case, we have

s = (ε, qı)→∗ (p, q)→ (p, (a, b), γ)
t = (ε, qı)→∗ (p′, q′)→ (p′, (a′, b′), γ′)

Hence
℘(q)(s) = (ε, qı++)→∗ (p, q++)→ (p, a, γ+b)

℘(q)(t) = (ε, qı++)→∗ (p′, q′++)→ (p′, a′, γ′+b
′
)

Now, ℘(q)(s) = ℘(q)(t) implies

p = p′ q++ = q′
++

a = a′ γ+b = γ′
+b′

It follows that
q = q′ γ = γ′

Moreover, since A is complete, γ = γ′ is non-empty, hence b = b′.

Now we are done since moreover

(ε, qı++)→∗ (p, q++) = (ε, qı++)→∗ (p′, q′
++

)

by induction hypothesis.

• In the second case we have

s = (ε, qı)→∗ (p, (a, b), γ)→ (p.d, q)
t = (ε, qı)→∗ (p′, (a′, b′), γ′)→ (p′.d′, q′)

Hence
℘(q)(s) = (ε, qı++)→∗ (p, a, γ+b)→ (p.d, q+b)

℘(q)(t) = (ε, qı++)→∗ (p′, a′, γ′+b
′
)→ (p′.d′, q′+b

′
)

Now, ℘(q)(s) = ℘(q)(t) implies

p = p′ a = a′ γ+b = γ′
+b′

d = d′ q+b = q′
+b′

It follows that
b = b′ γ = γ′ q = q′

and we are done since moreover

(ε, qı++)→∗ (p, a, γ+b) = (ε, qı++)→∗ (p′, a′, γ′
+b′

)

by induction hypothesis.
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Lemma N.4. The map

℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA)

is a surjection.

Proof. We show by induction on t ∈ ℘Σ(qΣ×ΓA) that there is s ∈ ℘Σ×Γ(A) such that
℘(q)(s) = t.

In the base case t = ε : (ε, qı) we are done by taking s := t. For the induction step,
we consider two cases:

• If t = (ε, qı) →∗ (p, q++) → (p, a, γ++), then by induction hypothesis, there is
s′ ∈ ℘Σ×Γ(A) such that

℘(q)(s′) = (ε, qı)→∗ (p, q++)

By definition of ℘(q), we have either q = qı = q++ or q++ = (q, c) for some c ∈ Γ.
By defintion of the transition function δqA of qA, there is b ∈ Γ and γ ∈ δ(q, (a, b))
such that

γ++ = γ+b = {((q, b), d) | (q, d) ∈ γ}
It follows that by taking

s := s′ → (p, (a, b), γ)

we have s ∈ ℘Σ×Γ(A) and ℘(q)(s) = t.

• Otherwise, t = (ε, qı)→∗ (p, a, γ++)→ (p.d, q++). Then by induction hypothesis,
there is s′ ∈ ℘Σ×Γ(A) such that

℘(q)(s′) = (ε, qı)→∗ (p, a, γ++)

By definition of ℘(q), there is b ∈ Γ such that

s′ = (ε, qı)→∗ (p, (a, b), γ)

and
γ++ = γ+b = {((q, b), d) | (q, d) ∈ γ}

Moreover q++ = q+b = (q, b) with (q, d) ∈ γ, and it follows that by taking

s := s′ → (p.d, q)

we have s ∈ ℘Σ×Γ(A) and ℘(q)(s) = t.

We thus obtain:

Corollary N.5 (Prop. 7.1). If A is a complete automaton, then the map

℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA)

is a bijection.

Proof. Injectivity is given by Lem. N.3 and surjectivitty by Lem. N.4.
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N.3. The Universal Lifting Property

In this Section, we define the unit maps

ηA : (Σ× Γ ` A) −→ (Σ× Γ ` (qΣ,ΓA)[π])

and show that they satisfy the unique lifting property (23).

