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Scheduling of blocking and no wait job shop problems in robotic cells

This paper focuses on the study of job-shop problems with transportation, blocking and no-wait (BNWT JSSP). This problem is an extension of the job shop problem. We take into account transport operations of jobs between different machines using a limited number of robots. We also have blocking and no wait constraints. It means that after a completion of an operation, a job waits on its machine, thus blocking it, until the next machine and a robot are available. In the other hand, the job starts its processing on the machine immediately and without any interruption after the robot has accomplished the transportation operation, thus no wait constraints. The aim of our problem is to find a feasible order of machine operations and transport operations. Additionally to the problem description, we will present a method based on graph theory which illustrates blocking situations. As the main contribution, we will formalize this problem with an integer linear programming models and propose an heuristic based on priority rules.

I. INTRODUCTION

The JSSPs are well-known combinatorial optimization problems, which consist of a finite number of jobs and machines. Each job consists of a set of operations that has to be processed in a given order, on a set of known machines, and where each operation has a known processing time. No machine can process more than one operation at the same time. The objectives usually considered in JSSPs are the minimization of makespan.

Considerable research has been devoted to this problem in the literature. An overview of history and main techniques used along with their reported results on the available benchmarking problems for JSP can be found in [START_REF] Jain | Deterministic job-shop scheduling: Past present and future[END_REF].

Several problems in practice cannot be modeled as (classical) Job Shop, due to additional features like storage space and transportation constraints. The classical model supposes that storage space has an infinite capacity and transport operations from one machine to another take almost no time. In many practical cases, the number of buffers is limited and transports need to be considered for various reasons. Buffers may be expensive or inadequate for technological or process reasons. Transports may take a considerable amount of time, or only a limited number of mobile devices are available to execute transports operations.

The jobs shop problems with transportation, blocking and no wait constraints are met for example in factories with robotic cells. A robotic cell is a flow-shop or job-shop scheduling problem in which the jobs must be transported from machine to machine. Transports are performed by one or more robots. We have to assign the transport operations to the robots and to schedule both the machine and robot operations. Usually there is no buffer or buffers with only limited capacity to store the jobs outside the machines or the robots. This means that our scheduling must deal with blocking and no wait constraints.

Job shop models with blocking constraints (BJS) have been discussed by several authors. [START_REF] Hall | A survey of machine scheduling problems with blocking and no-wait in process[END_REF] give a survey on machine scheduling problems with blocking and no-wait constraints. [START_REF] Candar | Machine scheduling problems with blocking and no-wait in process[END_REF] describes several applications of machine scheduling with blocking and no-wait in process and reviews the computational complexity of a variety of related problems. [START_REF] Mascis | Machine scheduling via alternative graphs[END_REF] and [START_REF] Mascis | Job-shop scheduling with blocking and nowait constraints[END_REF] study several types of job shop problems including the ideal (classical) job shop, the Blocking Job Shop (with and without "swaps") and the no-wait job shop, and formulate these problems by means of alternative graphs; [START_REF] Mati | Geometric approach and taboo search for scheduling flexible manufacturing systems[END_REF] investigate scheduling of flexible manufacturing systems, study a multiresource job shop problem with blocking constraints. [START_REF] Brizuela | No-wait and blocking job-shops: Challenging problems for GA's[END_REF] develop a genetic algorithm for solving no-wait and Blocking Job Shop problems. [START_REF] Klinkert | Optimization in design and control of automated highdensity warehouses[END_REF] and [START_REF] Groflin | Local search in job shop scheduling with synchronization and blocking constraints[END_REF] introduce a generalized disjunctive graph framework for modeling various types of scheduling problems and develop a local search approach for the generalized Blocking Job Shop problem with application in automated warehouses. [START_REF] Brucker | Cyclic job shop scheduling problems with blocking[END_REF] propose a tabu search algorithm to solve the BJS problem for cyclical scheduling. [START_REF] Aitzai | A branch and bound and parallel genetic algorithm for the job shop scheduling problem with blocking[END_REF] proposes a combination of a branch and bound algorithm with alternative graphs and develops two methods based on genetic algorithms to solve the BJS problem.

