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Abstract

This paper deals with the dynamics of a cyclic system, representative of a bladed-disk subjected to dry friction
forces, and exhibiting structural mistuning. The nonlinear complex modes are computed by solving the
eigenproblem associated to the free response of the whole structure, and are then used to better understand
the forced response to a traveling wave excitation. Similarly to the underlying linear system, the tuned
model possesses pairs of modes that can be linearly combined to form traveling waves, unlike those of the
mistuned structure. However, due to the nonlinearity, the modal properties are not constant but vary with
the vibration amplitude in both cases. A qualitative analysis is also performed to assess the impact of the
mistuning magnitude on the response, and suggests that further statistical investigations could be of great
interest for the design of bladed disks, in terms of vibration mitigation and robustness.
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1. Introduction

Bladed disks are key components of turbomachinery. They achieve the momentum transfer between the
gas flow going through a turbomachine and the rotating shafts on which are mounted axial turbines and
compressors. In operating conditions, these components undergo many sources of excitation, making of vi-
bration mitigation a challenge of great interest in bladed disk design. In this context, contact phenomena
have proved efficient in coping with vibrations, and their strongly nonlinear nature is now better understood
thanks to numerous numerical [1–4] and experimental [5–9] investigations.

Even though the manufacturing of blades must comply with stringent tolerancing in order to ensure
an optimum efficiency, the process inevitably results in slight material discrepancies which break the cyclic
symmetry of the “ideal” structure, and may lead to a complex behavior with a potential energy localization
on a few blades. This phenomenon is commonly referred to as mistuning, and has been thoroughly studied
over the years for linear systems, in terms of phenomenology, reduced order modeling, identification, and
robustness analysis[10–14].

Linear modal analysis is nowaday well established in both the academic and industrial fields, providing
researchers and engineers with a multitude of theoretical, numerical, and experimental tools to understand
and predict the dynamic behavior of linear systems [15]. During the last decades, a lot of effort has been
put into building a nonlinear analog for conservative structures. Since Rosenberg [16] addressed this branch
of nonlinear dynamics, many contributions have led to a rich and topical framework thoroughly reviewed by
Kershen et al. in [17], including Shaw and Pierre’s [18] effort to extend Rosenberg’s definition of a nonlinear
mode to damped systems. The work achieved by Vakakis et al. [19–21] on the dynamics of cyclic systems with
nonlinear stiffnesses showed how interesting nonlinear normal modes are in the study of periodic structures,
revealing that localization phenomena can occur even in a perfectly tuned assembly. However, the type of
nonlinearities dealt with in these papers differ from dry friction in that they are conservative.

∗Corresponding author
Email address: colas.joannin@doctorant.ec-lyon.fr (Colas Joannin)

Preprint submitted to Elsevier January 13, 2016



In order to compute nonlinear modes in the presence of dissipative nonlinearities, such as dry friction,
a new approach was developed by Laxalde and Thouverez [22] and applied to the finite element model of a
compressor blade with contact interfaces at the root. Krack et al. [23] have implemented a similar method
to perform a nonlinear modal synthesis on a bladed disk with shroud contact, enforcing cyclic boundary
conditions so that the computation only needed to be carried out on a single sector. The use of nonlinear
complex modes has proven very interesting in both cases and applicable to large-scale models, making of
nonlinear modal analysis of such structures an actual perspective for the industry.

In the present paper, the dynamics of periodic structures undergoing dry friction nonlinearities and
subjected to mistuning is investigated by means of a simplified model of bladed-disk. The behavior of such
systems was already studied by Wei and Pierre in [24], by computing the forced response to a traveling
wave excitation. Here, the methodology developed in [22] is used to compute the nonlinear modes besides
the forced response, and thus provide information as to the intrinsic dynamics of the structure, similarly
to the work achieved by Vakakis et al. for conservative nonlinearities. The impact of structural mistuning
on the modal properties of the nonlinear system is addressed, and a qualitative analysis of the mistuning
magnitude is carried out. As a consequence of the mistuning, the computation of the forced response and of
the nonlinear complex modes is performed on the whole structure, and not on a single sector as in [23].

