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Piercing the Vainshtein screen with anomalous gravitational wave speed:

Constraints on modified gravity from binary pulsars

Jose Beltrán Jiménez, Federico Piazza, and Hermano Velten
CPT, Aix Marseille Université, UMR 7332, 13288 Marseille, France

By using observations of the Hulse-Taylor pulsar we constrain the gravitational wave (GW) speed
to the level of 10−2. We apply this result to scalar-tensor theories that generalize Galileon 4 and
5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue
that this effect survives conventional screening due to the persistence of a scalar field gradient inside
virialized overdensities, which effectively “pierces” the Vainshtein screening. In specific branches
of solutions, our result allows to directly constrain the cosmological couplings in the effective field
theory of dark energy formalism.

Introduction - Modifications of General Relativity
(GR) that explain the acceleration of the Universe can
display a gravitational wave (GW) speed cT 6= 1 (we use
units ~ = c = 1). What are the observational constraints
on this parameter? In some given model, cT can be ex-
pressed as a specific function of the (post-Newtonian)
parameters of the theory, and thus constrained indi-
rectly with solar system tests (see e.g. [1]). On the other
hand, cosmological observations limit cT to the 10% level
(e.g. [2]). In Ref. [3], Moore and Nelson observe that sub-
luminal GWs would be Cherenkov-radiated by particles
traveling faster than cT . By looking at high energy cos-
mic rays data, the authors manage to constrain this effect
to the impressive level of 10−15. We notice, however, that
the typical energy of the corresponding radiated gravi-
tons, ∼ 1010 GeV, is well above any reasonable cut-off of
the modified gravity theories for cosmic acceleration. It
is not difficult to envision e.g. Goldstone modes in spon-
taneous Lorentz breaking situations that are subluminal
at low frequencies and recover relativistic propagation
above the symmetry breaking scale [4]. With binary pul-
sars timing data, in this letter we obtain for cT looser
limits (∼ 10−2), which however apply to frequencies that
are relevant for an effective theory of dark energy.

One obvious objection is that scalar tensor theories
generally come equipped with screening mechanisms, al-
lowing to recover the stringent tests of gravity in the
galaxy and in the solar system. Among these, the Vain-

shtein screening [5] is particularly efficient, and relevant
for those scalar tensor theories that display anomalous
GWs speed. What screening guarantees, however, is
the suppression of the contribution of the scalar field φ
to the total gravitational attraction between bodies in
the Newtonian approximation. In a screened situation,
the fluctuations of the metric field—gravitons—are left
as the only mediators of long-range interactions. But
not necessarily do they behave as in GR. The point is
that the background value of the scalar φ0, although not
directly participating in gravitational interactions, gen-
erally maintains a non vanishing gradient that sponta-
neously breaks Lorentz symmetry. In such a situation,
the effective gravitational Lagrangian need not be that
of GR, even if it involves only massless gravitons. The
Vainshtein screen is pierced.

The same mechanism is responsible for other violations
of the screening considered in the literature. In simple
cases, deviations from GR boil down to a spacetime vari-
ation of the Newton constant GN . Refs. [6, 7] use Lunar-
laser-ranging to constrain this effect, obtaining limits on
modified gravity models that are comparable in size to
those obtained here. Preferred-frame effects [8] and pos-
sibly anomalous values of the gravitational slip parame-
ter γPPN [9, 10] (see also the following on this) have also
been discussed in the literature.
Quadrupole formula, revisited - For the sake of

generality, we will consider a two-fold modification of GR
encoded in the following Lagrangian for the GWs sector:

L =
1

64πGgw

∑

α=+,×

[

1

c2T
γ̇2
α − |~∇γα|

2

]

