Evgueni Abakumov 
email: evgueni.abakoumov@u-pem.fr
  
Omar El-Fallah 
email: elfallah@fsr.ac.ma
  
Karim Kellay 
email: kkellay@math.u-bordeaux1.fr
  
Thomas Ransford 
email: ransford@mat.ulaval.ca
  
  
  
  
  
Cyclicity in the harmonic Dirichlet space

Keywords: 2010 Mathematics Subject Classification. Primary 46E22; Secondary 31A05, 31A15, 31A20, 47B32 Harmonic Dirichlet space, capacity, cyclic vectors

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Let X be a topological linear space of complex functions on the unit circle T such that the shift operator S, given by

S(f )(ζ) := ζf (ζ), f ∈ X ,
is an isomorphism of X onto itself.

A closed subspace M of X is called invariant if S(M) ⊂ M. It is said to be 1-invariant (or simply invariant) for S if S(M) M, and it is called 2-invariant (or doubly invariant) if S(M) = M. The latter condition is equivalent to the invariance of M under multiplication by both ζ and ζ.

Let Z denote the integers and let N := {n ∈ Z : n ≥ 0}. Given f ∈ X , we write

[f ] N := Span X {z n f : n ∈ N}, [f ] Z := Span X {z n f : n ∈ Z}.
A function f is said to be 1-invariant if the space [f ] N is 1-invariant for S. We say that a function f ∈ X is cyclic

(resp. bicyclic) for X if [f ] N = X (resp. [f ] Z = X ).
Let us begin with the classical case, namely X = L 2 (T). By a wellknown theorem of Wiener, the 2-invariant subspaces have the form M = {f ∈ L 2 (T) : f = 0 a.e. on T \ σ}, where σ is a Borel subset of T (see e.g. [11, p.8, Theorem 1.2.1]). It follows from Szegő's infimum theorem that a function f is 1-invariant in L 2 (T) if and only if log |f | ∈ L 1 (T) (see e.g. [START_REF] Nikolskii | Treatise on the Shift Operator[END_REF]p.12,Corollary 4]).

For X = C ∞ (T), Makarov [START_REF] Makarov | Invariant subspaces of the space C ∞[END_REF] gave a complete description of the invariant subspaces of S. He also obtained the following characterization of 1-invariant functions of C ∞ (T).

Theorem (Makarov [7, p.3]). A function f is 1-invariant in C ∞ (T) if and only if log |f | ∈ L 1 (T).
The case X = C n (T) (n ≥ 1) is more complicated, and no characterization of 1-invariant functions is known ([7, p.3], see also [START_REF] Makarov | Sets of simple invariance. Investigations on linear operators and the theory of functions, X[END_REF]Theorem 1.3] or [START_REF] Makarov | Sets of 1-invariance and 1-invariant subspaces (smooth functions)[END_REF]Theorem 5]).

We shall focus our attention on the harmonic Dirichlet space D(T). This is the set of functions f ∈ L 2 (T) whose Fourier coefficients satisfy

D(f ) := n∈Z | f (n)| 2 |n| < ∞.
It becomes a Hilbert space if endowed with the norm • D(T) , given by

f 2 D(T) := f 2 L 2 (T) + D(f ) = n∈Z | f (n)| 2 (1 + |n|).
According to Douglas' formula [START_REF] Douglas | Solution of the problem of Plateau[END_REF], we have

D(f ) = 1 4π 2 T 2 |f (ζ) -f (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ|.
This can also be written

D(f ) = 1 2π T D ζ (f ) |dζ|, where D ζ (f ) is the so-called local Dirichlet integral of f at ζ, given by D ζ (f ) := 1 2π T |f (ζ) -f (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ |, ζ ∈ T. As D(T) is dense in L 2 (T), if a function f is cyclic for D(T)
, then it is also cyclic for L 2 (T). So by Szegő's theorem we have

f is cyclic for D(T) ⇒ T log |f (ζ)| |dζ| = -∞.
In [START_REF] Richter | Hyperinvariant subspaces of the harmonic Dirichlet space[END_REF], Ross, Richter and Sundberg gave a complete characterization of the 2-invariant subspaces M of D(T) in terms of their zero sets. In order to state their result, we need to introduce the notion of logarithmic capacity (see for instance [6, §2.4]).

