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1 Abstract

A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea

ice and rock mechanics, with the intent of representing both the small elastic deformations associated

with fracturing processes and the larger deformations occurring along the faults/leads once the ma-

terial is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic5

constitutive relationship together with an effective viscosity that evolves according to the local level

of damage of the material, like its elastic modulus. The coupling between the level of damage and

both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely

large and deformations are strictly elastic, while along highly damaged zones the elastic modulus

vanishes and most of the stress is dissipated through permanent deformations. A healing mecha-10

nism is also introduced, counterbalancing the effects of damaging over large time scales. In this new

model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations

are solved for simultaneously, hence drift velocities are defined naturally. First idealized simulations

without advection show that the model reproduces the main characteristics of sea ice mechanics and

deformation: strain localization, anisotropy, intermittency and associated scaling laws.15

2 Introduction

Making reliable predictions of the drift and deformation of sea ice is becoming crucial nowadays

for: (1) forecasting the opening of shipping routes across the Arctic, (2) evaluating mechanical con-

straints on offshore structures and ships and, at larger scales, (3) estimating the future evolution

of both the summer and winter sea ice cover in the Arctic and Antarctic to anticipate its short to20

long-term, regional to global impacts on climate. Current operational modelling platforms, whether

assimilating data of not (e.g., TOPAZ4 : Sakov et al. (2012), GIOPS : Smith et al. (2015)), and global
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climate models including sea ice dynamics (e.g., the Coupled Model Intercomparison Project Phase

5 models involved in the IPCC Fifth Assesment Report (Flato et al., 2013)) are based on the same

mechanical framework for sea ice developed in the late seventies: the Hibler Viscous-Plastic (VP)25

model (Hibler, 1977, 1979). With this approach, the ice creeps very slowly as a viscous fluid under

small stresses and deforms plastically once exceeding a yield criterion. Yet, over the last decade,

the viscous hypothesis and other underlying physical assumptions of this VP framework have been

revisited and found inconsistent with the observed mechanical behaviour of sea ice (Weiss et al.,

2007; Coon et al., 2007; Rampal et al., 2008). In the same line of ideas, recent modelling studies30

have demonstrated that while the VP model can represent with a certain level of accuracy the mean,

global (> 100 km) drift of sea ice, it fails at reproducing the observed properties of sea ice deforma-

tion and that, especially at the fine scales (Lindsay et al., 2003; Kwok et al., 2008; Girard et al., 2009)

relevant for operational modelling, thereby stressing the need to explore alternative rheologies.

Other continuum models have been developed lately with the aim of representing more accurately35

some important aspects of the mechanical behaviour of sea ice. Considering the discontinuous and

anisotropic character of the pack, Schreyer et al. (2006) have suggested an elastic-decohesive model

that explicitly accounts for the deformation arising from discontinuities in displacement across leads,

the orientation of which is prescribed. Tsamados et al. (2013) have presented a model based on the

rheology of Wilchinsky and Feltham (2006) that accounts for the subgrid scale anisotropy of the sea40

ice cover. Their framework incorporates an evolution equation for the orientation of ice floes, for

which a diamond shape is assumed. Our present work shares the same objective as these previous

initiatives : to build a continuum model for sea ice that is physically consistent with its observed

mechanical behaviour. However, we chose to base our approach on a completely isotropic rheology

and, by incorporating the relevant brittle mechanics concepts and long-range elastic interactions, aim45

to develop a model that reproduces the anisotropy and extreme gradients within the sea ice cover

naturally, that is, without the need of treating velocity discontinuities explicitly nor prescribing lead

orientations or floe shapes.

Early on, sea ice scientists have suspected that the sea ice cover behaves in a brittle instead of a

viscous manner, with some strain hardening in compression (Nye, 1973). Studies of fracture patterns,50

stresses and strains both in situ and in the laboratory have suggested that the deformation of sea ice

is mostly accommodated by a mechanism of multiscale fracturing and frictional sliding (Marsan

et al., 2004; Weiss et al., 2007; Schulson and Duval, 2009; Schulson, 2006a). By investigating the

dispersion of ice buoys, Rampal et al. (2008) recently showed that sea ice over the Arctic deforms

in a heterogenous and intermittent manner over spatial scales of 300 m to 300 km and time scales of55

3 hrs to 3 months. The strong space-time coupling in the scaling laws revealed by their analyses are

consistent with (1) a brittle-type material in which permanent deformations are accommodated by

displacements along fractures and fault planes over a wide range of scales and (2) long-range elastic
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interactions, allowing for small, local perturbations to trigger much larger damaging events within

the ice pack (Marsan and Weiss, 2010).60

A close comparison can be made between the deformation of sea ice and that of the Earth crust,

in which brittle fracturing and Coulomb stress redistribution also take place and for which scaling

properties have been recognized for years (Kagan and Knopoff, 1980; Kagan, 1991; Kagan and

Jackson, 1991; King et al., 1994; Turcotte, 1992; Stein, 1999). Recently, Marsan and Weiss (2010)

established a formal analogy between the mechanical behaviour of sea ice and that of the Earth65

crust by demonstrating that the space-time coupling in the deformation of sea ice, estimated from

continuous displacement fields, is equivalent to a coupled scaling of the discrete ice-fracturing events

occurring along the leads, similar to that observed for earthquakes (Kagan, 1991; Kagan and Jackson,

1991). The authors suggested that the similarity between sea ice and the Earth crust is attributable

to a common cascading mechanism of earth-/ice-fracturing events that extends the influence of local70

events to longer durations and larger areas than their direct aftershocks.

In the case of rocks, attempts to simulate brittle deformation were first made using random spring-

like models. Combining local threshold mechanics and long-range elastic interactions, these success-

fully reproduced the strong localization of rupture in both space and time, the clustering of rupture

events along faults and the multifractal properties of strain fields (Cowie et al., 1993, 1995). Build-75

ing on similar linear-elastic laws and introducing some strain softening at the micro scale, the failure

model of Tang (1997) succeeded in simulating the progressive failure leading to the macroscopic

non-linear behaviour of brittle rock, thereby processing discontinuum mechanics by a continuum

mechanics method. An analogous approach based on local damage evolution was also taken by

Amitrano et al. (1999), who combined80

– a linear-elastic constitutive relationship for a continuum solid,

– a local Mohr-Coulomb criterion for brittle failure,

– an isotropic progressive damage mechanism for the elastic modulus described by a non-

dimensional scalar damage parameter, allowing for the redistribution of the stress from over-

critical to sub-critical areas of the material, for the triggering of avalanches of damaging events85

and the for propagation of faults.

This rheological framework, named Elasto-Brittle (EB), was recently developed in the context of

the Arctic ice pack by Girard et al. (2010a, b) to explicitly introduce brittle mechanics concepts in

continuum sea ice models. First implementations of this rheology into short (3-days), no-advection,

stand-alone simulations of the Arctic, but using realistic wind forcing from reanalyses, showed that90

the EB model is able to reproduce the strong localization and the anisotropy of damage within sea

ice and agrees very well with the deformation fields estimated from the RADARSAT Geophysical

Processor System (RGPS) data (Girard et al., 2010b).
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In the context of longer-term simulations of ice conditions and coupling to an ocean component,

a suitable sea ice model however needs to represent not only the small deformations associated with95

the fracturing of the pack, but also the permanent deformations occurring once it is fragmented and

undamaged ice floes move relative to each other along open leads, as these much larger deformations

set its overall drift patterns and advective processes. This last point is an important and intrinsic

limitation of the EB framework, since the linear-elastic constitutive law does not allow solving for

the elastic (reversible) and permanent deformations of the simulated material separately.100

Hence to estimate the material’s velocity, assumptions about the amount of reversible versus ir-

reversible deformation need to be made in the EB model. The partitioning is bounded by two limit

cases. (1) If a loading stress is applied to the damaged material (see Fig. 1b, dashed blue loading

path) and all of the resulting deformation is assumed elastic, the material goes back to its initial

position if unloaded and its velocity is zero (red dashed unloading path). This assumption was made105

in the no-advection simulations of Girard et al. (2010b). (2) Alternatively, if all of the resulting de-

formation is considered permanent, the material keeps its final position if unloaded (Fig. 1b, purple

dashed unloading path) and the velocity is trivially estimated as the ratio of the total deformation

and of the time associated with the loading. In the case of sea ice, the second assumption might be

justified by the fact that elastic deformations within an undamaged pack are small compared to the110

permanent deformations associated with the opening, closing, and shearing along leads. Consider-

ing the maximum in-situ values of shear stress of 105 Pa reported by Weiss et al. (2007) and an

undamaged elastic modulus between 1.0 and 10.0 · 109 Pa (Timco and Weeks, 2010), upper bound

values for shear strains in a one meter thick elastic ice pack would be on the order of 10−5. On daily

time scales, these are at the lower bound of RGPS deformation rate estimates (between 10−4 and115

