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CHARACTERIZING CONGRUENCE PRESERVING FUNCTIONS Z/nZ → Z/mZ VIA RATIONAL POLYNOMIALS

We introduce a basis of rational polynomial-like functions P 0 , . . . , P n-1 for the free module of functions Z/nZ → Z/mZ. We then characterize the subfamily of congruence preserving functions as the set of linear combinations of the functions lcm(k) P k where lcm(k) is the least common multiple of 2, . . . , k (viewed in Z/mZ). As a consequence, when n ≥ m, the number of such functions is independent of n.

Introduction

The notion of congruence preserving function on rings of residue classes was introduced in Chen [START_REF] Chen | On polynomial functions from Z n to Z m[END_REF] and studied in Bhargava [START_REF] Bhargava | Congruence preservation and polynomial functions from Z n to Z m[END_REF]. 

Remark 1.2. 1. If n ∈ {1, 2} or m = 1 then every function Z/nZ → Z/mZ is trivially congruence preserving.

1 Partially supported by TARMAC ANR agreement 12 BS02 007 01. 2 Emeritus at UPMC Université Paris 6. Corresponding author 2. Observe that since d is assumed to divide m, equivalence modulo d is a congruence on (Z/mZ, +, ×). However, since d is not supposed to divide n, equivalence modulo d may not be a congruence on (Z/nZ, +, ×).

Example 1.3. 1. For functions Z/6Z → Z/3Z, condition (1) reduces to the conditions f (3) ≡ f (0) (mod 3), f (4) ≡ f (1) (mod 3), f (5) ≡ f (2) (mod 3). 2. For functions Z/6Z → Z/8Z, condition (1) reduces to f (2) ≡ f (0) (mod 2), f (3) ≡ f (1) (mod 2), f (4) ≡ f (0) (mod 4), f (5) ≡ f (1) (mod 4).

In this paper, we characterize congruence preserving functions Z/nZ → Z/mZ using the following ingredients. We denote by Z the set of integers and by N that of nonnegative integers (including zero).

Definition 1.4. The unary lcm function N → N maps 0 to 1 and k ≥ 1 to the least common multiple of 1, 2, . . . , k.

A natural way to associate to each map from N to Z a map from Z/nZ to Z/mZ is to restrict F to {0, • • • , n -1} and take its values modulo m. Definition 1.5. To each map F : N → Z we associate the map f : Z/nZ → Z/mZ defined by f = π m • F • ι n where π m (x) = x (mod m) and ι n (z) is the least element of π -1 n (z) (belonging to {0, . . . , n -1}). Thus diagram (2) commutes

N F / / Z π m Z/nZ ι n O O f / / Z/mZ (2) 
Applying Definition 1.5 to binomial coefficients x k we get a basis of the Z/mZmodule of functions Z/nZ → Z/mZ. Proposition 1.6. Let P k : Z/nZ → Z/mZ be associated to the N → N binomial function x → x k . For every function f : Z/nZ → Z/mZ there is a unique sequence (a 0 , . . . , a n-1 ) of elements of Z/mZ such that

f = k=n-1 k=0 a k P k (3) 
The family {P 0 , . . . , P n-1 } is thus a basis of the Z/mZ-module of functions Z/nZ → Z/mZ.

Our main result (Theorem 1.7) can be stated as

Theorem 1.7. A function f : Z/nZ → Z/mZ is congruence preserving if and only if, for each k = 0, . . . , n -1, in equation (3) the coefficient a k is a multiple of the residue of lcm(k) in Z/mZ.
The paper is organized as follows. Proposition 1.6 is proved in Section 2 where, after recalling Chen's notion of polynomial function Z/nZ → Z/mZ (cf. [START_REF] Chen | On polynomial functions from Z n to Z m[END_REF][START_REF] Chen | On polynomial functions from Z n1 × Z n2 × • • •× Z nr to Z m[END_REF]), we extend it to a notion of rational polynomial function.

