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seg@liafa.univ-paris-diderot.fr

Irène GUESSARIAN 1 2

LIAFA, CNRS and Université Paris-Diderot, France
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Abstract

We introduce a basis of rational polynomial-like functions P0, . . . , Pn−1 for the free
module of functions Z/nZ → Z/mZ. We then characterize the subfamily of congru-
ence preserving functions as the set of linear combinations of the functions lcm(k)Pk

where lcm(k) is the least common multiple of 2, . . . , k (viewed in Z/mZ). As a con-
sequence, when n ≥ m, the number of such functions is independent of n.

1. Introduction

The notion of congruence preserving function on rings of residue classes was intro-

duced in Chen [3] and studied in Bhargava [1].

Definition 1.1. Let m,n ≥ 1. A function f : Z/nZ → Z/mZ is said to be

congruence preserving if for all d dividing m

∀a, b ∈ {0, . . . , n − 1} a ≡ b (mod d) =⇒ f(a) ≡ f(b) (mod d) (1)

Remark 1.2. 1. If n ∈ {1, 2} or m = 1 then every function Z/nZ → Z/mZ is

trivially congruence preserving.

1Partially supported by TARMAC ANR agreement 12 BS02 007 01.
2Emeritus at UPMC Université Paris 6. Corresponding author
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2. Observe that since d is assumed to dividem, equivalence modulo d is a congruence

on (Z/mZ,+,×). However, since d is not supposed to divide n, equivalence modulo

d may not be a congruence on (Z/nZ,+,×).

Example 1.3. 1. For functions Z/6Z → Z/3Z, condition (1) reduces to the condi-

tions f(3) ≡ f(0) (mod 3), f(4) ≡ f(1) (mod 3), f(5) ≡ f(2) (mod 3).

2. For functions Z/6Z → Z/8Z, condition (1) reduces to f(2) ≡ f(0) (mod 2),

f(3) ≡ f(1) (mod 2), f(4) ≡ f(0) (mod 4), f(5) ≡ f(1) (mod 4).

In this paper, we characterize congruence preserving functions Z/nZ → Z/mZ

using the following ingredients. We denote by Z the set of integers and by N that

of nonnegative integers (including zero).

Definition 1.4. The unary lcm function N → N maps 0 to 1 and k ≥ 1 to the least

common multiple of 1, 2, . . . , k.

A natural way to associate to each map from N to Z a map from Z/nZ to Z/mZ

is to restrict F to {0, · · · , n− 1} and take its values modulo m.

Definition 1.5. To each map F : N → Z we associate the map f : Z/nZ → Z/mZ

defined by f = πm ◦F ◦ ιn where πm(x) = x (mod m) and ιn(z) is the least element

of π−1
n (z) (belonging to {0, . . . , n− 1}). Thus diagram (2) commutes

N
F // Z

πm

��
Z/nZ

ιn

OO

f // Z/mZ

(2)

Applying Definition 1.5 to binomial coefficients
(

x
k

)

we get a basis of the Z/mZ-

module of functions Z/nZ → Z/mZ.

Proposition 1.6. Let Pk : Z/nZ → Z/mZ be associated to the N → N binomial

function x 7→

(

x

k

)

. For every function f : Z/nZ → Z/mZ there is a unique

sequence (a0, . . . , an−1) of elements of Z/mZ such that

f =

k=n−1
∑

k=0

ak Pk (3)

The family {P0, . . . , Pn−1} is thus a basis of the Z/mZ-module of functions Z/nZ →

Z/mZ.

Our main result (Theorem 1.7) can be stated as

Theorem 1.7. A function f : Z/nZ → Z/mZ is congruence preserving if and only

if, for each k = 0, . . . , n − 1, in equation (3) the coefficient ak is a multiple of the

residue of lcm(k) in Z/mZ.
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The paper is organized as follows.

Proposition 1.6 is proved in Section 2 where, after recalling Chen’s notion of

polynomial function Z/nZ → Z/mZ (cf. [3, 4]), we extend it to a notion of rational

polynomial function.

The proof of our main result Theorem 1.7 is given in Section 3. We adapt the

techniques of our paper [2], exploiting similarities between Definition 1.1 and the

condition studied in [2] for functions f : N → Z (namely, x−y divides f(x)−f(y) for

all x, y ∈ N). As a consequence of Theorem 1.7 the number of congruence preserving

functions is independent of n for n ≥ m and even for n ≥ gpp(m) (the greatest prime

power dividing m). Also, every congruence preserving function f : Z/nZ → Z/mZ

is rational polynomial for a polynomial of degree strictly less than the minimum

between n and gpp(m).