100 day−1, for Marsan et al. (2004); Girard et al. (2009)), suggesting a dominant contribution of

irreversible deformations. This second assumption is taken in the recently developed neXtSIM sea

ice model, which is based on the EB rheology and does represent advective processes over the Arc-

tic (Bouillon and Rampal, 2015). However in this all-permanent deformations limit, internal stresses

are immediately dissipated, hence the memory of the stresses associated with elastic deformations120

is erased whenever the applied loading is removed or reset. Without carrying the history of previous

stresses, the model cannot exhibit the intermittency intrinsic to the mechanical behaviour of sea ice,

i.e., not directly inhered from the wind forcing (Rampal et al., 2009). In order to estimate adequate

drift velocities, a suitable rheological model must therefore have the capacity to distinguish between

reversible and irreversible deformations.125

The goal of this work is to develop such a model allowing a passage between the small/elastic

and large/permanent deformations and with the capability of damage mechanics models to repro-

duce the observed space and time scaling properties of sea ice deformation. Our approach consists

in introducing a viscous relaxation term into the linear-elastic constitutive law of the original EB

framework. The new constitutive relationship takes the form of the Maxwell viscoelastic model.130
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The all-important difference with respect to the Maxwell framework however is that the viscosity

associated with the stress dissipation term is not meant to represent the viscoplastic creep of bulk

ice (Duval et al., 1983), but instead is an "apparent" viscosity that depends on the local level of

damage and concentration of the ice cover. As the elastic modulus, this mechanical parameter is

coupled to the progressive damage mechanism through a scalar variable d representing the time and135

space-evolving level of damage of the ice pack. The coupling is designed so that stresses induce elas-

tic strains over undamaged portions of the ice and are dissipated through permanent deformations

where the pack is highly fractured.

The use of a viscoelastic rheology and apparent viscosity in the case of sea ice can be supported

again by the similarity between the mechanical behaviour of the ice pack and that of the Earth crust140

and the existence of similar approaches to model lithospheric faulting. Active faults in the Earth

crust have been known to deform in two distinct ways: either abruptly, causing earthquakes, or in an

transient, aseismic manner (Scholz, 2002; Gratier et al., 2014; Cakir et al., 2012; Cetin et al., 2014).

Similar to sea ice, co-seisimic fracturing activates aseismic creep, leading to deformations that can be

much larger than that associated with the fracturing itself and to the relaxation of a significant amount145

of elastic strain (Cakir et al., 2012; Cetin et al., 2014). A further justification of the introduction of

such pseudo-viscosity comes from the rheology of granular media. As sea ice along leads (see Fig.

3), rocks along active faults are highly fragmented. Sheared granular media flow in a viscous manner

when inertial effects can be neglected (Jop et al., 2006) with an apparent viscosity diverging as the

packing fraction approaches the close-packed limit (Aranson and Tsimring, 2006). This last point150

will justify the dependence of our apparent viscosity on sea ice concentration.

Viscous-elastic rheological models using apparent viscosities have already been used to model

the deformation of rock-like materials. Lyakhovsky et al. (1997) built a viscoelastic damage rheol-

ogy model with the intent of representing the different stages of geological faulting, from subcritical

crack growth to increasing crack concentration and material degradation, macroscopic brittle failure,155

post failure deformation and healing. However, the evolution of damage in their model was derived

from energy conservation principles rather than from a brittle failure criterion and was coupled to

the elastic modulus only. Frederiksen and Braun (2001) successfully simulated strain localization

during lithospheric extension using an elasto-visco-plastic model together with an ad hoc viscosity.

As their work was concerned with the ductile rather than the brittle deformation regime, strain soft-160

ening in their model did not involve a progressive damage mechanism but instead was achieved by

coupling the viscosity to the accumulated strain and the elastic modulus of the material was kept

constant. Hamiel et al. (2004) modified the coupled linear elasticity and progressive damage rheo-

logical framework of Lyakhovsky et al. (1997) with a non-linear damage-elastic moduli relation and

by adding a damage-dependent Maxwell-like viscous term to account for the gradual accumulation165

of irreversible strain observed in typical rock mechanics experiments. The addition of this term had

however a fundamentally different purpose than in the present approach in that it was intended for
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the representation of the small pre-macroscopic brittle failure deformations, not to bridge between

small and large deformations.

To our knowledge, it is therefore the first time a viscoelastic Maxwell constitutive law is coupled170

to a progressive damage (and healing) mechanism through both the elastic modulus and an apparent

viscosity with the intent of reproducing the small deformation associated with brittle fracturing and

the large, permanent post-fracture deformation of geomaterials. It is certainly the first time such a

rheological model has been adapted for sea ice modelling.

The paper is structured as follow: the Maxwell-EB rheological framework is described in section175

3. A dynamical Maxwell-EB sea ice model is presented in section 4 along with its adimensional

version and a discussion of the important non-dimensional numbers involved in the model. The

numerical scheme employed in the case of small-deformation experiments is presented and ideal-

ized model simulations are described in section 5. In section 6, these simulations are analyzed and

discussed on the basis of the macroscopic behaviour and convergence properties of the model and180

of the heterogeneity, anisotropy and intermittency of the simulated deformation. Conclusions are

summarized in section 7.

3 The Maxwell-EB model

3.1 Constitutive relationship

The Maxwell rheology describes the behaviour of a continuum material exhibiting both elastic and185

viscous properties and combines a Newtonian viscous fluid-like damper and a linear elastic term,

typically represented by a spring and dashpot connected in series (see Fig. 1a). Considering the

material, typically an incompressible fluid, as being isotropic at the elementary scale for both elastic

and viscous properties and assuming plane stress conditions, the Maxwell constitutive relationship

reads190

1

G

Dτ

Dt
+

1

η
τ = 2ε̇ (1)

with τ , the deviatoric part of the Cauchy stress tensor, G and η the (shear) elastic modulus and

viscosity of the material associated to the spring and dashpot components respectively, ε̇ the strain

rate tensor, defined in terms of the velocity u. The objective derivative of the stress tensor is given

by

Dτ

Dt
=
∂τ

∂t
+ (u · ∇)τ +βa(∇u, τ) (2)

with βa(∇u, τ) = τW (u)−W (u)τ−a(τD(u) +D(u)τ),D(u) = ∇u+∇uT

2 andW (u) = ∇uT−∇u
2195

the symmetric and anti-symmetric parts of the velocity gradient and a= 0,1 or −1 if using the Jau-

mann, upper convected or lower convected objective derivative.
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When a stress τ is applied to the Maxwell system, the resulting deformation εtotal is split between

two components: the instantaneous, reversible, deformation of the spring, εE , and the permanent de-

formation of the dashpot, εη , increasing linearly in time (see Fig. 1a). For a given total deformation200

applied to the system, the rate of dissipation of the associated stress through the permanent de-

formation of the dashpot is determined by the ratio, η
G , of the viscosity of the dashpot and of the

(shear) elastic modulus of the spring, G. This ratio can be interpreted as a characteristic memory

time for elastic deformations : as it decreases, the material looses its capacity to retain the memory

of recoverable deformations.205

Here we apply the idea of stress dissipation to a compressible, elastic continuum solid and formu-

late the following constitutive equation by adding a Maxwell-like viscous damper term to the linear

elasticity (i.e., Hooke’s law) constitutive relationship :

1

E

[
∂σ

∂t
+ (u · ∇)σ+βa(∇u,σ)

]
+

1

η
σ = K : ε̇(u) (3)

where σ is the total Cauchy stress tensor, E is the elastic (or Young) modulus and K is the (adimen-

sional) elastic stiffness matrix, which in terms of the Poisson ratio ν writes K = ν
(1+ν)(1−2ν)I⊗ I+210

2
2(1+ν) I with I the second rank identity tensor and I the symmetric part of the fourth rank identity

tensor. In this rheological framework, the mechanical parameter η is not the true dynamic viscosity

of the material but rather is an "apparent" viscosity. The related relaxation time, λ= η
E , character-

izing the rate at which internal stresses dissipate into permanent deformations, is assumed equal for

both the volumetric and deviatoric components of the deformation of the compressible material.215

3.2 Damage criterion

In agreement with in-situ stress measurements (Weiss et al., 2007), and as in the original EB model,

the damage criterion in the Maxwell-EB rheology is based on the Mohr-Coulomb (MC) theory

of fracture. In terms of the principal stress components σ1 and σ2, and using the rock mechanics

convention that compressive stresses are positive, the MC criterion reads220

σ1 = qσ2 +σc (4)