The proof of our main result Theorem 1.7 is given in Section 3. We adapt the techniques of our paper [START_REF] Cégielski | Newton expansion of functions over natural integers having integral difference ratios[END_REF], exploiting similarities between Definition 1.1 and the condition studied in [START_REF] Cégielski | Newton expansion of functions over natural integers having integral difference ratios[END_REF] for functions f : N → Z (namely, x-y divides f (x)-f (y) for all x, y ∈ N). As a consequence of Theorem 1.7 the number of congruence preserving functions is independent of n for n ≥ m and even for n ≥ gpp(m) (the greatest prime power dividing m). Also, every congruence preserving function f : Z/nZ → Z/mZ is rational polynomial for a polynomial of degree strictly less than the minimum between n and gpp(m).

In Section 4 we use our main theorem to count the congruence preserving functions Z/nZ → Z/mZ. We thus get an expression equivalent to that obtained by Bhargava in [START_REF] Bhargava | Congruence preservation and polynomial functions from Z n to Z m[END_REF] and which makes apparent the fact that, for n ≥ gpp(m) (hence for n ≥ m), this number depends only on m and is independent of n.

Representing functions Z/nZ → Z/mZ by rational polynomials

In [START_REF] Chen | On polynomial functions from Z n to Z m[END_REF][START_REF] Bhargava | Congruence preservation and polynomial functions from Z n to Z m[END_REF], congruence preserving functions Z/nZ → Z/mZ are introduced and studied together with an original notion of polynomial function Z/nZ → Z/mZ. Definition 2.1 (Chen [START_REF] Chen | On polynomial functions from Z n to Z m[END_REF]). A function f : Z/nZ → Z/mZ is polynomial if it is associated (in the sense of Definition 1.5) to a function F : N → Z given by a polynomial in Z[X].

Polynomial functions Z/nZ → Z/mZ are obviously congruence preserving. Are all congruence preserving functions polynomial? Chen [START_REF] Chen | On polynomial functions from Z n to Z m[END_REF] observe that it is not the case for some values of n, m, for instance n = 6, m = 8. He also proves that a stronger identity holds for infinitely many pairs (n, m) : every function Z/nZ → Z/mZ is polynomial if and only n is not greater than the first prime factor of m. Using counting arguments, Bhargava [START_REF] Bhargava | Congruence preservation and polynomial functions from Z n to Z m[END_REF] characterizes the pairs (n, m) such that every congruence preserving function f : Z/nZ → Z/mZ is polynomial. Some polynomials in Q[X] (i.e. polynomials with rational coefficients) happen to map integers into integers. Definition 2.2. For k ∈ N, let P k ∈ Q[X] be the following polynomial:

P k (x) = x k = k-1 i=0 (x -i) k! .
We will use the following examples later on:

P 0 (x) = 1 , P 1 (x) = x , P 2 (x) = x(x -1)/2 , P 3 (x) = x(x -1)(x -2)/6 , P 4 (x) = x(x -1)(x -2)(x -3)/24 , P 5 (x) = x(x -1)(x -2)(x -3)(x -4)/120.
In [START_REF] Pólya | Über ganzwertige ganze Funktionen[END_REF] (1915), Pólya used the P k to give the following very elegant and elementary characterization of polynomials in Q[X] mapping integers to integers.

Theorem 2.3 (Pólya). A polynomial in Q[X] is integer-valued on Z if and only if it can be written as a Z-linear combination of the polynomials P k .

It turns out that the representation of functions N → Z as Z-linear combinations of the P k 's used in [START_REF] Cégielski | Newton expansion of functions over natural integers having integral difference ratios[END_REF] also fits in the case of functions Z/nZ → Z/mZ : every such function is a (Z/mZ)-linear combination of the P k 's.

Definition 2.4. A function f : Z/nZ → Z/mZ is rat-polynomial if is associated in the sense of Definition 1.5 with some polynomial in Q[X].
The degree of f is the smallest among the degrees of such polynomials. We denote by P n,m k the rat-polynomial function Z/nZ → Z/mZ associated with the polynomial P k of Definition 2.2 in the sense of Definition 1.5. When there is no ambiguity, P n,m k will be denoted simply as P k .