The energy of a Borel probability measure µ on T is defined by

I(µ) := T 2 log 1 |ζ -ζ ′ | dµ(ζ)dµ(ζ ′ ) = ∞ n=1 | µ(n)| 2 n .
Then we define the logarithmic capacity of a Borel subset E of T by c(E) := 1/ inf{I(µ) : µ ∈ P(E)},

where P(E) denotes the set of probability measures supported on a compact subset of E. We say that a property holds quasi-everywhere (q.e.) if it holds everywhere outside a set of logarithmic capacity zero.

It is known that, if f ∈ D(T), then the radial limit of the Poisson integral of f exists q.e. and is equal to f a.e. (for more details we refer to [START_REF] Richter | Hyperinvariant subspaces of the harmonic Dirichlet space[END_REF] and the references therein). In the sequel, f will denote this limit, and will therefore be defined q.e. on T. We shall write Z(f ) for the zero set of f , namely

Z(f ) := {ζ ∈ T : f (ζ) = 0}.
Note that this set is defined up to sets of logarithimic capacity zero.

Theorem (Richter-Ross-Sundberg [START_REF] Richter | Hyperinvariant subspaces of the harmonic Dirichlet space[END_REF]). M is a 2-invariant subspace of D(T) if and only if there exists a measurable set E ⊂ T such that

M = D E := {f ∈ D(T) : f |E = 0 q.e.}.
Note that the problem of characterization of 1-invariant subspaces of D(T) remains open. It was proved in [START_REF] Aleman | Bergman spaces on disconnected domains[END_REF][START_REF] Ross | Invariant subspaces of the harmonic Dirichlet space with large codimension[END_REF] that, for each n ∈ N ∪ {∞}, there exists an invariant subspace M of D(T) such that dim(M/S(M)) = n. This suggests that the lattice of 1-invariant subspaces has a very complicated structure.

As a direct consequence of the Richter-Ross-Sundberg theorem, we obtain the following necessary conditions for cyclicity in D(T).

Theorem 1. If f is cyclic for D(T), then T log |f (ζ)| |dζ| = -∞ and c(Z(f )) = 0.
Our goal in this paper is to give sufficient conditions for a function f ∈ D(T) to be cyclic.

For β ∈ (0, 1], we shall denote by Lip β (T) the set of functions f continuous on T such that

f Lip β (T) := f C(T) + sup ζ,ζ ′ ∈T |f (ζ) -f (ζ ′ )| |ζ -ζ ′ | β < ∞.
For α ∈ (0, 1), we set

C 1+α (T) := {f ∈ C 1 (T) : f ′ ∈ Lip α (T)}. Of course, if f belongs to Lip β (T) or C 1+α (T), then Z(f ) is closed in T.
We shall establish the following result.

Theorem 2. Let f ∈ D(T) such that |f | ∈ C 1+α (T), where α ∈ (0, 1). Suppose further that log |f | / ∈ L 1 (T). Then [f 2 ] N = D Z(f ) .
Combining Theorems 1 and 2, we deduce

Corollary. Let f ∈ D(T) such that |f | ∈ C 1+α (T)
, where α ∈ (0, 1).

Then the following assertions are equivalent:

(1) f 2 is cyclic for D(T); (2) log |f | / ∈ L 1 (T) and c(Z(f )) = 0.
A closed set E ⊂ T is said to be a Carleson set (and we write

E ∈ (C)) if T log 1 d(ζ, E) |dζ| < ∞.
For background information on Carleson sets, see e.g. [6, §4

.4]. Note that, if f ∈ Lip β (T) and Z(f ) / ∈ (C), then log |f | / ∈ L 1 (T). It is known that Lip β (T) ⊂ D(T) if and only if β > 1/2. The inclusion Lip β (T) ⊂ D(T) for β > 1/2 can
easily be obtained from Douglas' formula.