N.3.1. The Units η(−)

Recall from Cor. N.5 that we have a bijection:

℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA)

We show that there is moreover an injection:

ιΣ,Γ : ℘Σ(qΣ,ΓA) −→ ℘Σ×Γ((qΣ,ΓA)[π])

We define ιΣ,Γ by induction on plays:

ιΣ,Γ((ε, qıA)) := (ε, qıA)
ιΣ,Γ(s→ (p, a, γ+b)) := ιΣ,Γ(s)→ (p, (a, b), γ+b)
ιΣ,Γ(s→ (p, q+b)) := ιΣ,Γ(s)→ (p, q+b)

Note that for all t ∈ ℘Σ(qΣ×ΓA), we have

℘(π) ◦ ιΣ,Γ(t) = t

and for all t′ ∈ ℘Σ×Γ(A),

tr(ιΣ,Γ ◦ ℘(q)(t′)) = tr(t′)

We now define ηA as the (necessarily unique) strategy such that

HS(ηA) = {(t, ιΣ,Γ ◦ ℘(q)(t)) | t ∈ ℘Σ×Γ(A)} (26)

We define it by induction on plays

s ∈ ℘P
Σ×Γ(A −~ (qA)[π])

We let
((ε, qıA) , (ε, qıA)) ∈ ηA

and the property (26) is satisfied.
Assume now

s : ∗ →∗
(
(p, qA) , (p, qA

++)
)
∈ ηA

Then for all (a, b) ∈ Σ× Γ and all γA ∈ δA(qA, (a, b)), we let

s′ : ∗ →∗
(
(p, qA) , (p, qA

++)
) O→

(
(p, (a, b), γA) , (p, qA

++)
)

P→
(

(p, (a, b), γA) , (p, (a, b), γA
+b)
)
∈ ηA
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Furthermore, for all (q′A, d) ∈ γA, we let

s′′ : ∗ →∗
(
(p, qA) , (p, qA

++)
) O→

(
(p, (a, b), γA) , (p, qA

++)
)

P→
(

(p, (a, b), γA) , (p, (a, b), γA
+b)
)

O→
(

(p, (a, b), γA) , (p · d, q′A
+b

)
)

P→
(

(p · d, q′A) , (p · d, q′A
+b

)
)
∈ ηA

Lemma N.6.
ηA : A −→

Âut
(W/R)

Σ×Γ

(qA)[π]

N.3.2. The Unique Lifting Property (23)

We now discuss the lifting property (23). Consider some

σ : Σ× Γ ` A −→ Σ× Γ ` B[π]

We will define
τ : Σ ` qA −→ Σ ` B

such that
HS(τ) = {(℘(q)(s), ℘(π)(t)) | (s, t) ∈ HS(σ)}

We define τ by induction on plays

s ∈ σ ⊆ ℘P
Σ×Γ(A −~ B[π])

For the base case, we let
((ε, qıA) , (ε, qıB)) ∈ τ

Consider now
s : ∗ →∗ ((p, qA) , (p, qB)) ∈ σ
s̃ : ∗ →∗ ((p, qA

++) , (p, qB)) ∈ τ

with HS(s̃) = (℘(q)(u), ℘(π)(v)) for HS(s) = (u, v).
Assume

(u→ (p, (a, b), γA) , v → (p, (a, b), γB)) ∈ HS(σ)

so that

s′ : ∗ →∗ ((p, qA) , (p, qB))
O→ ((p, (a, b), γA) , (p, qB))

P→ ((p, (a, b), γA) , (p, (a, b), γB)) ∈ σ

We put

s̃′ : ∗ →∗ ((p, qA
++) , (p, qB))

O→ ((p, a, γA
+b) , (p, qB))

P→ ((p, a, γA
+b) , (p, a, γB)) ∈ τ
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Assume moreover(
u→ (p, (a, b), γA)→ (p · d, q′A

+b
) , v → (p, (a, b), γB)→ (p · d, q′B)

)
∈ HS(σ)

so that

s′′ : ∗ →∗ ((p, qA) , (p, qB))
O→ ((p, (a, b), γA) , (p, qB))

P→ ((p, (a, b), γA) , (p, (a, b), γB))
O→ ((p, (a, b), γA) , (p · d, q′B))

P→ ((p · d, q′A) , (p · d, q′B)) ∈ σ

We then put

s̃′′ : ∗ →∗ ((p, qA
++) , (p, qB))

O→ ((p, a, γA
+b) , (p, qB))

P→ ((p, a, γA
+b) , (p, a, γB))

O→ ((p, a, γA
+b) , (p · d, q′B))

P→ ((p · d, q′A
+b

) , (p · d, q′B)) ∈ τ

This completes the definition of τ . It easy to see that τ is indeed a strategy. For
P-determinism, note that if τ contains

s : ∗ →∗ ((p, a, γA
+b) , u)

