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Avoided crossings in mesoscopic systems: Electron
propagation on a nonuniform magnetic cylinder
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and Doppler Institute, Czech Technical UniversityeBova7, CZ-11519 Prague

A. Joye®
Institut Fourier, Universitede Grenoble 1, F-38402 Saint-Martin d’Heres, France

(Received 26 January 2001; accepted for publication 5 July)2001

We consider an electron constrained to move on a surface with revolution symme-
try in the presence of a constant magnetic fiBldparallel to the surface axis.
Depending onB and the surface geometry the transverse part of the spectrum
typically exhibits many crossings which change to avoided crossings if a weak
symmetry breaking interaction is introduced. We study the effect of such perturba-
tions on the quantum propagation. This problem admits a natural reformulation to
which tools from molecular dynamics can be applied. In turn, this leads to the study
of a perturbation theory for the time dependent Born—Oppenheimer approximation.
© 2001 American Institute of Physic§DOI: 10.1063/1.1396834

[. INTRODUCTION

Recent advances in experimental physics have made it possible to produce two-dimensional
conducting surfaces of mesoscopic size. In such devices, the mean free path often exceeds the
system size so the electron motion is ballistic and quantum coherence effects play a crucial role.
This gives a motivation to strive for a complete understanding of the quantum mechanics of
corresponding processes. In particular, conducting carbon “nanotubes” which are more or less
uniform cylinders, belong to the family of surfaces that are nowadays experimentally within
reach® Since their discovery, lots of studies have been devoted to the elucidation of the spectral
and transport properties of such devices, in a variety of situations and approximations, see, e.g.,
Refs. 2, 3, 4, and references therein. Nanotubes of different types can be combined, and also
coupled to other carbon structures such as fullerene moletplesiucing a variety of cylindrical
surfaces.

In this paper we study quantum propagation in an “imperfect nanotube” subject to a constant
magnetic field parallel to the tube axis within a simple model. Our model assumes that a single
electron is confined to a surface of revolution with slow variation of the radius along the revolu-
tion axis. Moreover, we assume that the rotational symmetry is weakly violated, either by an
impurity or by an external field. In other words, the used idealization amounts to neglecting the
atomic structure of the tube as well as the interaction between the electrons, but taking into
account the gross shape of the device. Our aim is to study the propagation of the electron along
such an imperfect nanotube in a homogenous magnetic field by means of the time-dependent
Schralinger equation, starting with an initially localized wave packet, and paying a particular
attention to the transitions between angular levels caused by the symmetry breaking perturbation.

To understand the peculiarities of this quantum mechanical problem, it is useful to review
briefly its classical counterpart; this is done in Sec. Il. The first question in the quantum case is the
meaning of the fact that the electron is confined to a surface. The most natural approach, in our
opinion, is to consider the surface as a limiting situation of a thin hard-wall layer. This idea goes
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back to Refs. 6—8 and requires a renormalization in which the transverse contribution to the
energy—blowing-up in the limit—is removed. One gets in this way an additional curvature-
dependent term, in general attractive, to the potential. For the sake of completeness recall that
there has been other recent works treating particle motion on revolution surfaces, see Refs. 9, 10,
11, and references therein. The last two papers aim at solvable models of compact surfaces
(neglecting the curvature-dependent tgrwhile Ref. 9 treats the Schdmger and wave equations

on noncompact cylindrical surfaces without a magnetic field from the PDE point of view.

Having thus found the Hamiltonian of our quantum system, we can analyze its spectral
properties. When the rotational symmetry is preserved, we can peftmimg a suitable gauge
the partial-wave decomposition. We can compute the angular part of the spectrum which depends
on the actual cylinder radius varying along the tube axis. This brings to mind analogy with the
molecular dynamics in which each angular state corresponds to an “electronic” level and the
longitudinal coordinate measured along the axis corresponds to the one-dimensional “nuclear”
configuration coordinate. Furthermore, when the rotational symmetry is broken by a perturbation,
the above analogy remains valid and we may invoke the time-dependent Born—Oppenheimer
approximation to describe the propagation along coupled angular levels according to Refs. 12—14.
Recall that the theory in molecular systems involves a small parameter which is given by the mass
ratio between “electrons” and “nuclei.” In our mesoscopic system, it is replaced by the parameter
e defined as the inverse of the length scale over which the variation of the radius of the nanotube
takes place. Note, however, that we cannot directly apply the theory of Refs. 12-14 in our
perturbative context and a modification is needed as we shall explain in Sec. IV.

The result of the analysis presented below gives a complete and rigorous description to the
leading order of the wave function when the dynamics makes the electron go through a region
where a perturbation couples angular levels. The basic picture is as follows. As long as the
perturbed angular levels along the trajectory remain well isolated, the components of the wave
function referring to the corresponding eigenstates are unchanged, to leading order. When the
unperturbed angular levels display a crossing or an avoided crossing, transitions between the
perturbed angular eigenstates may become non-negligible as in the mentioned molecular analogy,
according to the well known mechanism of Landau—Zener transitions, see Ref. 13. At a heuristic
level, when the electron meets an avoided crossing, we may replace the quantum mechanical
degree of freedom by a classical trajectory of the type—>x,+tv, whereuv is a velocity which
can be considered as constant. This approximation leads to an effective time-dependent two-level
system governing the transitions between the considered levels. The choice of a suitable time scale
making the classical kinetic energyv?/2 constant and nonzero as the inverse length seale
—0 corresponds to the adiabatic limét-0 in the above mentioned effective two-level Hamil-
tonian. Therefore, the transition probabili® is then given by the Landau—Zener formuka
ze*wz’f, where§ is the minimum gap and the constants explicit.

We are going to consider precisely the situation where the transition amplitudes are of order
one, under perturbations of ordgle. In such cases, an initial wave function having a nonzero
component in a single angular eigenspace beforéaheided crossing splits in a nontrivial way
between the corresponding angular eigenstates according to the Landau—Zener formula, again to
leading order.

Let us note here that since the considered perturbations can arise from deformations and/or
external fields, both allowed to vary over a wide range of values, situations where the typical size
of the perturbation scales like the square root of the inverse length scale are certainly realistic. We
choose to focus on these situations because they cause the most dramatic effects on the propaga-
tion. Indeed, we get from the Landau—Zener formula that other scaling laws make the avoided
crossing either similar to a true crossing=£1) or to a set of well separated levelB+£0).

We have already mentioned that despite being based on the 'gaperdescription is not a
direct application of the molecular time-dependent Born—Oppenheimer approximation. Indeed, in
the rigorous derivations of this approximation, the “electronic” spectrum and the eigenstates, i.e.,
the spectrum at fixed coordinate along the rotation axis in our setting, are taken as given data, and
the approximate solution to the molecular Sahinger equation is constructed from this informa-
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tion, see Refs. 12—14. In our situation, by hypothesis, we only have access to that spectrum in a
perturbative sense, and thus we need to develop a perturbative version of the time-dependent
Born—Oppenheimer approximation that only requires knowledge of the leading terms of the
Rayleigh—Schidinger perturbation series. This is done in Sec. V, where the main technical result
of the paper is stated in Theorem V.7. We believe that it is of an independent interest.

Precise statements of our results require a certain amount of notation and are therefore given
below in Proposition IV.2 and Theorem V.7.

II. CLASSICAL MECHANICS

Let us start by describing the classical dynamics of the system. We consider a particle of mass
m and charges constrained to move on a smooth surf&with revolution symmetry around the
axis OX in a homogeneous magnetic fidbd=Be,, B=0, parallel to this axis.

