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Piercing the Vainshtein screen with anomalous gravitational wave speed: Constraints on modified gravity from binary pulsars

By using observations of the Hulse-Taylor pulsar we constrain the gravitational wave (GW) speed to the level of 10 -2 . We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively "pierces" the Vainshtein screening. In specific branches of solutions, our result allows to directly constrain the cosmological couplings in the effective field theory of dark energy formalism.

Introduction -Modifications of General Relativity (GR) that explain the acceleration of the Universe can display a gravitational wave (GW) speed c T = 1 (we use units = c = 1). What are the observational constraints on this parameter? In some given model, c T can be expressed as a specific function of the (post-Newtonian) parameters of the theory, and thus constrained indirectly with solar system tests (see e.g. [START_REF] Will | Theory and experiment in gravitational physics[END_REF]). On the other hand, cosmological observations limit c T to the 10% level (e.g. [START_REF] Raveri | Measuring the speed of cosmological gravitational waves[END_REF]). In Ref. [START_REF] Moore | Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation[END_REF], Moore and Nelson observe that subluminal GWs would be Cherenkov-radiated by particles traveling faster than c T . By looking at high energy cosmic rays data, the authors manage to constrain this effect to the impressive level of 10 -15 . We notice, however, that the typical energy of the corresponding radiated gravitons, ∼ 10 10 GeV, is well above any reasonable cut-off of the modified gravity theories for cosmic acceleration. It is not difficult to envision e.g. Goldstone modes in spontaneous Lorentz breaking situations that are subluminal at low frequencies and recover relativistic propagation above the symmetry breaking scale [START_REF] Nicolis | Spontaneous Symmetry Probing[END_REF]. With binary pulsars timing data, in this letter we obtain for c T looser limits (∼ 10 -2 ), which however apply to frequencies that are relevant for an effective theory of dark energy.

One obvious objection is that scalar tensor theories generally come equipped with screening mechanisms, allowing to recover the stringent tests of gravity in the galaxy and in the solar system. Among these, the Vainshtein screening [START_REF] Vainshtein | To the problem of nonvanishing gravitation mass[END_REF] is particularly efficient, and relevant for those scalar tensor theories that display anomalous GWs speed. What screening guarantees, however, is the suppression of the contribution of the scalar field φ to the total gravitational attraction between bodies in the Newtonian approximation. In a screened situation, the fluctuations of the metric field-gravitons-are left as the only mediators of long-range interactions. But not necessarily do they behave as in GR. The point is that the background value of the scalar φ 0 , although not directly participating in gravitational interactions, generally maintains a non vanishing gradient that spontaneously breaks Lorentz symmetry. In such a situation, the effective gravitational Lagrangian need not be that of GR, even if it involves only massless gravitons. The Vainshtein screen is pierced.

The same mechanism is responsible for other violations of the screening considered in the literature. In simple cases, deviations from GR boil down to a spacetime variation of the Newton constant G N . Refs. [START_REF] Babichev | Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from Bounds on the Time Variation of G[END_REF][START_REF] Li | Simulating the quartic Galileon gravity model on adaptively refined meshes[END_REF] use Lunarlaser-ranging to constrain this effect, obtaining limits on modified gravity models that are comparable in size to those obtained here. Preferred-frame effects [START_REF] Audren | Strong Binary Pulsar Constraints on Lorentz Violation in Gravity[END_REF] and possibly anomalous values of the gravitational slip parameter γ PPN [START_REF] Kimura | Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory[END_REF][START_REF] Kobayashi | Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski[END_REF] (see also the following on this) have also been discussed in the literature.