P→ v

s′ : ∗ →∗ ((p, a, γ′A
+b′) , u′)

P→ v′

then since A is complete, we have

γA
+b = γ′A

+b′
=⇒

(
γA = γ′B and b = b′

)
Moreover,

Lemma N.7. If
σ : A −→

Âut
(W/R)

Σ×Γ

B[π]

then
τ : q(A) −→

Âut
(W/R)

Σ

B

We now check that τ satisfies the lifting property (23):

Lemma N.8. σ = π∗(τ) ◦ ηA

Proof. Thanks to Lem.D.7.(ii) (or Cor. F.9), Prop. D.11 and Lem. H.3 we just have to
check

HS(σ) = ((℘(π)× ℘(π))−1 ◦HS(τ)) ◦HS(ηA)

where (℘(π)× ℘(π))−1 is defined as in Lem. H.3.
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If (t, u) ∈ HS(σ), then by construction (℘(q)(t), ℘(π)(u)) ∈ HS(τ) hence for all t′ such
that ℘(π)(t′) = ℘(q)(t) and tr(t′) = tr(u), we have

(t′, u) ∈ (℘(π)× ℘(π))−1 ◦HS(τ)

On the other hand,
(t, ιΣ,Γ ◦ ℘(q)(t)) ∈ HS(ηA)

And we are done by taking t′ := ιΣ,Γ ◦ ℘(q)(t) since

℘(π) ◦ ιΣ,Γ ◦ ℘(q)(t) = ℘(q)(t) and tr(ιΣ,Γ ◦ ℘(q)(t)) = tr(t) = tr(u)

Conversely, assume

(t, u) ∈ ((℘(π)× ℘(π))−1 ◦HS(τ)) ◦HS(ηA)

so that
(t, ιΣ,Γ ◦ ℘(q)(t)) ∈ HS(ηA)

and
(ιΣ,Γ ◦ ℘(q)(t), u) ∈ ((℘(π)× ℘(π))−1 ◦HS(τ))

It follows that
(℘(q)(t), ℘(π)(u)) ∈ HS(τ)

Hence there are (t′, u′) ∈ HS(σ) such that

℘(q)(t) = ℘(q)(t′) ℘(π)(u) = ℘(π)(u′)

But by Lem. N.3 this implies t = t′ and since tr(t) = tr(u) and tr(t′) = tr(u′), we also
get tr(u) = tr(u′), hence u = u′ by Lem. G.7 and we are done.

For the unicity part of the lifting property of ηA, it is sufficient to check:

Lemma N.9. If π∗(θ) ◦ ηA = π∗(θ′) ◦ ηA then θ = θ′.

Proof. Reasonning as in the proof of Lem. N.8, thanks to Lem.ii.(ii) (or Cor. F.9),
Prop. D.11 and Lem. H.3, we just have to check

((℘(π)× ℘(π))−1 ◦HS(θ)) ◦HS(ηA) = ((℘(π)× ℘(π))−1 ◦HS(θ′)) ◦HS(ηA)

=⇒ HS(θ) = HS(θ′)

where (℘(π)× ℘(π))−1 is defined as in Lem. H.3.
Let (t, u) ∈ HS(θ), so that, for all t′, u′ ∈ ℘Σ×Γ(q(A)[π] −~ B[π]) with

℘(π)(t′) = t ℘(π)(u′) = u tr(t′) = tr(u′)

we have
(t′, u′) ∈ ((℘(π)× ℘(π))−1 ◦HS(θ))
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On the other hand, for all t′′ ∈ ℘Σ×Γ(A), we have

(t′′, ιΣ,Γ ◦ ℘(q)(t′′)) ∈ HS(ηA)

Taking t′′ := ℘(q)−1(t) we get

(℘(q)−1(t), ιΣ,Γ(t)) ∈ HS(ηA)

Let now t′ := ιΣ,Γ(t). Note that tr(℘(π)(t′)) = tr(t) = tr(u) since ℘(π)(t′) = t, and then
Tr(π) ◦ tr(t′) = tr(u) by Lem. G.6. Hence, thanks to Lem. G.7, there is u′ ∈ ℘(π)−1(u)
with tr(u′) = tr(t′). Since ℘(π) ◦ ιΣ,Γ(t) = t we obtain

(℘(q)−1(t), u′) ∈ ((℘(π)× ℘(π))−1 ◦HS(θ)) ◦HS(ηA)

Hence
(℘(q)−1(t), u′) ∈ ((℘(π)× ℘(π))−1 ◦HS(θ′)) ◦HS(ηA)

It follows that
(t′′′, u′) ∈ ((℘(π)× ℘(π))−1 ◦HS(θ′))

for some t′′′ such that

t′′′ = ιΣ,Γ ◦ ℘(q) ◦ ℘(q)−1(t) = ιΣ,Γ(t)

It follows that
(℘(π) ◦ ιΣ,Γ(t), ℘(π)(u′)) ∈ HS(θ′)

and thus (t, u) ∈ HS(θ′).