Using cylindrical coordinates, the surface is characterized by the smooth positive real valued
function R 3 x—R(x) € R} such that

X=X
y=R(x)cog 0), (2.1
z=R(x)sin( )

where &, 0) e RX St. The squared length element 8rs ds’=(1+R’(x)?)dx*+ R(x)?d#?, so
the corresponding metric tensgy;(x, ¢) is given by

1+R'(x)2 0
gij(x,0)= 0 R2(x) " 2.2
Using the circular gauge, we express the vector potential at the surface as
0
R(x)B .
A(r)=iBAr= RxB —sin(o) | - 2.3
cog 0)
This makes it possible to compute the Lagrangian function of the system,
L(r,i)= imi%+erA(r)
1 .. eBR(x)0
=§m(5<2(1+ R’ (x)?) + R?(x) 6%) + T() (2.9

The system is integrable; we find that the momenfpyw (JL/36) and the kinetic energy are
two constants of motion,

py=mRE(x) 0+ eB+R2(X), (2.5
T= Im(X3(1+R’(x)?)+R3(x) 6%). (2.6)

Using (2.5 to expressb as a function ok in (2.6), we deduce
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T—1 X(1+R'(x)? ! ] B eszR2
= 5> MX(I+R' (X)) + 5~ R2x)  PeBY (x)
(27)
1
=§mx2(1+R’(x)2)+V(R(x)).
The effective potentiaR* s R—V(R) e R, admits a unique minimum &, such that
0 if epy;=0
Ro= \/M and V(Rp)=1 |epyB . (2.9
le[B ——— if ep,<0
m

Note that ifp,= 0, the potentiaV(R) is harmonic onR* . From these considerations we deduce
easily, in particular, that motions characterized %§t)=0 correspond either tox(t),6(t))
=(Xg,0p) for any initial conditions Xq,6y), or to (X(t),8(t))=(Xy,00— (eB/m)t), where
le|B/m=:w, is the cyclotronic frequency, for any initial conditionxy(6,), or finally to
(x(1),0(t))=(Xg, 6+ wt), where w is any constant, for initial conditionsxg, ;) such that
R’ (%) =0. In caseR’ (xg) # 0, the first two motions are stable, whereas in the last one the stability
depends on the local properties Rfaroundx,. In a similar way one can treat the general case
with X(t) #0. The motion is governed by the effective potential determined by the sh&heaotl
the potential minima correspond to the points where the angular motion has the cyclotronic
frequency.

Furthermore, notice that the addition of a supplementary exterior pot&#itidepending o
only, does not effect the functional dependence ptind its value remains independent of time.
It is just the second constant of motion which is changed in the sense that the total Energy
=T+ W is now constant.

Finally, let us also give the corresponding Hamiltonian function of the system for future
purposes. Withp,=dL/dx we compute

) 02 1 ( eBRZ(x)>2)
HX,0.0:P0) = | s R 0% T 2mREx) | P~ 2 '

(2.9

In the sequel we shall consider our charged particle to be an eleetror,|e| <0, and use the
rational units in whiche|=m=1 as well asi=c=1.

. QUANTUM MECHANICS

Consider now the same system in the framework of quantum mechanics. For the purpose of
this section, the functioR:R— R, defining the surfac& is supposed to be strictly positive and
C3: later we shall impose stronger requirements.

The Hilbert space of such a system is thif§S). To construct the Hamiltonian, however, it
is not sufficient to replace the classical variable&i®) by the corresponding canonical operators.
The most natural quantization consists in taking a particle confined to a cylindrical layer built over
S and squeezing its thickness to zero, c.f. Refs. 6—8. One has of course to renormalize the energy
in the limit, by subtracting the blowing-up part corresponding to the transverse motion.

In the absence of magnetic field, one arrives in this way to the Hamiltonian which is equal to
the sum of the respective Laplace-Beltrami operationes 1/2 in our unitsand the curvature-
induced potentiaV/(x) = — 5(21(X) *—e2(x) " 1)?, whereg;(x), j=1,2, are the principal cur-
vature radii at the given point. The second part is of a purely quantum nature and has no classical
counterpart. In the present case the locally elliptical intersecti@wath the normal plane has the
radiusg ;(x) =R(x), while for the intersection with the axial plane we find

1+ R’ 2\3/2
Qz(X):—%; (3.1
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the signs ofpq, 0, coincide if both the osculation radii point the same side of the surface.
Consequently, the curvature-induced potential equals

V(x)= 1+ (3.2

R(X)R"(x) )2
T

~ 8R(x)2 (1+R'(x)?)

To express the kineti€Laplace—Beltrami part, — 3 |g| *?9;|g|¥%g" 9;, we use(2.2 and the
corresponding contravariant tensor n

g’ ()= 3.3

(1+R'(x)?) "t o)
0 R(x)"2)"

The Hamiltonian in the presence of magnetic field is then obtained by replacing the angular
momentum operatap,= —id, by p,—A(X)R(X), whereA(X):=A4(r); it acts as

- 1 5 R(X) s 1 (_, BR(x)Z)2
PROOVITR 02 VIIR (02 2Rx)Z| 77 2
1 R(X)R"(x) )2
- 8R(X)2 1+ (1+ RI(X)Z)S/Z (34)

on an appropriate domain Li?(Rx S, R(x) V1 + R’ (x)%dxd6). Due to the rotational symmetry it
has a simple partial-wave decomposition; litg, component is obtained replacingid, by its
eigenvaluem. In this way the spectral analysis bf is reduced to a family of one-dimensional
Sturm-—Liouville problems. The magnetic term also has a natural meaning; we have

BR(x)2 ®(x)
AXRX) = ——F—=5—=¢(X), (3.5

where ¢ is the magnetic flux value measured in the standard unit§ (2, or the number of flux
guanta passing through the cross section of the cylinder.

It may be convenient to get rid of the weight factor replacing the opetdtabove by an
operator H on L?(R)®L?(SY). This is achieved by the unitary transformatign—RY?(1
+R’2)Y4y;. The only term in(3.4) which changes is the first one: by a straightforward computa-

tion we find

~ 1 ( _ BR(x)Z)2

H= _&X2(1+R’(x)2) Iyt 2R(x)2 —idyt — +Vaq(X) +Vao(X) (3.6
with

- 1 ( R(X)R"(x) )2
V21(X)_ - 8R(X)2 1 (1+ RI(X)2)3/2 (37)
and
B R/Z 7 R!ZRHZ R"+ R(R’RW‘F RHZ)
VZZ(X)_ - 8R2(1+R/2)_§(1+R/2)3+ 4R(1+R72)2 )(X) (38)

Spectral properties of the Hamiltonian are influenced by the geome8y®fippose, e.g., that
the latter has asymptotically constant radius,Jim. R(x) =R,. In the absence of magnetic field
the problem is similar to that of a locally deformed Dirichlet s&if (it is simpler, however,
unless a mode-coupling perturbation is introdycéa the s-wave part the effective potentigl,;
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creates a potential well whehis locally squeezed and a barrier in case of a protrusion. For higher
partial waves and nonzero magnetic field, of course, the effective potential consists of several
competing contributions.

IV. QUANTUM PROPAGATION

Our main interest in this paper is not so much the spectrum of the Hamilté®idrithan the
way in which an electron propagates over the surface of the cylinder. We will be particularly
interested in the limiting situation when the radius modulation is gentle. This is conventionally

described by means of the scaling transformatienex which turnsH into H(e) and by consid-
ering the asymptotic behavior &s—0. This can be considered as a semiclassical limit since as
€—0 the wave packet size becomes ultimately much smaller than the length scale of the radius
variations.