Remark 2.5. In Definition 2.4, the polynomial crucially depends on the choice of representatives of elements of Z/nZ: e.g. for n = m = 6, 0 ≡ 6 (mod 6) but 0 = P 2 (0) ≡ P 2 (6) = 3 (mod 6). The chosen representatives for elements of Z/nZ will always be {0, . . . , n -1}.

We now prove the representation result by the P k 's. Proof of Proposition 1.6. Let us start with uniqueness. We have f (0) = a 0 hence the first coefficient a 0 is f (0). We have f (1) = a 0 + a 1 , hence a 1 = f (1) -f (0). By induction, and noting that

P k (k) = 1, we have f (k) = Q(k) + a k .P k (k) = Q(k) + a k , hence we are able determine a k .
For existence, argue backwards to see that this sequence suits.

Remark 2.6. The evaluation of a k P k (x) in Z/mZ has to be done as follows: for x an element of Z/nZ, we consider it as an element of {0, . . . , n -1} ⊆ N and we

evaluate P k (x) = 1 k! k-1 i=0 (x-i
) as an element of N, then we consider the remainder modulo m, and finally we multiply the result by a k in Z/mZ. For instance, for

n = m = 8, 4 P 2 (3) = 4 × 3 × 2 2 = 4 × 3 = 4
, but we might be tempted to evaluate it as 4

P 2 (3) = 4 × 3 × 2 2 = 0 2
= 0, which does not correspond to our definition. However, dividing a k by a factor of the denominator is allowed.

Corollary 2.7. (1) Every function f : Z/nZ → Z/mZ is rat-polynomial with degree less than n.

(2) The family of rat-polynomial functions (P k ) k=0,...,n-1 is a basis of the (Z/mZ)module of functions Z/nZ → Z/mZ. which can be simplified into P f (x) = 3x -x(x -1) on Z/6Z.

Example 2.9. The function f : Z/6Z = Z/8Z given by Chen [START_REF] Chen | On polynomial functions from Z n to Z m[END_REF] as a non polynomial congruence preserving function, namely the function defined by

f (0) = 0 , f (1) = 3 , f (2) = 4 , f (3) = 1 , f (4) = 4 , f (5) = 7, is represented by the ra- tional polynomial with coefficients a 0 = 0 , a 1 = 3 , a 2 = 6 , a 3 = 2 , a 4 = 4 , a 5 = 4, i.e. f (x) = 3x + 6 x(x -1) 2 + 2 x(x -1)(x -2) 2 + 4 x(x -1)(x -2)(x -3) 8 +4 x(x -1)(x -2)(x -3)(x -4) 8 = 3x + 3x(x -1) + x(x -1)(x -2) + x(x -1)(x -2)(x -3) 2 + x(x -1)(x -2)(x -3)(x -4) 2 .

Characterizing congruence preserving functions Z/nZ → Z/mZ

Congruence preserving functions f : Z/nZ → Z/mZ can be characterized by a simple condition on the coefficients of the rat-polynomial representation of f given in Proposition 1.6.

Proof of Theorem 1.7

For proving Theorem 1.7 we will need some relations involving binomial coefficients and the unary lcm function; these relations are stated in the next three lemmata. The proofs are elementary but technical and can be found in our paper [START_REF] Cégielski | Newton expansion of functions over natural integers having integral difference ratios[END_REF].

Lemma 3.1. If 0 ≤ n -k < p ≤ n < m then p divides lcm(k) n k . Lemma 3.2. If n, k, b ∈ {0, 1, . . . , m -1} and k ≤ b then n divides A n k,b = lcm(k) b + n k - b k .
The following is an immediate consequence of Lemma 3.2 (set a = b + n).