In Section 4 we use our main theorem to count the congruence preserving func-

tions Z/nZ → Z/mZ. We thus get an expression equivalent to that obtained by

Bhargava in [1] and which makes apparent the fact that, for n ≥ gpp(m) (hence for

n ≥ m), this number depends only on m and is independent of n.

2. Representing functions Z/nZ → Z/mZ by rational polynomials

In [3, 1], congruence preserving functions Z/nZ → Z/mZ are introduced and studied

together with an original notion of polynomial function Z/nZ → Z/mZ.

Definition 2.1 (Chen [3]). A function f : Z/nZ → Z/mZ is polynomial if it

is associated (in the sense of Definition 1.5) to a function F : N → Z given by a

polynomial in Z[X ].

Polynomial functions Z/nZ → Z/mZ are obviously congruence preserving. Are

all congruence preserving functions polynomial? Chen [3] observe that it is not

the case for some values of n,m, for instance n = 6, m = 8. He also proves

that a stronger identity holds for infinitely many pairs (n,m) : every function

Z/nZ → Z/mZ is polynomial if and only n is not greater than the first prime factor

of m. Using counting arguments, Bhargava [1] characterizes the pairs (n,m) such

that every congruence preserving function f : Z/nZ → Z/mZ is polynomial.

Some polynomials in Q[X ] (i.e. polynomials with rational coefficients) happen

to map integers into integers.

Definition 2.2. For k ∈ N, let Pk ∈ Q[X ] be the following polynomial:

Pk(x) =

(

x

k

)

=

∏k−1
i=0 (x− i)

k!
.

We will use the following examples later on:
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P0(x) = 1 , P1(x) = x , P2(x) = x(x − 1)/2 , P3(x) = x(x − 1)(x− 2)/6 ,

P4(x) = x(x − 1)(x− 2)(x− 3)/24 , P5(x) = x(x − 1)(x− 2)(x− 3)(x− 4)/120.

In [5] (1915), Pólya used the Pk to give the following very elegant and elementary

characterization of polynomials in Q[X ] mapping integers to integers.

Theorem 2.3 (Pólya). A polynomial in Q[X ] is integer-valued on Z if and only if

it can be written as a Z-linear combination of the polynomials Pk.

It turns out that the representation of functions N → Z as Z-linear combinations

of the Pk’s used in [2] also fits in the case of functions Z/nZ → Z/mZ : every such

function is a (Z/mZ)-linear combination of the Pk’s.

Definition 2.4. A function f : Z/nZ → Z/mZ is rat-polynomial if is associated

in the sense of Definition 1.5 with some polynomial in Q[X ]. The degree of f is the

smallest among the degrees of such polynomials.

We denote by Pn,m
k the rat-polynomial function Z/nZ → Z/mZ associated with

the polynomial Pk of Definition 2.2 in the sense of Definition 1.5. When there is

no ambiguity, Pn,m
k will be denoted simply as Pk.

Remark 2.5. In Definition 2.4, the polynomial crucially depends on the choice

of representatives of elements of Z/nZ: e.g. for n = m = 6, 0 ≡ 6 (mod 6) but

0 = P2(0) 6≡ P2(6) = 3 (mod 6). The chosen representatives for elements of Z/nZ

will always be {0, . . . , n− 1}.

We now prove the representation result by the Pk’s.

Proof of Proposition 1.6. Let us start with uniqueness. We have f(0) = a0 hence

the first coefficient a0 is f(0). We have f(1) = a0 + a1, hence a1 = f(1)− f(0). By

induction, and noting that Pk(k) = 1, we have f(k) = Q(k)+ak.Pk(k) = Q(k)+ak,

hence we are able determine ak.

For existence, argue backwards to see that this sequence suits.

Remark 2.6. The evaluation of ak Pk(x) in Z/mZ has to be done as follows: for

x an element of Z/nZ, we consider it as an element of {0, . . . , n − 1} ⊆ N and we

evaluate Pk(x) =
1

k!