Most of the above authors emphasize that scheduling problems with blocking constraints (BJS) appear more difficult to solve than the classical job shop (JS). To illustrate the differences, two structural properties of the BJS shall be mentioned here, both being related to feasibility issues. First, in contrast to JS, a feasible partial schedule cannot always be extended to a feasible complete schedule. In fact, [START_REF] Mascis | Machine scheduling via alternative graphs[END_REF] and [START_REF] Mascis | Job-shop scheduling with blocking and nowait constraints[END_REF] established that deciding whether this is possible is NP complete (this was also shown independently by [START_REF] Klinkert | Optimization in design and control of automated highdensity warehouses[END_REF]). As a consequence, any heuristic that incrementally builds up a solution (e.g. based on priority rules) risks the chance of running into infeasibility. Second, it is not straightforward to construct feasible neighbor solutions in a local search approach as moves based on simple swaps of adjacent operations typically yield infeasible schedules (while in the JS case, it is well known that swapping critical adjacent operations leads to feasible neighbors).

Applications related to the BJS problem have been reported in the processing and logistics industries, such as scheduling for the manufacturing of concrete blocks by [START_REF] Grabowski | Sequencing of jobs in some production system[END_REF] , steelmaking by [START_REF] Pacciarelli | Production scheduling in a steelmakingcontinuous casting plant[END_REF] , chemical batch production by [START_REF] Romero | Scheduling intermediate storage multipurpose batch plants using the S-graph[END_REF] , container handling at a port by [START_REF] Chen | A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal[END_REF] and railway networks by [START_REF] Dariano | A branch and bound algorithm for scheduling trains in a railway network[END_REF].

Several researchers have devoted to study job shop scheduling problems with transportation constraints in various systems. However, the progress is limited as this kind of problem is difficult to solve even for simplified and small size cases.

[17] integrated transport constraints in the scheduling problem with one robot. [START_REF] Blazewicz | Scheduling tasks and vehicles in a flexible manufacturing system[END_REF] proposed a dynamic programming approach to construct optimal machine and vehicle schedules. [START_REF] Bilge | A time window approach to simultaneous scheduling of machines and material handling system in an FMS[END_REF] developed a mixed integer programming (MIP) formulation raising this constraint on the vehicles. [START_REF] Ulusoy | A genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles[END_REF] and [START_REF] Alvarenga | A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows[END_REF] elaborated a genetic algorithm. [START_REF] Soylu | A self-organizing neural network approach for the single AGV routing problem[END_REF] and [START_REF] Hurink | A tabu search algorithm for scheduling a single robot in a job shop environment[END_REF] proposed, respectively, neural networks and tabu search approaches. [START_REF] Abdelmaguid | A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles[END_REF] described a hybrid method composed of a genetic algorithm for the scheduling of machines and a heuristic for the scheduling of vehicles. [START_REF] Lacomme | A disjunctive graph for the job shop with several robots[END_REF] and [START_REF] Deroussi | A simple metaheuristic approach to the simultaneous scheduling of machines and automated guided vehicles[END_REF] considered a job shop problem with several robots, with fixed operation times and fixed assignment of machine for each job's operation. [START_REF] Gong | Two-machine flow shop scheduling with intermediate transportation under job physical space consideration[END_REF] studied a two machine flow shop scheduling problem with intermediate transportation with a single transporter. [START_REF] Mateo | Resolution of graphs with bounded cycle time for the cyclic hoist scheduling problem[END_REF] considered a cyclic hoist scheduling problem with a single hoist, but without assignment problem. [START_REF] Caumond | An MILP for scheduling problems in an FMS with one vehicle[END_REF] used a mixed integer linear program (MILP) to find optimal solutions for the FMS Scheduling Problem with one vehicle. [START_REF] Crama | Cyclic scheduling of identical parts in a robotic cell[END_REF] proposed a polynomial algorithm for finding the optimal cycle in a robotic cell with production of identical parts. [START_REF] Brauner | Scheduling of coupled tasks and one machine no wait robotic cells[END_REF] studied coupled task problem and one-machine robotic cell problems. It reported new algorithmic procedure for this problem with or without tolerances on the distance. [START_REF] Corra | Scheduling and routing of automated guided vehicles: a hybrid approach[END_REF] applied a decomposition method where the master problem (scheduling) is modeled with constraint programming and the subproblem (conflict free routing) with mixed integer programming.

To the best of our Knowledge there is no research that addressed the problem of job shop scheduling that take into account transfer time between machine performed by a limited number of robot and the non existence of buffers between machines that lead to blocking and no wait constraints.