(or σ2 = qσ1 +σc, by symmetry of the criterion along the the σ1 = σ2 axis - see Fig. 2). The slope of

the envelope in the principal stresses plane, q, is expressed in terms of the internal friction coefficient

µ as

q =
[
(µ2 + 1)1/2 +µ

]2
. (5)225

The intercept σc of the MC criterion with the σ1 axes (see Fig. 2), interpreted as the uniaxial (un-

confined) compressive strength, is given by

σc =
2C[

(µ2 + 1)1/2−µ
] . (6)
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Figure 1. (a) Schematic representations of the Maxwell model for a continuum material with elastic (shear)

modulus G and viscosity η. At time t, a stress is applied on the system. It is removed at time t+∆t : the spring

goes back to its initial position but the dashpot retains its deformation εη . (b) Loading-unloading paths for a

material with initial elastic modulusE0 in the linear-elastic (dotted), EB (dashed) and Maxwell-EB (solid lines)

model. The black dot indicates the onset of damaging in the EB and Maxwell-EB models. Unlike the EB model,

the Maxwell-EB model allows partitioning the total deformation into a permanent and an elastic contribution,

indicated by the red arrows along the deformation axis. The diagram is not to scale in the context of modelling

the lithosphere or sea ice : in these geomaterials, permanent deformations can become much greater than elastic

deformations as damage events accumulate over time.

with the cohesionC setting the local resistance of the material to pure shear. Disorder is introduced in

the damage criterion through the spatial distribution ofC. This noise represents the material’s natural230

heterogeneity that causes progressive failure behaviour (e.g., Amitrano et al., 1999; Herrmann and

Roux, 1990; Tang, 1997) under homogeneous forcing conditions and is associated with structural

defects at the sub-grid scale, thermal cracks in sea ice for instance, serving as stress concentrators

(Schulson and Duval, 2009). No correlation length is associated to these heterogeneities, hence their

spatial scale corresponds to the spatial resolution of the model, ∆x (Hutchings et al., 2005; Bouillon235

and Rampal, 2015), and the value of C over each model element is drawn randomly from a uniform

distribution of values spanning estimates from in-situ stress measurements in Arctic sea ice (Weiss

et al., 2007). The internal friction coefficient µ is set to 0.7, a value seemingly scale-independent

and consistent with laboratory experiments on Coulombic shear faults in fresh ice (Schulson et al.,

2006b; Fortt and Schulson, 2007; Weiss and Schulson, 2009) and also common for geomaterials240

(Byerlee, 1978; Jaeger and Cook, 1979).

For metals and rocks, the MC theory was shown to be defective in the case of tension (Paul,

1961), as the mechanism of tensile failure is intrinsically different to that of compressive failure and,

in general, does not involve friction. In the case of σ1,σ2 < 0, fracture occurs whenever σ1 or σ2

reaches a critical value. However, in-situ stress measurements in Arctic sea ice have revealed that245

pure tensile failure does not significantly modify the Coulombic-like failure envelope of pack ice and
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that Coulomb branches well describe this envelope even under large tensile stresses, up to at least

σN ∼ 50 kPa (Weiss et al., 2007). Here, we therefore extend the Mohr-Coulomb criterion to tensile

stresses and for practical reasons, set the critical value to the ultimate tensile stress σt, defined as the

intersection of the Mohr-Coulomb criterion with the σ2 axis (Paul, 1961), as shown on Fig. 2. The250

tensile strength cutoff therefore takes the form:

σ1 < 0; σ2 = σt, (7)

where

σt =−σc
q

=−2C
[
(µ2 + 1)1/2 +µ

]
. (8)

This gives a ratio of the ultimate tensile stress and uniaxial compressive stress of σt
σc
≈ 0.27, which255

might slightly overestimate the tensile strength for sea ice as measured on the field (Weiss et al.,

2007) and in the lab (Schulson, 2006a) (σt ≈ 0.2σc). However, as such large values of tensile

strength are rarely obtained in the Maxwell-EB model simulations, this choice does not significantly

affect our results.

No truncation to the MC criterion is used to close the envelope towards biaxial compression (i.e.,260

beyond σc) as instances of large biaxial compressive stresses are seldom encountered in Arctic sea

ice (Weiss et al., 2007). Besides, imposing a truncation was shown to have little impact on the

simulation results. The damage criterion combining the MC envelope and the tensile strength cutoff

is represented in Fig. 2 in the principal stresses plane and has the same shape as deduced by Coon

et al. (2007) from measurements in undamaged pack ice.265

3.3 Progressive damage mechanism and healing

The Maxwell-EB rheology differs from the standard Maxwell rheology in that the mechanical pa-

rameters E, η and λ are not constant but all coupled to the spatially and temporally evolving level

of damage of the material, which controls its local degradation and re-increase in strength. Consis-

tent with previous damage rheological frameworks, the level of damage is represented by a non-270

dimensional, scalar parameter d evolving between 1 (undamaged) and 0 ("completely damaged"

material). This variable is interpreted as a measure of sub-grid cell defects or crack density (Ke-

meny and Cook, 1986) and is allowed to evolve through two competing mechanisms : damaging

and healing. On the one hand, damaging represents fracturing and the opening of faults, or "leads"

in the case of sea ice, occurring when and where the internal stress exceeds the mechanical resis-275

tance of the material and which leads to its weakening. Healing on the other hand represents the

reconsolidating and strengthening of the damaged material through sintering or, in the case of sea

ice, refreezing within open leads. Although this mechanism also contributes to the increase in elastic

stiffness (E×h) and effective apparent viscosity (η×h) of the ice, healing is distinguished from

pure thermodynamic growth or dynamically-driven thickness redistribution (e.g., Rothrock, 1975)280
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Figure 2. Damage criterion of the Maxwell-EB model in the principal stresses plane (solid line) combining

the Mohr-Coulomb and tensile stress criteria. The thick dashed line represents a biaxial compression truncation

that closes the envelope but is not applied in the present model. Compression is taken positive and the dotted

line indicates the σ1 = σ2 axis. Numbers indicate the states of (1) uniaxial tension, (2) biaxial tension and

compression, (3) uniaxial compression and (4) biaxial compression and their location relative to the envelope.

The calculation of the distance to the damage criterion dcrit, defined by the intersection (σ′1, σ′2) of the line

relating the state of stress (σ1, σ2) of a given element to the origin of the principal stress plane, is represented

in red in the case of exceeding the Mohr-Coulomb criterion and in purple, the tensile strength criterion.

in that it applies only where and when the material has been damaged. It therefore allows d, E and

η to re-increase at most to their undamaged value; d0 = 1, E0 and η0 respectively. Because the two

processes operate simultaneously within the simulated material, an evolution equation for d needs

to include both mechanisms. In the following damaging and healing are first treated separately and

then combined in a single equation for d.285

3.3.1 Damaging

Contrary to typical sea ice modelling frameworks, no plastic (i.e., normal) flow rule is prescribed

when the damage criterion is reached in the Maxwell-EB model. Instead, when the stress locally ex-

ceeds the critical stress, the elastic modulus is allowed to drop, leading to local strain softening (e.g.,

Amitrano et al., 1999; Cowie et al., 1993; Tang, 1997; Hamiel et al., 2004, and others). Because of290
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the long-range interactions within the elastic medium, local drops in E imply a stress redistribution

that can in turn induce damaging of neighbouring elements. By this process, "avalanches" of dam-

aging events can occur and damage can propagate within the material over long distances (Amitrano

et al., 1999; Girard et al., 2010a). As the elastic perturbation generated by such events is anisotropic

(Eshelby, 1957), this propagation mechanism naturally leads to the emergence of both spatial het-295

erogeneity and anisotropy in the stress and strain fields, i.e., to the formation of linear-like faults (see

section 6).

In the Maxwell-EB model, the change in level of damage corresponding to a local damage event is

determined as a function of the distance of the damaged model element to the yield criterion. Three

important assumptions are made when calculating this distance, denoted dcrit. The first is that the300

deformation of each model element is conserved during a damaging event, i.e., at initiation, damage

modifies only the local state of stress, not strains. The second is that, for a sufficiently small model

time step ∆t, i.e. very small compared to the viscous relaxation time λ (see section 4.1), a negligible

part of the stress is dissipated into viscous deformation. A third constraint is based on the fact that

stresses outside the failure envelope are not physical because brittle failure would occur before the305

material could support them. Hence we consider that after being damaged, an element has its state

of stress lying just on the failure envelope. With these assumptions, the following equality holds for

each damaged element:

ε′ = ε ←→ K−1σ′

E× dcrit
=

K−1σ

E
,

where the superscript ′ denotes the post-damage state of deformation and stress. In terms of the310

principal stress components, the change in level of damage of a given element is given by

dcrit =
σ′1
σ1

=
σ′2
σ2
, (9)

which implies that as the level of damage varies, all stress components vary in the same proportions.