Thanks to [13, Thm. IV.1.2.(ii)], we thus get:

Proposition N.10. For each projection π ∈ Alph[Σ× Γ,Σ], we have in Âut
(W/R)

an
adjunction

qΣ,Γ a π

N.4. The Beck-Chevalley Condition

We now check that the adjunction q a π∗ is preserved by substitution, in the sense of
the Beck-Chevalley condion. We therefore have to check (24) and (25),

∆ ` (qΣ,ΓA)[β] = ∆ ` q∆,Γ(A[β × IdΓ])

and

ηA[β×IdΓ] = (β × IdΓ)∗(ηA)

: ∆× Γ ` A[β × IdΓ] −→ ∆× Γ ` (q∆,ΓA[β × IdΓ])[π′]

given β ∈ Alph[∆,Σ] and Σ× Γ ` A.
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Lemma N.11.
∆ ` (qΣ,ΓA)[β] = ∆ ` q∆,Γ(A[β × IdΓ])

Proof. It is sufficient to check the equality of the corresponding transition functions. We
have

γ ∈ δ(qΣ,ΓA)[β](q, c)

iff
γ ∈ δ(qΣ,ΓA)(q, β(c))

iff
γ′ ∈ δA(q, (β(c), b′)) for some b′ ∈ Γ and γ′ s.t. γ = γ′

+b′

iff
γ′ ∈ δA[β×IdΓ](q, (c, b

′)) for some b′ ∈ Γ and γ′ s.t. γ = γ′
+b′

iff
γ ∈ δqΣ,Γ(A[β×IdΓ])(q, c)

For the equation (25) (preservation of η by substitution), we use the following preliminary
lemma:

Lemma N.12.

ιΣ×Γ ◦ ℘(q) ◦ ℘(β × IdΓ) = ℘(β × IdΓ) ◦ ι∆×Γ ◦ ℘(q)

Proof. By induction on plays s ∈ ℘∆×Γ(A[β× IdΓ]). The only non-trivial case is that of

s : ∗ →∗ (p, q) → (p, (c, b), γ)

with
γ ∈ δ(q, (β(c), b))

But then we have

ιΣ×Γ ◦ ℘(q) ◦ ℘(β × IdΓ)(s)
= ιΣ×Γ ◦ ℘(q) ◦ ℘(β × IdΓ)(∗ → (p, q)) → ιΣ×Γ ◦ ℘(q)(p, (β(c), b), γ)
= ιΣ×Γ ◦ ℘(q) ◦ ℘(β × IdΓ)(∗ → (p, q)) → ιΣ×Γ(p, β(c), γ+b)
= ιΣ×Γ ◦ ℘(q) ◦ ℘(β × IdΓ)(∗ → (p, q)) → (p, (β(c), b), γ+b)

and

℘(β × IdΓ) ◦ ι∆×Γ ◦ ℘(q)(s)
= ℘(β × IdΓ) ◦ ι∆×Γ ◦ ℘(q)(∗ → (p, q)) → ℘(β × IdΓ) ◦ ι∆×Γ(p, c, γ+b)
= ℘(β × IdΓ) ◦ ι∆×Γ ◦ ℘(q)(∗ → (p, q)) → ℘(β × IdΓ)(p, (c, b), γ+b)
= ℘(β × IdΓ) ◦ ι∆×Γ ◦ ℘(q)(∗ → (p, q)) → (p, (β(c), b), γ+b)

and we are done by induction hypothesis.
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Lemma N.13.
ηA[β×IdΓ] = (β × IdΓ)∗(ηA)