2. Nonlinear complex modes

In accordance with the definition given in [22], a nonlinear complex mode refers hereafter to a periodic
or pseudo-periodic motion of an autonomous nonlinear system, such as Eqn. (1). This system of differential
equations could be the governing equations of motion of a discretized structure under no external load, with
M, C, K the mass, viscous damping, and linear stiffness matrices, respectively, and fnl a term of internal
nonlinear forces.

Mẍ(t) + Cẋ(t) + Kx(t) + fnl(x, ẋ) = 0 (1)

In order to account of the dissipation, and of the potential phase shift between the degrees of freedom (DOFs),
the nonlinear modes are sought in the form of a decaying multi-harmonic oscillation, given by Eqn. (2).

x(t) =

∞∑
k=0

e−kβt
(
ak cos(kωt) + bk sin(kωt)

)
(2)

The terms ak and bk are vectors containing the coefficients of the k-th cosine and sine harmonics of the mode,
respectively, for all DOFs. The coefficients β and ω are referred to as modal damping and natural frequency.
By analogy with linear complex modes, these two coefficients are related to an eigenvalue λ associated to the
nonlinear mode, which may be complex if dissipative phenomena are taken into account [22], as written in
Eqn. (3).

λ = −β + iω (3)

Nonlinear modes differ from their linear analog in that they are energy-dependent. In other words, for
a given mode, the eigenvalue λ and corresponding free oscillation of Eqn. (2) may vary with the level of
activation of the nonlinearity. At low level, the behavior of the system is close to that of the underlying
linear model, justifying the use of a linear modal analysis. However, when the nonlinearity is moderately
or highly activated, the actual dynamics of the structure may significantly differ from that predicted by a
linear analysis, which could jeopardize the design of the whole structure, should a linear model be kept. A
nonlinear modal analysis aims at superseding linear modes in such cases, for which nonlinearities should not
be overlooked.

Practical computation

As a consequence of their energy-dependency, the computation of nonlinear modes requires some specific
treatment, resulting in more computational effort than a linear modal analysis. This section provides an
overview of the main steps of the calculation. Most of the method is inspired by the work achieved by
Laxalde and Thouverez, and further details can be found in [22].
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The nonlinear modes are obtained through the computation of the solutions of Eqn.(1) by means of
the Harmonic Balance Method (HBM)[25]. The infinite series expansion of x in Eqn. (2) must first be trun-
cated to a finite number Nh of retained harmonics. Then, substituting the expression of x into Eqn. (1),
and applying a Galerkin procedure on the projection basis ψ = {cos(kωt), sin(kωt)}∀k∈[[0,Nh]] by means of
the following inner product

〈f, g〉 =
2

T

∫ T

0

f(t)g(t)dt (4)

with T = 2π/ω, yields an algebraic system of equations on the variables x̂, ω, and β :

Z(ω, β)x̂ + f̂nl(ω, β, x̂) = 0 (5)

The term Z is a block-tridiagonal matrix built from the structural matrices M, C, K, and referred to as
dynamic stiffness matrix. The variable x̂ is a vector containing the harmonic coefficient ak and bk, sorted as
follow :

x̂ =
(
aT0 aT1 bT

1 · · · aTNh
bT
Nh

)T
(6)

Last but not least, f̂nl is the vector of nonlinear forces in the frequency domain, the computation of which
is detailed in the next paragraph. This algebraic system is solved iteratively by means of a trust-region
algorithm. The analytical expression of the jacobian matrix J of the system is calculated beforehand in order
to avoid numerical differentiations and thus improve the performance of the solver.

J =

(
Z +

∂ f̂nl
∂x̂

∂Z

∂ω
+
∂ f̂nl
∂ω

∂Z

∂β
+
∂ f̂nl
∂β

)
(7)

Practically speaking, an analytical expression of f̂nl might be cumbersome to obtain and manipulate
for a frictional nonlinearity. The nonlinear term of Eqn. (5) is instead determined through an alternating
frequency-time (AFT) scheme, as suggested by Cameron and Griffin [26], and performed at each iteration
of the solver by means of direct (DFT) and inverse (IDFT) discrete Fourier transforms, according to the
following steps :

1. IDFT on x̂ to determine x and ẋ.

2. Computation of fnl(x, ẋ) in the time domain.

3. DFT on fnl(x, ẋ) to get f̂nl(ω, β, x̂).

It should be noticed that in order to readily perform the AFT scheme by means of DFT and IDFT matrices,
the displacements x and velocities ẋ are assumed to be periodic when computing the nonlinear terms. In
other words, the exponential term in Eqn. (2) is dropped while computing x̂, and hence the decrease in x
and ẋ over a period of oscillation is not taken into account. This amounts to assuming that the nonlinear
terms decrease at the same rate than the other variables [22].