It is clear from the preceding section that the effective poteMjat V,,+V,, is then domi-
nated by the first term. Moreover, the operat@sl) and(3.6) coincide to leading order, which
will be the object of the following investigation. We write the actiontdfe) as

€ BRZ(X))Z

1 .
H(G)Z—?ﬂxmax‘l'vz(x,e)'f' m(—lﬁg'FT (41)
on a suitable domain of?(R)®L?(S'), where R(x), V;(x)=R’(x)? are smooth orR and
V,(X,€) is smooth orR X[ — €, €q], for someey>0. Introducing arR-dependent operatdr(R)
for Re R% by

1 _ BR?\2
h(R)Zﬁz —I(99+T (4.2

on a suitable domain df?(S!), we can regardi(€) as an operator oh?(R,L2(S')) which we
write as

E2

Hl&)= = 5 dqreavx

dyt+Vo(X,€)+h(R(X)). 4.3

The spectral analysis ¢f(R) is straightforward and yields a family of simple eigenvalues,

1 2\ 2
U(h(R))Z{)\n(R),nEZ}:[ﬁZ n+T ,nEZ], (44)
with the corresponding eigenvectors,
en(0)=expind)/\27, nel. (4.5

Note that the eigenvalues,(R) correspond to the classical effective potentigR) in (2.7) with
neZ in place ofp,. Forn#m we have

_(n—m) ((n+m) )
)\n(R)_)\m(R)_T R2 +B (46)
so that
NG
M(R) =Ap(R)&n+m<0 and R= Rn,m: T 4.7
Moreover,
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B (n—m)?

An(Rpm)=— > m> . (4.8

Hence any pair of levels\(,(R),\ n(R)) with n+m<0 exhibits one and only one crossingRs
varies, whereas other pairs never cross. The crossing points are well separated,

{Rom: (n,m)eN?, n+m<0}=[\/§:kel\*], (4.9

with Vk/B=R,, _+n), NN, and the values of the different pairs of levels crossingkdB, for
k fixed, are also well separated since

B (2n+k)
M(Ro—krm) =5~ (4.10

We note also thak,(R)—\_,(R)=Bn.

Thus, depending on our choice of the functig(x), the spectrum oh(R(x)) may display
real or avoided crossings of an arbitrary width. Our aim is to adapt the techniques developed in
Ref. 13 to describe the propagation of Gaussian wave padiketee variablex) through these
(avoided crossings and, in particular, the splitting of the solution among the different angular
levels\,(R(x)) involved. In particular, we can also suppose that the shape of the tube is gently
changing in the way described above with the parametatering in the definition oR; in any
case, it will then turn out that the natural scale for the phenomena we want to descibe is
=.e. We henceforth adop® as our small parameter and consider smooth functi®s 6)
defined onR X[ — &y, 8p]. This means, in particular, that both the functiépand the operaton
will depend on bothx and §in a smooth fashion.

However, the model discussed so far cannot exhibit transitions because of the rotational
invariance which forbids passages between different lexgls To get a nontrivial result, we
perturb our system by introducing a real valued potendMi(x,d,5), which is smooth orR
X StX[— 8y, 8,] and violates the symmetry. For example, we can add a constant electric field in
the directiond=sin(a)e,+ cos)e, , wherea ¢ Z. As a consequence, we lose integrability of the
system on the classical level, whereas in the quantum setting transitions between the different
perturbed eigenstates become possible. By assumption, when considerédzbasded operator
on L?(SY) for (x,6) fixed, the operatosW(x,,5) does not commute with(R(x,8)), and
therefore it perturbs the spectrusm{h(R(x,5)). Note that for &, o) fixed, the above mentioned
electric field gives rise to a bounded operator lot{S*). For the time being, let us keep the
general forméW(x, 6, 6) for the perturbation and describe the differences and similarities of the
present case with respect to the paper.

We introduce the operatay on (a suitable domain ofL2(R,L2(S)) by

g(x,8)=h(R(x,8))+V,(x,8)+ sW(X, 6, ) (4.11

so that the perturbed full Hamiltonian rea@gith a slight abuse of notatigon

H(6)=— dytg(X,9). (4.12

2 X1 5V, (x,0)

Without loss of generality, we can assume tlfigtW(x,,8)d6=0 by modifying V,(x, ) if
necessary. We require the different potentials introduced so far to be smooth so that the following
regularity hypothesis is fulfilled.

HO: The operator g is strongly Cin (x,8) in RX[— &y, ].

We want to approximate the solutions to the Sclimger equation in a suitable time scale,
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J
iaza—;ﬂ:H(a)w, (4.13
for t in a finite time interval, a$— 0, for initial conditions of a “coherent state” type, which we
shall describe in detail below.

The first difference in comparison with Ref. 13 comes from the fact that the kinetic term gives
rise to a perturbed Laplacian,

5t 1 s, 8 V1(X,6)
— Oy O0y=— = 0t = Oy a0y
2 X1+ 6%V,(x,6) 2 2 X1+ 6%V4(x,6)
64 2
== S5+ Y(X,0x,9), (4.14
where
Vi(x,8)  (—i8%30? & Vi(X,6) -
Yo == s 2 2| T a1
(4.15
We assume
H1:
sup  |VF(x,8)|<®, k=0,1. (4.16
xeR,|8|=6

The factoré® in front of the operatoly makes it possible to show that the influence of this term

is negligible on the propagation of Gaussian states, so that the approximation given in Ref. 13
remains valid. This claim is the main result of this section and will be made precise in Proposition
IV.2 below.

The second difference in comparison with Ref. 13 is that unless we have an explicitly solvable
situation—and such situations are rare—in general we do not know the exact eigenvalues and
eigenstates of the operatg(x, 5§). However, the approximation derived in Ref. 13 is constructed
on the basis of this exact knowledge. A way out is to use an incomplete information coming from
the perturbation theory. Our second result, Theorem V.7, stated in Sec. V says that it is enough to
know the first few terms in the perturbation series in order to construct an approximation that
describes the propagation, even in the presence of avoided crossings, and that the result is as good
as the one derived in Ref. 13.

The rest of this section is organized as follows. We proceed with the description of the
ingredients needed for our approximation, in analogy with Ref. 13, assuming that we know the
exact diagonal form ofj(x,8). Then we prove that the perturbation of the Laplacian by the
operatorY does not effect the validity of this approximation. The next section will be devoted to
the perturbative aspects mentioned above.

We will denote byu,(X, ) the eigenvalue ofj(x,5) such thatu,(x,8) —\,(R(X,8))—0 as
6—0, for x such thaiR(x, ) is far fromR, ,. The corresponding eigenvector will be denoted by
®,(x,0). If R(x,0) lies in a neighborhood oR, ,,, we will denote byu 4(X,8)= ux(x,8) the
almost degenerate perturbed eigenvalues with the corresponding eigenvéctprss) and
®5(x,6). The reason for such a convention is that the unperturbed eigenvgl(ie€x, 5) may or
may not cross, are therefore the labeling of flie in terms of the indicesr and m is not
straightforward. LeQ,(x,5) be the one-dimensional spectral projectiorgfx, 5) corresponding
to un(X,8) in the first case andP(x,5) be the two-dimensional spectral projection g{ix, d)
corresponding tqu 4(X,8)= us(x, ) in the second case.

The situation we will study is that of avoided crossings of minimum width of ofd&vithout
loss of generality, we can assume the avoided crossing takes place in a neighborkxeod. of
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More precisely we suppose that:

H2: The eigenvalueg 4(x,8) and ug(x,8) are such that(u ,— uz) " P{0}=(0,0) in a neigh-
borhood of(0,0 andinf, ., (. 4(X, 8) — (X, 8)) =c|8|>0 for §+0, where c is a constant and |
is a small interval containing.