Quadrupole formula, revisited -For the sake of generality, we will consider a two-fold modification of GR encoded in the following Lagrangian for the GWs sector:

L = 1 64πG gw α=+,× 1 c 2 T γ2 α -| ∇γ α | 2 , (1) 
where +, × represent the two polarizations of the GWs. First, we allow for a coupling of GWs to matter, G gw , possibly different than the Newton's constant G N inferred in the Newtonian limit via the Poisson equation. Indeed, in addition to the radiating gravitons described by the above Lagrangian, we have the potential gravitons [START_REF] Goldberger | An Effective field theory of gravity for extended objects[END_REF], responsible for the bound of the binary system. In modified gravity theories with an additional scalar degree of freedom, the scalar sector also becomes radiative. We will rely on Vainshtein screening while assuming that the contribution of the radiated scalar to the variation of the binary system period is negligible, as was shown to be the case in specific models [START_REF] De Rham | Vainshtein Mechanism in Binary Pulsars[END_REF].

The second modification that we consider is that GWs can propagate at a speed c T different from the speed of light. We assume here that such a speed is constant, direction-and polarization-independent. This statement is exact in the limit of a constant gradient for the background scalar field φ 0 , and in the reference frame where such a gradient is along the time direction. In the following we will quantify the corrections due to the presence of a spatial component of the gradient, and argue that in realistic situations such a component is negligible.

It is interesting to revisit, step by step, the standard derivation of the quadrupole formula (e.g. [START_REF] Maggiore | Gravitational Waves. Vol. 1: Theory and Experiments[END_REF]) at the light of these modifications. First, we want to estimate the energy flux of a GW across a spherical surface at large distance r from the source. The standard expression can be modified, essentially, by dimensional analysis (e.g. by rescaling the time as ∂ t = c T ∂ t ′ so that the GR formulae can be applied straightforwardly). We find

dE dt = r 2 32πc T G gw dΩ ∂ t γ ij ∂ t γ ij , (2) 
where . . . means average over a region of spacetime much larger than the GW wavelength. On the other hand, at the lowest (quadrupole) order in the velocity expansion, the radiated amplitude of GWs from a given source is obtained with the usual formulae, barring the replacement G N → G gw and the different retarded time at which the source is evaluated,

[γ ij ] quad = 2G gw r QT T ij t - r c T , (3) 
where Q T T ij is the transverse-traceless projection of the quadrupole moment Q ij of the source. Note that QT T ij appears in (3) after using the energy-momentum conservation of matter. Since the matter sector has the usual Lorentz symmetry, the time derivatives acting on Q T T ij do not introduce any additional factors of c T . As in the standard calculation, the way such a projection is made depends on the direction of the GW and this should be taken into account when calculating the surface integral (2). This results in the following total power emitted

P quad = G gw 5c T ... Q ij ... Q ij . (4) 
This expression coincides with the formula obtained in [START_REF] Blas | Gravitational Radiation in Horava Gravity[END_REF] for Horava gravity.

Binary pulsar constraints -By the above modified quadrupole formula, binary pulsars observations will allow us to constrain the combination c T G gw , modulus some assumptions on the expressions of the Keplerian parameters of the bound system that we detail in the following. The emission of GWs results in a decrease of the orbital period P b [START_REF] Maggiore | Gravitational Waves. Vol. 1: Theory and Experiments[END_REF]. Mutatis mutandis, we get

Ṗb = - G gw G N c c T 192πG 5/3 N 5c 5 P b 2π -5 3 (1 -e 2 ) - 7 2 
(5)

× 1 + 73e 2 24 + 37e 4 96 m p m c (m p + m c ) -1/3 ,
where e is the eccentricity of the Keplerian orbit and m p and m c are the masses of the pulsar and its companion, and we have temporarily reintroduced (just here and in ( 6)) the dimensional speed of light c. As explained below Eq. ( 1), we assume potential gravitons and radiative gravitons to couple to matter with different strengths. Note the different roles in the derivation played by G N , coming from the formula of the orbits, and G gw , coming from the actual emission of gravitational waves. We use the most accurate available data on Ṗb , those of the Hulse-Taylor pulsar (PSR B1913+16) [START_REF] Hulse | Discovery of a pulsar in a binary system[END_REF], with the orbital parameters shown in Table I 1 . Before using this information, we need the standard expressions for the advance of the periastron ω and the amplitude of the Einstein delayγ [START_REF] Will | The Confrontation between General Relativity and Experiment[END_REF], which also depend on the Keplerian parameters e and P b , and on the masses m p and m c . We can thus use the binary pulsar data to constrain the combination c T G gw , in addition to the two masses.