In general, due to their energy-dependency, nonlinear modes are not hyperplanes of the configuration
space. However, they can all be included in a larger family of topological objects referred to as manifolds.
In other words, in a two-dimensional subspace of the configuration space, nonlinear modes may no longer
be straight lines, but curves, unlike their linear analogs [16]. Nonlinear modes associated to hyperplanes of
the configuration space are termed similar nonlinear modes by Rosenberg, in contrast to nonsimilar ones
corresponding to curved motions in that space. In order to efficiently deal with this curvature, an arc-length
continuation was used to trace the loci of the solutions [27]. This is achieved by adding the scalar equation (8)
to Eqn. (5), which amounts to enforcing the solution to be on the hypersphere of the configuration space
centered on the last converged solution and of radius ds.

||dx̂||2 + dω2 + dβ2 = ds2 (8)

Finally, a last equation is required to supplement Eqn. (5) and (8) and determine the unknowns (x̂, ω, β).
It is possible for instance to impose the phase of the k-th harmonic of the i-th DOF, as achieved by Eqn. (9).
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This slightly differs from [22], where both the amplitude and the phase of a DOF had to be enforced since
no arc-length equation supplemented Eqn. (5). The analytical expressions of the differentiations of Eqn. (8)
and (9) with respect to x̂, ω, and β are also provided to the solver to supplement the jacobian matrix J.

ak(i) = bk(i) (9)

In order to help or simply ensure the convergence of the solver at a given step i of the continuation, a
suitable initialization is required. A secant predictor based on the last two computed solutions is thus used
to initialize the variable z = (x̂T, ω, β)T, according to Eqn. (10) and Eqn. (11).

zp = zi−1 + ds · ∆z

||∆z||
(10)

∆z = zi−1 − zi−2 (11)

The initialization of the first step of the continuation requires then a specific treatment, since no previous
solutions are available to compute the prediction zp. The nonlinear modes of interest here originating from
the modes of the underlying linear system, the continuation is initialized on a linear mode (ϕ0, λ0) at low
activation of the nonlinearity, by premultiplying the real and imaginary parts of the linear complex eigenvector
by a small coefficient δ. Insofar as it defines which nonlinear mode is to be computed, a great care should be
taken in defining this starting point, especially when two linear modes have neighboring natural frequencies.

ϕ0 = a1 + ib1 (12)

λ0 = −β0 + iω0 (13)

z0 =
(

0 δaT1 −δbT
1 0 · · · 0 ω0 β0

)T
(14)

In the next section, this methodology is implemented and used to compute the nonlinear modes of a
lumped-parameter model representing a simplified bladed disk undergoing dry friction nonlinearities.

3. Phenomenological model

In order to study the phenomenology of bladed disks subjected to structural mistuning and dry friction
at moderate computational cost, a one-dimensional lumped-parameter model has been devised. It consists
of several sectors such as drawn on Fig. (1), all of which made of three DOFs to account of the blade tip,
middle, and root respectively, and one DOF to account of the disk. For each sector, the disk and the root
undergo a frictional force, function of their relative motions, as in a blade-disk joint. Three DOFs are kept
to model the blade, so as to moderate the influence of the nonlinearity on the dynamic monitored at the
tip. A similar model was used in [2] to study the forced response of integrally bladed disks with friction ring
dampers. A total number of six sectors is retained as a compromise between computational efficiency and
representativity in terms of nodal diameters. The model is tuned so that it could account for the first family
of bending modes of an actual bladed disk. The masses are defined so that the overall mass of a blade and
a disk sector is approximated. The stiffnesses are then tuned to set the natural frequencies of the model. In
the tuning process, a particular attention is paid to the value of the coupling stiffness between two adjacent
sectors, which governs the evolution of the natural frequencies as a function of the number of nodal diameters.
The value retained for each structural parameter is reported in Tab. (1). The natural frequencies of the first
family of bending modes of the tuned linear system are reported in Tab. (2) for bonded and frictionless
interfaces. For these tuned linear cases, (f2, f3) and (f4, f5) are pairs of equal natural frequencies associated
to double modes with 1 and 2 nodal diameters, respectively, whereas f1 and f6 correspond to single modes
with 0 and 3 nodal diameters, respectively.