We also set

g|(X,9)=g(x,6)P(x,6), (4.17)

9. (x,0)=9(x,6)(1-P(x,9)). (4.18

We know from Ref. 17 that locally aroun@,0) there exists an orthonormal basis, denoted by
{yn(x,68),,(x,8)}, of P(x,8)L2(SY), which is regular in %, 8) around(0,0). It is constructed in
the standard Gram—Schmidt way: we choose an orthonormal fasig,} of P(0,0)L?(S') and

set
P(X,8)Ys
G = 10 Syl 419
Bo(%.5) = (I=] 1(X, ) b1(X,8) ) P(X, 8) ra (4.20

[(T=[1(X, 8) ) p1(X, ) ) P(X,8) sl

Moreover, there exists &(6) independent unitary transforbh such that in the orthonormal basis,
Pi(x,0)=Ug;(x,8), =12, (4.21
the matrixg(x, 6) takes the form
9)(X,8)=01(x, 8) +V(x,5)

_ B(x,6) y(x,8) +io(x,8)| _
“Lxo-ioxe  —pxe TV (422

whereV(x,&)ztraceQ(x,5)P(x,5))/2 is a regular function ofx,8) around the origin and
B(X,8)=byx+b,5+0O(2),

¥(X,8)=C26+ O(2),

(4.23
o(x,6)=0(2),
V(x,8)=0(0),
whereb;>0,c,>0,b,e R, and the following notation is used for the sake of brevity:
O(m)=O((x*+ 6%)™2). (4.24

In order to get rid of thes-dependence in the leading orderg(x, 8) in (4.22, we introduce
new variables,

x'=bx+b,8, 6'=c,8, t'=b3/cat. (4.2
In terms of these variables, the Sctiirger Eq.(4.13 for

(X' t) = d(x(x",6"),t(t")) (4.26
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becomes
-5/2(9 ltr_ 5,4 1 /t/_l_(:‘21 /5/ 55/ /t/
l qu(X. )= Tﬂx'mﬁx/¢(X, ) E{Q(X(X, ),6(8")) p(x",t")
(4.27
in the limit 8’ — 0, with
Vi(x',8")=Vi(x(x",8"),8(8"))lc5, (4.28
x; & _
gj(x(x",8"),8(8")) = sy +0O(2)+V(x(x',8"),8(5")), (4.29
1

whereV(x(x',48"),8(8")) andVi(x’,8") are regular in X’,5") around(0,0) and O(2) refers to
x" and&’. We introduce the fixed parameter c5/b?>0 andhenceforth drop the primes on the
new variables We assume thag(x,5) has the form(4.22 with the following local behavior
aroundx=0 and§=0:

B(X,0)=rx+0O(2),

y(X,8)=rd+0(2),

(4.30
o(x,6)=0(2),

V(x,8)=0(0)

with r>0.

Let us next describe the building blocks of our Born—Oppenheimer states.

We begin with the definition of the semiclassical “nuclear” wave packets denoted as
®j(A, B, fi, a, 5, x). This definition comes from Ref. 18; we have specified it to our setting where
x e R. Since Ref. 18 provides a detailed discussion of these wave packets, we refrain from proving
all their properties here.

We assuma e R, ne R ands = 6°>0. Let us stress that while the last symbol is useful when
adapting the results of Ref. 18, it has nothing to do with the Planck’s constant. We also assume that
A andB are nonzero complex numbers that satisfy

ReAB=1. (4.30)

This condition guarantees that R& ! is positive, since (RBA 1) "1=|A]2.
Our definition of (A, B, %, &, 7, X) is based on the following raising operator:

1 |— — d
A(A,B,f,a,7)*=—|B(x—a)—A —ih&—n . (4.32

2k

Definition: For the indexj=0, we define the normalized complex Gaussian wave packet
(modulo the sign of the square rodty

©o(A, B, %, a, 7, x)=7 Y% VA" 2xexp—B A Y(x—a)?/(2h)+ip(x—a)lh}.
(4.33

Then for any positive integgr we define
1 _
¢j(A,B,h,a, 5, -)=—=(A(AB,h,a,7)*) ¢o(A,B, 1,4, 7, -). (4.39

it
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Remarks:

(1) ForA=B=1, =1, anda= =0, the ¢;(A, B, %, a, 5, -) are just the standard harmonic-
oscillator eigenstates with energigs 1/2;

(2) ForeachA, B, 71, a, andz, the sef ¢;(A, B, %, a, , - )} is an orthonormal basis far’(R);

(3) The position and momentum uncertainties of $¢A, B, %, a, 5, -) areJ(j+1/2)% |A| and
V(j +1/2)4|B|, respectively;

(4) When we solve approximately the ScHilmger equation, the choice of the sign of the square
root in the definition ofpy(A, B, %, a, 7, -) is determined by continuity ib after an arbitrary
initial choice;

(5) Defining the scaled Fourier transform to be

[F W (&)= (2mh) 12 quf(x)e-‘fX’ﬁdx, (4.39
then
[Frei(AB.h,a,7, )](§)=(—i) e ™ o (B,Af,5~a,é. (4.36
We also define
VE(x, 8) = V(x,8) = VBA(X, 8) + 72X, ) + 02(X,0), 4.37)

wherexe R, 6>0. Leta‘(t) and (t) be the solutions of the classical equations of motion,

d
G 0=, (4.39

d 7°(t)=—-VV4at),s), C=AB,

dt
(4.39
d
G SO=7v%2- Vi@, o),
with the initial conditions
a%(0)=0,
(4.40
7°(0)=7°(9),
where
7%(8)=n"+0(8), 7°>0,
(4.41

sf0)=0.

The error termO(6) depends here on wheth@iis A or B. In case of an isolated eigenvalusg,
Ve=V"=y,.

We further introduce complex numbers which are defined by means of classical quantities. Let
AC(t) andBY(t) be the solutions of the linear system,
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d .
aAC(t) =iB(1),

g (4.42
3B =iv(a‘(n),9)A%),
wherea‘(t) is the solution of(4.38 and (4.40), with the initial conditions
A%0)=A,,
(4.43
B“(0)=By,

andV“® denotes the Hessian matrix \gf. It is easy to see that these quantities actually describe
the linearized classical flow around the trajectoaf(t), »°(t)). The above convention regarding
C applies if u,, is isolated in the spectrum. The asymptotics of these classical quantities for small
t and 6 are described in detail in Sec. Il of Ref. 13.

The determination of the “electronic” part of the Born—Oppenheimer wave padkeO
state, for shoitis as follows. Although the “electronic” Hamiltonian is independent of time, it is
convenient, since we deal with the time dependent 8thger equation, to choose specific time
dependent “electronic” eigenvectors. Since they may become singular when the corresponding
eigenvalues are degenerate, or almost degenerate, we shall define theim thoe outer regime,
that is whera(t) is far enough from 0. This outer regime is characterized by tingegh thaisee
Ref. 13,

SUTES|t|<T, €<1/3. (4.44

We shall have two sets of eigenvectors, denoteddipy(x,t,5), where the labek- refers to
positive and negative times. Of course, this distinction is irrelevant if we consider an isolated
eigenvaluew.