Lemma 3.3. If m > a ≥ b then a -b divides lcm(k) a k - b k for all k ≤ b.
Besides these lemmata, we shall use a classical result in Z/mZ. For x, y ∈ Z we say x divides y in Z/mZ if and only if the residue class of x divides the residue class of y in Z/mZ. Lemma 3.4. Let a 1 , . . . , a k ≥ 1 and c be their least common multiple. If a 1 , . . . , a k all divide x in Z/mZ then so does c.

Proof. It suffices to consider the case k = 2 since the passage to any k is done via

a straightforward induction. Let c = a 1 b 1 = a 2 b 2 with b 1 , b 2 coprime. Let t, u be such that x = a 1 t = a 2 u in Z/mZ . Then x ≡ a 1 t ≡ a 2 u (mod m). Using Bézout identity, let α, β ∈ Z be such that αb 1 + βb 2 = 1. Then c(tα + uβ) = a 1 b 1 tα + a 2 b 2 uβ mod m ≡ xαb 1 + xβb 2 = x hence c(tα + uβ) = x, proving that c divides x in Z/mZ.
Proof of Theorem 1.7. "Only if" part. Assume f : Z/nZ → Z/mZ is congruence preserving and consider its decomposition

f (x) = n-1 k=0 a k P n,m k (x)
given by Proposition 1.6. We show that lcm(k) divides a k in Z/mZ for all k < n.

Claim 1. For all m > k ≥ 1, k divides a k . Proof. By induction on k. Recall that f (k) = a i n-1 i=0 k i = a i k i=0 k i by noting that k i = 0 for i > k. Induction Basis: The case k = 1 is trivial. For k = 2, if 2 does not divide m then 2 is invertible in Z/mZ, hence 2 divides a 2 .
Otherwise, observe that, as 2 divides 2 -0, and f is congruence preserving, 2 divides f (2) -f (0) = 2a 1 + a 2 hence 2 divides a 2 . Induction: assuming that ℓ divides a ℓ for every ℓ ≤ k, we prove that k + 1 divides a k+1 . Assume first that k + 1 divides m, then

f (k + 1) -f (0) = (k + 1)a 1 + k i=2 k + 1 i a i + a k+1 = (k + 1)a 1 + k i=2 (k + 1) a i i k i -1 + a k+1 . (4) 
By the induction hypothesis, Claim 2. For all 1 ≤ p ≤ k, p divides a k . Thus, lcm(k) divides a k in Z/mZ.

a i i is an integer for i ≤ k. Since f is congruence preserving, k + 1 divides f (k + 1) -f ( 
Proof. The last assertion of Claim 2 is a direct application of Lemma 3.4 to the first assertion which we now prove. The case p = 1 is trivial. We prove the case p ≥ 2 by induction on p.

• Basic case p = 2 : 2 divides a k for all k ≥ 2. If 2 does not divide m, then 2 is invertible and divides all numbers in Z/mZ; assume that 2 divides m. We argue by induction on k ≥ 2.

-Basis. Apply Claim 1: 2 divides a 2 .

-Induction. Assuming that 2 divides a i for all 2 ≤ i ≤ k we prove that 2 divides a k+1 . Two cases can occur. Subcase 1: k+1 is odd. Then, k is even, 2 divides k and, by congruence preservation, 2 divides f (k + 1) -f (1). We have

f (k + 1) -f (1) = ka 1 + k i=2 a i k+1 i
+ a k+1 , 2 divides the a i for 2 ≤ i ≤ k by the induction hypothesis, 2 also divides k, hence, 2 divides a k+1 . Subcase 2: k + 1 is even. Then 2 divides f (k + 1) -f (0). Now,

f (k + 1) -f (0) = (k + 1)a 1 + k i=2 a i k+1 i
+ a k+1 , k + 1 is even and 2 divides the a i for 2 ≤ i ≤ k by the induction hypothesis, thus, 2 divides a k+1 . • Induction step: p ≥ 2 and p + 1 < n. Assume that for all q ≤ p , q divides a ℓ for all ℓ such that q ≤ ℓ < n [START_REF] Pólya | Über ganzwertige ganze Funktionen[END_REF] and prove that p + 1 divides a k for all k such that p + 1 ≤ k < n. Again, we use induction on k ≥ p + 1 and we assume that k divides m in order to use congruence preservation. When k does not divide m we factorize it as k = ab with b dividing m and a coprime with m and a similar proof will show that b divides a k and k divides a k (cf. the proof of Induction in Claim 1).