∏k−1
i=0 (x−i) as an element of N, then we consider the remainder

modulo m, and finally we multiply the result by ak in Z/mZ. For instance, for

n = m = 8, 4P2(3) = 4×
3× 2

2
= 4× 3 = 4, but we might be tempted to evaluate

it as 4P2(3) =
4× 3× 2

2
=

0

2
= 0, which does not correspond to our definition.

However, dividing ak by a factor of the denominator is allowed.

Corollary 2.7. (1) Every function f : Z/nZ → Z/mZ is rat-polynomial with degree

less than n.

(2) The family of rat-polynomial functions (Pk)k=0,...,n−1 is a basis of the (Z/mZ)-

module of functions Z/nZ → Z/mZ.
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Example 2.8. The function f : Z/6Z → Z/6Z defined by

0 7→ 0 1 7→ 3 2 7→ 4 3 7→ 3 4 7→ 0 5 7→ 1

is represented by the rational polynomial Pf (x) = 3x+ 4x(x−1)
2 which can be sim-

plified into Pf (x) = 3x− x(x− 1) on Z/6Z.

Example 2.9. The function f : Z/6Z = Z/8Z given by Chen [3] as a non poly-

nomial congruence preserving function, namely the function defined by f(0) =

0 , f(1) = 3 , f(2) = 4 , f(3) = 1 , f(4) = 4 , f(5) = 7, is represented by the ra-

tional polynomial with coefficients a0 = 0 , a1 = 3 , a2 = 6 , a3 = 2 , a4 = 4 , a5 = 4,

i.e.

f(x) = 3x+ 6
x(x− 1)

2
+ 2

x(x− 1)(x− 2)

2
+ 4

x(x − 1)(x− 2)(x− 3)

8

+4
x(x− 1)(x− 2)(x− 3)(x− 4)

8

= 3x+ 3x(x− 1) + x(x− 1)(x− 2) +
x(x − 1)(x− 2)(x− 3)

2

+
x(x − 1)(x− 2)(x− 3)(x− 4)

2
.

3. Characterizing congruence preserving functions Z/nZ → Z/mZ

Congruence preserving functions f : Z/nZ → Z/mZ can be characterized by a sim-

ple condition on the coefficients of the rat-polynomial representation of f given in

Proposition 1.6.

3.1. Proof of Theorem 1.7

For proving Theorem 1.7 we will need some relations involving binomial coefficients

and the unary lcm function; these relations are stated in the next three lemmata.

The proofs are elementary but technical and can be found in our paper [2].

Lemma 3.1. If 0 ≤ n− k < p ≤ n < m then p divides lcm(k)

(

n

k

)

.

Lemma 3.2. If n, k, b ∈ {0, 1, . . . ,m − 1} and k ≤ b then n divides An
k,b =

lcm(k)

((

b+ n

k

)

−

(

b

k

))

.

The following is an immediate consequence of Lemma 3.2 (set a = b+ n).

Lemma 3.3. If m > a ≥ b then a− b divides lcm(k)

((

a

k

)

−

(

b

k

))

for all k ≤ b.
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Besides these lemmata, we shall use a classical result in Z/mZ. For x, y ∈ Z we

say x divides y in Z/mZ if and only if the residue class of x divides the residue class

of y in Z/mZ.

Lemma 3.4. Let a1, . . . , ak ≥ 1 and c be their least common multiple. If a1, . . . , ak
all divide x in Z/mZ then so does c.

Proof. It suffices to consider the case k = 2 since the passage to any k is done via

a straightforward induction. Let c = a1b1 = a2b2 with b1, b2 coprime. Let t, u be

such that x = a1t = a2u in Z/mZ . Then x ≡ a1t ≡ a2u (mod m). Using Bézout

identity, let α, β ∈ Z be such that αb1 + βb2 = 1. Then

c(tα+ uβ) = a1b1tα+ a2b2uβ
mod m
≡ xαb1 + xβb2 = x

hence c(tα+ uβ) = x, proving that c divides x in Z/mZ.

Proof of Theorem 1.7. “Only if” part. Assume f : Z/nZ → Z/mZ is congru-

ence preserving and consider its decomposition f(x) =
∑n−1

k=0 akP
n,m
k (x) given by

Proposition 1.6. We show that lcm(k) divides ak in Z/mZ for all k < n.

Claim 1. For all m > k ≥ 1, k divides ak.

