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We consider an electron constrained to move on a surface with revolution symme-
try in the presence of a constant magnetic fieldB parallel to the surface axis.
Depending onB and the surface geometry the transverse part of the spectrum
typically exhibits many crossings which change to avoided crossings if a weak
symmetry breaking interaction is introduced. We study the effect of such perturba-
tions on the quantum propagation. This problem admits a natural reformulation to
which tools from molecular dynamics can be applied. In turn, this leads to the study
of a perturbation theory for the time dependent Born–Oppenheimer approximation.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1396834#

I. INTRODUCTION

Recent advances in experimental physics have made it possible to produce two-dime
conducting surfaces of mesoscopic size. In such devices, the mean free path often exce
system size so the electron motion is ballistic and quantum coherence effects play a cruci
This gives a motivation to strive for a complete understanding of the quantum mechan
corresponding processes. In particular, conducting carbon ‘‘nanotubes’’ which are more o
uniform cylinders, belong to the family of surfaces that are nowadays experimentally w
reach.1 Since their discovery, lots of studies have been devoted to the elucidation of the sp
and transport properties of such devices, in a variety of situations and approximations, se
Refs. 2, 3, 4, and references therein. Nanotubes of different types can be combined, a
coupled to other carbon structures such as fullerene molecules,5 producing a variety of cylindrical
surfaces.

In this paper we study quantum propagation in an ‘‘imperfect nanotube’’ subject to a con
magnetic field parallel to the tube axis within a simple model. Our model assumes that a
electron is confined to a surface of revolution with slow variation of the radius along the re
tion axis. Moreover, we assume that the rotational symmetry is weakly violated, either b
impurity or by an external field. In other words, the used idealization amounts to neglectin
atomic structure of the tube as well as the interaction between the electrons, but takin
account the gross shape of the device. Our aim is to study the propagation of the electron
such an imperfect nanotube in a homogenous magnetic field by means of the time-dep
Schrödinger equation, starting with an initially localized wave packet, and paying a partic
attention to the transitions between angular levels caused by the symmetry breaking pertur

To understand the peculiarities of this quantum mechanical problem, it is useful to re
briefly its classical counterpart; this is done in Sec. II. The first question in the quantum case
meaning of the fact that the electron is confined to a surface. The most natural approach,
opinion, is to consider the surface as a limiting situation of a thin hard-wall layer. This idea

a!Electronic mail: exner@ujf.cas.cz
b!Electronic mail: alain.joye@ujf-grenoble.fr
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back to Refs. 6–8 and requires a renormalization in which the transverse contribution
energy—blowing-up in the limit—is removed. One gets in this way an additional curva
dependent term, in general attractive, to the potential. For the sake of completeness rec
there has been other recent works treating particle motion on revolution surfaces, see Refs
11, and references therein. The last two papers aim at solvable models of compact s
~neglecting the curvature-dependent term!, while Ref. 9 treats the Schro¨dinger and wave equation
on noncompact cylindrical surfaces without a magnetic field from the PDE point of view.

Having thus found the Hamiltonian of our quantum system, we can analyze its sp
properties. When the rotational symmetry is preserved, we can perform~using a suitable gauge!
the partial-wave decomposition. We can compute the angular part of the spectrum which d
on the actual cylinder radius varying along the tube axis. This brings to mind analogy wit
molecular dynamics in which each angular state corresponds to an ‘‘electronic’’ level an
longitudinal coordinate measured along the axis corresponds to the one-dimensional ‘‘nu
configuration coordinate. Furthermore, when the rotational symmetry is broken by a perturb
the above analogy remains valid and we may invoke the time-dependent Born–Oppen
approximation to describe the propagation along coupled angular levels according to Refs.
Recall that the theory in molecular systems involves a small parameter which is given by the
ratio between ‘‘electrons’’ and ‘‘nuclei.’’ In our mesoscopic system, it is replaced by the param
e defined as the inverse of the length scale over which the variation of the radius of the nan
takes place. Note, however, that we cannot directly apply the theory of Refs. 12–14 i
perturbative context and a modification is needed as we shall explain in Sec. IV.

The result of the analysis presented below gives a complete and rigorous description
leading order of the wave function when the dynamics makes the electron go through a
where a perturbation couples angular levels. The basic picture is as follows. As long a
perturbed angular levels along the trajectory remain well isolated, the components of the
function referring to the corresponding eigenstates are unchanged, to leading order. Wh
unperturbed angular levels display a crossing or an avoided crossing, transitions betwe
perturbed angular eigenstates may become non-negligible as in the mentioned molecular a
according to the well known mechanism of Landau–Zener transitions, see Ref. 13. At a he
level, when the electron meets an avoided crossing, we may replace the quantum mec
degree of freedomx by a classical trajectory of the typex°x01tv, wherev is a velocity which
can be considered as constant. This approximation leads to an effective time-dependent tw
system governing the transitions between the considered levels. The choice of a suitable tim
making the classical kinetic energymv2/2 constant and nonzero as the inverse length scae
→0 corresponds to the adiabatic limite→0 in the above mentioned effective two-level Ham
tonian. Therefore, the transition probabilityP is then given by the Landau–Zener formulaP
.e2cd2/e, whered is the minimum gap and the constantc is explicit.

We are going to consider precisely the situation where the transition amplitudes are of
one, under perturbations of orderAe. In such cases, an initial wave function having a nonz
component in a single angular eigenspace before the~avoided! crossing splits in a nontrivial way
between the corresponding angular eigenstates according to the Landau–Zener formula, a
leading order.

Let us note here that since the considered perturbations can arise from deformations
external fields, both allowed to vary over a wide range of values, situations where the typica
of the perturbation scales like the square root of the inverse length scale are certainly realis
choose to focus on these situations because they cause the most dramatic effects on the
tion. Indeed, we get from the Landau–Zener formula that other scaling laws make the av
crossing either similar to a true crossing (P.1) or to a set of well separated levels (P.0).

We have already mentioned that despite being based on the paper,13 our description is not a
direct application of the molecular time-dependent Born–Oppenheimer approximation. Inde
the rigorous derivations of this approximation, the ‘‘electronic’’ spectrum and the eigenstates
the spectrum at fixed coordinate along the rotation axis in our setting, are taken as given da
the approximate solution to the molecular Schro¨dinger equation is constructed from this inform
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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tion, see Refs. 12–14. In our situation, by hypothesis, we only have access to that spectru
perturbative sense, and thus we need to develop a perturbative version of the time-dep
Born–Oppenheimer approximation that only requires knowledge of the leading terms o
Rayleigh–Schro¨dinger perturbation series. This is done in Sec. V, where the main technical
of the paper is stated in Theorem V.7. We believe that it is of an independent interest.

Precise statements of our results require a certain amount of notation and are therefor
below in Proposition IV.2 and Theorem V.7.

II. CLASSICAL MECHANICS

Let us start by describing the classical dynamics of the system. We consider a particle o
m and chargee constrained to move on a smooth surfaceS with revolution symmetry around the
axis OX in a homogeneous magnetic fieldB5Bex , B>0, parallel to this axis.

Using cylindrical coordinates, the surface is characterized by the smooth positive real v
function R{x°R(x)PR1* such that

x5x
y5R~x!cos~u!

z5R~x!sin~u!
, ~2.1!

where (x,u)PR3S1. The squared length element onS is ds25(11R8(x)2)dx21R(x)2du2, so
the corresponding metric tensorgi j (x,u) is given by

gi j ~x,u!5S 11R8~x!2 0

0 R2~x!
D . ~2.2!

Using the circular gauge, we express the vector potential at the surface as

A„r …5 1
2 B`r5

R~x!B

2 S 0
2sin~u!

cos~u!
D • ~2.3!

This makes it possible to compute the Lagrangian function of the system,

L~r , ṙ …5 1
2 mṙ21eṙA„r …

5
1

2
m~ ẋ2~11R8~x!2!1R2~x!u̇2!1

eBR2~x!u̇

2
. ~2.4!

The system is integrable; we find that the momentumpu5(]L/]u̇) and the kinetic energyT are
two constants of motion,

pu5mR2~x!u̇1
eBR2~x!

2
, ~2.5!

T5 1
2 m~ ẋ2~11R8~x!2!1R2~x!u̇2!. ~2.6!

Using ~2.5! to expressu̇ as a function ofx in ~2.6!, we deduce
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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T5
1

2
mẋ2~11R8~x!2!1

1

2m S pu
2

R2~x!
2pueB1

e2B2

4
R2~x! D

~27!

5
1

2
mẋ2~11R8~x!2!1V~R~x!!.

The effective potentialR1* {R°V(R)PR1 admits a unique minimum atR0 such that

R05A2upuu
ueuB

and V~R0!5H 0 if epu>0

uepuuB
m

if epu,0
. ~2.8!

Note that ifpu50, the potentialV(R) is harmonic onR1* . From these considerations we dedu
easily, in particular, that motions characterized byẋ(t)50 correspond either to (x(t),u(t))
5(x0 ,u0) for any initial conditions (x0 ,u0), or to (x(t),u(t))5(x0 ,u02 (eB/m) t), where
ueuB/m5..vc is the cyclotronic frequency, for any initial conditions (x0 ,u0), or finally to
(x(t),u(t))5(x0 ,u01vt), where v is any constant, for initial conditions (x0 ,u0) such that
R8(x0)50. In caseR8(x0)Þ0, the first two motions are stable, whereas in the last one the sta
depends on the local properties ofR aroundx0 . In a similar way one can treat the general ca
with ẋ(t)Þ0. The motion is governed by the effective potential determined by the shape ofS, and
the potential minima correspond to the points where the angular motion has the cyclo
frequency.

Furthermore, notice that the addition of a supplementary exterior potentialW, depending onx
only, does not effect the functional dependence ofpu and its value remains independent of tim
It is just the second constant of motion which is changed in the sense that the total eneE
5T1W is now constant.