-Basis k = p + 1. Follows from Claim 1: p + 1 divides a p+1 .

-Induction. Assuming that p + 1 divides a i for all i such that p + 1 ≤ i ≤ k, we prove that p + 1 divides a k+1 . As p + 1 divides k + 1 -(k -p) and f is congruence preserving, p + 1 divides f (k + 1) -f (k -p) which is given by

f (k + 1) -f (k -p) = k-p i=1 a i k + 1 i - k -p i +   k i=k+1-p a i k + 1 i   + a k+1 . ( 6 
)
First look at the terms of the first sum corresponding to 1 ≤ i ≤ p. The induction hypothesis (5) on p implies that q divides a k for all q ≤ p and k ≥ q. In particular, letting k = i and using Lemma 3.4, we see that lcm(i) divides a i in Z/mZ. As (k+1)-(k-p) = p+1, by Lemma 3.2 we have:

p+1 divides lcm(i) k+1 i -k-p i . A fortiori, p + 1 divides a i k+1 i -k-p i .
We now turn to the terms of the first sum corresponding to p + 1 ≤ i ≤ k -p (if there are any). Again by the induction hypothesis (on k), p + 1 divides a i for all p + 1 ≤ i ≤ k. Thus, each term of the first sum is divisible by p + 1.

Consider now the terms of the second sum. By the induction hypothesis (on k), p + 1 divides a i for all p + 1 ≤ i ≤ k. It remains to look at the terms associated with the i's such that k + 1 -p ≤ i ≤ p (there are such i's in case k + 1 -p < p + 1).

For such i's we have 0 ≤ (k + 1) -i ≤ (k + 1) -p < p + 1 ≤ k + 1 and Lemma 3.1 (used with k + 1, i and p + 1 in place of n, k and p) insures that p + 1 divides lcm(i) k+1 i . Now, for such i's, the induction hypothesis (5) on p shows that lcm(i) divides a i . Thus, p + 1 divides each a i k+1 i . As p + 1 divides the k first terms of the right-hand side of (6) and also divides the left-hand side, it must divide the last term a k+1 of the right-hand side. This ends the proof of the induction in the inductive step hence also the proof of Claim 2, and of the "only if" part of the Theorem.

"If" part of Theorem 1.7. Assuming all the a k 's in equation ( 3) are divisible by lcm(k) in Z/mZ we prove that f is congruence preserving, i.e. that, for all

a, b ∈ {0, . . . , n -1}, if a -b divides n then a -b divides f (a) -f (b) in Z/mZ.
If all the a k 's in equation ( 3) are divisible by lcm(k) then f can be written in 

the form f (n) = n k=0 b k lcm(k) n k . Consequently, f (a) -f (b) = b k=0 b k lcm(k) a k - b k + a k=b+1 b k lcm(k) a k .

By

On a family of generators

We now sharpen the degree of the rat-polynomial representing a congruence preserving function Z/nZ → Z/mZ. We need first some properties of the lcm function and a definition.

is Z/mZ-linearly independent. Suppose that the Z/mZ-linear combination L = min(n,gpp(m))-1 k=0

a k lcm(k) P n,m k is the null function Z/nZ → Z/mZ . By induction on k = 0, . . . , min(n, gpp(m)) -1 we prove that a k = 0 .

• Basic cases k = 0, 1. Since L(0) = a 0 we get a 0 = 0 . Since L(1) = a 0 + a 1 1 we get a 1 = 0 . • Induction step. Assuming that k ≥ 2 and a i = 0 for i = 0, . . . , k -1, we prove that a k = 0 . Note that P n,m ℓ (k) = k ℓ for k < ℓ < n. Since a i = 0 for i = 0, . . . , k -1, and P n,m k (k) = 1 we get L(k) = a k lcm(k ) . Since k < min(n, gpp(m)) and m has no prime divisor p < min(n, m), the numbers lcm(k) and m are coprime hence lcm(k) is invertible in Z/mZ and equality L(k) = a k lcm(k) = 0 implies a k = 0 .