3.1. Excitation

In a turbomachine, traveling wave excitations are commonly encountered, as they naturally arise from
the static parts present in the gas flow. For instance, for a given rotor, the upstream stator stage generates
a perturbation in the flow which may excite periodically the blades passing by. In a frame of reference fixed
to the rotor, this perturbation is seen, to a first approximation, as a sine wave propagating clockwise or anti-
clockwise. The number of static parts from which arises the excitation defines the number of nodal diameters
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Figure 1: Fundamental sector of the lumped-parameter model with dry friction nonlinearity between the blade root and the
disk.

Table 1: Numerical values of the structural parameters used to build the fundamental sector of the model.

– (unit) Tip Middle Root Disk Ground
m (10−3·kg) 5 5 15 120 –
c (N·s/m) 0.1 0.1 0.1 0.1 0.1
k (105·N/m) 6 10 300 100 25

of the traveling wave, and is theoretically related to the modes which can be excited, through the number of
nodal diameters of their mode shapes. Since the model consists of six coupled sectors, it may not accurately
account for a high number of nodal diameters. As a consequence, the excitation retained in this paper for
the computation of the forced response is a traveling sine wave with only one nodal diameter, acting on the
blade tips. The expression of the excitation acting on the k-th blade fkex(t) is given by Eqn. (15), with F the
amplitude of the excitation, Ω the excitation frequency, and Nb the number of blades.

fkex(t) = F cos

(
Ωt+

2πk

Nb

)
(15)

The normalized time series of the excitation over a period T is given on Fig. (2a), on which is noticeable the
propagation of the wave from the sixth to the first blade tip, resulting in a characteristic diagonal pattern.
At a given time step on the x-axis, the spatial shape of the excitation amplitude over the sectors on the y-axis
clearly exhibits one nodal diameter, as illustrated on Fig. (2b).

3.2. Friction law

To compute the nonlinear forces arising from a friction nonlinearity, several models are available. Coulomb’s
dry friction law is retained here for its simplicity, but others can be found in the literature, such as those
of Dahl and Bouc-Wen. One simple way to implement Coulomb’s friction law for one-dimensional models
is to use a sign function taking the relative velocities of the DOFs in contact as arguments. In this paper,
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Table 2: Natural frequencies of the first family of bending modes of the tuned linear system for bonded and frictionless interfaces.

fi (Hz) f1 f2 f3 f4 f5 f6
Bonded 654 1202 1202 1257 1257 1261
Frictionless 653 1189 1189 1244 1244 1248
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Figure 2: Traveling wave excitation used to compute the forced response

the sign function is approximated by a hyperbolic tangent, allowing for the analytical jacobian matrix of the
algebraic system (5) to be readily obtained. In the time domain, the nonlinear forces acting on the frictional
DOFs are thus given by Eqn. (16) and Eqn. (17).

fnl(ẋ) = µN tanh

(
ẋrel
ε

)
(16)

ẋrel = Pẋ (17)

The scalars µ and N are constant parameters, representing the friction coefficient and the normal load
enforcing the contact, respectively. The friction being a function of the relative motion between the DOFs
in contact, the vector of relative velocities ẋrel is obtained from ẋ by means of a change-of-basis matrix
P, achieving the transformation from absolute to relative coordinates. The normal load is taken equal to
the centrifugal load acting on a blade, that is approximately 1kN, and a friction coefficient of 0.3 is kept
throughout the study. The parameter ε defines the degree of regularization, the smaller ε the better the
approximation of the sign function, as shown on Fig. (3), but the longer the convergence of the iterative
solver. In order to account of the sticking state at low vibration levels, a relatively small value of ε is
required, otherwise the hyperbolic tangent function would amount to the first order to adding a viscous
damping equal to µN/ε. On the other hand, at high vibration level, the value retained for ε at low amplitude
would make the convergence of the solver extremely hard, with yet no significant changes in the solution.
This parameter is thus chosen so as to ensure a good compromise between computational cost and accuracy,
varying from 10−5 at low amplitude to 10−3 at high amplitude.