Finally, let us also give the corresponding Hamiltonian function of the system for fu
purposes. Withpx5]L/] ẋ we compute

H~x,u,px ,pu!5S px
2

2m~11R8~x!2!
1

1

2mR2~x! S pu2
eBR2~x!

2 D 2D . ~2.9!

In the sequel we shall consider our charged particle to be an electron,e52ueu,0, and use the
rational units in whichueu5m51 as well as\5c51.

III. QUANTUM MECHANICS

Consider now the same system in the framework of quantum mechanics. For the purp
this section, the functionR:R→R1 defining the surfaceS is supposed to be strictly positive an
C3; later we shall impose stronger requirements.

The Hilbert space of such a system is thusL2(S). To construct the Hamiltonian, however,
is not sufficient to replace the classical variables in~2.9! by the corresponding canonical operato
The most natural quantization consists in taking a particle confined to a cylindrical layer built
S and squeezing its thickness to zero, c.f. Refs. 6–8. One has of course to renormalize the
in the limit, by subtracting the blowing-up part corresponding to the transverse motion.

In the absence of magnetic field, one arrives in this way to the Hamiltonian which is equ
the sum of the respective Laplace-Beltrami operator~times 1/2 in our units! and the curvature-

induced potentialV(x)52 1
8 (%1(x)212%2(x)21)2, where% j (x), j 51,2, are the principal cur-

vature radii at the given point. The second part is of a purely quantum nature and has no cl
counterpart. In the present case the locally elliptical intersection ofS with the normal plane has th
radius%1(x)5R(x), while for the intersection with the axial plane we find

%2~x!52
~11R8~x!2!3/2

R9~x!
; ~3.1!
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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the signs of%1 , %2 coincide if both the osculation radii point the same side of the surf
Consequently, the curvature-induced potential equals

V~x!52
1

8R~x!2 S 11
R~x!R9~x!

~11R8~x!2!3/2D 2

. ~3.2!

To express the kinetic~Laplace–Beltrami! part, 2 1
2 ugu21/2] i ugu1/2gi j ] j , we use~2.2! and the

corresponding contravariant tensor onS,

gi j ~x!5S ~11R8~x!2!21 0

0 R~x!22D . ~3.3!

The Hamiltonian in the presence of magnetic field is then obtained by replacing the an
momentum operatorpu52 i ]u by pu2A(x)R(x), whereA(x)ªAu(r ); it acts as

H52
1

2R~x!A11R8~x!2
]x

R~x!

A11R8~x!2
]x1

1

2R~x!2 S 2 i ]u1
BR~x!2

2 D 2

2
1

8R~x!2 S 11
R~x!R9~x!

~11R8~x!2!3/2D 2

~3.4!

on an appropriate domain inL2(R3S1,R(x)A11R8(x)2dxdu). Due to the rotational symmetry i
has a simple partial-wave decomposition; itsHm component is obtained replacing2 i ]u by its
eigenvaluem. In this way the spectral analysis ofH is reduced to a family of one-dimension
Sturm–Liouville problems. The magnetic term also has a natural meaning; we have

A~x!R~x!5
BR~x!2

2
5

F~x!

2p
5f~x!, ~3.5!

wheref is the magnetic flux value measured in the standard units (2p)21, or the number of flux
quanta passing through the cross section of the cylinder.

It may be convenient to get rid of the weight factor replacing the operatorH above by an
operator H̃ on L2(R) ^ L2(S1). This is achieved by the unitary transformationc°R1/2(1
1R82)1/4c. The only term in~3.4! which changes is the first one: by a straightforward compu
tion we find

H̃52]x

1

2~11R8~x!2!
]x1

1

2R~x!2 S 2 i ]u1
BR~x!2

2 D 2

1V21~x!1V22~x! ~3.6!

with

V21~x!52
1

8R~x!2 S 11
R~x!R9~x!

~11R8~x!2!3/2D 2

~3.7!

and

V22~x!5S 2
R82

8R2~11R82!
2

7

8

R82R92

~11R82!3 1
R91R~R8R-1R92!

4R~11R82!2 D ~x!. ~3.8!

Spectral properties of the Hamiltonian are influenced by the geometry ofS. Suppose, e.g., tha
the latter has asymptotically constant radius, limuxu→` R(x)5R0 . In the absence of magnetic fiel
the problem is similar to that of a locally deformed Dirichlet strip15,16 ~it is simpler, however,
unless a mode-coupling perturbation is introduced!. In thes-wave part the effective potentialV21
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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creates a potential well whenS is locally squeezed and a barrier in case of a protrusion. For hi
partial waves and nonzero magnetic field, of course, the effective potential consists of s
competing contributions.

IV. QUANTUM PROPAGATION

Our main interest in this paper is not so much the spectrum of the Hamiltonian~3.4! than the
way in which an electron propagates over the surface of the cylinder. We will be particu
interested in the limiting situation when the radius modulation is gentle. This is conventio
described by means of the scaling transformationx°ex which turnsH̃ into H(e) and by consid-
ering the asymptotic behavior ase→0. This can be considered as a semiclassical limit since
e→0 the wave packet size becomes ultimately much smaller than the length scale of the
variations.

It is clear from the preceding section that the effective potentialV25V211V22 is then domi-
nated by the first term. Moreover, the operators~3.4! and ~3.6! coincide to leading order, which
will be the object of the following investigation. We write the action ofH(e) as

H~e!52
e2

2
]x

1

11e2V1~x!
]x1V2~x,e!1

1

2R2~x! S 2 i ]u1
BR2~x!

2 D 2

~4.1!

on a suitable domain ofL2(R) ^ L2(S1), where R(x), V1(x)5R8(x)2 are smooth onR and
V2(x,e) is smooth onR3@2e0 ,e0#, for somee0.0. Introducing anR-dependent operatorh(R)
for RPR1* by

h~R!5
1

2R2 S 2 i ]u1
BR2

2 D 2

~4.2!

on a suitable domain ofL2(S1), we can regardH(e) as an operator onL2(R,L2(S1)) which we
write as

H~e!52
e2

2
]x

1

11e2V1~x!
]x1V2~x,e!1h~R~x!!. ~4.3!

The spectral analysis ofh(R) is straightforward and yields a family of simple eigenvalues,

s~h~R!!5$ln~R!,nPZ%5H 1

2R2 S n1
BR2

2 D 2

,nPZJ , ~4.4!

with the corresponding eigenvectors,

wn~u!5exp~ inu!/A2p, nPZ. ~4.5!

Note that the eigenvaluesln(R) correspond to the classical effective potentialV(R) in ~2.7! with
nPZ in place ofpu . For nÞm we have

ln~R!2lm~R!5
~n2m!

2 S ~n1m!

R2 1BD ~4.6!

so that

ln~R!5lm~R!⇔n1m,0 and R5Rn,m5A2~n1m!

B
. ~4.7!

Moreover,
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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ln~Rn,m!52
B

2

~n2m!2

~n1m!
.0. ~4.8!

Hence any pair of levels (ln(R),lm(R)) with n1m,0 exhibits one and only one crossing asR
varies, whereas other pairs never cross. The crossing points are well separated,

$Rn,m : ~n,m!PN2, n1m,0%5HAk

B
: kPN* J , ~4.9!

with Ak/B5Rn,2(k1n) , nPN, and the values of the different pairs of levels crossing atAk/B, for
k fixed, are also well separated since

ln~Rn,2(k1n)!5
B

2

~2n1k!

k
. ~4.10!

We note also thatln(R)2l2n(R)5Bn.
Thus, depending on our choice of the functionR(x), the spectrum ofh(R(x)) may display

real or avoided crossings of an arbitrary width. Our aim is to adapt the techniques develo
Ref. 13 to describe the propagation of Gaussian wave packets~in the variablex! through these
~avoided! crossings and, in particular, the splitting of the solution among the different ang
levelsln(R(x)) involved. In particular, we can also suppose that the shape of the tube is g
changing in the way described above with the parametere entering in the definition ofR; in any
case, it will then turn out that the natural scale for the phenomena we want to described
5Ae. We henceforth adoptd as our small parameter and consider smooth functionsR(x,d)
defined onR3@2d0 ,d0#. This means, in particular, that both the functionV1 and the operatorh
will depend on bothx andd in a smooth fashion.

However, the model discussed so far cannot exhibit transitions because of the rota
invariance which forbids passages between different levelsln . To get a nontrivial result, we
perturb our system by introducing a real valued potentialdW(x,u,d), which is smooth onR
3S13@2d0 ,d0# and violates the symmetry. For example, we can add a constant electric fie
the directiond5sin(a)ez1cos(a)ex , wherea¹Zp. As a consequence, we lose integrability of t
system on the classical level, whereas in the quantum setting transitions between the d
perturbed eigenstates become possible. By assumption, when considered as a~bounded! operator
on L2(S1) for (x,d) fixed, the operatordW(x,u,d) does not commute withh(R(x,d)), and
therefore it perturbs the spectrums(h(R(x,d)). Note that for (x,d) fixed, the above mentioned
electric field gives rise to a bounded operator onL2(S1). For the time being, let us keep th
general formdW(x,u,d) for the perturbation and describe the differences and similarities of
present case with respect to the paper.13

We introduce the operatorg on ~a suitable domain of! L2(R,L2(S1)) by

g~x,d!5h~R~x,d!!1V2~x,d!1dW~x,u,d! ~4.11!

so that the perturbed full Hamiltonian reads~with a slight abuse of notation!

H~d!52
d4

2
]x

1

11d4V1~x,d!
]x1g~x,d!. ~4.12!

Without loss of generality, we can assume that*S1W(x,u,d)du50 by modifying V2(x,d) if
necessary. We require the different potentials introduced so far to be smooth so that the fol
regularity hypothesis is fulfilled.
H0: The operator g is strongly C` in (x,d) in R3@2d0 ,d0#.
We want to approximate the solutions to the Schro¨dinger equation in a suitable time scale,
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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id2
]c

]t
5H~d!c, ~4.13!

for t in a finite time interval, asd→0, for initial conditions of a ‘‘coherent state’’ type, which w
shall describe in detail below.