Counting congruence preserving functions

We are now interested in the number of congruence preserving functions Z/nZ → Z/mZ. As two different rational polynomials correspond to different functions by Proposition 1.6 (uniqueness of the representation by a rational polynomial), the number of congruence preserving functions Z/nZ → Z/mZ is equal to the number of polynomials representing them. Equivalently, using an à la Vinogradov's notation for better readability and writing E(p, α) in place of p α we have Proof. Let λ(m, k) be the number of multiples of lcm(k) in Z/mZ, i.e. order of the subgroup generated by lcm(k) in Z/mZ . Since Z/mZ is isomorphic to Π i=ℓ i=1 Z/p ei i Z, we have λ(m, k) = Π i=ℓ i=1 λ(p ei i , k) for each k. Thus, the number of n-tuples (a 0 , . . . , a n-1 ) such that lcm(k) divides a k is equal to

CP (n, m) = ℓ i=1 E(p i , ei k=1 p k i ) if n ≥ gpp(m), and 
CP (n, m) = {i|p e i i <gpp(m)} E(p i , ei k=1 p k i ) × {i|p e i i ≥gpp(m)} E(p i , ⌊log p n⌋ k=1 p k i + n(e -⌊log p n⌋)) if n < gpp(m) .
Π k<n λ(m, k) = Π k<n Π i=ℓ i=1 λ(p ei i , k) = Π i=ℓ i=1 Π k<n λ(p ei i , k) .
The trick in the proof is the permutation of the two products; hence the Claim by using Theorem 1.7.

Claim 1 reduces the problem to counting the congruence preserving functions Z/nZ → Z/p ei i Z. We will now use Proposition 3.10 for this counting. Claim 2.

CP (n, p

e ) = p p+p 2 +•••+p e if n ≥ p e p p+p 2 +•••+p l +(e-l)n if p l ≤ n < p e with l = ⌊log p n⌋.
Proof. By Theorem 3.10, as gpp(p e ) = p e , letting ν = inf(n, p e ), CP (n, p e ) = CP (ν, p e ) = Π k<ν λ(p e , k). For p j ≤ k < p j+1 the order λ(p e , k) of the subgroup generated by lcm(k) in Z/p e Z is p e-j and there are p j+1 -p j such k's. This finishes the proof of Proposition 4.1.

Remark 4.3. In [START_REF] Bhargava | Congruence preservation and polynomial functions from Z n to Z m[END_REF] the number of congruence preserving functions Z/nZ → Z/p e Z is shown to be equal to p en-n-1 k=1 min{e,⌊log p k⌋} . For p i ≤ k < p i+1 , ⌊log p k⌋ = i, hence: for k ≤ p e , min{e, ⌊log p k⌋} = ⌊log p k⌋ and for k ≥ p e , min{e, ⌊log p k⌋} = e. 

Conclusion

We proved that the rational polynomials lcm(k) P n,m k generate the (Z/mZ)-submodule of congruence preserving functions Z/nZ → Z/mZ. When n is larger than the greatest prime power dividing m, the number of functions in this submodule is independent of n. An open problem is the existence of a basis of this submodule.
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 11 Let m, n ≥ 1. A function f : Z/nZ → Z/mZ is said to be congruence preserving if for all d dividing m ∀a, b ∈ {0, . . . , n -1} a ≡ b (mod d) =⇒ f (a) ≡ f (b) (mod d)

Example 2 . 8 .