, (1)

where +,× represent the two polarizations of the GWs.
First, we allow for a coupling of GWs to matter, Ggw,

possibly different than the Newton’s constant GN in-
ferred in the Newtonian limit via the Poisson equation.
Indeed, in addition to the radiating gravitons described
by the above Lagrangian, we have the potential gravi-
tons [11], responsible for the bound of the binary system.
In modified gravity theories with an additional scalar de-
gree of freedom, the scalar sector also becomes radiative.
We will rely on Vainshtein screening while assuming that
the contribution of the radiated scalar to the variation of
the binary system period is negligible, as was shown to
be the case in specific models [12].
The second modification that we consider is that GWs

can propagate at a speed cT different from the speed of
light. We assume here that such a speed is constant,
direction- and polarization-independent. This statement
is exact in the limit of a constant gradient for the back-
ground scalar field φ0, and in the reference frame where
such a gradient is along the time direction. In the follow-
ing we will quantify the corrections due to the presence
of a spatial component of the gradient, and argue that in
realistic situations such a component is negligible.
It is interesting to revisit, step by step, the standard

derivation of the quadrupole formula (e.g. [13]) at the
light of these modifications. First, we want to estimate
the energy flux of a GW across a spherical surface at large
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distance r from the source. The standard expression can
be modified, essentially, by dimensional analysis (e.g. by
rescaling the time as ∂t = cT∂t′ so that the GR formulae
can be applied straightforwardly). We find

dE

dt
=

r2

32πcTGgw

∫

dΩ 〈∂tγij∂tγij〉 , (2)

where 〈. . . 〉 means average over a region of spacetime
much larger than the GW wavelength. On the other
hand, at the lowest (quadrupole) order in the velocity
expansion, the radiated amplitude of GWs from a given
source is obtained with the usual formulae, barring the
replacement GN → Ggw and the different retarded time
at which the source is evaluated,

[γij ]quad =
2Ggw

r
Q̈TT

ij

(

t−
r

cT

)

, (3)

where QTT
ij is the transverse-traceless projection of the

quadrupole moment Qij of the source. Note that Q̈TT
ij

appears in (3) after using the energy-momentum conser-
vation of matter. Since the matter sector has the usual
Lorentz symmetry, the time derivatives acting on QTT

ij

do not introduce any additional factors of cT . As in
the standard calculation, the way such a projection is
made depends on the direction of the GW and this should
be taken into account when calculating the surface inte-
gral (2). This results in the following total power emitted

Pquad =
Ggw

5cT

〈...
Qij

...
Qij

〉

. (4)

This expression coincides with the formula obtained in
[14] for Horava gravity.
Binary pulsar constraints - By the above modi-

fied quadrupole formula, binary pulsars observations will
allow us to constrain the combination cTGgw, modulus
some assumptions on the expressions of the Keplerian
parameters of the bound system that we detail in the
following. The emission of GWs results in a decrease of
the orbital period Pb [13]. Mutatis mutandis, we get

Ṗb =−

(

Ggw

GN

c

cT

)

192πG
5/3
N

5c5

(

Pb

2π

)

−
5

3

(1− e2)−
7

2 (5)

×

(

1 +
73e2

24
+

37e4

96

)

mpmc(mp +mc)
−1/3,

where e is the eccentricity of the Keplerian orbit and
mp and mc are the masses of the pulsar and its compan-
ion, and we have temporarily reintroduced (just here and
in (6)) the dimensional speed of light c. As explained be-
low Eq. (1), we assume potential gravitons and radiative
gravitons to couple to matter with different strengths.
Note the different roles in the derivation played by GN ,
coming from the formula of the orbits, and Ggw, coming
from the actual emission of gravitational waves.
We use the most accurate available data on Ṗb, those

of the Hulse-Taylor pulsar (PSR B1913+16) [15], with

Parameter Description Value

e eccentricity 0.6171334(5)
Pb(days) period 0.322997448911(4)
ẇ(deg/yr) periastron advance 4.226598(5)
γ(ms) Einstein delay 4.2992(8)

Ṗb period decay −2.423(1) × 10−12

TABLE I: Orbital parameters for PSR B1913+16 from [16].
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FIG. 1: Mass-mass diagram for PSR B1913+16 (the Hulse-
Taylor pulsar) based on the post-Keplerian parameters ẇ

(black), γ (red) and Ṗb (blue). Varying the combination

cTGgw/GN amounts to shifting the 1-σ stripe of Ṗb.

the orbital parameters shown in Table I1. Before using
this information, we need the standard expressions for
the advance of the periastron ω̇ and the amplitude of the
Einstein delayγ [18], which also depend on the Keplerian
parameters e and Pb, and on the masses mp and mc.
We can thus use the binary pulsar data to constrain the
combination cTGgw, in addition to the two masses.