The first difference in comparison with Ref. 13 comes from the fact that the kinetic term
rise to a perturbed Laplacian,

2
d4

2
]x

1

11d4V1~x,d!
]x52

d4

2
]x

21
d8

2
]x

V1~x,d!

11d4V1~x,d!
]x

[2
d4

2
]x

21Y~x,]x ,d!, ~4.14!

where

Y~x,]x ,d!52d4
V1~x,d!

11d4V1~x,d!

~2 id2]x!
2

2
2

d4

2 S 2 id2]x

V1~x,d!

11d4V1~x,d! D ~2 id2]x!.

~4.15!

We assume
H1:

sup
xPR,udu<d0

uV1
(k)~x,d!u,`, k50,1. ~4.16!

The factord8 in front of the operatorY makes it possible to show that the influence of this te
is negligible on the propagation of Gaussian states, so that the approximation given in R
remains valid. This claim is the main result of this section and will be made precise in Propo
IV.2 below.

The second difference in comparison with Ref. 13 is that unless we have an explicitly so
situation—and such situations are rare—in general we do not know the exact eigenvalu
eigenstates of the operatorg(x,d). However, the approximation derived in Ref. 13 is construc
on the basis of this exact knowledge. A way out is to use an incomplete information coming
the perturbation theory. Our second result, Theorem V.7, stated in Sec. V says that it is eno
know the first few terms in the perturbation series in order to construct an approximation
describes the propagation, even in the presence of avoided crossings, and that the result is
as the one derived in Ref. 13.

The rest of this section is organized as follows. We proceed with the description o
ingredients needed for our approximation, in analogy with Ref. 13, assuming that we kno
exact diagonal form ofg(x,d). Then we prove that the perturbation of the Laplacian by
operatorY does not effect the validity of this approximation. The next section will be devote
the perturbative aspects mentioned above.

We will denote bymn(x,d) the eigenvalue ofg(x,d) such thatmn(x,d)2ln(R(x,d))→0 as
d→0, for x such thatR(x,d) is far fromRn,m . The corresponding eigenvector will be denoted
Fn(x,d). If R(x,d) lies in a neighborhood ofRn,m , we will denote bymA(x,d)>mB(x,d) the
almost degenerate perturbed eigenvalues with the corresponding eigenvectorsFA(x,d) and
FB(x,d). The reason for such a convention is that the unperturbed eigenvaluesln(R(x,d) may or
may not cross, are therefore the labeling of them’s in terms of the indicesn and m is not
straightforward. LetQn(x,d) be the one-dimensional spectral projection ofg(x,d) corresponding
to mn(x,d) in the first case andP(x,d) be the two-dimensional spectral projection ofg(x,d)
corresponding tomA(x,d)>mB(x,d) in the second case.

The situation we will study is that of avoided crossings of minimum width of orderd. Without
loss of generality, we can assume the avoided crossing takes place in a neighborhood ox50.
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More precisely we suppose that:
H2: The eigenvaluesmA(x,d) and mB(x,d) are such that(mA2mB)(21)$0%5(0,0) in a neigh-
borhood of~0,0! and infxPI(mA(x,d)2mB(x,d))5cudu.0 for dÞ0, where c is a constant and
is a small interval containing0.
We also set

gi~x,d!5g~x,d!P~x,d!, ~4.17!

g'~x,d!5g~x,d!~I2P~x,d!!. ~4.18!

We know from Ref. 17 that locally around~0,0! there exists an orthonormal basis, denoted
$c1(x,d),c2(x,d)%, of P(x,d)L2(S1), which is regular in (x,d) around~0,0!. It is constructed in
the standard Gram–Schmidt way: we choose an orthonormal basis$c1 ,c2% of P(0,0)L2(S1) and
set

f1~x,d!5
P~x,d!c1

iP~x,d!c1i , ~4.19!

f2~x,d!5
~I2uf1~x,d!&^f1~x,d!u!P~x,d!c2

i~I2uf1~x,d!&^f1~x,d!u!P~x,d!c2i . ~4.20!

Moreover, there exists a (x,d) independent unitary transformU such that in the orthonormal basi

c j~x,d!5Uf j~x,d!, j 51,2, ~4.21!

the matrixgi(x,d) takes the form

gi~x,d!5g1~x,d!1V̄~x,d!

5S b~x,d! g~x,d!1 is~x,d!

g~x,d!2 is~x,d! 2b~x,d!
D 1V̄~x,d!, ~4.22!

whereV̄(x,d)5trace(g(x,d)P(x,d))/2 is a regular function of (x,d) around the origin and

b~x,d!5b1x1b2d1O~2!,

g~x,d!5c2d1O~2!,
~4.23!

s~x,d!5O~2!,

V̄~x,d!5O~0!,

whereb1.0,c2.0,b2PR, and the following notation is used for the sake of brevity:

O~m!5O~~x21d2!m/2!. ~4.24!

In order to get rid of thed-dependence in the leading order ofb(x,d) in ~4.22!, we introduce
new variables,

x85b1x1b2d, d85c2d, t85b1
2/c2

2t. ~4.25!

In terms of these variables, the Schro¨dinger Eq.~4.13! for

f~x8,t8!5c~x~x8,d8!,t~ t8!! ~4.26!
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becomes

id82
]

]t8
f~x8,t8!52

d84

2
]x8

1

11d84V18~x8,d8!
]x8f~x8,t8!1

c2
4

b1
2 g~x~x8,d8!,d~d8!!f~x8,t8!

~4.27!

in the limit d8→0, with

V18~x8,d8!5V1~x~x8,d8!,d~d8!!/c2
4 , ~4.28!

gi~x~x8,d8!,d~d8!!5S x18 d8

d8 2x18
D 1O~2!1V̄~x~x8,d8!,d~d8!!, ~4.29!

whereV̄(x(x8,d8),d(d8)) andV18(x8,d8) are regular in (x8,d8) around~0,0! andO(2) refers to
x8 andd8. We introduce the fixed parameterr 5c2

4/b1
2.0 andhenceforth drop the primes on th

new variables. We assume thatg1(x,d) has the form~4.22! with the following local behavior
aroundx50 andd50:

b~x,d!5rx1O~2!,

g~x,d!5rd1O~2!,
~4.30!

s~x,d!5O~2!,

V̄~x,d!5O~0!

with r .0.
Let us next describe the building blocks of our Born–Oppenheimer states.
We begin with the definition of the semiclassical ‘‘nuclear’’ wave packets denoted

w j (A, B, \, a, h, x). This definition comes from Ref. 18; we have specified it to our setting wh
xPR. Since Ref. 18 provides a detailed discussion of these wave packets, we refrain from p
all their properties here.

We assumeaPR, hPR and\5d2.0. Let us stress that while the last symbol is useful wh
adapting the results of Ref. 18, it has nothing to do with the Planck’s constant. We also assum
A andB are nonzero complex numbers that satisfy

ReĀB51. ~4.31!

This condition guarantees that ReBA21 is positive, since (ReBA21)215uAu2.
Our definition ofw j (A, B, \, a, h, x) is based on the following raising operator:

A~A,B,\,a,h!* 5
1

A2\
F B̄~x2a!2Ā S 2 i\

]

]x
2h D G . ~4.32!

Definition: For the index j 50, we define the normalized complex Gaussian wave pa
~modulo the sign of the square root! by

w0~A, B, \, a, h, x!5p21/4\21/4A21/23exp$2B A21~x2a!2/~2\!1 ih~x2a!/\%.
~4.33!

Then for any positive integerj we define

w j~A, B, \, a, h, • !5
1

Aj !
~A~A,B,\,a,h!* ! jw0~A,B, \, a, h, • !. ~4.34!
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Remarks:

~1! For A5B51, \51, anda5h50, thew j (A, B, \, a, h, •) are just the standard harmonic
oscillator eigenstates with energiesj 11/2;

~2! For eachA, B, \, a, andh, the set$ w j (A, B, \, a, h, • )% is an orthonormal basis forL2(R);
~3! The position and momentum uncertainties of thew j (A, B, \, a, h, •) areA( j 11/2)\ uAu and

A( j 11/2)\uBu, respectively;
~4! When we solve approximately the Schro¨dinger equation, the choice of the sign of the squ

root in the definition ofw0(A, B, \, a, h, •) is determined by continuity int after an arbitrary
initial choice;

~5! Defining the scaled Fourier transform to be

@F\C #~j!5~2p\!21/2E
R
C~x!e2 i jx/\dx, ~4.35!

then

@F\w l~A,B,\,a,h, • !#~j!5~2 i ! l e2 iha/\w l~B,A,\,h,2a,j!. ~4.36!

We also define

VB
A
~x,d!5V̄~x,d!6Ab2~x,d!1g2~x,d!1s2~x,d!, ~4.37!

wherexPR, d.0. Let aC(t) andhC(t) be the solutions of the classical equations of motion,

d

dt
aC~ t !5hC~ t !, ~4.38!

d

dt
hC~ t !52¹VC~aC~ t !,d!, C5A,B,

~4.39!

d

dt
SC~ t !5hC~ t !2/22VC~aC~ t !,d!,

with the initial conditions

aC~0!50,
~4.40!

hC~0!5h0~d!,

where

h0~d!5h01O~d!, h0.0,
~4.41!

SC~0!50.

The error termO(d) depends here on whetherC is A or B. In case of an isolated eigenvaluemn ,
VC5Vn5mn .

We further introduce complex numbers which are defined by means of classical quantitie
AC(t) andBC(t) be the solutions of the linear system,
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d

dt
AC~ t !5 iBC~ t !,

~4.42!
d

dt
BC~ t !5 iVC(2)~aC~ t !,d!AC~ t !,

whereaC(t) is the solution of~4.38! and ~4.40!, with the initial conditions

AC~0!5A0 ,
~4.43!

BC~0!5B0 ,

andVC(2) denotes the Hessian matrix ofVC. It is easy to see that these quantities actually desc
the linearized classical flow around the trajectory (aC(t),hC(t)). The above convention regardin
C applies ifmn is isolated in the spectrum. The asymptotics of these classical quantities for
t andd are described in detail in Sec. II of Ref. 13.