Proof. By induction on k. Recall that f(k) = ai
∑n−1

i=0

(

k
i

)

= ai
∑k

i=0

(

k
i

)

by noting

that
(

k
i

)

= 0 for i > k.

Induction Basis: The case k = 1 is trivial. For k = 2, if 2 does not divide m then

2 is invertible in Z/mZ, hence 2 divides a2. Otherwise, observe that, as 2 divides

2 − 0, and f is congruence preserving, 2 divides f(2) − f(0) = 2a1 + a2 hence 2

divides a2.

Induction: assuming that ℓ divides aℓ for every ℓ ≤ k, we prove that k + 1 divides

ak+1. Assume first that k + 1 divides m, then

f(k + 1)− f(0) = (k + 1)a1 +

(

k
∑

i=2

(

k + 1

i

)

ai

)

+ ak+1

= (k + 1)a1 +

(

k
∑

i=2

(k + 1)
ai
i

(

k

i− 1

)

)

+ ak+1 . (4)

By the induction hypothesis,
ai
i

is an integer for i ≤ k. Since f is congruence

preserving, k + 1 divides f(k + 1)− f(0) hence k + 1 divides the last term ak+1 of

the sum.

Assume now that k + 1 does not divide m, then k + 1 = a × b with b dividing

m and a coprime with m. Hence a is invertible in Z/mZ and, by the congruence

preservation property of f , b divides f(k + 1)− f(0) ; as b divides k + 1, equation

(4) implies that b divides ak+1, and a× b also divides ak+1 (by invertibility of a and

Lemma 3.4).
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Claim 2. For all 1 ≤ p ≤ k, p divides ak. Thus, lcm(k) divides ak in Z/mZ.

Proof. The last assertion of Claim 2 is a direct application of Lemma 3.4 to the first

assertion which we now prove. The case p = 1 is trivial. We prove the case p ≥ 2

by induction on p.

• Basic case p = 2 : 2 divides ak for all k ≥ 2. If 2 does not divide m, then 2 is

invertible and divides all numbers in Z/mZ; assume that 2 divides m. We argue by

induction on k ≥ 2.

- Basis. Apply Claim 1: 2 divides a2.

- Induction. Assuming that 2 divides ai for all 2 ≤ i ≤ k we prove that 2 divides

ak+1. Two cases can occur.

Subcase 1: k+1 is odd. Then, k is even, 2 divides k and, by congruence preservation,

2 divides f(k + 1)− f(1). We have

f(k + 1)− f(1) = ka1 +
(

∑k

i=2 ai
(

k+1
i

)

)

+ ak+1,

2 divides the ai for 2 ≤ i ≤ k by the induction hypothesis, 2 also divides k, hence,

2 divides ak+1.

Subcase 2: k + 1 is even. Then 2 divides f(k + 1)− f(0). Now,

f(k + 1)− f(0) = (k + 1)a1 +
(

∑k

i=2 ai
(

k+1
i

)

)

+ ak+1,

k + 1 is even and 2 divides the ai for 2 ≤ i ≤ k by the induction hypothesis, thus,

2 divides ak+1.

• Induction step: p ≥ 2 and p+ 1 < n. Assume that

for all q ≤ p , q divides aℓ for all ℓ such that q ≤ ℓ < n (5)

and prove that p + 1 divides ak for all k such that p + 1 ≤ k < n. Again, we use

induction on k ≥ p+ 1 and we assume that k divides m in order to use congruence

preservation. When k does not divide m we factorize it as k = ab with b dividing m

and a coprime with m and a similar proof will show that b divides ak and k divides

ak (cf. the proof of Induction in Claim 1).

- Basis k = p+ 1. Follows from Claim 1: p+ 1 divides ap+1.

- Induction. Assuming that p + 1 divides ai for all i such that p + 1 ≤ i ≤ k, we

prove that p+ 1 divides ak+1. As p+1 divides k+ 1− (k − p) and f is congruence

preserving, p+ 1 divides f(k + 1)− f(k − p) which is given by

f(k + 1)− f(k − p) =

k−p
∑

i=1

ai

((

k + 1

i

)

−

(

k − p

i

))

+





k
∑

i=k+1−p

ai

(

k + 1

i

)



 + ak+1 . (6)

First look at the terms of the first sum corresponding to 1 ≤ i ≤ p. The induction
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hypothesis (5) on p implies that q divides ak for all q ≤ p and k ≥ q. In particular,

letting k = i and using Lemma 3.4, we see that lcm(i) divides ai in Z/mZ. As

(k+1)−(k−p) = p+1, by Lemma 3.2 we have: p+1 divides lcm(i)
(

(

k+1
i

)

−
(

k−p
i

)

)

.