4. Results and discussion

The results obtained in the study of the lumped-parameter model are presented and discussed in the
following section. The nonlinear complex modes are computed by means of the methodology presented
above, and the forced response is obtained with a standard multi-harmonic balance method i.e. by adding
the traveling wave excitation of Eqn. (15) to Eqn. (1) for each blade tip, while dropping the exponential term
in Eqn. (2). First, the convergence of the forced response as a function of the number of retained harmonics
is addressed.

4.1. Number of harmonics

One of the most important parameter of the multi-harmonic balance method is the number Nh of retained
harmonics in the series expansion of the solution x(t), given in Eqn. (2). A good understanding of the nature
of the nonlinearity can help to make some useful assumptions as to which harmonics to keep. For instance,
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Figure 3: Regularized friction law governing the nonlinearity (-).
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Figure 4: Influence of the number of retained harmonics on the accuracy of the solution.

a cubic stiffness only generates odd harmonics, which allows to significantly reduce the size of the algebraic
system by dropping all even harmonics [25]. For a dry friction nonlinearity, the key feature defining the
quality of the solution is the accuracy with which the relative motion between the DOFs in contact can be
approximated. In other words, a sufficient number of harmonics must be kept to account for the stick-slip
transitions occurring at the interface when the nonlinearity is activated. To illustrate this, the relative motion
between two frictional DOFs is plotted on Fig. (4a) for different values of Nh, at a fixed level of excitation
F = 2 newtons, strong enough for some slipping to occur. The relative displacement computed by HBM
clearly converges toward the pattern yielded by a time integration, several harmonics being required to ensure
the quality of the approximation. The accuracy with which this pattern is approximated directly affects the
response in amplitude, as illustrated on Fig. (4b). With that in mind, fifteen harmonics are kept in this
study, as a compromise between accuracy and computational efficiency.

4.2. Tuned system

The forced response and nonlinear complex modes are computed in the case of a tuned system, that is
when no structural discrepancies break the cyclic symmetry of the model. It provides information as to how
the friction impacts the dynamic of the perfectly periodic structure, and is used as a reference to interpret
the dynamics of the mistuned system in both free and forced response.

Due to the nature of the excitation, a single resonance occurs in the surroundings of the first pair of
modes of the underlying linear system i.e. the pair of modes with a deformed shape exhibiting one nodal
diameter. The forced response of the system is given on Fig. (5) around the natural frequency of this pair of
modes, for different excitation levels F ∈ [0.1, 5] newtons. The time series of the response at the blade tips is
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Figure 5: Forced response and time series of the tuned system for different excitation levels F .

provided at different points, and show that the response to the excitation is also a traveling wave propagating
in the same direction. A phase lag between the excitation and the response can be seen on these time series,
and varies from 0 to π radians far before and far after the resonance respectively, as commonly observed
in linear dynamics. The free response corresponding to the two nonlinear modes is plotted on the same
graph with dashed lines. It can be noticed that the so-called backbone curves of the modes are superimposed
and trace the locus of the maxima of the forced response, as already observed for non-cyclic systems [17, 22].

A further analysis of the nonlinear modes on Fig. (6) points out their energy-dependency, which among
other things is embodied by the natural frequency being a function of the amplitude of vibration. For each
mode, at low amplitude (in the vicinity of point A on Fig. (6)), the natural frequency is constant and equal
to that of the underlying linear system with bonded DOFs at the interface. When the amplitude is high
enough to activate the nonlinearity, i.e. to introduce some slipping between the DOFs in contact, the natural
frequency gradually shifts toward a lower vertical asymptote, corresponding to the linear case with frictionless
interface (in the vicinity of point B on Fig. (6)). That is why friction is commonly referred to as a softening
nonlinearity.