Proof. Thanks to Lem.D.7.(ii) (or Cor. F.9) and Lem. H.3 we just have to check

HS(ηA[β×IdΓ]) = ((℘(β × IdΓ)× ℘(β × IdΓ))−1 ◦HS(ηA))

where (℘(β × IdΓ)× ℘(β × IdΓ))−1 is defined as in Lem. H.3.
Assume (s, u) ∈ HS(ηA[β×IdΓ]), so that

u = ι∆,Γ ◦ ℘(q)(s)

We must show
(℘(β × IdΓ)(s) , ℘(β × IdΓ)(u)) ∈ HS(ηA)

that is
℘(β × IdΓ)(u) = ιΣ,Γ ◦ ℘(q) ◦ ℘(β × IdΓ)(s)

and we conclude by Lem. N.12.
Conversely, consider

(s, u) ∈ ((℘(β × IdΓ)× ℘(β × IdΓ))−1 ◦HS(ηA))

that is
℘(β × IdΓ)(u) = ιΣ,Γ ◦ ℘(q) ◦ ℘(β × IdΓ)(s)

We must show
u = ι∆,Γ ◦ ℘(q)(s)

By Lem. N.12 we have

℘(β × IdΓ)(u) = ℘(β × IdΓ) ◦ ι∆,Γ ◦ ℘(q)(s)

Moreover, we have tr(u) = tr(s), and since

tr(s) = tr(ι∆,Γ ◦ ℘(q)(s))

by Lem. G.7 we get
u = ι∆,Γ ◦ ℘(q)(s)

N.5. Relation with Existential Quantification in Set→

Let π := πΣ,Γ ∈ Alph[Σ× Γ,Σ]. Following Sect. G.4, the map

Tr(π) : TrΣ×Γ −→ TrΣ

induces a change-of-base functor

π• : Set/TrΣ −→ Set/TrΣ×Γ
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Recall from Cor. G.18 that π• is actually isomorphic to the action of the substitution
functor π∗:

π•(℘Σ(A)
tr→ TrΣ) ' π∗(℘ΣA)

tr→ TrΣ×Γ where π∗(℘ΣA) = ℘Σ×Γ(A[π])

Consider, in Set→, existential quantification along

π• : Set/TrΣ −→ Set/TrΣ×Γ

It is given by the functor

qπ : Set/TrΣ×Γ −→ Set/TrΣ

whose action on objects is

(A
f−→ TrΣ×Γ) 7→ (A

Tr(π)◦f−→ TrΣ)

and on morphisms

A
h // B

A
h //

f ""

B

g||
TrΣ×Γ

7→ A
h // B

A
h //

Tr(π)◦f !!

B

Tr(π)◦g}}
TrΣ

It is well known (see e.g. [12, Prop. 1.9.8, p. 99]) that qπ is an existential quantification
for the codomain fibration cod : Set→ → Set. In particular, qπ is left adjoint to π•

(and hence to π∗):
qπ a π∗

and moreover the Beck-Chevalley condition is satisfied (we come back on this point in
Sect. N.4).

The action on plays of the lifted projection of automata qΣ,Γ is very close to that of
qπ. First,

℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA)

is a bijection by Cor. N.5. Thanks to Lem. N.2, we thus have, in Set/TrΣ,

℘Σ×Γ(A)
'

℘(q)
//

Tr(π)◦tr $$

℘Σ(qΣ,ΓA)

tryy
TrΣ

Hence:

Corollary N.14. In Set/TrΣ:

qπ(℘Σ×Γ(A)
tr−→ TrΣ×Γ) ' ℘Σ(qΣ,Γ(A))

tr−→ TrΣ
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N.6. Non-Functoriality of Usual Projection

Given Σ×Γ ` A, the usual projection (see e.g. [23]) Σ ` q̃Σ,ΓA is defined as follows (we
leave the subscript implicit):

• q̃A has the same states, initial state and acceptance condition as A.

• Given a state q and a ∈ Σ,

δq̃A(q, a) :=
⋃
b∈Γ

δA(q, (a, b))

Let us now discuss the possible action of q̃ on morphisms. Given

Σ× Γ ` σ : A −~ B[π] where π ∈ Alph[Σ× Γ,Σ]

with Σ× Γ ` A and Σ ` B we would like to define

Σ ` q̃σ : q̃A −~ q̃(B[π])

Consider the two following plays:

((p, qA), (p, qB))
O→ ((p, (a, b), γA), (p, qB))

P→ ((p, (a, b), γA), (p, (a, b), γB))

((p, qA), (p, qB))
O→ ((p, (a, b′), γA), (p, qB))

P→ ((p, (a, b′), γA), (p, (a, b′), γ′B))

When projecting these two plays on the alphabet Σ, one obtains

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γB))

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γ′B))

But there two plays are no longer part of a strategy.
A (bad) idea to remedy to this would be to fix a total order on states and P(Q×D),

and force projection to always take the least available choice. This this is not functorial,
since one can compose σ with a strategy Σ ` τ  B −~ C which is insensitive to Γ but
swaps priorities.