A fortiori, p+ 1 divides ai

(

(

k+1
i

)

−
(

k−p
i

)

)

.

We now turn to the terms of the first sum corresponding to p + 1 ≤ i ≤ k − p (if

there are any). Again by the induction hypothesis (on k), p + 1 divides ai for all

p+ 1 ≤ i ≤ k. Thus, each term of the first sum is divisible by p+ 1.

Consider now the terms of the second sum. By the induction hypothesis (on k),

p + 1 divides ai for all p + 1 ≤ i ≤ k. It remains to look at the terms associated

with the i’s such that k+1−p ≤ i ≤ p (there are such i’s in case k+1−p < p+1).

For such i’s we have 0 ≤ (k + 1) − i ≤ (k + 1) − p < p + 1 ≤ k + 1 and Lemma

3.1 (used with k + 1, i and p + 1 in place of n, k and p) insures that p + 1 divides

lcm(i)
(

k+1
i

)

. Now, for such i’s, the induction hypothesis (5) on p shows that lcm(i)

divides ai. Thus, p+ 1 divides each ai
(

k+1
i

)

.

As p + 1 divides the k first terms of the right-hand side of (6) and also divides

the left-hand side, it must divide the last term ak+1 of the right-hand side. This

ends the proof of the induction in the inductive step hence also the proof of Claim

2, and of the “only if” part of the Theorem.

“If” part of Theorem 1.7. Assuming all the ak’s in equation (3) are divisible

by lcm(k) in Z/mZ we prove that f is congruence preserving, i.e. that, for all

a, b ∈ {0, . . . , n− 1}, if a− b divides n then a− b divides f(a)− f(b) in Z/mZ.

If all the ak’s in equation (3) are divisible by lcm(k) then f can be written in

the form f(n) =
∑n

k=0 bklcm(k)

(

n

k

)

. Consequently,

f(a)− f(b) =

(

b
∑

k=0

bklcm(k)
(

(

a

k

)

−

(

b

k

)

)

)

+

a
∑

k=b+1

bklcm(k)

(

a

k

)

.

By Lemma 3.3, a− b divides each term of the first sum.

Consider the terms of the second sum. For b + 1 ≤ k ≤ a, we have 0 ≤ a− k <

a− b ≤ a and Lemma 3.1 (used with a, k and a− b in place of n, k and p) insures

that a − b divides lcm(k)

(

a

k

)

. Hence, a − b divides each term of the second sum.

3.2. On a family of generators

We now sharpen the degree of the rat-polynomial representing a congruence pre-

serving function Z/nZ → Z/mZ. We need first some properties of the lcm function

and a definition.
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Lemma 3.5. In Z/mZ we have lcm(k) = u×
∏

p
αk

i

i with u invertible in Z/mZ, pi
prime and dividing m, and αk

i = max{βi|p
βi

i ≤ k} .

Definition 3.6. For m ≥ 1, with prime factorization m = pα1

1 · · · pαℓ

ℓ , let gpp(m) =

maxi=1,...,ℓ pαi

i be the greatest power of prime dividing m.

Example 3.7. In Z/mZ the element lcm(k) is zero for k large enough.

In Z/8Z
k 1 2 3 4 5 6 7 8

lcm(k) 1 2 2 4 4 4 4 0
gpp(8) = 8

In Z/12Z
k 1 2 3 4 5 6 7 8 9 10 11

lcm(k) 1 2 6 0 0 0 0 0 0 0 0
gpp(12) = 4

Lemma 3.8. The number gpp(m) is the least integer k such that lcm(k) is zero in

Z/mZ. Moreover for all ℓ ≥ gpp(m), lcm(ℓ) is zero in Z/mZ.

Remark 3.9. (1) Either gpp(m) = m or gpp(m) ≤ m/2 .

(2) In general, gpp(m) is greater than λ(m), the least k such that m divides k!

considered in [3]: for m = 8, gpp(m) = 8 whilst λ(m) = 4.

Using Lemma 3.8, we can get a better version of Theorem 1.7.