In linear modal analysis of cyclic structures, it is known that the two orthogonal mode shapes corre-
sponding to a double mode can be linearly combined to obtain two traveling sine waves propagating in
opposite directions. As a consequence, the forced response to a traveling wave excitation in the vicinity of
the natural frequency of a double mode is a traveling wave, linear combination of these orthogonal modes.
The time series and mode shapes of the two nonlinear modes of interest here are given on Fig. (6), obtained
by computing the displacement vector x from Eqn. (2). It shows that in that case, both modes are traveling
waves propagating in opposite directions, for all amplitudes of vibration i.e. in the linear domain as well as
in the nonlinear domain. This points out that even though the nonlinearity has a significant impact on the
natural frequency, it does not affect the potentially propagative nature of the double mode of the underlying
linear system. In other words, the two nonlinear complex modes originating from a pair of linear modes can
still be combined to obtain traveling waves, even for a strong activation of the dry friction. Consequently,
when subjected to a traveling wave excitation, the time series of the forced response at resonance in the
nonlinear domain is still a traveling wave, as observed on Fig. (5) for F = 3 newtons. This result should be
remembered when analyzing the mistuned system in the next section.

Furthermore, even though at the blade tips scale the mode shapes do not seem to vary with the am-
plitude, they necessarily do since the frictional DOFs are in a stationary sticking state at low amplitude
(i.e. in the vicinity of point A on Fig. (6)), and gradually shift toward a slipping state as the amplitude in-
creases (i.e. in the vicinity of point B on Fig. (6)). Figure (7) shows a close-up on the interface and confirms
this evolution of the mode shapes along the backbones at a smaller scale. As a consequence, the subspaces
of the configuration space corresponding to these two free motions are curved, and both modes are therefore
nonsimilar according to Rosenberg’s terminology.

In the study of frictional systems, it is common to plot the compliance of the response for different
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activation levels of the nonlinearity, here embodied by the excitation amplitude F ∈ [0.2, 15] newtons, in
order to exhibit the increase in damping together with the resonance shift induced by the friction, as on
Fig. (8). The behavior obtained in this specific case is rather standard [2, 28], with an optimum in terms
of damping for an excitation level F of about 5 newtons noticeable on the graph. To plot this network of
curves, several forced response computations are required, whereas the graph only yields an overview of the
evolution of the damping. A useful by-product of the computation of nonlinear complex modes is the precise
evolution of the modal damping β as a function of the other variables ω and x̂. Figure (9) shows the evolution
of this nonlinear damping as a function of the amplitude of vibration of the blades. At low amplitude (i.e. in
the vicinity of point A), the damping is constant and equal to that of the underlying linear system with
bonded interfaces, since no slipping occurs. At high amplitude (i.e. in the vicinity of point B), β slowly
converges toward the value of the linear system with frictionless interfaces. Between these two limit cases,
in the partial-slip area, a maximum in damping occurs, as commonly pointed out in the literature for non
cyclic systems[22]. After a first local maximum, a new increase in β is observed, which can be explained by a
change in the relative motion at the interface. The transition from the first to the second peak corresponds
indeed to the occurrence of two additional stuck phases in the relative displacement between two DOFs in
contact, as illustrated on Figure (9).

The computation of nonlinear complex modes shows that an accurate optimization of the nonlinear-
ity, with regard to vibration mitigation, is also possible for periodic structures, and that the modal damping
of such systems may exhibit local extrema. In the next section, the results obtained for a mistuned system
are presented and discussed.

4.3. Mistuned system

In this section, some structural mistuning is added to the model through a random pattern of discrepancies
on the blades tip and middle stiffnesses. For a given stiffness, the mistuned value km is derived from the tuned
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Figure 8: Compliance at the blade tips of the tuned system for different excitation levels F .
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Figure 9: Modal damping curves (superimposed) of the first pair of modes of the tuned system as a function of the amplitude
of vibration at the blade tips.

value kt by addition of a random perturbation ξ taken in the continuous uniform distribution [ −10−3, 10−3 ].
The perturbation is multiplied by a coefficient dm referred to as “mistuning level” and defining the mistuning
magnitude. This coefficient is taken equal to 100 in this section, resulting in a 2% split of the first pair of
natural frequencies of the tuned linear system, previously given in Tab. (2). The natural frequencies of the
mistuned model are reported in Tab. (3).