The determination of the ‘‘electronic’’ part of the Born–Oppenheimer wave packet~B–O
state, for short! is as follows. Although the ‘‘electronic’’ Hamiltonian is independent of time, it
convenient, since we deal with the time dependent Schro¨dinger equation, to choose specific tim
dependent ‘‘electronic’’ eigenvectors. Since they may become singular when the correspo
eigenvalues are degenerate, or almost degenerate, we shall define them fort in the outer regime,
that is whena(t) is far enough from 0. This outer regime is characterized by timest such that~see
Ref. 13!,

d12j<utu<T, j,1/3. ~4.44!

We shall have two sets of eigenvectors, denoted byFC
6(x,t,d), where the label6 refers to

positive and negative times. Of course, this distinction is irrelevant if we consider an iso
eigenvaluem.

Let hC(t) be the momentum solution of the classical equations of motion~4.38! and ~4.40!.
The normalized eigenvectorsFC

6(x,t,d) are the solutions of

^FC
6~x,t,d!u~]/]t1hC~ t !]x!FC

6~x,t,d!&[0 ~4.45!

for C5A,B andt:0. Since the eigenvaluesmA(x,d) andmB(x,d) are nondegenerate for any tim
t small enough, such vectors exist, are unique up to an overall time independent phase facto
are eigenvectors ofg1(x,d) associated withEC(x,d) for any time. More precisely, we define th
anglesw(x,d) andu(x,d) by

b~x,d!5Ab2~x,d!1g2~x,d!1s2~x,d! cos~u~x,d!!, ~4.46!

g~x,d!5Ab2~x,d!1g2~x,d!1s2~x,d!sin~u~x,d!!cos~w~x,d!!, ~4.47!

s~x,d!5Ab2~x,d!1g2~x,d!1s2~x,d!sin~u~x,d!!sin~w~x,d!!, ~4.48!

and construct static eigenvectors. Let

FA
2~x,d!5eiw(x,d) cos~u~x,d!/2!c1~x,d!1sin~u~x,d!/2!c2~x,d!, ~4.49!

FB
2~x,d!5e2 iw(x,d) cos~u~x,d!/2!c2~x,d!2sin~u~x,d!/2!c1~x,d!, ~4.50!

be the eigenvectors ofg1(x,d) associated withmC(x,d), C5A,B, for p/2,u(x,d)<p, and

FA
1~x,d!5cos~u~x,d!/2!c1~x,d!1e2 iw(x,d) sin~u~x,d!/2!c2~x,d!, ~4.51!

FB
1~x,d!5cos~u~x,d!/2!c2~x,d!2eiw(x,d) sin~u~x,d!/2!c1~x,d! ~4.52!
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be the eigenvectors ofg1(x,d) for 0<u(x,d),p/2. The solutions of~4.45! are of the form

FC
6~x,t,d!5FC

6~x,d!eilC
6(x,t,d), H t.0

t,0
, ~4.53!

wherelC
6(x,t,d) is a real valued function satisfying the equation,

i
]

]t
lC

6~x,t,d!1 ihC~ t !]xlC
6~x,t,d!1^FC~x,d!uhC~ t !]xFC~x,d!&50. ~4.54!

We can get an expression forlC
6 and its derivatives as follows. We fix values of the indic

and drop them in the notation. We introduce the new variable

v[x2a~ t ! ~4.55!

and the notation

l r~v,t,d![l~v1a~ t !,t,d!, ~4.56!

F r~v,t,d![F~v1a~ t !,d!. ~4.57!

In terms of these new variables, Eq.~4.54! for l r reads

i
]

]t
l r~v,t,d!52^F r~v,t,d!u

]

]t
u F r~v,t,d!& ~4.58!

with

]

]t
F r~v,t,d!5h~ t !]xF~v1a~ t !,d!. ~4.59!

By integration we get

l r~v,t,d!52E t

h~ t8!^F~v1a~ t8!,d!u]xF~v1a~ t8!,d!&dt81l r0~v,d!, ~4.60!

where we are free to set the integration constantl r0(v,d)[0.
The ‘‘nuclear’’ wave function is localized around the classical trajectory in the semiclas

regime. In view of the genericity conditionh0.0, in the outer temporal region, the major part
the ‘‘nuclear’’ wave function will be supported away from the neighborhood where the le
almost cross. Hence we can introduce a cutoff function which does not significantly alte
solution and forces the support of the wave function to be away of this neighborhood. LetF be a
C` cutoff function,

F:R1→R, ~4.61!

such that

F~r !51 . . . 0<r<1

F~r !50 . . . r>2
. ~4.62!

The wave functions we construct below in the outer regime will be multiplied by the regular
factor,

F~ ix2aC~ t !i /d12d8!, ~4.63!
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where 0,d8,j, for C5A,B.
Remark:On the support ofF the relation,

x5h0~d!t1O~d12d81t2! ~4.64!

holds true, and sinceh0(d)5h01O(d), whereh0.0, we find that

uxu.cutu, ~4.65!

uniformly in d.
A Born–Oppenheimer statec j

C6(x,d,t) is defined by

c j
C6~x,d,t !

5F~ ix2aC~ t !i /d12d8!w j~AC~ t !, BC~ t !, d2, aC~ t !, hC~ t !,x!eiSC(t)/d2
FC

6~x,t,d!. ~4.66!

It is a good approximation to the solution of the Schro¨dinger equation~4.13! asd→0 far enough
of the crossing region, i.e., in the outer time regime~4.44!, and when the operatorY defined in
~4.15! is absent, as shown in Ref. 13 Proposition IV.2 below shows this is still true whenY is
present.

In the inner time regime, characterized by the inequality~see Ref. 13!,

2d12j<t<d12j, j,1/3, ~4.67!

we look for an approximation constructed by means of the classical quantities associated w
potentialV̄(x,d), the average ofmA(x,d) andmB(x,d). Let a(t) andS(t) be the corresponding
classical quantities satisfying the initial conditions

a~0!50,

h~0!5h0, ~4.68!

S~0!50.

It is suitable to use the rescaled variables

y5~x2a~ t !!/d

s5t/d.
~4.69!

It is shown in Ref. 13 that a good approximationc I of solutions to~4.13! in that regime, whenY
is absent, is given by

c I~y,s,d!5F~ iyidd8!expS i
S~ds!

d2 1 i
h~ds!y

d Dx~y,s,d!, ~4.70!

with

x~y,s,d!5 f 0~y,s!c1~a~ds!1dy,d!1g0~y,s!c2~a~ds!1dy,d!, ~4.71!

where f 0 ,g0 are complex-valued functions solutions to

i
]

]s S f 0~y,s!

g0~y,s! D5r S h0s1y 1

1 2~h0s1y!
D S f 0~y,s!

g0~y,s! D . ~4.72!

The general solution to this equation is
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S f 0~y,s!

g0~y,s! D5C1~y!S ~12 i !

2
A r

h0Dir /2h0 21S ~211 i !A r

h0 ~h0s1y! D
Dir /2h0S ~211 i !A r

h0 ~h0s1y! D D 1C2~y!

3S D2 ir /2h0S 2~11 i !A r

h0 ~h0s1y! D
2

~11 i !

2
A r

h0 D2 ir /2h0 21S 2~11 i !A r

h0 ~h0s1y! D D , ~4.73!

where theDn are parabolic cylinder functions. The coefficientsC1(y) and C2(y) have to be
determined by matching with the incoming solutions of the B–O type at the border of the
and outer time regimes.

In particular, assuming for definiteness that the incoming B–O statecOI is associated with the
index l for the ‘‘nuclear’’ component and theB level with the initial momentumhB(0)5h0, i.e.,
that

cOI~x,t,d!5c l
B2~x,t,d!, 2T<t<2d12j, ~4.74!

we have

C1~y![0 ~4.75!

and

C2~y!52d21/2w l~A0 ,B02 irA 0 /h0,1,0,0,y!e2~pr /8h1
0
! expS ir

2h0 ~y222y! D
3expS i

S0
B~d,2 !

d2 1
ir

4h0 ~113 ln~2h0!1 ln r 24 lnd! D , ~4.76!

whereS0
B(d,2) is real and can be computed explicitly, see Ref. 13.

The analysis of Ref. 13 shows that in this situation, we get an outgoing solution given
linear combination of B–O states, with explicit coefficients, associated with the same indexl for
the ‘‘nuclear’’ component but with both levels. The initial momentum is chosen ashA(0)5h0

22rd/h0 for the A level and the outgoing solutioncOO is of the form,

cOO~x,t,d!52e2pr /2h1
0
c l

A1~x,d,t !1e2pr /4h0Apr

h0

eil(d)

GS 11
ir

2h0D c l
B1~x,d,t ! ~4.77!

providedd12j<t<T, where

l~d!5p/41S0
A~2,d!/d21

r

2h0 ~113 ln~2h0!1 ln r 24 lnd!. ~4.78!

Here again,S0
A(d,2) is real and can be computed explicitly from Ref. 13.

Moreover, the function obtained by pasting the approximations constructed in the oute
inner temporal regions is an approximate solution to the Schro¨dinger equation when the pertu
bationY of the Laplacian is absent@see~4.14!#. Similar explicit formulas are valid if the ingoing
state is associated with theA level. Hence, the propagation through avoided crossings ca
iterated.
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We are going to show that the perturbation of the Laplacian in~4.14! does not affect the
propagation of B–O states. The general strategy is simple: we write

H~d!52
d4

2
Dx1g~x,d!1Y~x,]x ,d!

[H0~d!1Y~x,]x ,d! ~4.79!

and denote byC l(x,t,d) the approximation given bycOI ,c I ,cOO in their respective time domain
constructed in Ref. 13,

C l~x,t,d!5H cOI~x,t,d! ¯ 2T<t<2d12j

c I~x,t,d! ¯ 2d12j<t<d12j

cOO~x,t,d! ¯ d12j<t<T

. ~4.80!