Hence the state of stress σ′ after each damaging event is given by the intersection of the failure

envelope and of the line connecting the pre-damage state of stress (σ1,σ2) with the origin, in the315

principal stress plane (see Fig. 2). Two cases must be distinguished when calculating σ′, depending

on which of the Mohr-Coulomb or tensile criterion has been exceeded. Combining the two, dcrit is

evaluated simultaneously over all mesh elements of the model domain as:

dcrit = min

[
1,
σt
σ2
,

σc
σ1− qσ2

]
. (10)

Following progressive damage models, the level of damage of a given element in the Maxwell-EB

model at any given time is determined by both its instantaneous distance to the damage criterion320

dcrit, i.e., its current state of stress, and its previous damage level. This implies that the variable d
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carries the entire history of damage of model elements and, if discretizing time as tn = n∆t, n≥ 0,

translates into the discrete recursive equation

dn+1 = dn+1
crit d

n, 0< d0 ≤ 1.

A continuous evolution equation for d can be obtained by considering that the time characterizing

the redistribution of stress between model elements is intrinsically tied to the speed of propagation325

of elastic waves, c, in the material, which carry the damage information. Using a Backward explicit

scheme of order 1, and setting the model time step to ∆t= td with td = ∆x
c , the exact time of

propagation of an elastic wave with speed c over a distance ∆x, the following equation arises:

Dd

Dt
=
dcrit− 1

td
d. (11)

3.3.2 Healing

By healing, the simulated material is allowed to regain some strength. The characteristic time for330

this process is designated in the following by th. It corresponds to the time required for a completely

damaged element (d= 0) to recover its initial stiffness (d= 1), which in a dynamic-thermodynamic

sea ice model would depend on the local difference between the temperature of the air near the

surface of the ice and the freezing point of seawater below. Healing schemes of varying level of

complexity could be used in the Maxwell-EB model. One possibility is the one employed in the EB335

sea ice model of Girard et al. (2010a), which follows parameterizations of the vertical growth of sea

ice (Maykut, 1986). An underlying assumption is that the rate of healing is inversely proportional

to the level of damaging of the ice. However as there is no physical evidence for this assumption,

in the following, uncoupled, implementation of the Maxwell-EB model we use an even simpler

parameterization that implies a constant healing rate, 1
th

:340

Dd

Dt
=

1

th
, 0≤ d≤ 1. (12)

Combining both the damaging and healing mechanisms (Eq. 10, 11 and 12), the complete evolu-

tion equation for d is

∂d

∂t
+ (u · ∇)d=

(
min

[
1,
σt
σ2
,

σc
σ1− qσ2

]
− 1

)
1

td
d+

1

th
, 0< d≤ 1, (13)

Although the two processes apply simultaneously on the level of damage in the model, they are

inherently distinct. On the one hand, damaging is a discrete threshold mechanism applying only

where and when the state of stress becomes overcritical. As mentioned in sections 3.2 and 3.3.1, the345

characteristic time for this process, td, is tied to the speed of propagation of (shear) elastic waves

and to the model’s spatial resolution. In the case of an heterogeneous ice pack, an average value for
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c is on the order of 500 m/s (Marsan et al., 2011). For spatial resolutions between that of current

global climate and high resolution regional sea ice models (∆x= 1 to 100 km), the characteristic

time for damaging, td therefore varies between O(1) and O(102) s. Healing on the other hand is a350

continuous process acting on all model elements, independently of the local distance to the damage

criteria. Studies on the refreezing within leads in sea ice showed that the time for 1 meter of ice

to grow within an opening of 10 cm under atmospheric temperatures of Ta =−15◦C is of O(100)

hours or O(105) seconds (Petrich et al., 2007). The orders of magnitude of difference between th

and td therefore imply that the two processes are intrinsically decoupled in the case of the ice pack.355

3.3.3 Coupling d with E and η

The coupling between the Maxwell-EB constitutive relationship and the progressive damage mech-

anism constitutes one of the main features of this new modelling framework. It is defined such that:

– deformations within an undamaged medium are small and reversible, i.e., strictly elastic.

Hence undamaged portions of the simulated material have a maximum elastic modulus E0360

and a very large apparent viscosity η0. In this case, the viscous term in (3) is negligible and a

linear-elastic constitutive relationship is recovered (Fig. 3, right panel),

– deformations can accumulate over highly damaged areas of the material to become arbitrarily

large. These deformations are permanent and dissipate most of the the stress applied to the

material within a short relaxation time. Hence the elastic modulus, viscosity and relaxation365

time drop locally over damaged areas. In the limit of a completely damaged material, elastic

interactions are hindered and deformations are strictly irreversible (Fig. 3, left panel). In this

case, λ−→ td and a soft elastic-plastic behaviour is recovered in which the memory of the

elastic stresses is totally lost (narrow-dashed blue line on Fig. 1).

– as damaged areas are allowed to heal, E, η and λ all re-increase, up to their initial undamaged370

values.

Different functions could be used to express the dependence of E, η and λ on d that meet these

criteria. In the absence of physical evidences for a higher level of complexity, and consistent with the

relationship between the elastic modulus and crack density used in damage models of rocks (Agnon

and Lyakhovsky, 1995; Amitrano et al., 1999; Schapery, 1999), we use the simplest parameterization375

and set

E(t) = E0d(t)

η(t) = η0d(t)α,

such that

λ(t) =
η0

E0
d(t)α−1
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Figure 3. Dependence of the apparent viscosity (η) the elastic modulus (E) and the relaxation time (λ) on the

level of damage in the Maxwell-EB sea ice model. The image is a SPOT satellite aerial picture of a 59 km ×59

km portion of the Arctic sea ice cover centred around 80.18 N, 108.55 W.

with α a constant greater than 1 introduced to fulfil the constraint that the relaxation time for the

stress also decreases with increasing damage and re-increases with healing, as the material respec-

tively looses and recovers the memory of reversible deformations. Using this formulation, both η380

and E are entirely defined by their initial value, a constant, and by the level of damage variable d.

However, the constitutive equation becomes undefined in the limit of d→ 0. This problem can be

handled by imposing a fixed minimum value dmin > 0 for the level of damage. Alternatively, a cut-

off ηmin� η0 on the value of the apparent viscosity can be introduced and the expression for η(d)

modified as385

η = (η0− ηmin)dα + ηmin =

η
0 for d= 1,

ηmin for d= 0.
(14)

Substituting for η in the expression for the relaxation time, the elastic modulus then becomes

E =
η0− ηmin

η0
E0d+

ηmin
η0

1

dα−1
E0, (15)

such thatE ≈ E0 for d= 1,E decreases with d until a minimum at d(E = Emin) =
[

ηmin
η0−ηmin (α− 1)

] 1
α

and E→∞ for d→ 0. Using such a cutoff on η, the elastic term in the Maxwell-EB constitutive

equation therefore vanishes in the limit of a "totally" damaged material and the rate of viscous dis-

sipation is then set by the minimum viscosity ηmin. It is important to note that this limit has no390

physical significance in the context of a progressive damage model for a continuum solid and is

rather introduced to insure mathematical consistency while retaining a continuous function for the

level of damage. In the following implementation of the model, we take this approach instead of

imposing a minimum value of d, but it had really no impact on our results since in the simulations

presented here d > d(E = Emin) at all times.395
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4 A Maxwell-EB sea ice model

In this section, the Maxwell-EB rheology is implemented in the context of sea ice modelling. As in

regional and global sea ice models, the ice cover is considered as a 2-dimensional plate due to its

very large aspect ratio and a constant healing rate is assumed. In this case, the complete dynamical

model is given by the following system of equations:400

1. The momentum equation:

ρh

[
∂u

∂t
+ (u · ∇)u

]
= Fext +∇ · (σh), (16)

with u the velocity, h the thickness and ρ the density of sea ice. Fext assimilates all external

forces on the sea ice cover, which in regional and global sea ice models are typically the

air and ocean drags and the forces associated with the Coriolis acceleration and gradients in

sea surface height. We assume the internal stress to be homogeneously distributed within the405

depth h and following Bouillon and Rampal (2015) and Sulsky et al. (2007), we write the

momentum equation in terms of the internal stress rather than the vertically integrated stress

tensor commonly used in the sea ice modelling community.

2. Conservation equations for the ice concentration A and ice thickness h:

∂h

∂t
+∇ · (hu) = Sh, (17)

∂A

∂t
+∇ · (Au) = SA, (18)

where Sh and SA represents thermodynamic source and diffusion terms and elastic compress-410

ibility effects are assumed negligible relative to dynamic variations of the ice volume in the

conservation of the mass of the sea ice cover.