Let 5°(t) be the momentum solution of the classical equations of mada88 and (4.40).
The normalized eigenvectofB; (x,t,8) are the solutions of

(Do (X,1,0)|(alat+ (1) d) D (X,t,8))=0 (4.45

for C= A, andt=0. Since the eigenvalugs,(X, ) anduz(x, d) are nondegenerate for any time

t small enough, such vectors exist, are unique up to an overall time independent phase factors, and
are eigenvectors aj,(x,d) associated withE(x,d) for any time. More precisely, we define the
anglese(x,6) and 6(x, ) by

B(X,8)=B?(x,8)+ y*(x,8) + 0°(x, 6) cog (X, 5)), (4.46
(X, 8)=B%(x,8) + y?(x,8) + 0°(X, 8)sin( (X, 8) )cod (X, 5)), (4.47)
a(x,8)=B2(x,8) + y2(x,8) + 02(x, 8)sin( (X, 8))sin( (X, 5)), (4.48

and construct static eigenvectors. Let
D (x,8) =€ cod O(x, 8)/2) gy (X, 8) + SIN( 6(X, 8)/2) ry(X, ), (4.49
D (x,8) =€ cog O(x, 8)/2) (X, 8) — Sin( O(X, 8)/2) (X, 5), (4.50
be the eigenvectors @f;(x,8) associated withu (X, 8), C=A,B, for w/2<6(x,d)<m, and
D (x,8)=cog (X, 8)/2) 1 (x,8) + e I sin( 9(x, 8)/2) (X, 5), (4.50

(X, 8) =cog (X, 8)/2) h(X, 8) — € ¢ sin( O(x, 5)12) (X, 5) (4.52
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be the eigenvectors @;(x, ) for 0<6(x,5)<w/2. The solutions 0f4.45 are of the form

BE (xt,6) = b (x, )@k, |0 45
c(X,t,8)=DF b :
C(X., ) c(X. )ete ) t<0’ (4.53
where\; (x,t,6) is a real valued function satisfying the equation,
. & + . =+
lgka(x,t,ﬁ)ﬂnc(t)&xha(x,t,é)+<<I>c(x,5)|nC(t)&xfbc(x,c?)):O- (4.54

We can get an expression fap and its derivatives as follows. We fix values of the indices
and drop them in the notation. We introduce the new variable

w=x—a(t) (4.55
and the notation
M(o,t,8)=N\w+a(t),t,8), (4.56
P, (w,t,8)=P(w+a(t),d). (4.57)

In terms of these new variables, Bg.54) for \, reads

J d
iE)\r(w,t,ﬁ):—<(I)r(a),t,5)|§|q)r(w,t,5)> (4.58
with
%q)r(w,t,ﬁ):n(t)(?xq)(w+a(t),5). (4.59

By integration we get

M(o,t,6)=— ftn(t’)(q)(aH-a(t’),5)|ax<l>(w+a(t’),5)>dt’ +Ao(w,0), (4.60

where we are free to set the integration constagfw, 5)=0.

The “nuclear” wave function is localized around the classical trajectory in the semiclassical
regime. In view of the genericity condition’>0, in the outer temporal region, the major part of
the “nuclear” wave function will be supported away from the neighborhood where the levels
almost cross. Hence we can introduce a cutoff function which does not significantly alter the
solution and forces the support of the wave function to be away of this neighborhodg.lesty
C” cutoff function,

F:RtT—>R, (4.6
such that

F(r)y=1 o=sr=1

F(r)=0 r=2 (4.62

The wave functions we construct below in the outer regime will be multiplied by the regularizing
factor,

F(Ix—a‘(t)|/6*=%), (4.63
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where 0< 8’ < ¢, for C=A,B.
Remark:On the support of the relation,

x=72(S)t+O(8 9 +12) (4.64)
holds true, and sincg’(8) = 7°+ O(5), where°>0, we find that
x| >clt], (4.65

uniformly in é.
A Born—Oppenheimer staig; “(x,8,1) is defined by

(X, 8,1)

=F(|x—a%(bll/ 3* ) ;(A%(1), BYL), 8, a%t), 7°(1) ) €SP D (x,,5).  (4.60

It is a good approximation to the solution of the Salinger equatior{4.13 as 6— 0 far enough
of the crossing region, i.e., in the outer time regitdel4), and when the operatof defined in
(4.19 is absent, as shown in Ref. 13 Proposition V.2 below shows this is still true Whisn
present.

In the inner time regime, characterized by the inequdbie Ref. 13

=&ttt ¢, E<3, (4.67

we look for an approximation constructed by means of the classical quantities associated with the
potentialV(x, 8), the average ofi”(x,8) and u5(x,8). Leta(t) andS(t) be the corresponding
classical quantities satisfying the initial conditions

a(0)=0,
7(0)=7°, (4.68
S(0)=0.

It is suitable to use the rescaled variables

y=(x—a(t))/s

s=t/4. (4.69

It is shown in Ref. 13 that a good approximatign of solutions to(4.13) in that regime, wherY
is absent, is given by

, oS oS
v, 0=F(yla" e i 2+ 1% |y, 10
with
x(y,s,8)=fo(y,s)1(a( 8s) + 8y, 8) +go(y,S) o(a( 8s) + 8y, 6), (4.71)
wheref,gq are complex-valued functions solutions to
N fo(y,S))_ 7°sty 1 (fo(Y-S))
'aslaoye) T 1 sy laoy.s)) “.72

The general solution to this equation is
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Li) LD ( —1+i L Og 4
(fo(y,s) 5V FODir2n0 1 ( )\ 770(77 st+y)

go(y,s)) =C(y) | ; +Cu(y)
Dirlzno((_l'H) ?(WOS‘FV)
r
D—ir/2n°(_(1+|) ?(WOS‘H’)
, (4.73

(1+1i) r ] ro,
— 5 VD | — (1) \ o (ns+y)

where theD, are parabolic cylinder functions. The coefficieig(y) and C,(y) have to be
determined by matching with the incoming solutions of the B—O type at the border of the inner
and outer time regimes.

In particular, assuming for definiteness that the incoming B—O gigtés associated with the
index| for the “nuclear” component and thB level with the initial momentum;®(0)=7°, i.e.,

that
o180 =yP (x,t,8), —T<t=-—65"¢ (4.79
we have
Ci(y)=0 (4.79
and

ir
Co(y)=—8 Y2p,(Ag,Bo—irAy/ 770-1,0,0)/)3_(7”8"2) ex;{ ﬁ(yz— ZY))

B 5,_ H
><exp(i¥+4'—;o(1+3|n(277°)+|nr—4|n5)>, (4.76

wheresg(a,—) is real and can be computed explicitly, see Ref. 13.

The analysis of Ref. 13 shows that in this situation, we get an outgoing solution given by a
linear combination of B—O states, with explicit coefficients, associated with the samelirholex
the “nuclear” component but with both levels. The initial momentum is chosem"59)= 7°
—2r 8/ n° for the A level and the outgoing solutiogiog is of the form,

ar e
Joolx,t,8) = =& TR (x, o) +e T[S = uf sy (4T

provided 8*¢<t<T, where
r
N(8)=mlA+S(—, )] 8>+ 2—7]0(1+3 IN(27°) +Inr—41ns). (4.79

Here againS;\(8,—) is real and can be computed explicitly from Ref. 13.

Moreover, the function obtained by pasting the approximations constructed in the outer and
inner temporal regions is an approximate solution to the $fthger equation when the pertur-
bationY of the Laplacian is absefisee(4.14]. Similar explicit formulas are valid if the ingoing
state is associated with thé level. Hence, the propagation through avoided crossings can be
iterated.
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We are going to show that the perturbation of the Laplaciafdii4) does not affect the
propagation of B—O states. The general strategy is simple: we write

H(6)=— ;AX-I— g(x,0)+Y(X,dy,6)

=Hg(6)+Y(X,dy,0) (4.79

and denote by (x,t,5) the approximation given by, ¢, , oo in their respective time domains
constructed in Ref. 13,

o(x,t,8) -+ —T<sts-§"¢
V,(x,t,8)=4 #h(xt,8 - -8 Est<sE 480
Yoo(X,t,6) - Sl é<t<T

We define, by
&(x,1,8)=18%0,V(x,1,8) —H(8) ¥ (x,t,5)
=i 829,W(x,1,8) — Ho( &)W, (X,t,8) — Y(X,dy, ) ¥ (X, )
=(x,t,8) + {1 (x,1,6), (4.8

Whereg"lo is the error term controlled in Ref. 13 by means of the following abstract lemma.

Lemma IV.1: Suppose(ll) is a family of self-adjoint operators labeled hy-0. Suppose that
Y(t, 1) belongs to the domain of (#), is continuously differentiable in, tand solves approxi-
mately the Schdinger equation in the sense that

ihi—ltp(t,ﬁ):H(ﬁ) P(t, h)+L(th), (4.82
where{(t, #), satisfies
I1(t, 2l < pue(t, 7). (4.83
Then,
e M y(0,h) — gt )| < ﬁ’lfot u(s, fi) ds (4.84

holds true for =0 and the analogous statement is valid fer @.