We definez l by

j l~x,t,d!5 id2] tC l~x,t,d!2H~d!C l~x,t,d!

5 id2] tC l~x,t,d!2H0~d!C l~x,t,d!2Y~x,]x ,d!C l~x,t,d!

5z l
0~x,t,d!1z l

1~x,t,d!, ~4.81!

wherez l
0 is the error term controlled in Ref. 13 by means of the following abstract lemma.

Lemma IV.1: Suppose H(\) is a family of self-adjoint operators labeled by\.0. Suppose that
c(t, \) belongs to the domain of H(\), is continuously differentiable in t, and solves approxi-
mately the Schro¨dinger equation in the sense that

i\
]c

]t
~ t,\!5H~\! c~ t, \!1z~ t,\!, ~4.82!

wherez(t, \), satisfies

iz~ t, \!i <m~ t, \!. ~4.83!

Then,

ie2 i tH (\)/\ c~0,\!2c~ t, \!i < \21E
0

t

m~s, \! ds ~4.84!

holds true for t.0 and the analogous statement is valid for t,0.
Using the same lemma to estimate the norm ofz l

1 , we get
Proposition IV.2: Under the hypotheses (H0)–(H2), the functionC l(x,t,d) defined by~4.80!

is for any T.0 an approximation to the solutionc(x,t,d) of the Schro¨dinger equation (4.13) such
that

c~x,t,d!5C l~x,t,d!1O~dp! ~4.85!

holds in the L2(R) sense for some p.0 and all tP@2T,T#.
The proof of this technical proposition is given in the Appendix.

V. PROPAGATION OF PERTURBED B–O STATES

Let us now turn to the second indicated step and replace the above B–O approximatio
construction making use of a perturbative knowledge of the exact eigenvectors and eigenva
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the operatorgi defined by~4.22!. In particular, this needs to be done for the quantities appea
in ~4.38!, ~4.42! determined by means of a classical potential given by an approximation o
spectrum ofgi . We will show that it is enough to know the second order perturbation expan
in order to construct an approximation of the solution that is a perturbed version of our initial
states and still describes accurately the transitions between the ‘‘electronic’’ levels.

In order to make some explicit formulas simpler and to stress the effect of the perturbatio
will assume in this section that both the operatorsh and W are d independent, i.e., we sha
consider

g~x,d!5h~R~x!!1V2~x!1dW~x,u!, ~5.1!

whereV2 commutes withh whereasW does not. This means thath(x) is assumed to have
degeneracy atx50 in the considered part of its spectrum that is lifted byW to leading order ind.
This is the generic situation we set out to investigate when the avoided crossing results
weak symmetry-breaking violation of a true eigenvalue crossing. Note, however, that we ar
to accommodate the general situation considered so far, at the cost of more complicated
bation formulas.

Let us state a simple lemma which is at the basis of our constructions and which says
approximation of an approximate solution is an approximate solution.

Lemma V.1: Let H(d) be for all dP(0,d0) a self-adjoint operator densely defined in a Hilbe
spaceH, and letca(t,d)PH, wa(t,d)PH be time dependent vectors with the following proper
there exists c,p1 ,p2.0 such that the relations

ie2 iH (d)t/d2
ca~0,d!2ca~ t,d!i<cdp1 ~5.2!

and

iwa~ t,d!2ca~ t,d!i<cdp2 ~5.3!

hold for all t from an interval I,R and 0,d,d0 . Then,

ie2 iH (d)t/d2
wa~0,d!2wa~ t,d!i<3cdmin(p1 ,p2),

ie2 iH (d)t/d2
ca~0,d!2wa~ t,d!i<3cdmin(p1 ,p2). ~5.4!

Proof: uses just the unitarity of the evolution group and the Cauchy–Schwarz inequalith

Our approximate B–O states will require classical quantities defined by means of an ap
mationṼC of the potentialVC used in~4.38!, ~4.42!. We have to estimate the error induced by th
approximation. In order to do that, we make use of Gronwall’s lemma~see e.g., Ref. 19! that we
recall below.

Lemma V:2: Let E be a Banach space, U,E be open, I be an interval ofR, and fPC1(I
3U;E) be such that there exists K.O with sup(t,x)PI 3UiD2f (t,x)iL(E)<K. Let g:I 3U→E be
continuous and such that there exists G.0 with

sup
~ t,x!PI 3U

ig~ t,x!i<G. ~5.5!

If a and b are C1 maps from J→U ~where J#I ! satisfying for tPJ,

a8~ t !5 f ~ t,a~ t !!, ~5.6!

b8~ t !5 f ~ t,b~ t !!1eg~ t,b~ t !!, ~5.7!

then
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ia~ t !2b~ t !i<ia~ t0!2b~ t0!ieKut2t0u1eG~eKut2t0u21!/K. ~5.8!

For convenience let us recall here our definition~4.66! of a Born–Oppenheimer stat
c j

C(x,d,t) in the exterior regime,

c j
C~x,d,t !5F~ ix2aC~ t !i /d12d8!w j~AC~ t !, BC~ t !, d2, aC~ t !, hC~ t !, x!eiSC(t)/d2

FC
6~x,t,d!.

~5.9!

We want to comparec j
C(x,d,t) with an altered but similar definition based on approximate qu

tum and classical quantities forc̃ j
C(x,d,t),

c̃ j
C~x,d,t !5F~ ix2ãC~ t !i /d12d8!w j~ÃC~ t !, B̃C~ t !, d2, ãC~ t !, h̃C~ t !, x!eiS̃C(t)/d2

F̃C
6~x,t,d!.

~5.10!

All ‘‘tilded’’ classical quantities are generated by Eqs.~4.38!, ~4.42! with an approximate potentia
ṼC(x,d) in place ofVC(x,d). The vector

F̃C
6~x,t,d!5F̃C

6~x,d!ei l̃C
6(x,t,d) ~5.11!

depends on the approximate classical quantities through the phasel̃C
6 and on an approximate

normalized quantum eigenstateF̃C
6(x,d). Note that we keep the same Gaussian functionw j to

construct the ‘‘nuclear’’ wave packet.
Our next goal is to apply Lemma V.1 to estimate the errors in terms of the difference be

ṼC andVC.
Lemma V.3: The following inequality holds in the outer time regime for the L2(R) norm:

ic j
C6~x,d,t !2c̃ j

C6~x,d,t !i

<cS uÃ~ t !2A~ t !u1uB̃~ t !2B~ t !u1uã~ t !2a~ t !u/d2

1uh̃~ t !2h~ t !u/d21
utu
d2 sup

sP@0,t#

~ uh̃~s!2h~s!u1uṼ~a~s!!2V~a~s!!u

1 sup
xP[ ã(s),a(s)]

u]xṼ~x!uuã~s!2a~s!u!1 sup
~x,t,d!

uF~ ix2ã~ t !i /d12d8!F̃C
6~x,t,d!

2F~ ix2a~ t !i /d12d8!FC
6~x,t,d!u.D ~5.12!

with some constant c.
Proof: The indexC being fixed in this context, it will now be omitted. Other irreleva

parameters will also be dropped in the arguments. Note that since the functionF is smooth, we can
write

F~ ix2ã~ t !i /d12d8!5F~ ix2a~ t !i /d12d8!1O~~ ã~ t !2a~ t !!/d12d8! ~5.13!

and that theL2(S1)-norm of the vectorsFC
6(x,t,d) equals one. Since

Ṽ~ ã!2V~a!5Ṽ~ ã!2Ṽ~a!1Ṽ~a!2V~a! ~5.14!

andh and h̃ are uniformly bounded, we infer
 03 Apr 2008 to 152.77.24.38. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



-

rtur-

the

4725J. Math. Phys., Vol. 42, No. 10, October 2001 Avoided crossings in mesoscopic systems

Downloaded
S̃~ t !5E
0

t

~ h̃2~s!/22Ṽ~ ã~s!!ds!

5S~ t !1OS utu sup
sP@0,t#

S uh̃~s!2h~s!u1uṼ~a~s!!2V~a~s!!u

1 sup
xP[ ã(s),a(s)]

u]xṼ~x!uuã~s!2a~s!u D D . ~5.15!

Then we compute

w l~Ã,B̃,d2,ã,h̃,x!2w l~A,B,d2,a,h,x!

5ei h̃(x2ã)/d2
~w l~Ã,B̃,d2,ã,0,x!2w l~A,B,d2,a,0,x!!

1w l~A,B,d2,a,0,x!~ei h̃((a2ã)/d2)2ei (h2h̃)(x2a)/d2
!ei h̃(x2a)/d2

. ~5.16!

From Lemma 3.1 in Ref. 13 we learn that asÃ→A and B̃→B,

w l~Ã,B̃,d2,ã,0,x!5w l~A,B,d2,a,0,x!1O~ uÃ2Au1uB̃2Bu1uã2au/d!

holds in theL2(R) sense, which takes care of the first term. Then we note that theL2 norm of the
remaining term is equal to

iw l~A,B,d2,a,0,x!ei h̃((a2ã)/d2)2w l~A,B,d2,a,h2h̃,x!i

5iw l~B,A,d2,0,2a,x!ei h̃(a2ã)/d2
2e2 i (h2h̃)a/d2

w l~B,A,d2,h2h̃,2a,x!i

5O~~ ã2a!/d21~ h̃2h!/d2! ~5.17!

by using the Plancherel formula, the properties of thew j under Fourier transform,iw j i51 and the
above lemma again. Then, gathering these estimates and using the facts thatA(t) and B(t) are
uniformly bounded, we get the result. h

In order to use this lemma, we see that it is necessary to approximateVC to an error of order
o(d2) and to show that this induces errors of the same order in the classical trajectory (ãC,h̃C) and
errors of ordero(1) in the linearized classical flow (ÃC,B̃C). Moreover, the corresponding eigen
statesF̃C

6 should be at most at a distanceo(1) from FC
6 .