Example N.15. Consider
Σ× Γ ` σ : A −~ B[π]

as above, and assume that γB has priority over γ′B, and that

Σ ` q̃σ : q̃A −~ q̃(B[π])

contains the play

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γB))
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Consider now
Σ ` τ : B −~ B

with plays

((p, qB), (p, qB))
O→ ((p, a, γB), (p, qB))

P→ ((p, a, γB), (p, a, γ′B))

((p, qB), (p, qB))
O→ ((p, a, γ′B), (p, qB))

P→ ((p, a, γ′B), (p, a, γB))

so that
Σ× Γ ` π∗(τ) : B[π] −~ B[π] where π ∈ Alph[Σ× Γ,Σ]

contains

((p, qB), (p, qB))
O→ ((p, (a, b), γB), (p, qB))

P→ ((p, (a, b), γB), (p, (a, b), γ′B))

((p, qB), (p, qB))
O→ ((p, (a, b), γ′B), (p, qB))

P→ ((p, (a, b), γ′B), (p, (a, b), γB))

as well as

((p, qB), (p, qB))
O→ ((p, (a, b′), γB), (p, qB))

P→ ((p, (a, b′), γB), (p, (a, b′), γ′B))

((p, qB), (p, qB))
O→ ((p, (a, b′), γ′B), (p, qB))

P→ ((p, (a, b′), γ′B), (p, (a, b′), γB))

We thus have, in
Σ× Γ ` π∗(τ) ◦ σ : A −~ B[π]

the plays

((p, qA), (p, qB))
O→ ((p, (a, b), γA), (p, qB))

P→ ((p, (a, b), γA), (p, (a, b), γ′B))

((p, qB), (p, qB))
O→ ((p, (a, b′), γA), (p, qB))

P→ ((p, (a, b′), γA), (p, (a, b′), γB))

which project to

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γB))

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γ′B))

so that, since γB has priority over γ′B, the strategy

Σ ` q̃(π∗(τ) ◦ σ) : q̃(A) −~ q̃(B[π])

should only contain

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γB))
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On the other hand, again since γB has priority over γ′B, the strategy

Σ ` q̃σ : q̃(A) −~ q̃(B[π])

also contains

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γB))

so that
Σ ` q̃(π∗(τ)) ◦ q̃σ : q̃(A) −~ q̃(B[π])

contains

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γ′B))

Hence
q̃(π∗(τ) ◦ σ) 6= q̃(π∗(τ)) ◦ q̃σ

N.6.1. On (23) w.r.t. q̃.

Also when looking at unique lifting property (23), it seems that q̃ would not have been
sufficient. In particular, the counter-example Ex. N.15 might be adapted to the present
situation.

Example N.16 (Adapted from Ex. N.15). Assume that

Σ× Γ ` σ : A −~ B[π]

contains the plays

((p, qA), (p, qB))
O→ ((p, (a, b), γA), (p, qB))

P→ ((p, (a, b), γA), (p, (a, b), γB))

((p, qA), (p, qB))
O→ ((p, (a, b′), γA), (p, qB))

P→ ((p, (a, b′), γA), (p, (a, b′), γ′B))

Then, via ηA, τ would only see

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

hence, while they should be played by τ , the following plays can not be part of a strategy:

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γB))

((p, qA), (p, qB))
O→ ((p, a, γA), (p, qB))

P→ ((p, a, γA), (p, a, γ′B))
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O. The Synchronous Arrow and Language Inclusion

In this section, we discuss the completeness of the synchronous arrow w.r.t. language
inclusion.