Using the same lemma to estimate the norrrtﬂaf we get

Proposition 1V.2: Under the hypotheses (HQH2), the function¥,(x,t,5) defined by(4.80
is for any T>0 an approximation to the solutio#(x,t, ) of the Schrdinger equation (4.13) such
that

P(X,1,8) =" (x,t,8)+O(5P) (4.8

holds in the 1?(R) sense for some>p0 and all te[—T,T].
The proof of this technical proposition is given in the Appendix.

V. PROPAGATION OF PERTURBED B-O STATES

Let us now turn to the second indicated step and replace the above B—O approximation by a
construction making use of a perturbative knowledge of the exact eigenvectors and eigenvalues of
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the operatog; defined by(4.22. In particular, this needs to be done for the quantities appearing
in (4.38, (4.42 determined by means of a classical potential given by an approximation of the
spectrum ofg; . We will show that it is enough to know the second order perturbation expansion
in order to construct an approximation of the solution that is a perturbed version of our initial B—O
states and still describes accurately the transitions between the “electronic” levels.

In order to make some explicit formulas simpler and to stress the effect of the perturbation, we
will assume in this section that both the operatbrand W are 6 independent, i.e., we shall
consider

g(x,8) =h(R(x))+ V,(x)+ SW(x, 6), (5.1

whereV, commutes withh whereasW does not. This means tha(x) is assumed to have a
degeneracy at=0 in the considered part of its spectrum that is liftedWto leading order irs.
This is the generic situation we set out to investigate when the avoided crossing results from a
weak symmetry-breaking violation of a true eigenvalue crossing. Note, however, that we are able
to accommodate the general situation considered so far, at the cost of more complicated pertur-
bation formulas.

Let us state a simple lemma which is at the basis of our constructions and which says that an
approximation of an approximate solution is an approximate solution.

Lemma V.1: Let KI5) be for all 5 (0,5,) a self-adjoint operator densely defined in a Hilbert
spaceH, and leti,(t, 5) e H, ¢4(t, 5) e H be time dependent vectors with the following property;
there exists @4,p,>0 such that the relations

e ™%y (0,6) - a(t, )| <c o™ (5.2
and
lea(t, 8) = ¥a(t, 8)|| < coP (5.3
hold for all t from an interval CR and 0<d<§y. Then,

|\e7iH(‘s)t/52(pa(O,5) —pa(t,8)||< 3coMmn(P1.P2)

&MY, (0,6)— ga(t, 8)| <3 1:P2. ®49

Proof: uses just the unitarity of the evolution group and the Cauchy—Schwarz inequality.
Our approximate B—O states will require classical quantities defined by means of an approxi-

mationV° of the potentiaV° used in(4.38), (4.42. We have to estimate the error induced by this
approximation. In order to do that, we make use of Gronwall’'s lensea e.g., Ref. J%hat we
recall below.

Lemma V:2: Let E be a Banach spat¢CE be openl be an interval ofR, and fe C1(l
X U;E) be such that there exists>KO with suRy x| xullD2f (t,X)| gy <K. Let g:I XU—E be
continuous and such that there exists>@ with

sup [lg(t,x)|<G. (5.5
(t,x)elxU

If & and B are C! maps from J-U (where X|) satisfying for t= J,
a'(t)="f(t,a(t)), (5.6)

B' () =1(t, (1)) +eg(t,B(1)), (5.7

then
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la(t) = BN a(to) — B(t)|| € 1ol + eG (eIt — 1) /K. (5.9

For convenience let us recall here our definitigh66 of a Born—Oppenheimer state
zpjc(x,é,t) in the exterior regime,

Y(x, 8,0 =F(llx—a%b)lll 82y (A%(t), BY(), 8% a%(t), 7°(t), x) €S WD E (x,t,0).
(5.9
We want to compar@bf(x,é,t) with an altered but similar definition based on approximate quan-
tum and classical quantities ffd;f(x,é,t),
B(x,0.0 =F(|x=2%0)]/5 ) ;A1) BY(), 52,2%(1), 7(1), )50 TBS (x,1,9).
(5.10
All “tilded” classical quantities are generated by E@4.39), (4.42 with an approximate potential
VC(x,6) in place ofV¢(x, ). The vector
BZ(x,t,6)= D3 (x,8)d Kt (5.1

depends on the approximate classical quantities through the fi@amd on an approximate

normalized quantum eigenstaieé(x,é). Note that we keep the same Gaussian functigrio
construct the “nuclear” wave packet.

Our next goal is to apply Lemma V.1 to estimate the errors in terms of the difference between
V¢ and V¢,

Lemma V.3: The following inequality holds in the outer time regime for tHé).norm

I (x, 8,0 = = (x,8,0)

<c| |A(t)—A(t)|+|B(t) — B(t)| +|A(t) —a(t)|/ 8

t -
+[7(t) = n(t)]/5°+ lgl sup (|7(s)— n(s)| +[V(a(s)) = V(a(s))|
se[0t]

+ sup o V(X)|[A(s)—a(s)])+ sup|F(|x—a(t)[/ YD (x,t,0)
xe[a(s),a(s)] (x,t,8)

—F(Ix—a(|/ &6~ Dz (x,t,6)|. (5.12

with some constant.c

Proof: The indexC being fixed in this context, it will now be omitted. Other irrelevant
parameters will also be dropped in the arguments. Note that since the fuRds@mooth, we can
write

F(Ix—=a)[/6* ) =F(Ix—a(ll/*~ %)+ O((Et) —a(t))/ 82" (5.13
and that the_?(S*)-norm of the vectorsb; (x,t,8) equals one. Since
V(@)—V(a)=V(a)—V(a)+V(a)—V(a) (5.14

and » and% are uniformly bounded, we infer
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~ t ~
S(t)=JO(%Z(S)/Z—V(ﬁ(S))dS)

=s<t>+0(|t| sup(|7;<s>—n(s>|+|v<a<s>>—V<a<s>>|
se[0t]

+  sup o NV(Xx)|[a(s)—a(s)| ) ) (5.15

xe[a(s),a(s)]
Then we compute
§D|(A,~B‘, 52!5!7]!)() - QD|(A, B! 52,3, 7]7X)
= &0 B (g (A,B,62,3,00) — ¢1(A,B,5%,2,0%))
+(Pl(A,B,52,a,0x)(ei77((a—'é)/52)_ei(n—%)(x—a)/éz)ei%(x—a)/52_ (5.16
From Lemma 3.1 in Ref. 13 we learn thatAs>A andB—B,
¢(A,B,6%3,0X) = ¢(A,B,5%,8,0%)+ O(|A—A|+|B—B|+[a—a|/ o)

holds in theL2(R) sense, which takes care of the first term. Then we note thatZmerm of the
remaining term is equal to

lei(A,B,6%,8,0x)€ 7@ — o (A B, 5%a8,7—7,X)]
=[lg1(B,A,6%,0,—a,x)& "3 —g it (B A 82 n—%,—a,x)|
=0((a—a)l 8+ (7— )l 5% (5.17

by using the Plancherel formula, the properties ofg¢he@nder Fourier transfornﬂ;ij =1 and the
above lemma again. Then, gathering these estimates and using the fadsgtjhand B(t) are
uniformly bounded, we get the result. O

In order to use this lemma, we see that it is necessary to approxifiidtean error of order
0(6%) and to show that this induces errors of the same order in the classical traj&{gsy)(and
errors of orden(1) in the linearized classical flowA¢,B€). Moreover, the corresponding eigen-
statesP should be at most at a distancgl) from @ .