When we consider times away of the matching regime, i.e.,t<utu<T, wheret is independent
of d, it is easy to show the following result, just by using Gronwall’s lemma and regular pe
bation theory. We thus omit the proof.

Lemma V.4: Let the time interval(t,T) be such that the solutions to (4.38), (4.40) satisfy
condition,

0¹$aC~ t !ut<t<T, 0,d,d0%[P, ~5.18!

where the corresponding potential,

VC~x,d!5mC~x,d!, xPP, ~5.19!

is the nondegenerate eigenvalue of g(x,d) corresponding toFC(x,d). Let

ṼC~x,d!5m0
C~x!1dm1

C~x!1d2m2
C~x!, xPP, ~5.20!
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be the second-order perturbation expansion formC(x,d). We define a˜ C,h̃C,ÃC,B̃C,S̃C as above with
the conditions,

ãC~t!5aC~t!1o~d2!, h̃C~t!5hC~t!1o~d2!, ~5.21!

ÃC~t!5AC~t!1o~1!, B̃C~t!5BC~t!1o~1!, ~5.22!

S̃C~t!5SC~t!1o~d2!, ~5.23!

and

F̃C~x,t,d!5FC~x,0!ei l̃C(x,t,d), ~5.24!

wherel̃C(x,t,d) is given by (4.54) withFC(x,0) in place ofFC(x,d) and

l̃C~x,t,d!5lC~x,t,d!1o~1!. ~5.25!

Then there exists a solutionc(x,t,d) to Eq. (4.13) such that

c~x,t,d!5F~ ix2ãC~ t !i /d12d8!w j~ÃC~ t !, B̃C~ t !, d2, ãC~ t !, h̃C~ t !, x !eiS̃C(t)/d2
F̃C~x,t,d!1o~1!

~5.26!

holds true in the L2-sense and for allt<t<T.
Remark:We have the familiar explicit formulas,

m0
C~x!5mC~x,0!, ~5.27!

m1
C~x!5^FC~x,0!uW~x!FC~x,0!&, ~5.28!

m2
C~x!52^FC~x,0!uW~x!~h~x!2mC~x,0!!r

21W~x!FC~x,0!&, ~5.29!

where the reduced resolvent is given by

~h~x!2mC~x,0!!r
215(

j ÞC

uF j~x,0!&^F j~x,0!u
~m j~x,0!2mC~x,0!!

. ~5.30!

The above result has to be modified for times close to the matching regime, since in tha
degenerate perturbation theory is required to define the potential. Indeed, the approximate
tial chosen in the lemma diverges asx→0, so that Gronwall’s lemma cannot be used as it stan
Let us find the modified potential from perturbation theory.

The two eigenvalues ofg(x,d) which are of interest to us,mA(x,d) andmB(x,d), are given
by the spectrum ofP(x,d)(h(x)1dW(x)1V2(x)). This operator is represented in the smoo
orthonormal eigenbasis~4.21! by the matrix~4.22!, which we can expand to second order ind for
any x in a neighborhood of the origin, since the projectionP(x,d) entering the definition of the
basis~4.21! is regular. Hence we can write

gi~x,d!5S b~x,d! g~x,d!1 is~x,d!

g~x,d!2 is~x,d! 2b~x,d!
D 1V̄~x,d!, ~5.31!

where

b~x,d!5b0~x!1db1~x!1d2b2~x!1O~d3![B3~x,d!1O~d3!, ~5.32!

g~x,d!5g0~x!1dg1~x!1d2g2~x!1O~d3![G3~x,d!1O~d3!, ~5.33!
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s~x,d!5s0~x!1ds1~x!1d2s2~x!1O~d3![S3~x,d!1O~d3!, ~5.34!

V̄~x,d!5V̄0~x!1dV̄1~x!1d2V̄2~x!1O~d3![V3~x,d!1O~d3!, ~5.35!

with the errorO(d3) beingC` in x, and@see~4.30!#,

b0~x!5rx1O~x2!, b1~x!5O~x!, ~5.36!

g0~x!5O~x2!, g1~x!5r 1O~x!, ~5.37!

s0~x!5O~x2!, s1~x!5O~x!. ~5.38!

Let us set

s~x,d!5A~B3~x,d!!21~G3~x,d!!21~S3~x,d!!2 ~5.39!

and define our~explicit! modified potential by

ṼC~x,d!56s~x,d!1V3~x,d!, ~5.40!

where the sign is chosen according to the value ofC. It is easy to check that by construction,

VC~x,d!2ṼC~x,d!5O~d3! ~5.41!

asx→0. As above, we employ tilde to mark the values generated by the modified potentia
only consider the dynamics for positive times, the other case being similar.

To define the perturbed classical trajectory, we will start integrating Newton’s equations
a positivet0(d)5dk, for some 2/3,k,1, using as initial condition the explicit asymptotic e
pansion given in Corollary 2.1 of Ref. 13,

Corollary V.5: In the outer regimed→0, t→0, utu/d→` and t3/d2→0, we have

aB
A
~ t !52]xV̄3~0,d!

t2

2
1h0~d!t6

r

h0~d!
dt

7r F t2

2
1

d2 ln utu
2~h0~d!!2 1

d2

4~h0~d!!2 ~112 ln~2h0~d!!!2
d2 ln d

2~h0~d!!2G
1O~ t3!1O~d4/t2!.

The asymptotics forhC(t) in the same regime is obtained by termwise differentiation of the ab
formulas up to errorsO(t2)1O(d4/t3).
The choice oft0(d) ensures that

ã~ t0!5a~ t0!1o~d2!, ~5.42!

h̃~ t0!5h~ t0!1o~d!. ~5.43!

Whereas the error is small enough for the position, it is not the case for the momentum. Hen
resort to energy conservation in order to determine the momentum with sufficient accuracy

Let us first note that due to the uniform boundedness of the force induced by the potentiVC

andṼC, there existst.0, small but independent ofd, and constants 0,C1,C2,`, such that as
long astP@2t,t#,

C1,hC~ t !,C2 , ~5.44!

and similarly forh̃C.
The unperturbed energy is given by
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EC~d!5~hC~ t !!2/21VC~aC~ t !,d!5~h0
C~d!!2/21VC~0,d!

[ẼC~d!1VC~0,d!2ṼC~0,d!, ~5.45!

where the perturbed energyẼC(d) is explicit. Hence

hC~ t !5A2~EC~d!2VC~aC~ t !,d!!.0 ~5.46!

holds for tP@2t,t#, and we can defineh̃C(t) by energy conservation so that

h̃C~ t !ªA2~ẼC~d!2ṼC~ ãC~ t !,d!!

5hC~ t !1O~ṼC~ ãC~ t !,d!2VC~aC~ t !,d!!1O~ṼC~0,d!2VC~0,d!!

5hC~ t !1OS sup
x→0

uṼC~x,d!2VC~x,d!u1ãC~ t !2aC~ t ! D . ~5.47!

Thus using formula~5.47!, we make an error inhC of the same order as the error we make inaC

andVC.
Next we turn to the approximationsÃC(t) and B̃C(t). They are defined as solutions to th

system~4.42! with ṼC in place ofVC and initial conditions att56t0 , given by

S ÃB
A
~ t !

B̃B
A
~ t !

D 5S A~0!

B~0!7sign~ t !irA ~0!/~h0~d!!
D . ~5.48!

It remains finally to consider the perturbed eigenvectorsF̃C(x,t,d) ~where we dropped the inde
referring to the sign oft). The restrictions to the support ofF mentioned in lemma V.3 and th
estimate~5.44! imply that if we impose the condition

12d82k.0, ~5.49!

we can write

x5a~ t !1O~d12d8!>ct~11O~d12d82k!>cdk ~5.50!

for some positive constantc, and the same estimate is true witha replaced byã.
Hence in the considered regime the eigenvaluesmC(x,0) of P(x,0)(h(x)1V2(x)) display a

gap that is at least of orderx5O(dk)—see the behavior~4.30!—and we call the correspondin
eigenvectorsxC(x). We define our perturbed static eigenvectors by

F̃C~x,d!5xC~x! ~5.51!

and similarly, the phase corresponding to time dependent perturbed eigenvectorsF̃C(x,t,d)—in
view ~5.11!—by

l̃Cr~v,t,d!5 i E
t0(d)

t

dsh̃~s!^F̃C~v1ã~s!,d!u]xF̃C~v1ã~s!,d!&, ~5.52!

where we used the new variables~4.56! and ~4.60!.
The next lemma tells us that our definitions of (ãC(t),h̃C(t)), (ÃC(t),B̃C(t)), andF̃C(x,d,t)

are accurate enough for our purpose. The proof can be found in the Appendix.
Lemma V.6: With the definitions above, there exists a positivet such that for all t

P@ t0(d),t# we have
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ãC~ t !5aC~ t !1o~d2!, ~5.53!

h̃C~ t !5hC~ t !1o~d2!, ~5.54!

ÃC~ t !5AC~ t !1o~1!, ~5.55!

B̃C~ t !5BC~ t !1o~1!, ~5.56!

F̃~x,t,d!5F~x,t,d!1o~1!. ~5.57!

Hence, with the definitions made above, we have a perturbed B–O state given by~5.10! that
is explicitly expressed by means of perturbation theory ind ~modulo finding the solution of the
classical equations of motion, of course! and which yields an approximation of the solution to t
Schrödinger equation~4.13! for finite time intervals asd→0. In particular, putting together ou
results, we get the following statement:

Theorem V.7: Adopt the hypotheses (H1) and (H2) and assume the behaviors (4.30). Su

that 2/3,k,1 andt is as in the above lemma. Letc̃ j
C6(x,d,t) with utu>dk be a perturbed B–O

state according to (5.10) constructed by means of the approximate quantities considered in
V.4 if utu>t and in lemma V.6 ifdk,utu,t, subject to the condition that all classical quantitie
agree at the instants t56t. Let c(x,d,t) be a solution to Eq. (4.13) withc(x,d,2T)
5c̃ j

B2(x,d,2T). Then,

c~x,d,t !5c̃ j
B2~x,d,t !1o~1!, ~5.58!

holds asd→0 for all 2T<t<2dk, while

c~x,d,t !52e2pr /2h0
c̃ j

A1~x,d,t !1e2pr /4h0Apr

h0

eil(d)

GS 11
ir

2h0D c̃ j
B1~x,d,t !1o~1!