Two common approaches to tackle the scheduling problems are the utilization of mathematical programming and heuristic approaches [START_REF] Stafford | Comparative evaluation of MILP flow shop models[END_REF]. By Mathematical programming methods we formulates the scheduling problems as a mixed integer linear programming (MILP) problem and then tries to solve the formulated problem by a general purpose mixed integer linear programming solver. This methods are usually suitable for small instances. However and due to the great advance recently obtained in capacity of computers and creation of fast optimization software, presentation of MILP models is becoming more and more interesting among the researchers.

In this paper, we propose two methods to address the BNWT JSSP. We develop first an integer Linear programming model based on the model of [START_REF] Manne | On the job shop scheduling problem[END_REF] and secondly we construct an heuristic based on priority rules.

This paper is structured as follows. In the next section, we will present definitions and notations associated to our model. After that, in Section 3, we develop our integer programming formulation for the BNWT JSSP. In Section 4, we illustrate the theoretical tools and properties needed for developing our Heuristic. After that, we present the algorithm of our proposed heuristic. Finally, Section 5 gives some interesting conclusions and future studies.

II. PROBLEM DEFINITION

We consider a job shop problem with several transport robots and no buffers. In this problem, a set of n jobs {J 1 , J 2 , ..., J n } are processed on a set of m machines {M 1 , M 2 , ..., M m } and transported by a set of k robots {r 1 , r 2 , ..., r k }. Transportation times are robotindependent. Every job J i require an operation order, J i = {O i1 O i2 , .., O ini }, that must be executed according to its manufacture process. Operation O ij of the job J i requires the exclusive use of M l (l ∈ {1, 2, ..., m}) for an uninterrupted duration p ij , its processing time; the preemption is not allowed; each machine can process only one job at a time; the machine which execute the operation O ij is denoted as M ij .

In addition, we consider transportation operations between two machines. Consider two successive operations of the same job O ij and O ij+1 to execute in two machines M ij and M ij+1 . T ij and t ij are respectively used to denote transport operation and transfer time of job J i from machine M ij to machine M ij+1 . Each robot can handle at most one job at one time. Loaded transfer times does not depend on the job transported, but only on the travel routes and the robot which perform the transportation operation. This times are given by C r p,l where r represents the robot and (p, l) represents the route between machine M p and M l . It is assumed that the triangle inequality is satisfied:

∀p, l ∈ {1, 2, ..., m} machine indexes.

∀r ∈ {r 1 , r 2 , ..., r k } C r p,h + C r h,l ≥ C r p,l (1) 
(1) means that the direct way between two machines is at least as short as the detour through a third machine. Otherwise, the robot always takes the shorter way through the third machine. Note that a sequence of loaded transport operations indirectly induces necessary empty moves. Empty transfer time from machine M p to M l is denoted V r p,l . It is assumed that:

∀r, r ∈ {r 1 , r 2 , ..., r k } ∀p, l ∈ {1, 2, ..., m} machine indexes    V r p,p = 0 V r p,h + V r h,l ≥ V r p,l V r p,l ≤ C r p,l (2) 
The first assumption means that no empty transfer time is considered if a robot waits at the same machine the next transportation operation. The second one is the triangular inequality for empty moves. The third one means that empty transfers between two machines by a robot r take less time than loaded transfers between this two machines by another robot r . (It is also valid if r = r ). In the other hand, we consider the blocking constraint because there is no machine buffer. This means that after finishing its processing on the machine, a job has to stay there until it is unloaded by the robot. During this stay, the machine is blocked and not available for processing any other job. We also consider the no wait constraint that means if the robot transporting the job J i reaches machine M ij , the operation O ij must start immediately without any interruption.

The scheduling problem objectives are: -To determine the starting time for each machine operation O ij -To assign a handling robot to each transport operation T ij and to determine its starting time -To minimize the Makespan denoted C max = max(Ci) where Ci denotes the completion time of the last operation of job J i . All data are assumed to be non-negative integers.

III. INTEGER PROGRAMMING MODEL

This section presents the ILP models to formulate BNWT JSSP. Our following is based on the model of [START_REF] Manne | On the job shop scheduling problem[END_REF]. We used their ideas to model the Blocking Job shop with no wait and transportation constraints.

To model the blocking job shop with no wait and transportation constraints, the following notations are used.