Theorem 3.10. A function f : Z/nZ → Z/mZ is congruence preserving if and

only if it is associated in the sense of Definition 1.5 with a rational polynomial

P =
∑d−1

k=0 ak
(

x
k

)

where d = min(n, gpp(m)) and such that lcm(k) divides ak in

Z/mZ for all k < d.

Proof. For k ≥ gpp(m), m divides lcm(k) hence the coefficient ak is 0.

Theorem 3.11. (1) Every congruence preserving function f : Z/nZ → Z/mZ is

rat-polynomial with degree less than gpp(m).

(2) The family of rat-polynomial functions

F = {lcm(k)(Pn,m
k )|0 ≤ k < min(n, gpp(m))}

generates the set of congruence preserving functions.

(3) F is a basis of the set of congruence preserving functions if and only if m has

no prime divisor p < min(n,m) (in case n ≥ m this means that m is prime) .

Proof. (1) and (2) are restatements of Theorem 3.10 . We prove (3).

“Only If” part. Asssuming m has a prime divisor p < min(n,m), let p be the least

one. Then F is not linearly independent. In Z/mZ, lcm(p) 6= 0 hence lcm(p)Pn,m
p

is not the null function since Pn,m
p (p) = 1. However (m/p) lcm(p) = 0 hence

(m/p) lcm(p)Pn,m
p is the null function. As (m/p) 6= 0, we see that F cannot be a

basis.

“If” part. Assume that m has no prime divisor p < min(n,m) . We prove that F
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is Z/mZ-linearly independent. Suppose that the Z/mZ-linear combination L =
∑min(n,gpp(m))−1

k=0 ak lcm(k)Pn,m
k is the null function Z/nZ → Z/mZ . By induction

on k = 0, . . . ,min(n, gpp(m))− 1 we prove that ak = 0 .

• Basic cases k = 0, 1. Since L(0) = a0 we get a0 = 0 . Since L(1) = a0 + a1 1 we

get a1 = 0 .

• Induction step. Assuming that k ≥ 2 and ai = 0 for i = 0, . . . , k−1, we prove that

ak = 0 . Note that Pn,m
ℓ (k) =

(

k
ℓ

)

for k < ℓ < n. Since ai = 0 for i = 0, . . . , k − 1,

and Pn,m
k (k) = 1 we get L(k) = ak lcm(k ) . Since k < min(n, gpp(m)) and m has no

prime divisor p < min(n,m), the numbers lcm(k) and m are coprime hence lcm(k)

is invertible in Z/mZ and equality L(k) = aklcm(k) = 0 implies ak = 0 .

4. Counting congruence preserving functions

We are now interested in the number of congruence preserving functions Z/nZ →

Z/mZ. As two different rational polynomials correspond to different functions by

Proposition 1.6 (uniqueness of the representation by a rational polynomial), the

number of congruence preserving functions Z/nZ → Z/mZ is equal to the number

of polynomials representing them.

Proposition 4.1. Let CP (n,m) be the number of congruence preserving functions

Z/nZ → Z/mZ . For m = pe11 pe22 · · · peℓℓ , we have

CP (n,m) = p
p1+p2

1+···+p
e1
1

1 × · · · × p
pℓ+p2

ℓ+···+p
eℓ
ℓ

ℓ if n ≥ gpp(m), and

CP (n,m) =
∏

{i|p
ei
i

<gpp(m)}

p
pi+p2

i+···+p
ei
i

i ×
∏

{i|p
ei
i

≥gpp(m)}

p
pi+p2

i+···+p
⌊logp n⌋

i
+n(e−⌊logp n⌋)

i

if n < gpp(m) .

Equivalently, using an à la Vinogradov’s notation for better readability and writing

E(p, α) in place of pα we have

CP (n,m) =

ℓ
∏

i=1

E(pi,

ei
∑

k=1

pki ) if n ≥ gpp(m), and

CP (n,m) =
∏

{i|p
ei
i

<gpp(m)}

E(pi,

ei
∑

k=1

pki )×
∏

{i|p
ei
i

≥gpp(m)}

E(pi,

⌊logp n⌋
∑

k=1

pki + n(e− ⌊logp n⌋))

if n < gpp(m) .

Corollary 4.2. For n ≥ gpp(m), CP (n,m) does not depend on n.