While the expression of γ is derived, essentially, in the Newtonian approximation, a comment regarding the parameter ω is in order here. In a modified gravity set-up, such a quantity depends on both post-Newtonian parameters γ PPN and β PPN [START_REF] Will | The Confrontation between General Relativity and Experiment[END_REF][START_REF] Wex | Testing Relativistic Gravity with Radio Pulsars[END_REF]. Since we are aiming (see below) to a precision of 10 -2 , we rely on solar system tests, which constrain γ PPN and β PPN at the levels of 10 -5 and 10 -3 respectively, and ω directly and independently, for Mercury, at the level of 10 -3 [START_REF] Will | The Confrontation between General Relativity and Experiment[END_REF][START_REF] Bertotti | A test of general relativity using radio links with the Cassini spacecraft[END_REF][START_REF] Damour | Gravitation, experiment and cosmology[END_REF].

We can now proceed to construct the mass-mass di-1 Eq. ( 5) is calculated in the orbiting system reference frame which is accelerated with respect to the solar system barycenter frame [START_REF] Thibault Damour | On the orbital period change of the binary pulsar PSR 1913 + 16[END_REF]. This effect, known as Shklovskii effect, gives an extra ∆ Ṗb,gal = -0.027 ± 0.005 × 10 -12 which should be subtracted.

agram and the corresponding constraints on c T G gw as shown in Fig. 1. We see that the binary pulsar data meet in a small region of the (m p , m c ) plane. GR predictions fall in the intersection of ω and γ within about 1σ confidence. By imposing compatibility of the three constraints at the 1σ level we obtain the following bound:

0.995 G gw G N c c T 1.00 . (6) 
Symmetries and scalar field gradients -We are now to discuss the implications of the above bound on concrete scalar tensor models for dark energy. First, it is helpful to consider the basic structure of the simplest scenario that displays an anomalous GW speed, the quartic galileon model, with Lagrangian

L gal 4 = - X Λ 6 ( φ) 2 -(∇ µ ∇ ν φ) 2 . (7) 
In the above, X ≡ ∂ µ φ∂ µ φ and Λ is some energy scale of the order of Λ ≃ (M p H 2 0 ) 1/3 with H 0 the Hubble parameter today. By inspection of the second term inside the square brackets, we see that the covariant derivatives generate a term quadratic in the Christoffel symbols. In the presence of a background field φ 0 with non-vanishing timelike gradient, such term contributes to the quadratic Lagrangian for the gravitons h ij as ∼ ḣ2 ij , thus modifying the propagation speed of GW. It is immediate to see that c T is dependent only on the gradient of φ 0 in this case. Only when ∇ µ φ 0 vanishes does c T go to one.

But for theories enjoying shift symmetry φ → φ + const., the actual value of the scalar is irrelevant, and there is no evident mechanism for it to detach from cosmic evolution and become constant inside a virialized object. This means that we do expect, in general, a nonvanishing scalar gradient inside screened environmentsa "local remnant" of the expansion of the Universe.

Indeed, the profile of a cosmologically evolving scalar field in the presence of a matter source is easily estimated for those theories that enjoy a further, galileon, symmetry [START_REF] Nicolis | The galileon as a local modification of gravity[END_REF], which makes a constant gradient of φ, and not only its actual value, irrelevant. In Minkowski space, this is defined as the invariance under ∇ µ φ → ∇ µ φ + b µ with b µ a constant vector. Let φ cosm 0 (t) be the cosmological solution obtained under the assumption of homogeneity and isotropy. Well inside the Hubble radius, where the metric is similar to Minkowski, this is effectively a field configuration of constant gradient. Once we find a suitable radial solution φ astro 0 (r) vanishing at infinity around some localized matter source, in virtue of galileon symmetry, we can simply add the two solutions,

φ 0 (r, t) ≃ φ cosm 0 (t) + φ astro 0 (r) . (8) 
Galileon theories are a combination of 5 Lagrangian terms with an increasing number of fields φ.