We shall establish the following theorem.

Theorem 3. Let f ∈ Lip β (T), where β ∈ ( 1 2 , 1]. If Z(f ) / ∈ (C), then [f ] N = D Z(f ) . If furthermore c(Z(f )) = 0, then f is cyclic for D(T).

Proof of Theorem 2

For the proof of Theorem 2, we shall need the following standard result.

Lemma 4. Let f ∈ D(T). The following assertions are equivalent:

(

1) [f ] N = [f ] Z ; (2) f ∈ [Sf ] N ; (3) inf{ pf D(T) : p ∈ H ∞ , pf ∈ D(T) and p(0) = 1} = 0.
Proof. Since S is invertible, (1) and ( 2) are equivalent. where the constant M ǫ is chosen so that p ǫ (0) = 1. Thus

If f ∈ [Sf ] N , then there is a sequence (p n ) of polynomials such that p n (0) = 1 and (1 -p n )f D(T) → 0. This proves that (2) implies (3).
M ǫ = T log 1 |f (ζ)| + ǫ |dζ| 2π ,
and since log |f | / ∈ L 1 (T), it follows that M ǫ → ∞ as ǫ → 0 + . We are going to prove that lim ǫ→0 + p ǫ f 2 D(T) = 0. If this holds, then by Lemma 4 we have [f 2 ] N = [f 2 ] Z , and since clearly Z(f 2 ) = Z(f ), we can apply the Richter-Ross-Sundberg theorem to obtain the desired result.

We have

p ǫ f 2 2 D(T) = p ǫ f 2 2 L 2 (T) + D(p ǫ f 2
). For the first term, we have

p ǫ f 2 2 L 2 (T) = T e -2Mǫ |f | 4 (|f | + ǫ) 2 |dζ| 2π ≤ e -2Mǫ f 2 2 L 2 (T) → 0 as ǫ → 0 + .
The second term we estimate using Douglas' formula, namely

D(p ǫ f 2 ) = 1 4π 2 T 2 |(p ǫ f 2 )(ζ) -(p ǫ f 2 )(ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ|. Let Γ := {(ζ, ζ ′ ) ∈ T 2 : |f (ζ ′ )| ≤ |f (ζ)|}. Then, by symmetry, D(p ǫ f ) = 2 1 4π 2 Γ |(p ǫ f )(ζ) -(p ǫ f )(ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ|. Now, for all ζ, ζ ′ ∈ T, we have |(p ǫ f 2 )(ζ) -(p ǫ f 2 )(ζ ′ )| 2 = |p ǫ (ζ)(f 2 (ζ) -f 2 (ζ ′ )) + f 2 (ζ ′ )(p ǫ (ζ) -p ǫ (ζ ′ ))| 2 ≤ 2|p ǫ (ζ)| 2 |f 2 (ζ) -f 2 (ζ ′ )| 2 + 2|f 2 (ζ ′ )| 2 |p ǫ (ζ) -p ǫ (ζ ′ )| 2 . Hence Γ |(p ǫ f 2 )(ζ) -(p ǫ f 2 )(ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ| ≤ 2A ǫ + 2B ǫ ,
where

A ǫ := Γ |p ǫ (ζ)| 2 |f 2 (ζ) -f 2 (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ| and 
B ǫ := Γ |f 2 (ζ ′ )| 2 |p ǫ (ζ) -p ǫ (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ|.
We estimate A ǫ directly as follows:

A ǫ = e -2Mǫ Γ |f (ζ) + f (ζ ′ )| 2 (|f (ζ)| + ǫ) 2 |f (ζ) -f (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ| ≤ 4e -2Mǫ T 2 |f (ζ) -f (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ| ≤ 4e -2Mǫ 4π 2 D(f ).
Hence A ǫ → 0 as ǫ → 0 + . To estimate B ǫ , we consider the outer function F ǫ such that 

B ǫ = Γ e -2Mǫ |f 2 (ζ ′ )| 2 (|f (ζ)| + ǫ) 2 (|f (ζ ′ )| + ǫ) 2 |1/p ǫ (ζ) -1/p ǫ (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ| ≤ e -2Mǫ Γ |F ǫ (ζ) -F ǫ (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ| ≤ e -2Mǫ 4π 2 D(F ǫ ).
Thus B ǫ → 0 as ǫ → 0 + . This completes the proof of Theorem 2.