km = kt · (1 + dm · ξ) (18)

For the same traveling wave excitation than in the study of the tuned system, the forced response no
longer exhibits a single resonance, but several peaks of variable amplitudes throughout the frequency range.
This can be explained by taking a look at the mode shapes of the mistuned system. As a consequence of the
mistuning, each pair of modes of the underlying linear system is split into two modes with distinct natural
frequencies, the time series of which are sheer stationary waves, which cannot be linearly combined so as
to obtain traveling sine waves, as in the tuned case. Thus, the traveling nature of the excitation cannot be
perfectly accounted for any longer by a double mode, and every mode brings a contribution to the response,
which explains the multiplicity of the resonances.

Nevertheless, the greatest contribution to the response (i.e. the main peak) is observed in the surround-
ings of the two modes originating from the splitting of the former pair with one nodal diameter. In this
frequency range, the forced response at one of the blade tips is given on Fig. (10) for different excitation
levels F ∈ [0.1, 5]. The time series of the response is provided at specific points, disclosing that far from
resonance, the response can be split into a traveling wave (i.e. a diagonal pattern) and a stationary wave.
As the response approaches a resonance, the traveling contribution gradually vanishes, and finally yields a
single stationary wave when is reached the local maximum. This behavior of the time series is made for
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Table 3: Natural frequencies of the first family of bending modes of the mistuned linear system for bonded and frictionless
interfaces.

fi (Hz) f1 f2 f3 f4 f5 f6
Bonded 654 1176 1199 1237 1255 1285
Frictionless 653 1165 1187 1225 1242 1272
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Figure 10: Forced response and time series of blade 2 of the mistuned system for different excitation levels F .

all excitation levels. The free response associated to the two modes is plotted in dashed-lines on the same
graph. For a specific mode, the backbone traces with more or less accuracy the locus of the maxima, the
slight difference being accounted for by the non-negligible contribution of the neighboring mode.

A focus on the nonlinear modes allows to better understand the time series of the forced response.
On Fig. (11) is given the time series and mode shapes of the two modes of interest. It appears that both
modes are indeed stationary waves, the time series of which closely match the time series of the forced re-
sponse at each resonance arising from the corresponding mode. Thus, it can be inferred that the stationary
component of the forced response arises from the closest mode, whereas the traveling part is a by-product of
the excitation, built from other modal contributions. Due to the frequency split brought by the mistuning,
the traveling wave excitation yields a sheer stationary response at resonance, in contrast to the tuned linear
and nonlinear cases. It should be noticed that in that specific case, even though the mistuning impacts the
traveling nature of the response at resonance, both mode shapes still feature one nodal diameter (one of
which exhibiting a significant localization) and as a consequence generate the main peaks.

The compliance of the response is finally plotted on Fig. (12) for F ∈ [0.2, 13] newtons, showing that
the behavior of both resonances follows the same standard pattern than the tuned system, though the level
of activation of the nonlinearity yielding the optimum damping for one resonance may not yield an optimum
damping for the second resonance. Should both resonances be critical for the structure, and a compromise
would be needed. Finding a criterion to assess the quality of such a compromise is beyond the scope of this
paper. However, the computation of the nonlinear complex modes could be of great interest to define this
criterion and optimize the mitigation, through the evolution of the modal damping β shown on Fig. (13).
One could for instance apply weight functions to the modal damping of each mode, according to the relative
importance of their respective resonances.

The forced responses presented so far are those monitored at a specific blade tip of the model. How-
ever, in the case of a mistuned system, each blade exhibits a peculiar response which can significantly differ
from one another. On Fig. (14) is given the forced response of another blade tip for different levels of exci-
tation F ∈ [0.1, 5] newtons. For that blade, the first resonance exhibits a less standard behavior, with one
peak gradually splitting into two distinct peaks, and finally resulting in a single peak as the excitation keeps
increasing. The computation of the nonlinear modes and a close look at the time series of both the forced
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Figure 11: Backbone curves, time series, and mode shapes at t/T=0 of the first pair of modes split by the mistuning.