~5.59!

holds for all dk<t<T, with l(d) given by (4.78).
Remarks:

~1! As a direct corollary, we get that to leading order, the transition probabilityP from the initial
level B to the levelA is given by the Landau–Zener formula,

P5e2pr /h0
1o~1! ~5.60!

as d→0, wherer is defined by the behavior~4.30! of the ‘‘molecular’’ Hamiltonian around the
avoided crossing andh0 is the initial classical momentum, see~4.40!.
~2! It is possible also to give an explicit approximation of the wave function in the inner
regime, 2dk<t<dk, in terms of quantities coming from perturbation theory. However,
temporal region being so short, it is not crucial for most applications to have a detailed ap
mation there.
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APPENDIX

Proof of Proposition IV.2:It is enough to show that the norm ofz l
1 in ~4.81! is small and to

apply to Lemma IV.1. Expression~4.15! together with~H1! show that we only need to control th
effect of p52 id2]x andp25(2 id2]x)

2 on C l(x,t,d), since for anyc we have

iY~x,]x ,d!ci<C~d4ip2ci1d6ipci !. ~A1!

First consider the outer temporal region and the form~4.66!. We know from the computations in
Ref. 18 that

i~p2h!w l~A, B, d2, a, h, • !i5uBudAl 11/2, ~A2!

i~p2h!2w l~A, B, d2, a, h, • !i5uBu2d2A~6l 216l 13!/4. ~A3!

Moreover, we estimate

upF~ ix2aC~ t !i /d12d8!u<c1d11d8, ~A4!

up2F~ ix2aC~ t !i /d12d8!u<c2d2(11d8), ~A5!

where the constantsc1 ,c2 depend onF only. Away from the crossing region, the ‘‘electronic
eigenvectors are well defined and smooth in (x,d). Hence we only need to consider what is goi
on in the neighborhood ofx50 to get an upper bound on the effect ofp andp2 on the eigenvec-
tors FC

6(x,t,d) given by ~4.53!. We drop the indices and consider

F~x,t,d!5eil(x,t,d)F~x,d!, ~A6!

whereF(x,d) denote some static eigenvectors andl(x,d,t) the corresponding real valued func
tion defined by~4.54!. We compute

]xF~x,t,d!5eil(x,t,d)@]xF~x,d!1~ i ]xl~x,t,d!!F~x,d!#, ~A7!

]x
2F~x,t,d!5eil(x,t,d)@]x

2F~x,d!12~ i ]xl~x,t,d!!]xF~x,d!$ i ]x
2l~x,t,d!

2~]xl~x,t,d!!2%F~x,d!#. ~A8!

As h,c j ,]xc j ,]x
2c j ,]x

3c j are allO(0) as (x,t)→(0,0) in the support ofF, we have

]xF~x,d!5O~]xu~x!1]xw~x!!1O~0!, ~A9!

]x
2F~x,d!5O~~]xu~x!!21~]xw~x!!21]x

2u~x!1]x
2w~x!!1O~0! ~A10!

in the norm of the ‘‘electronic’’ Hilbert space. In expression~4.60! for l, we first check by
inspection that in all cases,

^Fu]xF&5O~]xw!1O~0! ~A11!

~see, e.g.,~3.50! in Ref. 13! since all functions ofu andf are uniformly bounded and, moreove
the factor of]xw is a function ofu only. Hence, by further differentiation we get

]x^Fu]xF&5O~]x
2w1]xw1]xw]xu1]xu!1O~0!, ~A12!

]x
2^Fu]xF&5O~]x

3w1]x
2w]xu1]xw]x

2u1~]xw!2

1]x
2w]xw]xu1]x

2u1~]xu!21]xu1]xw!1O~0!. ~A13!
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It remains to estimate]xw and]xu. We have

w~x,d!5arctan~s~x,d!/g~x,d!! ~A14!

providedg(x,d) is different from zero. Hence using~4.30! we get

]xw~x,d!5
g~x,d!]xs~x,d!2s~x,d!]xg~x,d!

g2~x,d!1s2~x,d!
, ~A15!

so that with the help of estimates of the typeugu/Ag21s2<1 we arrive at

]xw5OS ]xg1]xs

Ag21s2 D . ~A16!

By similar operations we eventually obtain

]x
2w5OS ]x

2g1]x
2s

Ag21s2 D 1OS ~]xg!21~]xs!21]xg]xs

g21s2 D ~A17!

and

]x
3w5OS ]x

3g1]x
3s

Ag21s2 D 1OS ]x
2g]xs1]x

2s]xg1]x
2g]xg1]x

2s]xs

g21s2 D
1OS ~]xg!2]xs1~]xs!2]xg1~]xg!31~]xs!3

Ag21s23 D . ~A18!

Assuming further that

ixi5O~dk!, j,2/3,k,12j,1, ~A19!

we get from the behavior~4.30! in this region

]xw5OS 1

d12kD , ~A20!

]x
2w5OS 1

d D , ~A21!

]x
3w5OS 1

d22kD . ~A22!

Then we consider

u~x,d!5arccosS b~x,d!

Ab2~x,d!1g2~x,d!1s2~x,d!
D . ~A23!

By computing derivatives and estimating as above, we easily get

]xu5OS ]xb

b21g21s2D1OS ]xg1]xs

A~b21g21s2!~g21s2!
D , ~A24!
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]x
2u5OS ]x

2b

b21g21s2D 1OS ]x
2g1]x

2s

A~b21g21s2!~g21s2!
D 1OS ]xb~]xg1]xs!

~b21g21s2!A~g21s2!
D

1OS ~]xg!21~]xs!21]xg]xs

A~b21g21s2!~g21s2!
D 1OS ~]xb!2

Ab21g21s23D . ~A25!

Using ~4.65!, dkC>utu>d12j, and~A19!, we thus find

]xu5OS 1

d2(12j)D , ~A26!

]x
2u5OS 1

d3(12j)D . ~A27!

Gathering the different pieces, we obtain for the derivatives ofl in the regime just described

l~x,t,d!5O~ t/d12k!5O~1/d122k!, ~A28!

]xl~x,t,d!5O~1/d322j22k!, ~A29!

]x
2l~x,t,d!5O~1/d424j2k!, ~A30!

so that we obtain the following estimates for the derivatives of the vectorF(x,t,d):

]xF~x,t,d!5O~1/d222j!, ~A31!

]x
2F~x,t,d!5O~1/d424j!. ~A32!

We are now in a position to estimate the effect ofp andp2 on the B–O states in the outer tim
regime,

ipc l
Ci5i~pF!w lF

C1F~pw l !F
C1Fw l~pFC!i

<c~d11d81i~p2hC!w l i1uhCu1d2u]xF
Cu!

<c~ l !~d11d81dBC1uhCu1d2j!. ~A33!

We have already used above the fact thatuhCu is uniformly bounded asd andt go to zero, and the
same is true forBC—see Lemma 2.1 and Proposition 2.2 in Ref. 13. Finally we get in the o
temporal regime,

ipc l
Ci<c~ l ! ~A34!

asd→0, wherec( l ) is some constant independent of time. By similar manipulations we also
in the same regime

ip2c l
Ci<c~ l !. ~A35!

Note that the nonvanishing term comes only from the action ofp on the Gaussian statew l , which
yields essentiallyhC as expected, whereas the contribution from the derivatives of the ‘‘electro
eigenvectors and cutoff function vanish. From the definition ofY we get a supplementaryd4

which more than compensates for the denominatord2 appearing in~4.84!,
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1

d2 E
d12j

T

iY~x,]x ,d!c l
C~x,t,d!idt<c~ l !d4. ~A36!

We now need to perform the same type of analysis on the approximate wave fun
c I(y,s,d) given by~4.70! adopted in the inner temporal region. There we use the variables~4.69!
so that the relations

]y5d]x and p52 id]y ~A37!

have to be employed to compute the derivatives of the different pieces in the definitio
c I(y,s,d). In this case we need to show that

1

d2 E
2d12j

d12j

iY~x,]x ,d!c I~y~x,t !,s~ t !,d!idt

5
1

d E2d2j

d2j H E uY~dy1a~sd!,d]y ,d!c I~y,s,d!u2ddyJ 1/2

ds

<
2

d11j sup
2d2j<s<d2j

H E uY~dy1a~sd!,d]y ,d!c I~y,s,d!u2ddyJ 1/2

~A38!

is of order dp for some positivep as d→0. As above, we denoted at that the norm in t
‘‘electronic’’ Hilbert space by a modulus. The estimates~A4!, ~A5! remain valid and we have

upeih(sd)y/du5uh~sd!u<C, ~A39!

up2eih(sd)y/du5uh2~sd!u<C, ~A40!

since h(t) is uniformly bounded in the inner temporal regime. Noting thatx5a(ds)1dy
5O(d12j), we also get from the regularity of the orthonormal basis$c1(x,d),c2(x,d)% around
~0,0! that

upc j~a~ds!1dy,d!u5O~d2!, ~A41!

up2c j~a~ds!1dy,d!u5O~d4! ~A42!

for j 51,2. Finally, the functionsf 0(y,s) and g0(y,s) determined in~4.73!–~4.76! and their
derivatives can be estimated using the following remark. Up to phases, these functions are
as products of a Gaussian, a polynomial iny, a parabolic cylinder function, and a factor 1/d1/2

coming from the normalization of the functionw l . Asymptotically, these parabolic cylinder func
tions, their first and second derivatives are of orderO((s1iyi)0), O((s1iyi)), and
O((s1iyi)2), respectively, wheres5O(d2j). Hence we can write

u f 0~y,s!u<P1~y!e2y2/2uA0u2d21/2, ~A43!

up f0~y,s!u<P2~y!e2y2/2uA0u2d21/2112j, ~A44!

up2f 0~y,s!u<P3~y!e2y2/2uA0u2d21/21222j, ~A45!

whereA0 is the initial condition~4.43! andPj , j 51,2,3, are polynomials iny, the coefficients of
which are independent ofd. They depend onl , the index of the chosen B–O state. Simil
estimates are valid forg0 in place of f 0 . Having
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pc I5eiS(ds)/d2
eih(sd)y/d@~pF1Fh!~ f 0c11g0c2!1F~~p f0!c1

1~pg0!c2f 0~pc1!1g0~pc2!!# ~A46!

and the above estimates, we can write

upc I~y,s,d!u<P4~y!e2y2/2uA0u2d21/2~d11d8111d21d12j! ~A47!

with another polynomialP4 . Hence the right hand-side of~6.38! can be further estimated to giv

1

d11j sup
2d2j<s<d2j

H E upc I~y,s,d!u2ddyJ 1/2

<c~ l !/d11j. ~A48!