Proof of Theorem 3

To prove Theorem 3, we shall need the following additional lemma. Lemma 6. Let f ∈ Lip β (T), where β > 1/2. Then, for η ∈ (0, 2β-1 2β ), we have

T 2 |f (ζ) -f (ζ ′ )| 2-2η |ζ -ζ ′ | 2 |dζ ′ | |dζ| < +∞.
Proof. Since β > 1/2(1 -η), we get

T 2 |f (ζ) -f (ζ ′ )| 2-2η |ζ -ζ ′ | 2 |dζ ′ | |dζ| T 2 |dζ ′ | |dζ| |ζ -ζ ′ | 2(1-(1-η)β) < ∞.
Note that here, and in what follows, we write A B to mean that there is an absolute constant C such that A ≤ CB.

Proof of Theorem 3. By [START_REF] Richter | Hyperinvariant subspaces of the harmonic Dirichlet space[END_REF], it suffices to prove that

[f ] N is 2-invariant, which is equivalent to proving that f ∈ [Sf ] N .
Let ǫ, γ > 0, where γ will be taken small. Let E be a closed subset of Z(f ) such that |E| = 0 and E / ∈ (C). Let p ǫ be the outer function satisfying

|p ǫ (ζ)| = e -Mǫ (d(ζ, E) γ + ǫ) 1/2 a.e. on T,
where the constant M ǫ is chosen so that p ǫ (0) = 1. Thus

M ǫ := 1 2 T log 1 d(ζ, E) γ + ǫ |dζ| 2π ,
and since E / ∈ (C), it follows that M ǫ → ∞ as ǫ → 0 + . By Lemma 4, it suffices to prove that

lim ǫ→0 + p ǫ f D(T) = 0. Now p ǫ f 2 D(T) = p ǫ f 2 L 2 (T) + D(p ǫ f ).
For the first term, we have

p ǫ f 2 L 2 (T) e -2Mǫ T d(ζ, E) 2β d(ζ, E) γ |dζ|. Thus p ǫ f L 2 (T) → 0 as ǫ → 0 + , provided that γ < 2β.
For the second term we again use Douglas' formula, namely

D(p ǫ f ) = 1 4π 2 T 2 |(p ǫ f )(ζ) -(p ǫ f )(ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ ′ | |dζ|. Let Γ := {(ζ, ζ ′ ) ∈ T 2 : d(ζ ′ , E) ≤ d(ζ, E)}.
Arguing as in the proof of Theorem 2, we have

D(p ǫ f ) Γ |p ǫ (ζ)| 2 |f (ζ) -f (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ||dζ ′ | + Γ |f (ζ ′ )| 2 |p(ζ) -p(ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ||dζ ′ | = A ǫ + B ǫ , say.
To estimate A ǫ , let η ∈ (0, (2β -1)/(2β)) and let γ < 2βη. Then

A ǫ = e -2Mǫ Γ |f (ζ) -f (ζ ′ )| 2η d(ζ, E) γ + ǫ |f (ζ) -f (ζ ′ )| 2-2η |ζ -ζ ′ | 2 |dζ| |dζ ′ | ≤ 2Ce -2Mǫ T 2 d(ζ, E) 2βη d(ζ, E) γ |f (ζ) -f (ζ ′ )| 2-2η |ζ -ζ ′ | 2 |dζ| |dζ ′ | ≤ 2C -2Mǫ T 2 |f (ζ) -f (ζ ′ )| 2-2η |ζ -ζ ′ | 2 |dζ| |dζ ′ |,
where C depends only on f , and the double integral is finite, thanks to Lemma 6. Hence A ǫ → 0 as ǫ → 0 + . To estimate B ǫ , we introduce the outer function F ǫ satisfying

|F ǫ (ζ)| = d(ζ, E) γ + ǫ a.e. on T.
By the Carleson-Richter-Sundberg formula [6, Theorem 7.4.2], we have