3. The constitutive relationship (3) with

E = f1(E0,η0,ηmin,d)exp[−c ∗ (1−A)], (19)

η = f2(η0,ηmin,d)exp[−c ∗ (1−A)], (20)

where f1 and f2 represent the functional dependance on the level of damage of the ice d,

given by (15) and (14) respectively. The exponential function of the ice concentration allows415

the internal stress term to be maximal when A= 100% and to decrease rapidly when leads

open and A drops. It is of the same form as that used for the pressure term (P , or ice strength

in compression) in the VP rheology of Hibler (1979). Here the non-dimensional parameter c∗
characterizing this dependence on the ice concentration has the same (constant) value for both

mechanical parameters, but could be set different in a refined parameterization.420

4. The equation for the evolution of damage (13) with the damage criterion defined by Eq. (4)

and Eq. (7) and q, σc and σt given by (5), (6), (8) in terms of the cohesion variable C and of

the constant internal friction coefficient µ.
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Parameters Values

Poisson’s ratio ν 0.3

Internal friction coefficient µ 0.7

Ice density ρ 900 kg m−3

Shear wave propagation speed c 500 ms−1

Undamaged elastic modulus E0 2c2(1 + ν)ρ Pa

Undamaged apparent viscosity η0 1015 Pa s

Minimum apparent viscosity ηmin 104 Pa s

Cohesion C (25− 50) · 103 Pa

Damage parameter α 4.0

Undamaged relaxation time λ0 η0

E0 s

Characteristic time for damage td ∆t s

Characteristic time for healing th 105 s

Dimensions of compression experiment Values

Length of the ice plate L 200 · 103 m

Prescribed velocity of forced edge U 10−3 ms−1

Number of elements along short edge N 10, 20, 40, 80, 100

Mean model resolution ∆x L
2N

m

Model time step ∆t ∆x
c

s

Ice thickness h 1 m

Ice concentration A 100%

Variables Non-dimensional equivalent

Horizontal dimension x x̃= x
L

Time t t̃= tU
L

Ice velocity u ũ = u
U

Internal stress σ σ̃ = σ
E0

Level of damage d d̃= d

Ice thickness h h̃= h
H

Table 1. Model variables, parameters and domain dimensions for the uniaxial compression experiment.

In the case of "quenched disorder" (i.e., when the field of C is set at the beginning of a model

simulation), an additional equation arises that handles the advection of the field of cohesion with the425

simulated velocity field. Table 1 lists all model variables and parameters.
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4.1 Characteristic numbers and times

Neglecting all thermodynamic effects and variations in ice thickness and concentration (considering

h= 1 and A= 100%) as well as external forcings and adimensionalizing with respect to the ice ve-

locity U , the horizontal extent of the model domain L, the thickness of the iceH and the undamaged430

elastic modulus E0, the dynamical system of equations read

Ca0Dũ

Dt̃
= ∇̃ · σ̃ (21)

We0d̃α−1Dσ̃

Dt̃
+ σ̃ = We0d̃

α′

K(ν) : ˜̇ε(ũ) (22)

Dd̃

Dt̃
=

(
min

[
1,Σt

1

σ̃2
,Σc

1

σ̃1− qσ̃2

]
− 1

)
1

Td
d̃+

1

Th
, 0< d̃≤ 1. (23)

where d̃
α′

=
[(

1− ηmin
η0

)
d̃
α

+ ηmin
η0

]
and the superscript ’˜’ is used for all non-dimensional vari-

ables and operators.

In this form, the model involves 8 characteristic numbers and time scales, some of which are

constant and some, evolving with the local level of damage d: Ca0, the (undamaged) Cauchy number,435

We = We0d̃α−1, the Weissenberg number, with We0 its undamaged value, ν Poisson’s ratio, Σt the

dimensionless critical tensile stress, Σc the dimensionless critical stress with respect to the Mohr-

Coulomb criterion, Td the characteristic time for damaging, Th the characteristic time for healing

and α the damage constant. In order for the Maxwell-EB model to represent the intended physics, the

value of these parameters must evolve within a certain range of values. In the following we elaborate440

on the absolute and relative values of those numbers which are the most critical in the context of sea

ice modelling.

4.1.1 Td

As mentioned in the previous section, the (adimensional) characteristic time for the propagation of

damage, Td = td
T with T = L

U , is determined by the speed of propagation of elastic waves within the445

simulated material and is strongly tied to the mean spatial resolution of the model, as td should be

of O( ∆x
c ). In turn, this time places a strong constraint on the Maxwell-EB model time step. Setting

∆t < ∆x
c is indeed unphysical, as the time associated to one model iteration would then be too short

for the stress to be redistributed from one overcritical element to its direct neighbour. For the model

to resolve the propagation of damage, the time step must therefore be ≥ td.450

No strict upper bound to ∆t is imposed by the damage mechanism. One the one hand, choosing

∆t > td could be interesting in terms of reducing computational costs. Physically, it implies that

damage is allowed to propagate beyond the first neighbour barrier and over larger distances within

one model time step. On the other hand, increasing ∆t with respect to td also implies (1) a decrease

in the resolution of damaging, as the model might miss important intermediate damage events that455

trigger additional interactions between neighbouring elements (2) larger local drops in the level of
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damage, inducing large stress perturbations and, potentially, numerical instabilities in the model.

Sensitivity analyses on the propagation of the damage should therefore be performed when choosing

∆t > td. The temporal resolution that is optimal in terms of capturing all elastic interactions within

the simulated material is therefore ∆t= td. In the model experiments presented in the following,460

this is the choice we make.

4.1.2 Th

In order for healing not to offset damaging in the rate of change of d, the (adimensional) time for

healing, Th = th
T , must be much larger than the (adimensional) time for damage propagation. This

separation of scales ensures that elements cannot recover by healing more strength than they have465

lost by damaging within one time step, as excess healing would effectively entail a net growth of

the material, a process that is not intended by this parameterization and should instead be accounted

for by thermodynamic, balance calculations. Considering the estimates of the speed of elastic waves

and of the healing rate of leads aforementioned (section 3.3), pack ice naturally meets this condition.

4.1.3 We470

The Weissenberg number, We, defined as the dimensionless product of the viscous relaxation time

for the stress and of time T = L
U characterizing the deformation process:

We =
η

E

U

L
=
λ

T
, (24)

sets the viscous versus elastic character of the flow of a viscoelastic material. In the original Maxwell

model, We = 0 represents the limit of zero elastic stresses, while a very large We characterizes a475

strictly elastic solid. In the Maxwell-EB model, the Weissenberg number evolves according to the

level of damage as We = We0dα−1 with We0, its maximum value.

As viscous dissipation should be insignificant over undamaged and strictly elastic areas of the

material, We0 should be chosen very large, representing the limit of 1
η0 −→ 0. In this case the vis-

cous term in the constitutive relationship (3) effectively vanishes and a linear elastic rheology is480

recovered. In practice, the value of We0 is however limited, first, by the machine precision and sec-

ond, due to a numerical scheme failure known in the field of viscoelastic flow computations as the

high Weissenberg number problem (Keunings, 1986; Fattal and Kupferman, 2004, 2005; Saramito,

2014). For large values of We, numerical instabilities arise in Maxwell-type models due the pres-

ence of deformation source terms (βa) in the transport equation for the stress tensor (2). With We0485

(or equivalently, λ0) too low, simulations can run for a time t∼ λ0 and unphysical viscous dissi-

pation can occur over undamaged parts of the simulated material. To get round this problem, the

viscous term in the Maxwell constitutive relationship can be multiplied by a Heaviside function d∗

that effectively sets 1
η to the limit value of 0 when and where d≥ dc, with dc a chosen threshold value
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(e.g., dc = 1 when using a constant heal rate parameterization) and leaves the constitutive equation490

unchanged (d∗ = 1) otherwise. In small-deformation experiments, i.e., run for a time t� λ0, vis-

cous dissipation over undamaged parts of the material is not significant and the inclusion of such a

function, unnecessary.

Conversely, where damage becomes important, the viscous relaxation time λ should decrease

significantly below the characteristic time for healing to allow for internal stresses to "have time" to495

dissipate and deformations to become large.

4.1.4 Ca

The dimensionless number that arises when adimensionalizing stresses in the momentum equation

with respect to the elastic modulus is the Cauchy number, defined as the ratio of inertial to elastic

forces (Ca = ρU2

E ). If inertial forces are comparable to elastic forces and Ca∼ 1, the effect of the500

propagation of viscoelastic waves in the material cannot be neglected. Yet, setting ∆t≥ td, that

is ∆t at least equal to the period of shear elastic waves, implies that the model does not resolve

these waves, but only their consequence of transmitting the damage information within the material.