When we consider times away of the matching regime, #€t|<T, whereris independent
of §, it is easy to show the following result, just by using Gronwall’s lemma and regular pertur-
bation theory. We thus omit the proof.

Lemma V.4: Let the time intervét,T) be such that the solutions to (4.38), (4.40) satisfy the
condition

O¢{a(t)|r<t<T, 0<<sl=P, (5.18
where the corresponding potential,
VE(x,8)=u’(x,8), xeP, (5.19
is the nondegenerate eigenvalue @kgs) corresponding tob(x,5). Let

VE(x,8)= uS(x)+ Sus(x) + 82us(x), xeP, (5.20
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be the second-order perturbation expansion £5tx, §). We definé §7¢,A¢, B¢, ¢ as above with
the conditions,

() =a%7)+0(6%), 7(r)=n"(n)+0(8), (5.21
AY(r)=A%1)+0(1), BYr)=B%7)+0(1), (5.22
(1) =51 +0(5%, (5.23
and
B o(x,t,6)=Do(x,0) g Xt (5.24)

whereX(x,t,48) is given by (4.54) withb(x,0) in place ofd(x,d) and
Ne(X, 7, 8)=Nc(X,7,8)+0(1). (5.25
Then there exists a solutiaf(x,t, ) to Eq. (4.13) such that

P(xt,8)=F(|x=a() 1852 oy (R4(), BE(L), 62, (1), 7E(1), x ) @SB (x,t,8)+0(1)

(5.26

holds true in the E-sense and for alr<t<T.

Remark:We have the familiar explicit formulas,
16(X)=u(x,0), (5.27)
1E(X) = (Dc(x,0)[W(X)D(x,0)), (5.289
15() = = (@ (x,0 W) (h(x) = u(x,0); W) D(x,0)), (5.29
where the reduced resolvent is given by

()= wix0); = 3, LT OND 0 (5.30

iZe (1 (00— uf(x,0))

The above result has to be modified for times close to the matching regime, since in that case
degenerate perturbation theory is required to define the potential. Indeed, the approximate poten-
tial chosen in the lemma diverges»as:0, so that Gronwall's lemma cannot be used as it stands.
Let us find the modified potential from perturbation theory.

The two eigenvalues aj(x, ) which are of interest to ugs 4(X, ) and uz(x, ), are given
by the spectrum oP(x,6)(h(x)+ dW(x)+V,(x)). This operator is represented in the smooth
orthonormal eigenbasig.21) by the matrix(4.22), which we can expand to second ordewifor
any x in a neighborhood of the origin, since the project®(x, ) entering the definition of the
basis(4.2]) is regular. Hence we can write

B(X,0) v(X,8)tio(x,0)\
g(x,6)= (X, 8)—io(x,5) — B(x.6) +V(X,9), (5.3)
where
B(X,8) = Bo(X)+ 6B1(X) + 62B(x) + O(8%)=B3(x,8) + O(8°), (5.32
Y(X, 8) = yo(X) + 8y1(X) + 82 y,(X) + O(8%)=G4(X, 8) + O( 5%, (5.33
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(X, 8)=0o(X)+ 8o (X) + 8205(X) + O(8%)=S5(x, 8) + O(6°), (5.3

V(X,8) = Vo(X) + 8V1(X) + 82Vo(X) + O( 83 =V3(x, 8) + O( %), (5.35
with the error@(5°%) beingC” in x, and[see(4.30)],

Bo(X)=rx+0(x?), B1(x)=0(x), (5.36
Yo(X)=0(x%),  71(x)=r+0(x), (5.37)
To(X)=0(x?), o1(X)=0(x). (5.39
Let us set
S(X,8) = (B3(x,8))*+(G3(x,8))*+ (S(x, )) (5.39

and define oufexplicit) modified potential by
VE(x,8)=£5(X,8) + Va(X, ), (5.40
where the sign is chosen according to the valu€.dt is easy to check that by construction,
VE(x,8)—VC(x,8)=0(5° (5.4

asx—0. As above, we employ tilde to mark the values generated by the modified potential. We
only consider the dynamics for positive times, the other case being similar.
To define the perturbed classical trajectory, we will start integrating Newton’s equations from
a positivety(8) = 6", for some 2/3X k<1, using as initial condition the explicit asymptotic ex-
pansion given in Corollary 2.1 of Ref. 13,
Corollary V.5: In the outer regimé&—0, t—0,

t|// 56— and /62— 0, we have
t2

ab(t) = — 3,V5(0,0) 5+ ()= 5

B f+ 5%Int| . 52 L2 (20 5))) &8%Inés
N2t 20002 ae)2 L2 NN~ 5 orsy

ot

+O(t3) + O( 5%11?).

The asymptotics fop(t) in the same regime is obtained by termwise differentiation of the above
formulas up to errorsO(t?) + O(8*/t3).
The choice ofty(5) ensures that

Atg)=a(t) +0(8?), (5.42

7(to) = 7(to) +0(8). (5.43

Whereas the error is small enough for the position, it is not the case for the momentum. Hence we
resort to energy conservation in order to determine the momentum with sufficient accuracy.
Let us first note that due to the uniform boundedness of the force induced by the po¥htials

andV¢, there exists>0, small but independent @ and constants€@C;<C,<%, such that as
long aste[ —7,7],

and similarly for7’.
The unperturbed energy is given by
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EX(8)=(7(t)) %12+ VE(a’(t), 8) = (55( ) %12+ VE(0,8)
=E(8)+V<(0,5) —V“(0,8), (5.45

where the perturbed ener@?(a) is explicit. Hence

7°(t) = V2(E(8)—V(a“(t),8))>0 (5.46

holds forte[— 7,7], and we can defing‘(t) by energy conservation so that

) =2(E%(8) V@A), )
= 7°0)+ O(VE(E(1), 8) — VE(a“(t), 8)) + O(VE(0,8) — VE(0,5))

= 7°(t) + O supV€(x, 8) — VE(x, 8)| +a(t) —a’(t) |. (5.47)

x—0

Thus using formuld5.47), we make an error in° of the same order as the error we makafn
and V¢,

Next we turn to the approximation&’(t) and BE(t). They are defined as solutions to the
system(4.42 with V¢ in place ofV¢ and initial conditions at=*t,, given by

Rs(t) _( A(0) ) s
Bt | BO)TFSign)irA(0)/(7o(8))° (548

It remains finally to consider the perturbed eigenvecﬁag(;x,t,&) (where we dropped the index
referring to the sign of). The restrictions to the support &f mentioned in lemma V.3 and the
estimate(5.44) imply that if we impose the condition

1-6"— k>0, (5.49
we can write
x=a(t)+0(51*5')>ct(1+(9(51*5'*")>c5K (5.50

for some positive constamt, and the same estimate is true wihreplaced bya.

Hence in the considered regime the eigenvalugs,0) of P(x,0)(h(x) + V,(x)) display a
gap that is at least of order= O(5*)—see the behaviofd.30—and we call the corresponding
eigenvectorgy(x). We define our perturbed static eigenvectors by

D (X, 8) = xe(X) (550
and similarly, the phase corresponding to time dependent perturbed eigenvkgtars 8)—in
view (5.1)—hy

~ t ~ ~
Ner(@,t,6) =i f ds(S) (D w+3(S),8)|0,D (0 +3A(S),5)), (5.52
to(8)

0

where we used the new variables56) and(4.60.

The next lemma tells us that our definitions @f(t),7°(t)), (A(t),B(t)), and®(x, s,t)
are accurate enough for our purpose. The proof can be found in the Appendix.