D ζ (F ǫ ) = T |F ǫ (ζ)| 2 -|F ǫ (ζ ′ )| 2 -2|F ǫ (ζ ′ )| log |F ǫ (ζ)/F ǫ (ζ ′ )| |ζ -ζ ′ | 2 |dζ ′ | 2π . Therefore B ǫ e -2Mǫ Γ d(ζ ′ , E) 2β (d(ζ, E) γ + ǫ)(d(ζ ′ , E) γ + ǫ) |F ǫ (ζ) -F ǫ (ζ ′ )| 2 |ζ -ζ ′ | 2 |dζ| |dζ ′ | e -2Mǫ T 2 |F ǫ (ζ) -F ǫ (ζ ′ )| 2 |ζ -ζ ′ | 2 d(ζ ′ , E) 2(β-γ) |dζ| |dζ ′ | e -2Mǫ T D ζ (F ǫ )d(ζ, E) 2(β-γ) |dζ| e -2Mǫ T 2 |F ǫ (ζ)| 2 -|F ǫ (ζ ′ )| 2 -2|F ǫ (ζ ′ )| log |F ǫ (ζ)/F ǫ (ζ ′ )| |ζ -ζ ′ | 2 × d(ζ, E) 2(β-γ) + d(ζ ′ , E) 2(β-γ) |dζ| |dζ ′ |.
Exchanging the roles of ζ and ζ ′ , and taking the average, we obtain Let (I j ) be the connected components of T \ E, and set

B ǫ e -2Mǫ T 2 (|F ǫ (ζ)| 2 -|F ǫ (ζ ′ )| 2 ) log |F ǫ (ζ)/F ǫ (ζ ′ )| |ζ -ζ ′ | 2 × d(ζ, E) 2(β-γ) + d(ζ ′ , E) 2(β-γ) |dζ| |dζ ′ |. Thus B ǫ e -2Mǫ T 2 δ γ -δ ′γ |ζ -ζ ′ | 2 log δ γ + ǫ δ ′γ + ǫ (δ 2(β-γ) + δ ′2(β-γ) ) |dζ| |dζ ′ |, (3.1 
N E (t) := 2 j 1 {|I j |>2t} , 0 < t < 1.
Then, for every measurable function Ω : [0, π] → R + , we have

T Ω(d(ζ, E)) |dζ| = π 0 Ω(t)N E (t) dt.
Using similar ideas to those in [START_REF] El-Fallah | On the Brown-Shields conjecture for cyclicity in the Dirichlet space[END_REF][START_REF] El-Fallah | Cantor sets and cyclicity in weighted Dirichlet spaces[END_REF], we obtain

J := T 2 δ γ -δ ′γ |ζ -ζ ′ | 2 log δ γ + ǫ δ ′γ + ǫ (δ 2(β-γ) + δ ′2(β-γ) ) |dζ| |dζ ′ | π 0 π 0 ((s + t) γ -t γ ) s 2 log (s + t) γ + ǫ t γ + ǫ (t + s) 2(β-γ) N E (t) ds dt π 0 t 0 ((s + t) γ -t γ ) log[(s + t) γ /t γ ] s 2 (t + s) 2(β-γ) N E (t) ds dt + π 0 π t ((s + t) γ -t γ ) s 2 log[1/(t γ + ǫ)](t + s) 2(β-γ) ds N E (t)dt = J 1 + J 2 ,
where