List of parameters : -p ij : the processing time of operation O ij -C r pl : on load transfer time of robot r between machine p and machine l -V r p,l : empty transfer time of robot r between machine p and machine l -H a large number List of variables: - α ij;lq : Binary variable that takes value 1 if O ij is processed before O lq and 0 otherwise. -β ij;rs : Binary variable that takes value 1 if T ij require processing on robot r s , and 0 otherwise. -δ ij;lq : Binary variable that takes value 1 if T ij is processed before T lq , and 0 otherwise. -λ ij;lq : Binary variable that takes value 1 if T ij and T lq are processed by the same robot, and 0 otherwise.

The problem is formulated as follows :

Minimize Cmax Subject to:

-Finish time of machine operations:

F or i ∈ [1, n]; j ∈ [1, m] f ij ≥ d ij + p ij (3) 
-Precedence Constraints between transport operations and machine operations:

F or i ∈ [1, n]; j ∈ [1, m -1] f ij = d ij+1 d ij+1 = d ij + k s=1 β ij,rs C rs Mij Mij+1 (4) 
-Precedence constraints between machine operations and transport operations:

F or i ∈ [1, n]; j ∈ [1, m -1] d ij = f ij (5) 
-Disjunctive constraints between machine operations:

F or i, l ∈ [1, n]; j, q ∈ [1, m] /M ij = M lq    d ij ≥ f lq -H * α ij;lq d lq ≥ f ij -H * (1 -α ij;lq ) α ij;lq + α lq;ij = 1 (6) 
-Robot assignment constraints:

F or i ∈ [1, n]; j ∈ [1, m -1], s ∈ [1, k] k s=1 β ij,rs = 1 (7) 
-Disjunctive constraints between robot:

For i, l ∈ [1, n]; j, q ∈ [1, m -1]; s ∈ [1, k] (3 
) Ensures that each operation is processed at least for its process duration (4) ensures that each machine operation starts immediately after the finish of the transport operation that precede it. (5) As there is no buffer in machines, transport operation starts immediately when the job leaves a machine . [START_REF] Mati | Geometric approach and taboo search for scheduling flexible manufacturing systems[END_REF] ensures that each machine process one operation at a time. [START_REF] Brizuela | No-wait and blocking job-shops: Challenging problems for GA's[END_REF] ensures that each transport operation is performed by only one Robot. [START_REF] Klinkert | Optimization in design and control of automated highdensity warehouses[END_REF] ensures that each robot process one operation at a time. no two transport operations are performed by the same robot at any time

IV. HEURISTIC A. Blocking Situation

In this section, we will look for situations that could lead to blocking states in order to avoid them during the construction of our algorithm. For this purpose, we will identify blocking situations by using a graph G s = (M, J) that we will call the graph of last scheduled operations. This graph is defined below: Consider the graph of last scheduled operations G s = (M, J). A set of vertices M represents machines; A set of arcs J represents the last scheduled operations O ij of job J i . The starting point of the last scheduled operation O ij of job J i is the machine M ij and its end point is the machine M ij+1 . Consider for example a problem with 5 machines {M 1 , M 2 , ..., M 5 } and 4 jobs {J 1 , J 2 , J 3 , J 4 }. The last scheduled operations are:

J 1 : M 1 --> M 2 ; J 2 : M 2 --> M 3 ; J 3 : M 3 --> M 1 , J 4 : M 4 --> M 5 .
The associated graph G s is modeled as follows: Following the topology of G s = (M, J), the graph contains a cycle of length p = 3 (p equals the number of jobs that forms the cycle. Under this cycle, the necessary condition of blocking (C1) is satisfied because job J 1 that is processed on the machine M 1 cannot pass to machine M 2 occupied by the job J 2 , as well as for job J 2 that is processed on machine M 2 cannot pass to machine M 3 occupied by job J 3 as well as for job J 3 that is processed on machine M 3 cannot pass to machine M 1 occupied by the job J 1 .

Blocking condition (C1) can be formulated as follows: "Systems may confront a blocking situation if the graph of the last scheduled operations G s = (M, J) contains a cycle of length p ≥ 2." Thereafter, we will check if the condition (C1) is a sufficient condition to blocking situation in BNWT JSSP.