As a case study, let us consider the quartic galileon [START_REF] Li | Simulating the quartic Galileon gravity model on adaptively refined meshes[END_REF]. The cosmological gradient for this theory is given by φcosm

0 ∼ H 0 M p ∼ Λ 3 H -1
0 . On the other hand, the analysis of the Vainshtein mechanism near a spherically symmetric object shows that the radial gradient of the scalar inside the screened region for quartic Galileon is constant, (φ astro 0

) ′ ∼ (M/M p ) 1/3 Λ 2 ∼ r V Λ 3
, where we have introduced the Vainshtein radius r V ≃ (M/M p ) 1/3 Λ -1 and M is the mass of the matter source. In summary,

φ ′ 0 φ0 ∼ r V H -1 0 , (9) 
which shows that a localised source contributes a very mild radial component to the total gradient of the field. For example, the Sun has r V ∼ 1 kpc so this ratio is of order ∼ 10 -6 . In comparison, our peculiar velocity with respect to the CMB gives a much larger (effect∼ 10 -3 ). Our estimates are in agreement with the explicit numerical calculations of [START_REF] Winther | Vainshtein mechanism beyond the quasistatic approximation[END_REF].

Gravity inevitably breaks the symmetry ∇ µ φ → ∇ µ φ+ b µ , if anything, because there is no such thing as a constant vector b µ in a general spacetime. However, we can apply the above estimates to all scalar tensor theories that reduce to galileon in the decoupling limit, formally defined as M P → ∞ while keeping Λ constant. Among these, theories with weakly broken galileon symmetry [START_REF] Pirtskhalava | Weakly Broken Galileon Symmetry[END_REF] have their Lagrangians protected against quantum corrections.

Cosmological EFT operators -We have just shown that φ ′ 0 ≪ φ0 (even) inside the Vainshtein radius, where the non linearities in the scalar can become important but the metric is very close to Minkowski. The most general quadratic Lagrangian for the metric fluctuations in the presence of a background scalar field of constant timelike gradient is conveniently studied within the effective field theory (EFT) formalism for cosmological perturbations [START_REF] Gubitosi | The Effective Field Theory of Dark Energy[END_REF][START_REF] Gleyzes | Essential Building Blocks of Dark Energy[END_REF][START_REF] Piazza | Effective Field Theory of Cosmological Perturbations[END_REF]. By choosing the time coordinate to be proportional to the scalar field (unitary gauge), all degrees of freedom are transferred to the metric, chosen to be the one minimally coupled to matter (Jordan frame). A limited number of operators capture the linear dynamics of the most general scalar-tensor theory with an equation of motion of at most second order for the propagating scalar fluctuation [START_REF] Gleyzes | Essential Building Blocks of Dark Energy[END_REF]. Among such operators, only three affect the pure graviton sector,

L ⊃ M 2 2 R + ǫ 4 δK ij δK ij -δK 2 -ǫ4 (3) 
RδN ,

where R is the Ricci scalar, δK ij is the perturbation of the extrinsic curvature K ij of the t = const. hypersurfaces, (3) R their Ricci scalar and δN the perturbation of the lapse function. M , ǫ 4 and ǫ4 are time dependent coefficients. In GR, M = const., ǫ 4 = ǫ4 = 0. The above operators arise e.g. in the class of models introduced in [START_REF] Gleyzes | Healthy theories beyond Horndeski[END_REF] as a generalization of Horndeski theory, which is the most general scalar-tensor theory with equations of motion of at most second order [START_REF] Horndeski | Second-order scalar-tensor field equations in a four-dimensional space[END_REF][START_REF] Deffayet | Generalized galileons[END_REF]. We refer the reader to [START_REF] Gleyzes | Exploring gravitational theories beyond Horndeski[END_REF] for the expressions of ǫ 4 and ǫ4 as functions of the full Beyond Horndeski Lagrangians.