J 1 π 0 t 2β-γ-1 1 0 ((1 + x) γ -1) x 2 log(1 + x) dx N E (t) dt π 0 t 2β-γ-1 N E (t) dt = O(1), and 
J 2 π 0 t 2β-γ-1 log[1/(t γ + ǫ)] π/t 1 (1 + x) γ -1) s 2 (1 + x) 2(β-γ) dx N E (t)dt π 0 log[1/(t γ + ǫ)]N E (t) dt T | log(d(ζ, E) γ + ǫ)| |dζ| = 2M ǫ .
Thus J = O(M ǫ ). Combining this with the estimate (3.1), we get

B ǫ M ǫ e -2Mǫ .
Hence B ǫ → 0 as ǫ → 0 + . This completes the proof of Theorem 3.

Concluding remarks

1. In order to produce cyclic functions for D(T) using Theorem 3, we need to construct closed subsets E ⊂ T such that E / ∈ (C) and c(E) = 0. An easy example can be given by countable sets. Indeed, taking E β := {e i/(log n) β : n ≥ 2} with β ≤ 1 provides such an example. Using Cantor-type sets, it is also possible to construct perfect sets E such that E / ∈ (C) and c(E) = 0. 2. One can consider weighted harmonic Dirichlet spaces instead of the classical harmonic Dirichlet space. More precisely, given α ∈ [0, 1), the weighted harmonic Dirichlet space D α (T) is the space of functions f ∈ L 2 (T) such that 

  Finally, suppose that (3) holds. Let (p n ) ⊂ H ∞ be a sequence such that p n (0) = 1, p n f ∈ D(T) and p n f D(T) → 0. Writing p n = 1 -zq n , by[START_REF] Richter | Hyperinvariant subspaces of the harmonic Dirichlet space[END_REF] Proposition 3.4] we havezq n f ∈ [Sf ] N . Since zq n f converges to f , it follows that f ∈ [Sf ] N , so that (2) holds.We shall also need the following result, which is a special case of a theorem due to Carleson-Jacobs-Havin-Shamoyan [2, Theorem 6.1]. Lemma 5. Let F be an outer function on D that is continuous on D. If |F | ∈ C 1+α (T), where α ∈ (0, 1), then F ∈ Lip (1+α)/2 (D). Furthermore, the Lipschitz constant associated to F on D depends only on the Lipschitz constants and bounds for the derivatives of |F | on T. Proof of Theorem 2. Let p ǫ be the outer function such that |p ǫ (ζ)| = e -Mǫ |f (ζ)| + ǫ a.e. on T,

  |F ǫ (ζ)| = |f (ζ)| + ǫ a.e. on T. By Lemma 5, since |F ǫ | ∈ C 1+α (T), we have F ǫ ∈ Lip (1+α)/2 (T) ⊂ D(T) and there exists a positive constant D, depending only on |f |, such that D(F ǫ ) ≤ D for all ǫ ∈ (0, 1). We then have

  ) where δ := d(ζ, E) and δ ′ := d(ζ ′ , E).

f 2 3 .

 23 Dα(T) := n∈Z | f (n)| 2 (1 + |n|) 1-α < ∞.We define the α-capacity of a Borel subset E ⊂ T byc α (E) = 1/ inf{I α (µ) : µ ∈ P(E)},where P(E) is the set of all probability measures supported on a compact subset of E andI α (µ) := n≥1 | µ(n)| 2 /n 1-α is the α-energy of µ.We say that a property holds c α -quasi-everywhere if it holds everywhere outside a set of c α -capacity zero.It is well known that Lip β (T) ⊂ D α (T) if and only β > (1 -α)/2. Theorem 3 may be extended to show that, if f ∈ Lip β (T), where β ∈ ((1 -α)/2, 1], and if Z(f ) / ∈ (C), then [f ] N = {g ∈ D(T) : g| Z(f ) = 0 c α -quasi-everywhere}. One can equally well consider the holomorphic Dirichlet space, namely D := {f ∈ D(T) : f (n) = 0 (n < 0)}. Here too the problem of characterizing the cyclic functions is still open. For more on this topic, see e.g. [6, Chapter 9].
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