Hence the wave signal cannot be properly filtered out of the model’s solution. In order for the wave

contribution not to have a significant effect on the simulated deformation and stress fields, Ca must505

therefore be � 1. Dimensional analysis indicates that over an undamaged ice pack with velocity

ranging between 0.001 and 1 m/s, Ca0 is in the range [10−12− 10−6]. Hence inertial effects can be

safely neglected. For simulated ice velocities U < 1 m/s, and α > 2, inertial effects in the Maxwell-

EB model remain negligible when damage becomes important.

4.1.5 α510

The damage parameter α controls the rate at which the apparent viscosity decreases and the mate-

rial looses its elastic properties with damaging. As mentioned in previous sections, it should be set

greater than 1 in order for the viscous relaxation time to decrease with damaging. The requirements

that (1) the viscous relaxation time drops well below the time for healing over highly damaged ar-

eas and (2) inertial effects remain negligible for high deformation rates (i.e., large velocities) can515

also place a constraint on the minimum value of α. Conversely, for large values of α, the relax-

ation time λ becomes very small whatever the damage level (see section 3.3.3). This means that

elastic deformations are almost immediately dissipated after damaging, that is, the model becomes

purely elasto-plastic. For the experiments presented here, we find that α= 4 allows representing

both the brittle behaviour and the relaxation of the internal stress within a material with mechanical520

parameters in the range of the values suitable for sea ice. For α larger than about 7, memory effects

become insignificant and the experiment instead exhibits a stick-slip behaviour with a well-defined

characteristic frequency (not shown).
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Figure 4. (a) Domain and boundary conditions for the uniaxial compression experiment.

5 Numerical scheme and experiments

The objective time derivative for the Cauchy stress σ in the Maxwell-EB constitutive relationship525

(3) is composed of an inertial term, an advection term and of a sum of rotation and deformation (βa)

terms, each of which implies a different level of numerical complexity. In developing the model,

our approach is to introduce each of these terms separately in order to evaluate their respective

contribution to the simulated mechanical behaviour. On the one hand, introducing the inertial term

while neglecting the advection and βa terms allows retaining a Lagrangian scheme, similar to the530

original EB model (Girard et al., 2010b). Without any remeshing of the domain, the model is then

suitable for short-term, small-deformation simulations only. On the other hand, when permanent

deformations accumulate over a long time, the advection term is no longer negligible and βa terms

become potentially important.

In the following, we present small-deformation numerical experiments that allow analyzing the535

mechanical behaviour of the Maxwell-EB model in terms of the statistical and scaling properties of

the simulated damage and deformation fields. Performed with a highly idealized configuration for

the domain geometry, the applied loading and boundary conditions, these will demonstrate that the

main characteristics of sea ice deformation (spatial heterogeneity, anisotropy, intermittency) natu-

rally emerge from the underlying physics and do not need to be implemented in an ad-hoc manner.540

The simulations represent the uniaxial compression of a (2-dimensional) rectangular ice plate

with dimensions L
2 ×L (see Fig. 4a). Compression is applied by prescribing a constant velocity U

on the upper short edge of the plate with the opposite edge maintained fixed in the direction of the
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forcing. No confinement is applied on the lateral sides. The velocity U is small enough to ensure a

low driving rate (i.e., slow compared to time scale of damage propagation, (Cowie et al., 1993)).545

In the present implementation, the model is not yet coupled to a thermodynamic component, hence

SA = Sh = 0. As advection is neglected and simulations are run for a short enough time such that the

macroscopic and local deformations within the ice cover remain small (∼ 1% of the area of model

elements), dynamics-induced variations (through convergence-divergence) of the ice thickness and

concentration are not accounted for and hence the mechanical parameters E, η and C are not yet550

coupled to h or A. Conservation of mass is therefore not imposed in these small-deformation simu-

lations, equivalent to assuming a uniform, constant thickness (1 m) and ice concentration (100%). In

this case, the system of equations reduces to Eq. (21) to (23) with Dũ
Dt̃

= 0 and the 6 unknowns ũ (2

components), σ̃ (3 components) and d̃. The model is made adimensional with respect to the length

of the rectangular plate, L, the prescribed velocity U on the top boundary, the undamaged elastic555

modulus E0.

In all simulations, the time step is set equal to the characteristic time for damage propagation. A

semi-implicit scheme is used that linearizes the system, in which the momentum and constitutive

equations are first solved simultaneously using a backward Euler scheme of O(1) and the value of d̃

at the previous model time step. The level of damage is updated in a second time using the estimated560

ũ and σ̃ and an explicit scheme of O(1). A fixed-point algorithm iterates between these two steps

until the residual of the linearized constitutive equation drops below a chosen tolerance, ensuring

the convergence of the solution. Finite elements and variational methods are used to solve the time-

discretized problem on a Lagrangian grid within the C++ environment RHEOLEF (Saramito, 2013:

http://cel.archives-ouvertes.fr/cel-00573970). An unstructured mesh with triangular elements is used565

and the average spatial resolution is set by choosing the number N of elements along the short side

of the domain.

All simulations are started from an initially undamaged ice cover with uniform elastic modulus

and viscosity. Undamaged mechanical parameter values are chosen so that to be representative of

sea ice on regional to global scales (c= 500 ms−1 and ν = 0.3). The undamaged elastic modulus is570

given by the relation E0 = 2c2(1 + ν)ρ and the undamaged viscosity η0 is set such that the initial

relaxation time λ0 is as large as possible while the maximum Weissenberg number, We0 is small

(< 1). All model variables and parameters are listed in table 1. Parameter values are not varied in

any of the experiments presented here as a sensitivity study is kept for a separate paper.

6 Results575

In this section we analyze the mechanical behaviour of the Maxwell-EB model. In particular, we

evaluate its capacity to reproduce the main characteristics of sea ice deformation, which are its spa-
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tial heterogeneity, intermittency and anisotropy, following the methodology developed in previous

observational studies of the deformation and drift of the Arctic ice pack.

One signature of the strong heterogeneity of sea ice deformation is the emergence of a spatial580

scaling in the deformation fields over a wide range of scales. Using a coarse-graining procedure,

Marsan et al. (2004) performed a scaling analysis of the deformation of sea ice over the Arctic using

the 3-days, 10 km×10 km gridded RGPS deformation product. Doing so, they obtained a power-law

relationship between the total deformation rate < ε̇tot >l invariant and the corresponding averaging

scale l of the form585

< ε̇tot >l∼ l−β (25)

with a constant exponent β > 0, indicating correlations in the deformation fields over 2 orders of

magnitude in l and an increase in the mean strain rate with decreasing scale of observation, in agree-

ment with a strong spatial localization of the deformation.

This coarse-graining calculation was later extended to ice buoy data (e.g., Rampal et al., 2008;

Hutchings et al., 2011) which, with a higher temporal resolution than the RGPS data, allowed per-590

forming scaling analyses of Arctic sea ice deformation in the temporal dimension as well. Using the

dispersion rate of buoys as a proxy for the strain rate, Rampal et al. (2008) obtained a power-law

relationship between the total deformation rate < ε̇tot >t computed at a chosen space scale and the

time scale of observation t

< ε̇tot >t∼ t−γ (26)

with a constant exponent γ > 0 over 2 orders of magnitudes in t (3 hours to 3 months), indicating an595

increase of strain rates with decreasing temporal scale consistent with an intermittent deformation

process. Recently, these temporal and spatial scaling properties have been used as benchmarks to

validate (or invalidate) sea ice models (e.g., Girard et al., 2009, 2010a; Bouillon and Rampal, 2015).

An additional and all-important characteristic of the deformation of sea ice that is not captured

by these scaling analyses is its strong anisotropy. This property has been made evident since the600

availability of satellite imagery-derived ice motion products (e.g. Stern et al., 1995), which showed

that high strain rates concentrate along oriented, linear-like faults, or leads, often termed "linear

kinematic features" (Kwok, 2001).