While the expression of γ is derived, essentially, in the
Newtonian approximation, a comment regarding the pa-
rameter ω̇ is in order here. In a modified gravity set-up,
such a quantity depends on both post-Newtonian param-
eters γPPN and βPPN [18, 19]. Since we are aiming (see
below) to a precision of 10−2, we rely on solar system
tests, which constrain γPPN and βPPN at the levels of
10−5 and 10−3 respectively, and ω̇ directly and indepen-
dently, for Mercury, at the level of 10−3 [18, 20, 21].

We can now proceed to construct the mass-mass di-

1 Eq. (5) is calculated in the orbiting system reference frame
which is accelerated with respect to the solar system barycenter
frame [17]. This effect, known as Shklovskii effect, gives an extra
∆Ṗb,gal = −0.027± 0.005× 10−12 which should be subtracted.
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agram and the corresponding constraints on cTGgw as
shown in Fig. 1. We see that the binary pulsar data
meet in a small region of the (mp,mc) plane. GR predic-
tions fall in the intersection of ω̇ and γ within about 1σ
confidence. By imposing compatibility of the three con-
straints at the 1σ level we obtain the following bound:

0.995 .
Ggw

GN

c

cT
. 1.00 . (6)

Symmetries and scalar field gradients - We are
now to discuss the implications of the above bound on
concrete scalar tensor models for dark energy. First, it is
helpful to consider the basic structure of the simplest sce-
nario that displays an anomalous GW speed, the quartic

galileon model, with Lagrangian

Lgal
4 = −

X

Λ6

[

(�φ)2 − (∇µ∇νφ)
2
]

. (7)

In the above, X ≡ ∂µφ∂
µφ and Λ is some energy scale

of the order of Λ ≃ (MpH
2
0 )

1/3 with H0 the Hubble pa-
rameter today. By inspection of the second term inside
the square brackets, we see that the covariant derivatives
generate a term quadratic in the Christoffel symbols. In
the presence of a background field φ0 with non-vanishing
timelike gradient, such term contributes to the quadratic
Lagrangian for the gravitons hij as ∼ ḣ2

ij , thus modifying
the propagation speed of GW. It is immediate to see that
cT is dependent only on the gradient of φ0 in this case.
Only when ∇µφ0 vanishes does cT go to one.
But for theories enjoying shift symmetry φ → φ +

const., the actual value of the scalar is irrelevant, and
there is no evident mechanism for it to detach from cos-
mic evolution and become constant inside a virialized ob-
ject. This means that we do expect, in general, a non-
vanishing scalar gradient inside screened environments—
a “local remnant” of the expansion of the Universe.
Indeed, the profile of a cosmologically evolving scalar

field in the presence of a matter source is easily estimated
for those theories that enjoy a further, galileon, symme-
try [22], which makes a constant gradient of φ, and not
only its actual value, irrelevant. In Minkowski space, this
is defined as the invariance under ∇µφ → ∇µφ+ bµ with
bµ a constant vector. Let φcosm

0 (t) be the cosmological
solution obtained under the assumption of homogeneity
and isotropy. Well inside the Hubble radius, where the
metric is similar to Minkowski, this is effectively a field
configuration of constant gradient. Once we find a suit-
able radial solution φastro

0 (r) vanishing at infinity around
some localized matter source, in virtue of galileon sym-
metry, we can simply add the two solutions,

φ0(r, t) ≃ φcosm
0 (t) + φastro

0 (r) . (8)

Galileon theories are a combination of 5 Lagrangian
terms with an increasing number of fields φ.
As a case study, let us consider the quartic galileon (7).

The cosmological gradient for this theory is given by

φ̇cosm
0 ∼ H0Mp ∼ Λ3H−1

0 . On the other hand, the analy-
sis of the Vainshtein mechanism near a spherically sym-
metric object shows that the radial gradient of the scalar
inside the screened region for quartic Galileon is con-
stant, (φastro