Proof of Proposition 4.1. By Theorem 3.10, we must count the number of n-tuples

of coefficients (a0, . . . , an−1), with ak a multiple of lcm(k) in Z/mZ.
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Claim 1. For m = pe11 pe22 · · · peℓℓ , for all n, CP (n,m) = Πi=ℓ
i=1 CP (n, peii ) .

Proof. Let λ(m, k) be the number of multiples of lcm(k) in Z/mZ, i.e. order of the

subgroup generated by lcm(k) in Z/mZ .

Since Z/mZ is isomorphic to Πi=ℓ
i=1Z/p

ei
i Z, we have λ(m, k) = Πi=ℓ

i=1λ(p
ei
i , k) for

each k. Thus, the number of n-tuples (a0, . . . , an−1) such that lcm(k) divides ak is

equal to

Πk<nλ(m, k) = Πk<n Πi=ℓ
i=1λ(p

ei
i , k) = Πi=ℓ

i=1 Πk<nλ(p
ei
i , k) .

The trick in the proof is the permutation of the two products; hence the Claim by

using Theorem 1.7.

Claim 1 reduces the problem to counting the congruence preserving functions

Z/nZ → Z/peii Z. We will now use Proposition 3.10 for this counting.

Claim 2.

CP (n, pe) =

{

pp+p2+···+pe

if n ≥ pe

pp+p2+···+pl+(e−l)n if pl ≤ n < pewith l = ⌊logp n⌋.

Proof. By Theorem 3.10, as gpp(pe) = pe, letting ν = inf(n, pe), CP (n, pe) =

CP (ν, pe) = Πk<νλ(p
e, k). For pj ≤ k < pj+1 the order λ(pe, k) of the subgroup

generated by lcm(k) in Z/peZ is pe−j and there are pj+1 − pj such k’s.

• Assume first n ≥ pe, then CP (n, pe) = CP (pe, pe) = pM with

M = ep+ (e− 1)(p2 − p) + · · ·+ (e− j)(pj+1 − pj) + · · ·+ pe − pe−1

= ep+

e−1
∑

j=1

(e− j)(pj+1 − pj) = p+ p2 + · · ·+ pe .

• Assume then pl ≤ n < pe, with l = ⌊logp n⌋; then CP (n, pe) = pM with

M = ep+

l−1
∑

j=1

(e − j)(pj+1 − pj) + (e− l)(n− pl)

= p+ p2 + · · ·+ pl + n(e− l) .

This finishes the proof of Proposition 4.1.

Remark 4.3. In [1] the number of congruence preserving functions Z/nZ → Z/peZ

is shown to be equal to pen−
∑n−1

k=1
min{e,⌊logp k⌋}. For pi ≤ k < pi+1, ⌊logp k⌋ = i,

hence: for k ≤ pe, min{e, ⌊logp k⌋} = ⌊logp k⌋ and for k ≥ pe, min{e, ⌊logp k⌋} = e.
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We thus have

• if n ≥ pe,

∑n−1
k=1 min{e, ⌊logp k⌋} =

∑pe−1
k=1 ⌊logp k⌋+

∑n−1
k=pe e

=
∑e−1

j=0 j(p
j+1 − pj) + e(n− pe)

= −(p+ · · ·+ pe) + epe + e(n− pe)

hence en−
∑n−1

k=1 min{e, ⌊logp k⌋} = p+ · · ·+ pe

and pen−
∑n−1

k=1
min{e,⌊logp k⌋ = pp+p2+···+pe

which coincides with our counting in Claim 2.

• if n < pe, and l = ⌊logp n⌋, then similarly

∑n−1
k=1⌊logp k⌋ =

∑l−1
k=1⌊logp k⌋+

∑n−1
k=l ⌊logp k⌋

=
∑l−1

j=0 j(p
j+1 − pj) + l(n− pl) = −(p+ · · ·+ pl) + nl

and en −
∑n−1

k=1⌊logp k⌋ = p + · · · + pl + (e − l)n, which again coincides with our

counting in Claim 2.

5. Conclusion

We proved that the rational polynomials lcm(k)Pn,m
k generate the (Z/mZ)-submodule

of congruence preserving functions Z/nZ → Z/mZ. When n is larger than the

greatest prime power dividing m, the number of functions in this submodule is

independent of n. An open problem is the existence of a basis of this submodule.
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