To study the effects of the terms [START_REF] Kobayashi | Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski[END_REF] it is convenient to switch to Newtonian gauge on a Minkowski background. By forcing a time-diffeomorfism t → t + π, the fluctuations of the scalar field π reappear in the action, after which we can fix the metric to have the form [START_REF] Goldberger | An Effective field theory of gravity for extended objects[END_REF] where Φ and Ψ are the two Newtonian potentials and γ ij represents the transverse traceless graviton. At highest order in derivatives the quadratic Lagrangian reads [START_REF] Gleyzes | Exploring gravitational theories beyond Horndeski[END_REF] 

ds 2 = -(1 + 2Φ)dt 2 + [(1 -2Ψ)δ ij + γ ij ] dx i dx j ,
L = 1 2 g µν T µν + M 2 1 4c 2 T γ2 ij -c 2 T ( ∇γ ij ) 2 (12) 
-3c -2 T Ψ2 + ( ∇Ψ) 2 -2c -2 T (1 + α H ) ∇Φ ∇Ψ+ c 1 π2 -c 2 ( ∇π) 2 + mixing terms ,
where we have defined the GWs speed c 2 T = (1+ǫ 4 ) -1 and the beyond Horndeski parameter α H = ǫ4 -ǫ 4 . In the Jordan frame there is no direct coupling of π to the matter fields, but the scalar-metric mixing terms schematically indicated in [START_REF] De Rham | Vainshtein Mechanism in Binary Pulsars[END_REF], of the type ∇Φ ∇π, ∇Ψ ∇π and Ψ π. When α H = 0 the higher derivative term ∇Ψ ∇ π also appears [START_REF] Gleyzes | Essential Building Blocks of Dark Energy[END_REF]. The explicit form of the last line of ( 12) depend on all the operators of the EFT-i.e. also on those omitted in (10)-as well as on the time derivatives of ǫ 4 and ǫ4 , and is responsible for the rich linear phenomenology of dark energy, in which the π fluctuations play a dominant role [START_REF] Piazza | Phenomenology of dark energy: exploring the space of theories with future redshift surveys[END_REF][START_REF] Bellini | Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity[END_REF][START_REF] Perenon | Phenomenology of dark energy: general features of large-scale perturbations[END_REF].

However, in the vicinity of a localised matter source the π fluctuations become irrelevant because of the screening, and we can thus forget about the third line of [START_REF] De Rham | Vainshtein Mechanism in Binary Pulsars[END_REF]. As long as the on-shell gravitons γ ij , and the Newtonian potentials Φ and Ψ can be considered as short-wavelength fluctuations on top of a constant background scalar field gradient, the first two lines of ( 12) can be borrowed from cosmology and applied to general set-ups. This is the case for GWs of wavelengths much shorter than the distance from the source. From the first line of [START_REF] De Rham | Vainshtein Mechanism in Binary Pulsars[END_REF] we can read off G gw = c 2 T /(8πM 2 ). For a given (shiftsymmetric) theory, the cosmological value of c T (equivalently, of the EFT parameter ǫ 4 ) can be calculated as a function of X = -φ2 0 [START_REF] Gleyzes | Essential Building Blocks of Dark Energy[END_REF][START_REF] Gleyzes | Exploring gravitational theories beyond Horndeski[END_REF]. If such a gradient acquires a spatial component φ ′ -either along the radius from a matter source, or in the direction of our motion w.r.t. the CMB frame-c T simply transforms as a velocity under a boost of speed v = φ ′ / φ and becomes direction-dependent. Along the two principal directions the boosted velocity reads

c astro T = c T (X) ± v 1 ± c T (X)v . ( 13 
)
We are left with the second line of [START_REF] De Rham | Vainshtein Mechanism in Binary Pulsars[END_REF], which can be used to describe the dynamics of the scalar potential gravitons in the Newtonian approximation. However, its applicability to general screened situations is more subtle. Since the Newtonian potentials and the background field φ 0 are generated by the same source, they are of the same typical wavelengths, and the constant gradient approximation for φ 0 is not guaranteed to work. By substituting g µν T µν ≃ -2Φρ m , one would obtain the relation between the two Newtonian potentials γ PPN ≡ Ψ/Φ and the Newton constant by the Poisson equation:

γ PPN = 1 + α H c 2 T , G N = c 4 T 8πM 2 (1 + α H ) 2 . ( 14 
)
The study of spherically symmetric configurations in the full beyond Horndeski models confirms that the above always correspond to one available branch of solutions [START_REF] Kimura | Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory[END_REF][START_REF] Kobayashi | Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski[END_REF]. Theories with terms up to (∇ 2 φ) 2 (type-4 ) show a total of three branches, in two of which the GR result γ PPN ≃ 1 is recovered inside the Vainshtein radius. However, for beyond Horndeski of type-5 (terms up to terms up to (∇ 2 φ) 3 ), there appears to be now way to recover the GR value in any of available branches. We would like to emphasize that the branch corresponding to [START_REF] Blas | Gravitational Radiation in Horava Gravity[END_REF], always present, also develops non-linearities inside the Vainshtein radius. A closer inspection of the solutions in [START_REF] Kimura | Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory[END_REF] shows, however, that for this branch the relevant non-linearities are in the mixed π-Φ and π-Ψ sectors, and not in the self-interactions of the scalar, as it is usually assumed.

The branch recovering γ PPN ≃ 1, when available, is often taken as the appropriate solution inside virialized objects [START_REF] Koyama | Astrophysical Probes of the Vainshtein Mechanism: Stars and Galaxies[END_REF][START_REF] Narikawa | Testing general scalar-tensor gravity and massive gravity with cluster lensing[END_REF], also because it matches the asymptotically flat solutions in some specific cases [START_REF] Sbisa | Characterising Vainshtein Solutions in Massive Gravity[END_REF]. However, which branch applies to realistic scenarios is ultimately selected by the time evolution. The point is to understand, case by case, which solution continuously evolves from the (unique) linear configuration describing a tiny perturbation in the early Universe, and this will depend, in general, on the details of the theory.

Observational constraints and discussion -Within the "linear branch" of solutions ( 14), the cosmological EFT parameters ǫ 4 and α H are tightly constrained. First, the bound (6) turns into a constraint for the combination of parameters (1 + α H ) 2 /c T . At the same time, as already noted e.g. in [START_REF] Kimura | Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory[END_REF], the value of the slip parameter in the linear branch ( 14) is powerfully constrained by the Cassini spacecraft experiment [START_REF] Bertotti | A test of general relativity using radio links with the Cassini spacecraft[END_REF]: γ PPN -1 = (2.1 ± 2.3) × 10 -5 . This combines with our binary pulsar result as in Fig. 2.

We would like to stress, however, that beyond the details related to the specific branch of solutions, the bound on the GW speed is very general: Hulse-Taylor Pulsar's observations constrains c T at the level of 10 -2 , barring remarkable and unlikely cancellations with the (linear and non-linear) physics that determines the orbits of the bound system. Our result applies to all dark energy models in which gravity is modified enough to display a different speed for GWs. Within scalar-tensor theories, in particular, we have considered galileon 4 and 5 type models and its generalizations and argued that the effect is not screened in general, because it is related to the the persistence of the (cosmological) scalar field gradient even inside conventionally Vainshtein-screened regions.
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 1 FIG. 1: Mass-mass diagram for PSR B1913+16 (the Hulse-Taylor pulsar) based on the post-Keplerian parameters ẇ (black), γ (red) and Ṗb (blue). Varying the combination cT Ggw/GN amounts to shifting the 1-σ stripe of Ṗb .

FIG. 2 :

 2 FIG. 2: Combined constraints in the (c 2T , αH ) parameter space for the linear branch of solutions[START_REF] Blas | Gravitational Radiation in Horava Gravity[END_REF]. The (tight) bound the Cassini measurement[START_REF] Bertotti | A test of general relativity using radio links with the Cassini spacecraft[END_REF] (black curve) and the light-blue stripe corresponding to the Hulse-Taylor pulsar bound obtained from the top panel. Within Horndeski theories, because GN = c 2 T Ggw, the bound (6) turns into a slight preference for superluminal propagation.

TABLE I :

 I Orbital parameters for PSR B1913+16 from[START_REF] Weisberg | Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16[END_REF].
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