6.1 Spatial resolution, convergence and dependence on the initial conditions

In a first time, we analyze the overall, macroscopic behaviour of the Maxwell-EB model, its con-605

vergence properties and the dependance of the solution on the prescribed initial conditions. To do

so, a set of four uniaxial compression simulations is run using different spatial resolutions, with

N = 10, 20, 40 and 80. The values of the initial, undamaged mechanical parameters are identical

between the simulations as well as the field of cohesion, which is defined at the lowest resolution

(N = 10) and interpolated onto the higher resolution mesh grids.610
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Figure 5 shows the (adimensional) macroscopic stress, σm (normal stress integrated on the up-

per boundary of the domain), as a function of the adimensional macroscopic strain, εm, set by the

prescribed displacement of the upper boundary, for these four simulations. The dotted line repre-

sents the damage rate (the number of damaged elements per model time step times their distance

to the damage criterion, 1− dcrit) for the simulation with N = 40. Inspection of the initial loading615

and damaging sequence suggests that the mechanical behaviour is similar to that obtained with other

elasto-brittle models (e.g., Tang, 1997; Amitrano et al., 1999; Girard et al., 2010a). The Maxwell-EB

model simulates

1. a strictly linear-elastic behaviour at the initial stage of the experiment, as the material is ini-

tially undamaged,620

2. a deviation from the linear-elastic behaviour after the onset of damage (marked by the red

dot 1), indicative of macroscopic strain softening, with damage distributed homogeneously

throughout the material (see Fig. 5 b1),

3. the formation of clusters of damaged elements, non-interacting at first, then joining along

linear features. This stage is marked by a rapid increase in the number of damaged elements,625

4. a sharp stress drop associated with the macroscopic failure of the sample and propagation of

a main fault spanning the entire domain (see Fig. 5 b2).

In the Maxwell-EB model, this last stage is characterized by a drop in the Weissenberg number (i.e.,

in λ) localized along the main fault (not shown), where strain rates are orders of magnitude higher

than over undamaged parts of the material. Then, as damaged areas heal, stress builds up again630

within the material. At all spatial resolutions, the model simulates cycles of slow stress build ups

(healing phase) and rapid stress relaxations (damaging phase).

Because the simulations use the same spatial distribution of the damage criteria (i.e., of C) the

location of the first damage events is the same at all resolutions, as shown by the maps of instan-

taneous level of damage d near the onset of damaging (Fig. 5 b1). However, soon after these first635

failure events, model solutions do not converge (Fig. 5 b2-4) and fractures form with a shape and

orientation differing between simulations. This divergence between the post-damage solutions illus-

trates an all-important and intrinsic characteristic of the Maxwell-EB framework arising from the

fact that there is no physical scale associated with the localization of damage in the model. Through

elastic interactions, damage and deformation tend to localize at the finest scale (the mesh element),640

resulting in a different redistribution of the stress between neighbouring elements at different spatial

resolutions and hence a non-identical propagation of the damage. Put another way, the divergence of

the solutions indicates that while the disorder in C sets the location of the first damage events, the

heterogeneities introduced in the stress field by these events prevail in setting the location and timing

of subsequent events. This result is consistent with previous elasto-brittle model simulations which645
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have shown that the number of active faults as well as the degree of localization of the deformation

over long time scales do not depend systematically on the disorder initially introduced in the model

(Cowie et al., 1993) and that once formed, faults produce their own stress field which dominates

further fracture growth (Tang, 1997).

Another important property of the deformation made evident by this set of experiments is its strong650

anisotropy. The fields of d and of the total deformation (ε̇tot, see section 25) represented on Fig. 5

indeed show that at all spatial resolutions, the simulated damage and deformation are both highly

localized and oriented along linear features. This is an important result, as no anisotropy is introduced

at the local scale on either the elastic or viscous properties, or in the damage parameterization.

This property arises naturally due to elastic interactions within the material and without the need655

to prescribe fault orientations. It was reproduced by the original EB model (Amitrano et al., 1999;

Girard et al., 2010a, b) and is not lost when including a viscous dissipation term for the stress in the

Maxwell-EB constitutive relationship.

6.2 Heterogeneity

As shown in the previous section, when simulations are started from an undamaged state, the simu-660

lated mechanical behaviour of the material is intrinsically different between the first and subsequent

loading and damaging cycles. The path to the first rupture in "irreversible damage" (i.e., models with-

out healing) elasto-brittle models has already been investigated in depth (e.g. Girard et al., 2010a;

Tang, 1997; Amitrano et al., 1999). Hence we focus our analysis of the spatial dependence of the

Maxwell-EB model strain rate fields on the post macro-rupture behaviour.665

To quantify the heterogeneity of the simulated deformation, we follow Marsan et al. (2004) and

estimate deformation rates over two orders of magnitude in space scales using a coarse-graining

procedure. The calculation is described in details by Girard et al. (2010a). For this analysis we

use the outputs of strain rate fields from simulations with N = 100, averaged over a time interval

corresponding to the time of propagation of an elastic shear wave with speed c through the width of670

the domain (L2
1

T×c =N time steps).

The dependence of the deformation rates on the spatial scale of observation is investigated at

different stages of the healing-damaging cycle. Figure 6 (a and b) shows the total deformation rate

< ε̇tot >l as a function of the space scale l at 5 equally-spaced steps along the path towards a given

macroscopic failure event, that is, between the minimum in macroscopic stress that follows the prop-675

agation of a fault and the maximum that precedes the next macro-rupture, as indicated in Fig. 6(a).

Deformation rates are normalized by < ε̇tot > at the smallest averaging scale (L/N ). At the first

stage, just following the rupture (red curve), the total deformation rate shows a clear power law de-

crease with increasing spatial scale of the form of Eq. (25) over nearly two orders of magnitude of l,

consistent with a strong localization of the deformation. At the subsequent stages (yellow and green680

curves), damaged elements progressively recover their mechanical strength by healing. Deforma-
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tion rates decrease along the main fault and re-increases over undamaged areas, hence deformation

homogenizes over the domain and the rate of decrease of < ε̇tot >l with l is reduced. Then, as heal-

ing allows stress to build up within the material, damaging resumes and clusters in space and the

exponent β re-increases towards its post macro-rupture value (blue and purple curves).685

Repeating the procedure for subsequent healing and damaging cycles and for multiple realizations

of the experiment initialized with different cohesion fields showed a similar evolution of the rate of

decrease of < ε̇tot >l with l between macro-ruptures events, with values of β in the vicinity of the

rupture consistent with previous EB model analyses (e.g., Girard et al., 2010a, β = 0.15± 0.02).

However, an important difference between the present results and that of Girard et al. (2010a) is the690

absence of a clear cross-over scale for which < ε̇tot >l becomes independent of l and which implies

a finite correlation length of damage events. This suggests that the Maxwell-EB system progressively

looses the memory of it’s initial homogeneous, undamaged state and that an elasto-brittle material

experiencing both healing and damaging enters a "marginally stable" state with scale invariance

spanning the size of the system. This result is consistent with the scale-dependence analysis of695

RGPS-derived deformation rates of Marsan et al. (2004) and Stern and Lindsay (2009), in which no

cutoff scale was observed for l varying between 10 and 1000 km, suggesting that Arctic sea ice is

most often in a near-critical state.

6.3 Intermittency

In this section we characterize the temporal behaviour of the Maxwell-EB model. Figure 7(a) rep-700

resents the simulated macroscopic stress as a function of time (black dashed-dotted line) along with

the corresponding damage rate (grey solid line) record for one realization of the uniaxial compres-

sion experiment with N = 40. Inspection of both temporal series reveals two types of mechanical

behaviour of the Maxwell-EB material.

First, the evolution of the macroscopic stress is clearly characterized by cycles of slow stress705

build-ups and very fast relaxations. The strong asymmetry of the signal in time is confirmed by a

high (negative) skewness (-6) of the distribution of the macroscopic stress increments ∆σm
∆t (not

shown). Associated with these cycles is a succession of progressive increases in damage events and

very sharp drops, after which damaging stops momentarily (red arrow on Fig. 7a) .

Second, as identified on the same time series, some periods (e.g., the interval delimited by the710

dashed red box) are characterized by a continuous damage activity and by both low amplitude and

low frequency fluctuations of the stress. This contrasted behaviour translates into a significantly more

symmetric (skewness of -1.9) distribution of ∆σm
∆t . Inspection of the spatial distribution of damage

(Fig. 7b) and strain rate fields (not shown) over this time interval indicates that the same system of

interacting faults remains activated, with not much damaging activity over the rest of the domain and715

therefore suggests that creep-like deformation along this system dissipates all of the input loading.
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Following the approach taken for fracture-type models which record the number of broken fibres,

ruptured bounds, depinning events, etc., we investigate the time-dependence of the simulated damage

activity by analyzing time series of the discrete failure events. We estimate the power spectral density

(PSD) of damage rate time series. The resulting squared Fourier coefficients are averaged over 5720

realizations of the compression experiment initialized with different fields of C over domains with

N = 40. Fig. 8(a) represents the spectral density estimated by averaging the power over a 5 values

window centred on each frequency f . We checked that using a smaller averaging window does not

affect the shape of the PSD discussed below.