Figure 12: Compliance at the tip of blade 2 of the mistuned system for different excitation levels F .

response and the backbones permit to understand that the two peaks actually result from a single resonance,
even though the mechanisms at the origin of such a behavior have not yet been tackled.

4.4. Qualitative analysis of the mistuning magnitude

A great deal of statistical studies have been carried out in linear dynamics, and revealed that the mistun-
ing is accountable for an amplification of the global response of the structure, with a variable sensitivity of
the amplification to the degree of mistuning [12]. However, similar investigations for nonlinear systems have
seldom been undertaken due to significant computational costs, but could yet help to improve the robustness
of the design. By means of the model studied in this paper, the amplification resulting from the mistuning
is determined for the random mistuning pattern used in the previous section, the magnitude of which is
gradually increased through the coefficient dm of Eqn. (18), referred to as “mistuning level” hereafter. The
nonlinearity is taken into account for both tuned and mistuned systems, and the excitation is kept at a
constant level F = 2 newtons, chosen so as to bring the system in the nonlinear domain (see for instance
Fig. (10) or Fig. (12)). The analysis is also performed for a second random mistuning pattern in order to
catch a glimpse of a potential common behavior. The results are plotted on Fig. (15), and show that for
this specific case, the amplification increases more abruptly at low mistuning levels for both patterns, one of
which exhibiting what could be interpreted as an overshoot. Should this observation be made for all kind
of mistuning patterns by means of further statistical investigations, and the robustness of the design could
be improved by willingly avoiding the range of high sensitivity. In linear dynamics of bladed disks, this has
led to what is usually referred to as intentional mistuning. However, at the present time, too few data are
available to extend this notion to nonlinear systems.

Another matter of interest when it comes to combining mistuning and dry friction is the influence of
the mistuning on the vibration mitigation arising from the nonlinearity. For a fixed mistuning pattern, the
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Figure 13: Modal damping curves of the first pair of modes split by the mistuning as a function of the amplitude of vibration
of blade 2.
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Figure 14: Response at the tip of another blade of the mistuned system for different excitation levels F .

damping resulting from the activation of the nonlinearity may indeed vary with the mistuning magnitude.
The maximum amplitude of the mistuned nonlinear system is thus compared to the maximum amplitude of
the underlying mistuned linear system with bonded interface for different mistuning levels. The results on
Fig. (16) show that for these two specific mistuning patterns, the optimum damping arising from the friction
is not obtained for a tuned system, but for a slightly mistuned structure. Should this result be extended to
all mistuned structures subjected to dry friction by further statistical investigations, and the design of bladed
disks could take great advantage in finding an optimum mistuning magnitude to mitigate vibrations.

5. Conclusion

The phenomenology of periodic structures subjected to dry friction nonlinearities has been investigated
by means of a lumped-parameter model representative of turbomachinery bladed disks. The computation
of the nonlinear complex modes of the system has proved very helpful to interpret the forced response to
a traveling wave excitation, especially when some structural mistuning breaks the cyclic symmetry of the
assembly. Nonlinear complex modes are also of great interest in seeking an optimal vibration mitigation, by
providing information as to how the friction impacts the modal damping of such nonlinear systems.

The influence of the mistuning magnitude on the amplification generated by the mistuning and on the
mitigation arising from the friction has also been addressed. It appears that for such nonlinear systems, the
robustness of the design may be improved by adding some intentional mistuning, as already observed for
linear models. An optimum mistuning magnitude has also been detected in terms of vibration mitigation,
for two random mistuning patterns.

Providing industrials with new tools, allowing for the determination of the forced response of large-scale,
mistuned, and nonlinear systems, at relatively low computational cost, could significantly help to improve the
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Figure 15: Amplification factor between the mistuned and tuned nonlinear systems for F = 2 newtons.
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Figure 16: Mitigation factor between the nonlinear and underlying linear mistuned systems for F = 2 newtons.

design of bladed disks. However, the study of the combined effects of structural mistuning and dry friction is
a rich and complex topic, and further qualitative and quantitative investigations by means of more realistic
models are still necessary. Conducting statistical studies on random mistuning patterns could also help to
extend the useful notion of intentional mistuning to nonlinear structures.
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