0 )′ ∼ (M/Mp)
1/3Λ2 ∼ rV Λ

3, where we have

introduced the Vainshtein radius rV ≃ (M/Mp)
1/3Λ−1

and M is the mass of the matter source. In summary,

φ′

0

φ̇0

∼
rV

H−1
0

, (9)

which shows that a localised source contributes a very
mild radial component to the total gradient of the field.
For example, the Sun has rV ∼ 1 kpc so this ratio is
of order ∼ 10−6. In comparison, our peculiar velocity
with respect to the CMB gives a much larger (effect∼
10−3). Our estimates are in agreement with the explicit
numerical calculations of [23].
Gravity inevitably breaks the symmetry∇µφ → ∇µφ+

bµ, if anything, because there is no such thing as a con-
stant vector bµ in a general spacetime. However, we can
apply the above estimates to all scalar tensor theories
that reduce to galileon in the decoupling limit, formally
defined as MP → ∞ while keeping Λ constant. Among
these, theories with weakly broken galileon symmetry [24]
have their Lagrangians protected against quantum cor-
rections.
Cosmological EFT operators - We have just shown

that φ′

0 ≪ φ̇0 (even) inside the Vainshtein radius, where
the non linearities in the scalar can become important
but the metric is very close to Minkowski. The most
general quadratic Lagrangian for the metric fluctuations
in the presence of a background scalar field of constant
timelike gradient is conveniently studied within the effec-
tive field theory (EFT) formalism for cosmological per-
turbations [25–27]. By choosing the time coordinate to
be proportional to the scalar field (unitary gauge), all
degrees of freedom are transferred to the metric, cho-
sen to be the one minimally coupled to matter (Jordan
frame). A limited number of operators capture the linear
dynamics of the most general scalar-tensor theory with
an equation of motion of at most second order for the
propagating scalar fluctuation [26]. Among such opera-
tors, only three affect the pure graviton sector,

L ⊃
M2

2

[

R+ ǫ4
(

δKijδKij − δK2
)

− ǫ̃4
(3)RδN

]

,

(10)
where R is the Ricci scalar, δKij is the perturbation of
the extrinsic curvature Kij of the t = const. hypersur-
faces, (3)R their Ricci scalar and δN the perturbation of
the lapse function. M , ǫ4 and ǫ̃4 are time dependent co-
efficients. In GR, M = const., ǫ4 = ǫ̃4 = 0. The above
operators arise e.g. in the class of models introduced
in [28] as a generalization of Horndeski theory, which is
the most general scalar-tensor theory with equations of
motion of at most second order [29, 30]. We refer the
reader to [31] for the expressions of ǫ4 and ǫ̃4 as func-
tions of the full Beyond Horndeski Lagrangians.
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To study the effects of the terms (10) it is convenient to
switch to Newtonian gauge on a Minkowski background.
By forcing a time-diffeomorfism t → t + π, the fluctua-
tions of the scalar field π reappear in the action, after
which we can fix the metric to have the form

ds2 = −(1 + 2Φ)dt2 + [(1− 2Ψ)δij + γij ] dx
idxj , (11)

where Φ and Ψ are the two Newtonian potentials and γij
represents the transverse traceless graviton. At highest
order in derivatives the quadratic Lagrangian reads [31]

L =
1

2
gµνTµν +M2

[

1

4c2T

(

γ̇2
ij − c2T (

~∇γij)
2
)

(12)

− 3c−2
T Ψ̇2 + (~∇Ψ)2 − 2c−2

T (1 + αH)~∇Φ~∇Ψ+

c1π̇
2 − c2(~∇π)2 +mixing terms

]

,

where we have defined the GWs speed c2T = (1+ǫ4)
−1 and

the beyond Horndeski parameter αH = ǫ̃4−ǫ4. In the Jor-
dan frame there is no direct coupling of π to the matter
fields, but the scalar-metric mixing terms schematically

indicated in (12), of the type ~∇Φ~∇π, ~∇Ψ~∇π and Ψ̇π̇.

When αH 6= 0 the higher derivative term ~∇Ψ~∇π̇ also
appears [26]. The explicit form of the last line of (12)
depend on all the operators of the EFT—i.e. also on
those omitted in (10)—as well as on the time derivatives
of ǫ4 and ǫ̃4, and is responsible for the rich linear phe-
nomenology of dark energy, in which the π fluctuations
play a dominant role [32–34].
However, in the vicinity of a localised matter source the

π fluctuations become irrelevant because of the screening,
and we can thus forget about the third line of (12). As
long as the on-shell gravitons γij , and the Newtonian po-
tentials Φ and Ψ can be considered as short-wavelength
fluctuations on top of a constant background scalar field
gradient, the first two lines of (12) can be borrowed from
cosmology and applied to general set-ups. This is the
case for GWs of wavelengths much shorter than the dis-
tance from the source. From the first line of (12) we
can read off Ggw = c2T /(8πM