At low frequencies, the PSD is almost flat, suggesting that the number of damage events is un-725

correlated in time. As these frequencies are lower than 1
Th

, this is consistent with the fact that the

Maxwell-EB material entirely looses the memory of previous damage events when allowed to heal

completely. At higher frequencies, the PSD shows a decrease with increasing f reminiscent of a

temporal correlation of damaging events in the material. This expresses as a power law decay with

PSD(f) = 1/fγ . At intermediate frequencies, we estimate a slope γ = 2, suggesting that the instan-730

taneous damage rate is correlated in time but increments of the damage rate are uncorrelated. At the

highest frequencies, γ > 2, indicating that the damage rate is correlated in time and the of damage

rate are anti-correlated. The break in the slope occurs around f = 106, a frequency that we relate to

the minimum propagation time of a macro-rupture, i.e., the time of propagation of damage (i.e., of

an elastic shear wave with speed c) across the width L
2 of the domain (N time steps). The transi-735

tion between the flat and power law decaying parts of the PSD is marked by a clear peak spanning

the range of frequencies corresponding to the cycles of healing and damaging, the red dashed line

indicating the frequency of such a cycle, as identified by the double arrow on Fig. 7(a).

Finally, we analyze the dependance of the simulated deformation on the time scale of observation

using a temporal coarse-graining method (e.g., Rampal et al., 2008). Components of the strain rate at740

a given spatial scale are averaged over a time window of duration t to compute the mean total defor-

mation< ε̇tot >t. The window is centred on an arbitrary time t0 and has a size t= 2n×(N∆t) with

n= 1,2,3, ... and with the smallest averaging time scale corresponding to the time of propagation of

an elastic shear wave with speed c across the width L
2 of the domain. The chosen spatial averaging

scale is that of the highest deformation rate, which as shown in section 25 is of L
N . The domain745

is therefore divided in square boxes of equal size l = L
N and the calculated deformation invariants

are averaged over all available boxes. Figure 8(b) shows the total deformation rate < ε̇tot >t as a

function of the time of observation t (thick black line) averaged over 20 realizations of the coarse

graining calculation (thin, coloured lines) centred on different t0 for a simulation with N = 40.

Consistent with the localizing of the deformation and an intermittent process, < ε̇tot >t decreases750

with increasing t over almost two orders of magnitudes of t. The observed scaling is however al-

tered in two ways, which relate to the specific geometry, loading and boundary conditions used in

the present simulations. First, as one main fault always dominates the deformation in the system,
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curves of < ε̇tot >t are strongly modulated by a succession of peaks associated with the cycles of

stress build-up and macro-rupture, the amplitude of which decreases with the scale of observation755

t. Second, at large t, the scaling assymptotes to a value corresponding to the prescribed forcing.

Simulations over larger systems using non-homogeneous surface forcing should allow for multiple

macroscopic scale faults to be active simultaneously and hence to observe a clearer scaling of the

simulated deformation over larger time spans.

7 Conclusions760

In this paper we have presented a new mechanical framework suited for modelling the brittle be-

haviour of the sea ice cover (Weiss et al., 2007) while keeping a continuum description. A relaxation

term for the internal stress is added to the original Elasto-Brittle constitutive relationship and both

the linear and viscous components are coupled to a progressive damage mechanism to allow par-

titioning between the reversible and permanent deformations within the material based on its local765

level of damage.

Highly idealized simulations using forcing conditions homogeneous in both space and time show

the Maxwell-EB model simulates a complex temporal and spatial evolution of the deformation pat-

terns, in close agreement with observations of the Arctic sea ice cover. Anisotropy in the simulated

damage and deformation fields arises naturally from elastic interactions, although the material’s770

properties are fully isotropic at the element scale. The model also reproduces both the persistence of

creeping leads and the activation of new leads with different shapes and orientations, in agreement

with the observed deformation of sea ice (Coon et al., 2007). Analyses of the simulated damage and

deformation fields reveal

1. a highly heterogeneous deformation, translating into a power law decrease of the deformation775

rate with increasing spatial scale. The associated exponent varies periodically: it is highest in

the vicinity of macro-rupture events and decreases between events as the material partially

heals. The disappearance after a few "spinup" rupture events of a cross-over scale at which de-

formation rates become independent of the scale of observation suggests that the Maxwell-EB

model, including both damaging and healing processes, successfully reproduces a "marginally780

stable" state, as observed for Arctic sea ice.

2. an intermittent deformation, manifested by the highly asymmetric temporal evolution of the

internal stress within the material, which shows a succession of slow build-ups and very rapid

relaxation phases. This intermittency is supported by the existence of a temporal correlation

in the rate of damage at all timescales below the material’s characteristic healing time. A785

temporal scaling of the deformation rate is also obtained but due to the specific setup of the

simulations analyzed here, it is modulated by the cycles of stress build-up and relaxation and

its span is limited by the prescribed forcing.
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Considering the highly idealized setup of the simulations analyzed here, these temporal and spatial

scaling properties in the deformation fields cannot possibly be inherited from the prescribed forcing.790

Instead, their emergence is a signature of the mechanical behaviour of the Maxwell-EB model itself.

The next logical step in the development of a Maxwell-EB sea ice rheology consists in analyzing

the sensitivity of the simulated deformation and damage fields to the model parameters. In particular,

the partitioning between the simulated brittle and creep-like behaviour as well as the degree of lo-

calization of the deformation (Frederiksen and Braun, 2001) might depend on the rate of decrease of795

the viscous relaxation time with increasing level of damage (parameter α) and on the characteristic

time for healing and associated healing parameterization, all of which are poorly constrained in the

case of the ice pack.

Further validation of the Maxwell-EB framework and the determination of the range of model

parameters values suitable for sea ice call for a thorough comparison of the scaling properties of the800

simulated deformation rates with that estimated from the available ice buoy and RGPS data. Such

analysis necessitates carrying numerical experiments over periods of several days to months and

over realistic domains of regional to global scales. At these spatial and temporal scales, deforma-

tions within the sea ice cover become large. Hence advective processes cannot be neglected. As the

Maxwell-EB rheology effectively reproduces very strong spatial gradients within the velocity, strain805

and stress fields, its use in large-deformation experiments requires the implementation of a robust

advection scheme in order to limit diffusion and retain the strong localization of damage and defor-

mation rates. The development of a numerical scheme for the the Maxwell-EB model that includes

advection and is both efficient and practical in view of dynamic-thermodynamic and fully coupled

ocean-sea ice-atmosphere simulations is underway.810
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Figure 5. (a) Macroscopic stress versus macroscopic strain (solid lines) for four uniaxial compression simu-

lations with different spatial resolutions and damage rate (dashed grey line) for the simulation with N = 40.

All simulations are initialized with the same values of mechanical parameters and cohesion field C defined at

the lowest spatial resolution (N = 10). (b) Fields of the instantaneous damage (left panels) and of the order of

magnitude of the total deformation rate (log10(ε̇tot), right panels) at the four different times indicates on Fig.

(a) and for the four simulations (resolution increasing from top to bottom).
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Figure 6. (a) Macroscopic stress as a function of the macroscopic strain for one realization of the uniaxial

compression experiment with N = 100. (b) Total deformation rate as a function of the spatial scale l (l = L
2n

with 1 ≤ n≤N/2), normalized at the smallest scale L/N , at the five stages indicated on panel (a). (c) Zoom

into panel (b) for the second, third and fourth stages. (d) Corresponding fields of the order of magnitude of the

total deformation rate (log10(ε̇tot)) normalized by the maximum value of ε̇tot.
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Figure 7. (a) Macroscopic stress (black dashed-dotted line) and damage rate (solid grey line) as a function of

time for one realization of the uniaxial compression experiment with N = 40. The dashed red box indicates an

interval of uninterrupted damaging activity, during which deformation is accommodated by a persisting system

of interacting faults. (b) Instantaneous fields of level of damage at the five times indicated by blue dots on the

macroscopic stress curve, showing the formation of the system of faults (first panel), which remains active for

some time (three following panels), until the propagation of a new, non-interacting fault (last panel).
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Figure 8. (a) Average power spectral density of the damage rate time series for 5 realizations of the uniaxial

compression experiment initialized with different fields ofC and withN = 40. Blue dashed lines indicate, from

left to right, the frequency associated with the characteristic time for healing, the inverse time of propagation

of damage across the width of the domain and 1
2
× the frequency associated with the characteristic time for

damage. The red dashed line indicates the frequency of the healing and damaging cycle marked with an arrow

on Fig. 7(a). (b) Total deformation rate < ε̇tot >t as a function of the observation time t, for 20 realizations of

the coarse graining calculation centred on different arbitrary times t0 along a uniaxial compression experiment

with N = 40 (coloured lines) and average of the 20 realizations (thick black line).
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