1st Case : p = 2 Consider the graph G s with a cycle of length p = 2. When the processing of job J 1 on machine M 1 has finished, job J 1 remains blocked on machine M 1 until its transportation operation T 1 from M 1 to M 2 start. We assume that a robot r 1 is available and will be assigned to transportation operation T 1 . This operation can start and liberate the machine M 1 . No wait condition imply that the processing of job J 1 on machine M 2 must start immediately after the termination of transport operation T 1 otherwise J 1 cannot be transported by r 1 and then machine M 1 remains blocked. M 2 is blocked by J 2 and must be liberated before the termination of transport operation T 1 . Therefore, we must have a second robot to execute transport operation T 2 of J 2 before that J 1 arrives at M 2 . We assume that a robot r 1 is available. Robot r 1 will be assigned to operation T i . Before that operation T i has finished, operation T i+1 must start. For this reason, we have a second robot r 2 which will be assigned to operation T i+1 .

Assumption 1: Assume that operation T i+1 starts at the time that T i finishes: d i+1 = f i . At the time f i , r 1 arrives in front of machine M i+1 and unload job J 1 . Then it can drive empty to machine

     d ij ≥ d lq + k s=1 β lq,rs (C rs M lq M lq+1 + V rs M lq+1 ;Mij ) + (λ ij;lq -1)H -δ ij;lq H d lq ≥ d ij + k s=1 β ij,rs (C rs Mij Mij+1 + V rs Mij+1;M lq ) + (λ ij;lq -1)H + (δ ij;lq -1)H δ ij;lq + δ lq;ij = 1 (8) M i+2 . r 1 reaches M i+2 at a time equal to f i + V r1
Mi+1Mi+2 . The robot r 2 which is performing transport operation T i+1 reaches machine M i+2 at a time equal to d i+1 + C r2 Mi+1Mi+2 . According to (2) and (Assumption 1) we have:

f i + V r1 Mi+1Mi+2 ≥ d i+1 + C r2 Mi+1Mi+2
. This means that the robot r 1 reaches machine M i+2 and liberate this machine before that the robot r 2 which is executing T i+1 reaches this machine and so on until the blocking cycle is totally liberated. Proposition 2: If the graph of last scheduled operations G s contains a cycle of length p ≥ 3, the system is eternally blocked if it has a single handling robot (k = 1) and partially blocked if k ≥ 2.

B. The proposed Heuristic

In this subsection we propose a heuristic dedicated to the BNWT JSSP. During construction of the algorithm, we complete iteratively a partial schedule S. U denotes the set of non-scheduled operations. At each iteration of the heuristic, two operations are selected, namely a machine operation and a transportation operation. When a machine operation is chosen on the basis of selection rules, the transportation operation which precedes this machine operation is automatically selected and a robot is assigned according to another priority rules. The Iteration starts with the construction of the set E of eligible machine operations. An operation is eligible for partial schedule S if it is a non scheduled operation that can start without violating any constraints.

-Rule 1: Eligible operations S(M p ) that need to be processed on machine M p cannot be scheduled as long as machine M p is occupied by another job. These operations will be eliminated from the set E. -Rule 2 : Eligible operations that could lead to eternal blocking situations or even a cycle in the graph G s (M, J) with p ≥ 3 will also be eliminated from the set E.

After the determination of eligible operations, it remains to appoint the machine operation to be scheduled. For this purpose, we associate each operation O ij ⊂ E to a pair (M p , g) where M p = M ij and g is the total time of operations S(M p ) ⊂ U , g can be seen as the weight of M p on the set of non scheduled operations U .

Selection rules of machine operations: Machine operation to be scheduled is the one associated to a pair (M p , g) with the largest g (g = gmax)

-Rule 3: If we have on the set E two or more operations with the same pair (M p , gmax), we choose the operation that has the longest queue. -Rule 4: If we have on the set E two operations with the same gmax but with different machines, we schedule that terminate first. Selection rules of robots: -Rule 5: To select the robot that will perform the transportation operation, we opted to choose the robot which provides the minimal completion time of the transportation operation, which involves exploring all robots for each assignment. -Rule 6: In the case of a cycle of length p = 2, we choose the robot that has the earliest availability time. This time correspond to the empty robot arrival time at the departure machine for the loaded move.

V. CONCLUSION

In this work, we described the job shop with transportation and subject to no wait and blocking constraints. We extended an existing model from the literature and showed how an integer programming formulation can be applied to solve the problem. We illustrated the blocking situations that the system could confront and finally proposed an algorithm for the construction of a heuristic. Experimental results for the proposed algorithm are not yet provided. On future researches, we will focus on a hybrid methods based on this article proposed heuristic. Experimental results will be established to show the efficiency of our developed methods.
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