O.1. Correctness of Projection on Non-Deterministic Automata

We now check that, on non-deterministic automata, the projection defined in Sect. N

qΣ,Γ : AutΣ×Γ → AutΣ

implements the operation of projection on languages. Recal that the first projection
πΣ,Γ ∈ Alph[Σ× Γ,Σ] induces a tree map

πΣ,Γ ∈ Tree[Σ× Γ,Σ]

Given an automaton Σ× Γ ` A, we write

πΣ,Γ(L(A))

for the action of πΣ,Γ on L(A)
We now check that the projection operation qΣ,Γ implements existential quatification

on non-deterministic automaton, i.e. that for a complete non-deterministic automaton
Σ× Γ ` N , we have

L(qΣ,ΓN ) = πΣ,Γ(L(N ))

The inclusion
πΣ,Γ(L(N )) ⊆ L(qΣ,ΓN )

directly follows from the categorical properties of q established in Sect. N and doest not
require N to be non-deterministic. Consider a complete automaton Σ × Γ ` A. The
unit ηA of the adjunction of Prop. N.10 gives

Σ× Γ  A −~ (qΣ,Γ)[π]

By Prop. L.7 (a.k.a. Prop. 6.1), it follows that

L(A) ⊆ L(qΣ,Γ)[π]

Hence
πΣ,Γ(L(A)) ⊆ L(qΣ,ΓA)

Conversely, consider a complete non-deterministic automaton Σ×Γ ` N , a tree t and
a strategy σ such that

1 ` σ  G(qΣ,ΓN , ṫ)

154



O. The Synchronous Arrow and Language Inclusion

Then, since qΣ,ΓN is non-deterministic and complete, and since σ is total, for each tree
position p ∈ D∗, there is exactly one non-empty play s of σ such that trD(s) = (p). Note
that s is of the form

s : ∗ →∗ (p, q)
P→ (p, •, γ+b) where γ ∈ δN (q, (t(p), b)) (27)

We therefore define the tree

u : p ∈ D 7→ (t(p), b)

It is then easy, following the usual pattern for projection (see e.g. [23]) to build a strategy
τ such that

1 ` τ  G(N , u̇)

We inductivelly associate to each s ∈ σ as in (27) above a play

s̃ : ∗ →∗ (p, q)
P→ (p, •, γ) ∈ τ

First, we let (ε, qıN ) ∈ τ . Then given s′ ∈ σ of the form

s′ : s
O→ (p, q)

P→ (p, •, γ+b) where γ ∈ δN (q, (t(p), b))

with s̃ ∈ τ , we put

s̃′ : s̃
O→ (p, q)

P→ (p, •, γ) ∈ τ

Note that we then have γ ∈ δN (q, u(p)) by definition of u.
We thus have shown:

Proposition O.1 (Prop. 7.6). If Σ×Γ ` N is a non-deterministic complete automaton,
then

L(qΣ,ΓN ) = πΣ,Γ(L(N ))

O.2. Completeness w.r.t. Language Inclusion

We now give a result stating that for automata of a specific form, the synchronous arrow
−~ is complete w.r.t. language inclusion. Specifically, we show that given automata

Σ ` A and Σ ` B,

L(A) ⊆ L(B) =⇒ Σ  ND(A) −~ ∼ND(∼B)

Proposition O.2 (Prop. 7.7). Consider regular automata Σ ` A with Σ ` B
If L(A) ⊆ L(B) then Σ  ND(A) −~ ∼̂C for C := ND(∼B)

Note that according to the definition of ‹ given in Sect. M.2, given π ∈ Alph[Σ×Γ,Σ]
we have

‹Σ×Γ = ‹Σ[π]

155



O. The Synchronous Arrow and Language Inclusion

Proof. Assume L(A) ⊆ L(B). It follows from Prop. 6.5 that L(A)∩L(∼B) = ∅, and we
get from Prop. 7.5 that L(ND(A))∩L(ND(∼B)) = ∅. By Prop. 6.4, we get L(ND(A)~
ND(∼B)) = ∅.

Since ND(A) ~ ND(∼B) is non-deterministic (Rem. 7.4), it follows from Prop. O.1
that L(q1,Σ(ND(A)~ND(∼B))) = ∅. By Prop. 6.5, we obtain

1  ∼ (q1,Σ(ND(A)~ND(∼B)))

and by Cor. M.4, since ND(A)~ND(∼B) is complete, we get

1  q1,Σ(ND(A)~ND(∼B)) −~ ‹1

It then follows from the adjunction q1,Σ a π∗ (Prop. N.10) that

Σ  (ND(A)~ND(∼B)) −~ ‹1[π]

and Prop. M.2.(ii) gives

Σ  ND(A) −~ ∼̂C)

for C := ND(∼B)
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