 28 The function f : Z/6Z → Z/6Z defined by 0 → 0 1 → 3 2 → 4 3 → 3 4 → 0 5 → 1 is represented by the rational polynomial P f (x) = 3x + 4 x(x-1) 2

  0) hence k + 1 divides the last term a k+1 of the sum. Assume now that k + 1 does not divide m, then k + 1 = a × b with b dividing m and a coprime with m. Hence a is invertible in Z/mZ and, by the congruence preservation property of f , b divides f (k + 1) -f (0) ; as b divides k + 1, equation (4) implies that b divides a k+1 , and a × b also divides a k+1 (by invertibility of a and Lemma 3.4).

  Lemma 3.3, a -b divides each term of the first sum. Consider the terms of the second sum. For b + 1 ≤ k ≤ a, we have 0 ≤ a -k < a -b ≤ a and Lemma 3.1 (used with a, k and a -b in place of n, k and p) insures that a -b divides lcm(k) a k . Hence, a -b divides each term of the second sum.
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 41 Let CP (n, m) be the number of congruence preserving functionsZ/nZ → Z/mZ . For m = p e1 1 p e2 2 • • • p e ℓ ℓ , we have CP (n, m) = p ⌊log p n⌋) iif n < gpp(m) .

Corollary 4 . 2 .Claim 1 .

 421 For n ≥ gpp(m), CP (n, m) does not depend on n.Proof of Proposition 4.1. By Theorem 3.10, we must count the number of n-tuples of coefficients (a 0 , . . . , a n-1 ), with a k a multiple of lcm(k) in Z/mZ. For m = p e1 1 p e2 2 • • • p e ℓ ℓ , for all n, CP (n, m) = Π i=ℓ i=1 CP (n, p ei i ) .

•

  Assume first n ≥ p e , then CP (n, p e ) = CP (p e , p e ) = p M with M = ep + (e -1)(p 2 -p) + • • • + (e -j)(p j+1 -p j ) + • • • + p e -p e-1 = ep + e-1 j=1 (e -j)(p j+1 -p j ) = p + p 2 + • • • + p e . • Assume then p l ≤ n < p e , with l = ⌊log p n⌋; then CP (n, p e ) = p M with M = ep + l-1 j=1 (e -j)(p j+1 -p j ) + (e -l)(n -p l ) = p + p 2 + • • • + p l + n(e -l) .

  We thus have• if n ≥ p e ,n-1 k=1 min{e, ⌊log p k⌋} = p e -1 k=1 ⌊log p k⌋ + n-1 k=p e e = e-1 j=0 j(p j+1 -p j ) + e(n -p e ) = -(p + • • • + p e ) + ep e + e(n -p e ) hence en -n-1 k=1 min{e, ⌊log p k⌋} = p + • • • + p e and p en-n-1 k=1 min{e,⌊log p k⌋ = p p+p 2 +•••+p e which coincides with our counting in Claim 2.• if n < p e , and l = ⌊log p n⌋, then similarlyn-1 k=1 ⌊log p k⌋ = l-1 k=1 ⌊log p k⌋ + n-1 k=l ⌊log p k⌋ = l-1 j=0 j(p j+1 -p j ) + l(n -p l ) = -(p + • • • + p l ) + nl and en -n-1 k=1 ⌊log p k⌋ = p + • • • + p l + (e -l)n, which again coincides with our counting in Claim 2.
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(2) The family of rat-polynomial functions

generates the set of congruence preserving functions.

(3) F is a basis of the set of congruence preserving functions if and only if m has no prime divisor p < min(n, m) (in case n ≥ m this means that m is prime) .

Proof. (1) and ( 2) are restatements of Theorem 3.10 . We prove [START_REF] Chen | On polynomial functions from Z n to Z m[END_REF]. "Only If" part. Asssuming m has a prime divisor p < min(n, m), let p be the least one. Then F is not linearly independent. In Z/mZ, lcm(p) = 0 hence lcm(p) P n,m p is not the null function since P n,m p (p) = 1. However (m/p) lcm(p) = 0 hence (m/p) lcm(p) P n,m p is the null function. As (m/p) = 0, we see that F cannot be a basis.

"If" part. Assume that m has no prime divisor p < min(n, m) . We prove that F