2). For a given (shift-
symmetric) theory, the cosmological value of cT (equiv-
alently, of the EFT parameter ǫ4) can be calculated as

a function of X = −φ̇2
0 [26, 31]. If such a gradient ac-

quires a spatial component φ′—either along the radius
from a matter source, or in the direction of our motion
w.r.t. the CMB frame—cT simply transforms as a ve-
locity under a boost of speed v = φ′/φ̇ and becomes
direction-dependent. Along the two principal directions
the boosted velocity reads

castroT =
cT (X)± v

1± cT (X)v
. (13)

We are left with the second line of (12), which can
be used to describe the dynamics of the scalar potential
gravitons in the Newtonian approximation. However, its
applicability to general screened situations is more sub-
tle. Since the Newtonian potentials and the background

field φ0 are generated by the same source, they are of the
same typical wavelengths, and the constant gradient ap-
proximation for φ0 is not guaranteed to work. By substi-
tuting gµνTµν ≃ −2Φρm, one would obtain the relation
between the two Newtonian potentials γPPN ≡ Ψ/Φ and
the Newton constant by the Poisson equation:

γPPN =
1 + αH

c2T
, GN =

c4T
8πM2(1 + αH)2

. (14)

The study of spherically symmetric configurations in
the full beyond Horndeski models confirms that the
above always correspond to one available branch of solu-
tions [9, 10]. Theories with terms up to (∇2φ)2 (type-4 )
show a total of three branches, in two of which the GR
result γPPN ≃ 1 is recovered inside the Vainshtein ra-
dius. However, for beyond Horndeski of type-5 (terms
up to terms up to (∇2φ)3), there appears to be now way
to recover the GR value in any of available branches. We
would like to emphasize that the branch corresponding
to (14), always present, also develops non-linearities in-
side the Vainshtein radius. A closer inspection of the
solutions in [9] shows, however, that for this branch the
relevant non-linearities are in the mixed π-Φ and π-Ψ
sectors, and not in the self-interactions of the scalar, as
it is usually assumed.

The branch recovering γPPN ≃ 1, when available, is
often taken as the appropriate solution inside virialized
objects [35, 36], also because it matches the asymptoti-
cally flat solutions in some specific cases [37]. However,
which branch applies to realistic scenarios is ultimately
selected by the time evolution. The point is to under-
stand, case by case, which solution continuously evolves
from the (unique) linear configuration describing a tiny
perturbation in the early Universe, and this will depend,
in general, on the details of the theory.

Observational constraints and discussion -

Within the “linear branch” of solutions (14), the cos-
mological EFT parameters ǫ4 and αH are tightly con-
strained. First, the bound (6) turns into a constraint
for the combination of parameters (1 + αH)2/cT . At the
same time, as already noted e.g. in [9], the value of
the slip parameter in the linear branch (14) is powerfully
constrained by the Cassini spacecraft experiment [20]:
γPPN − 1 = (2.1 ± 2.3) × 10−5. This combines with our
binary pulsar result as in Fig. 2.

We would like to stress, however, that beyond the de-
tails related to the specific branch of solutions, the bound
on the GW speed is very general: Hulse-Taylor Pulsar’s
observations constrains cT at the level of 10−2, barring
remarkable and unlikely cancellations with the (linear
and non-linear) physics that determines the orbits of the
bound system. Our result applies to all dark energy
models in which gravity is modified enough to display
a different speed for GWs. Within scalar-tensor theories,
in particular, we have considered galileon 4 and 5 type
models and its generalizations and argued that the effect
is not screened in general, because it is related to the
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FIG. 2: Combined constraints in the (c2T , αH) parameter
space for the linear branch of solutions (14). The (tight)
bound the Cassini measurement [20] (black curve) and the
light-blue stripe corresponding to the Hulse-Taylor pulsar
bound obtained from the top panel. Within Horndeski theo-
ries, because GN = c2TGgw, the bound (6) turns into a slight
preference for superluminal propagation.

the persistence of the (cosmological) scalar field gradient
even inside conventionally Vainshtein-screened regions.
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