By similar manipulations we also get

1

d11j sup
2d2j<s<d2j

H E up2c I~y,s,d!u2ddyJ 1/2

<c~ l !/d11j. ~A49!

We note that here the leading order contribution comes from the action ofp on the phase eihy/d

which givesh. The supplementary factord4 in ~6.1! yields the final estimate

1

d2 E
2d12j

d12j

iY~x,]x ,d!c I~y~x,t !,s~ t !,d!idt<c~ l !d32j. ~A50!

Hence the proposition holds withp532j. h

Proof of Lemma V.6:As noted above, we cannot directly use Gronwall’s lemma as state
the text. Hence we need to prove that the two evolutions stay close enough to each other b
times t0(d) and t, wheret will be small but independent ofd by a more refined analysis. W
consider the indexA and drop it in the notation.

First, it is easy to check the following asymptotic properties as (x,d)→(0,0),

s~x,d!2Ab2~x,d!1g2~x,d!1s2~x,d!5O~d3!, ~A51!

]xs~x,d!2]xAb2~x,d!1g2~x,d!1s2~x,d!5OS d3

Ax21d2D , ~A52!

s~x,d!5rAx21d2 ~11O~x1d!!, ~A53!

]xs~x,d!5O~1!, ~A54!

]x
2s~x,d!5

rd2

~x21d2!3/21O~1!. ~A55!

We collect some preliminary observations on the solutionã(t) to the equation,

ä̃~ t !52]xṼ~ ã~ t !,d! ~A56!

for tP@ t0 ,t# with initial condition satisfying~5.42!. We can chooset.0 independent ofd, such
that

a~ t !2a~ t0~d!!>c0~ t2t0~d!!, ~A57!

for somec0.0 and alltP@ t0(d),t#. This implies easily by means of~5.42! that
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ã~ t !2ã~ t0~d!!>c1~ t2t0~d!! ~A58!

for all tP@ t0(d),t# with a uniform constant. Hence we can write

x21d2uu t
>c3~dk1~ t2t0~d!!!2, ;u tP@ ã~ t !,a~ t !#. ~A59!

Consider now the identities~dropping thed dependence in the arguments!,

ä̃~ t !2ä~ t !5]xV~a~ t !!2]xṼ~ ã~ t !!

5]xAb21g21s2~a~ t !!1]xV̄~a~ t !!2]xs~ ã~ t !!2]xV3~ ã~ t !!

5]x~Ab21g21s2~a~ t !!2s~a~ t !!!1]x~V̄~a~ t !!2V3~a~ t !!!

2]x
2s~u t!~ ã~ t !2a~ t !!1]x

2V3~u t!~ ã~ t !2a~ t !!, ~A60!

whereu tP(ã(t),a(t)). Now the first order derivatives are of orderd3/(dk1(t2t0(d)), whereas
the second order ones are of orderd3/(dk1(t2t0))3—see~A55! and ~A59!.

Hence introducingd(t)5ã(t)2a(t) we get an ODE of the form

d̈~ t !5 f ~d~ t !,t !d~ t !1g~d~ t !,t !, ~A61!

where we have thea priori bounds,

E
t0

t

u f ~d~s!,s!uds<cd2E
t0

t

1/~dk1~s2t0!!3ds<cd2(12k), ~A62!

and since we can assume without loss thatdk1(t2t0(d)),1,

E
t0

t

ug~d~s!,s!u<E
t0

t cd3

~dk1~s2t0!!3 ds<cd3~ u ln~dk!u1u ln~dk1~ t2t0!u!

5O~d3 ln~d!!. ~A63!

Equation~A61! is equivalent to

d~ t !5d~ t0!1~ t2t0!ḋ~ t0!1E
t0

t

dsE
t0

s

du~ f ~d~u!,u!d~u!1g~d~u!,u!!. ~A64!

Let us denote

D~ t !5 sup
sP@ t0 ,t#

ud~s!u. ~A65!

We deduce from the above bounds

ud~ t !u<ud~ t0!u1~ t2t0!uḋ~ t0!u1cE
t0

t

dsD~s!d2(12k)1cd3u ln~d!u

<cS ud~ t0!u1uḋ~ t0!u1d3u ln~d!u1E
t0

t

dsD~s!d2(12k)D ~A66!

and, asD is not decreasing,
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D~ t !<cS ud~ t0!u1uḋ~ t0!u1d3u ln~d!u1E
t0

t

dsD~s!d2(12k)D
<c~ ud~ t0!u1uḋ~ t0!u1d3u ln~d!u1D~ t !d2(12k)!. ~A67!

Sinced2(12k)→0, we find that

D~ t !<c~ ud~ t0!u1uḋ~ t0!u1d3u ln~d!u!. ~A68!

Plugging this into~A64! finally yields

d~ t !5d~ t0!1~ t2t0!ḋ~ t0!1O~d2(12k)~ ud~ t0!u1uḋ~ t0!u!1d3u ln~d!u!. ~A69!

As an immediate consequence of this result and~5.47! we have for anytP@ t0(d),t# with our
choice oft0(d) and initial conditions~5.42!,

ã~ t !2a~ t !5o~d2!, ~A70!

h̃~ t !2h~ t !5o~d2!. ~A71!

Turning to (A(t),B(t)) and their approximations, we first note that by Ref. 13, p. 102,
have with our choice oft0(d),

S Ã~ t0!

B̃~ t0!
D 2S A~ t0!

B~ t0! D5o~1!. ~A72!

Then we consider the equation@equivalent to~4.42! and ~4.43!#,

S A~ t !
B~ t ! D5S A~ t0!

B~ t0! D1E
t0

t S O i

i ]x
2V~a~ t !! 0D S A~s!

B~s! D ~A73!

and a similar one for the approximations with the tilded symbols everywhere. Introducing

D~ t !5S Ã~ t !

B̃~ t !
D 2S A~ t !

B~ t ! D ,

we compute

D~ t !5D~ t0!1E
t0

t S 0 0

i ]x
2Ṽ~ ã~s!!2]x

2V~a~s!! 0D S Ã~s!

B̃~s!
D ds1E

t0

t S 0 i

i ]x
2V~a~s!! 0DD~s!ds.

~A74!

But i(
B̃(t)

Ã(t)
)i5O(1) by Ref. 13,* t0

t ]x
2Ṽ(ã(s))ds5O(d2(12k)) and similarly for the untilded quan

tities. Hence using the same type of manipulations as above, we deduce

iD~ t !i<c~d2(12k)1iD~ t0!i !. ~A75!

It follows that

S Ã~ t !

B̃~ t !
D 2S A~ t !

B~ t ! D5o~1! ~A76!

holds for anytP@ t0(d),t#.
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In order to deal with the ‘‘electronic’’ eigenvectors we consider the perturbation series fo
resolvent (h(x)1V2(x)1dW(x)2z)21 when the argumentz runs through the circle of radiu
umA(x,0)2mB(x,0)u/4 centered at any of the eigenvaluemC(x,0). Integration on this circle yields
the eigenprojectorQj (x,d), j 5A,B, and the estimates

Qj~x,d!5Qj~x,0!1O~dW~x!/umA~x,0!2mB~x,0!u!5Qj~x,0!1O~d/x!, ~A77!

]xQj~x,d!5]xQj~x,0!1O~d/umA~x,0!2mB~x,0!u2!5]xPj~x,0!1O~d/x2!. ~A78!

This, in turn, yields the following estimates on the eigenvectorsF j (x,d) of the perturbed operato
h(x)1dW(x):

F j~x,d!5x j~x!1O~d/x!, ~A79!

]xF j~x,d!5]xx j~x!1O~d/x2!. ~A80!

Now we consider one eigenvectorx j (x) and drop the indexj . We note here that Eq.~3.58! in Ref.
13 shows that

l r~v,t,d!5O~ t/d12k!, ~A81!

so thatl r(v,t0(d),d)5O(d2k21)→0 with d. On the other hand, using the fact thatx(x) is
smooth and thath̃(t) is uniformly bounded on@ t0(d),T# we find

E
t0(d)

t

idsh~s!^F~v,s,d!u]xF~v1a~s!,d!&

5E
t0(d)

t

ids~ h̃~s!1o~d2!!3^~F̃~v,s,d!

1O~d/~a~ t !1v!!!u~]xF̃~v1ã~s!,d!1O~d/~a~s!1v!2!!!&

5E
t0(d)

t

idsh̃~s!^F̃~v,s,d!u]xF̃~v1ã~s!,d!&1o~1!

10~d ln~~ t1v!/~ t01v!!!1O~d~1/~ t0~d!1v!21/~ t1v!!!. ~A82!

Having v5O(d12d8) and ~5.49!, the error terms above can be estimated by

o~1!1O~d ln~d!1d12k! ~A83!

which goes to zero asd→0. It follows then that

l̃~x,t,d!2l~x,t,d!5o~1! ~A84!

and in turn we get

F̃~x,t,d!2F~x,t,d!5o~1!, ~A85!

which concludes the proof. h
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