Lemma V.6: With the definitions above, there exists a positiveuch that for all t
€[to(5),7] we have
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a%(t)=a’(t)+o(8%), (5.53
7t = n°(t) +0(5), (5.54)
AC(t)=A%t)+o(1), (5.59
BY(t)=B(t)+0(1), (5.56
D (x,t,8)=DP(x,t,8)+0(1). (5.57)

Hence, with the definitions made above, we have a perturbed B—O state giybriBythat
is explicitly expressed by means of perturbation theory iimodulo finding the solution of the
classical equations of motion, of couysad which yields an approximation of the solution to the
Schralinger equation(4.13 for finite time intervals ass— 0. In particular, putting together our
results, we get the following statement:

Theorem V.7: Adopt the hypotheses (H1) and (H2) and assume the behaviors (4.30). Suppose
that 2/3< k<1 andris as in the above lemma. L@;Ci(x,é,t) with |t|= 6% be a perturbed BO
state according to (5.10) constructed by means of the approximate quantities considered in lemma
V.4 if |t|=7 and in lemma V.6 i5*<|t|< 7, subject to the condition that all classical quantities
agree at the instants=t* 7. Let y(x,5,t) be a solution to Eq. (4.13) with)(x,8,—T)

=95 (x,8,—T). Then
P(x,8,0)="15(x,8,)+0(1), (5.58
holds as6—0 for all —T<t<- 6, while
- roo o
(X, 8,t) = —e& 2T (x,5,t) + & T %—”¢j3+(x,5,t)+0(1)
(5.59

holds for all 5*<t<T, with \(8) given by (4.78)

Remarks:
(1) As a direct corollary, we get that to leading order, the transition probalilitsom the initial
level B to the levelA is given by the Landau—Zener formula,

P=e ™11 0(1) (5.60

as 6—0, wherer is defined by the behavid#.30 of the “molecular” Hamiltonian around the
avoided crossing ang® is the initial classical momentum, sé4.40).

(2) It is possible also to give an explicit approximation of the wave function in the inner time
regime, — §“<t<45", in terms of quantities coming from perturbation theory. However, this
temporal region being so short, it is not crucial for most applications to have a detailed approxi-
mation there.
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APPENDIX

Proof of Proposition V.21t is enough to show that the norm Qf in (4.8)) is small and to
apply to Lemma IV.1. Expressiao@.15 together with(H1) show that we only need to control the

effect of p=—i 629, andp?=(—i5%9,)? on W,(x,t,8), since for anyy we have
IY(x,0x, 8) < C(8*Ip?y+ &l ). (A1)
First consider the outer temporal region and the fg#n66). We know from the computations in
Ref. 18 that
[(P=mei(A, B, &% a, 7, )| =[B| oI +172, (A2)
[(p—m?ei(A B, & a, 7, - )| =|BI28* V(617 +61 +3)/4. (A3)
Moreover, we estimate
[pF(Ix—a‘tll/ 8" )| =c 8™, (A4)
IP?F(Ix=at)l/8* )| =cp 822, (A5)

where the constants,;,c, depend orF only. Away from the crossing region, the “electronic”
eigenvectors are well defined and smoothxnd). Hence we only need to consider what is going
on in the neighborhood of=0 to get an upper bound on the effectpfndp? on the eigenvec-
tors ®; (x,t,8) given by(4.53. We drop the indices and consider

D(x,t,8)= AP (x,6), (AB)

where® (x, §) denote some static eigenvectors ar(d, 4,t) the corresponding real valued func-
tion defined by(4.54). We compute

3, D (x,t,8) = U9 D (x,8) + (i dh (X,1,8)) P (X, 6)], (A7)
92D (x,t,8) =ML 52D (x, 8) + 2(i AN (X,1,8)) 9P (X, 5){i 92N (X,t, 5)
— (3N (X,1,8))2}D(x,5)]. (A8)
AS 1, 05 ,d5; ,op; are allO(0) as &,t)—(0,0) in the support oF, we have
Iy (X, 8)=O(0(X) + dyp(X)) + O(0), (A9)
TP (%, 8)= O((,8(X))*+ (4@ (X)) *+ T 0(X) + dZp(x)) + O(0) (A10)

in the norm of the “electronic” Hilbert space. In expressi¢h.60 for \, we first check by
inspection that in all cases,

(o, @)= 0O(dgp)+O(0) (Al1)

(see, €.9.(3.50 in Ref. 13 since all functions of) and ¢ are uniformly bounded and, moreover,
the factor ofd,¢ is a function of@ only. Hence, by further differentiation we get

A D0, D)Y= 0920+ dyp+ dy@dy O+ 3y 0) + O(0), (A12)

T @[3, D)= O(F3 0+ T2y 0+ 3y pd2 0+ (34p)?

+ 2@y @0+ 920+ (940)%+ 3,0+ dy) + O(0). (A13)
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It remains to estimaté,¢ andd,6. We have
o(Xx,8)=arctario(x, 5)/ y(X,d)) (A14)
provided y(x, 8) is different from zero. Hence using.30 we get

Y(X, 8) dyo(X,8) — o(X,8)dyy(X, 5)

(9X(P(X16): 72(X,5)+0'2(X,5) ’ (A15)
so that with the help of estimates of the tylpg/\/y>+ o?<1 we arrive at
dyy+ oyo
oxg=0 ﬁ . (A16)
By similar operations we eventually obtain
oo eyt Fo (3472 +(040) %+ dyydyo 17
xP= \/m ,y2+0_2 ( )
and
oo By+ o +O< O2yiyo+ D20dyy+ d2ydy+ aioaxo)
R o Y+o?
+ o] BN+ (5:0)* 0+ (9x7)°+(9x0)° AlS
o | (A19
Assuming further that
[x[|=0(68%), é&<2/3<k<l—¢<1, (A19)
we get from the behavioi.30 in this region
1
aX(P:O 51,'( , (AZO)
5 1
dye=0 5/ (A21)
3 1
Ie=0| 57=x|- (A22)
Then we consider
X, 8
0(x,8)=arcco Ax.9) ) . (A23)
VB (X,8) + %(X,8) + a?(x,0)
By computing derivatives and estimating as above, we easily get
B dyy+ dyo
d,0=0 + , A24
RV TS ( V(B 7+ 0D (¥ + o?) "2
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om0 92B 2y+dio 3y B(dyy+ dya)
© By B e () (B e (P 0?)
(ax7)2+((7x0')2+‘9x7’ax0' ) (axﬁ)z ' (A25)
VBZ+ 7P+ %) (v + ?) N
Using (4.65, 6“C=|t|=6'"¢, and(A19), we thus find
1
d60=0 AT (A26)
) 1

Gathering the different pieces, we obtain for the derivatives of the regime just described

AN(X,t,8)=O(t/ 8 )= 016 2%), (A28)
FN(X,t,8)=O(1/63 26721y, (A29)
G2\ (X,1,8)=0O(1/6* 4%y, (A30)

so that we obtain the following estimates for the derivatives of the vek{ort, 5):
3, (x,t,8)=0O(116%?¢), (A31)
92D (x,1,8)=0(1/6*%). (A32)

We are now in a position to estimate the effectpofind p? on the B—O states in the outer time
regime,

Ipufl=l(pF) @@+ F(pe) D+ F oy (pd©)||
<c(8Y 0+ (p— ) @il + | 7] + 82| 6, @)

<c(1)(8 % + 8BS+ | ¢+ 6%). (A33)

We have already used above the fact {h#t is uniformly bounded a$ andt go to zero, and the
same is true foB¢—see Lemma 2.1 and Proposition 2.2 in Ref. 13. Finally we get in the outer
temporal regime,

Ipyil=<c(h) (A34)

as 6—0, wherec(l) is some constant independent of time. By similar manipulations we also get
in the same regime

Ip?yill=<c(). (A35)
Note that the nonvanishing term comes only from the actiop ofi the Gaussian statg , which
yields essentially;® as expected, whereas the contribution from the derivatives of the “electronic”

eigenvectors and cutoff function vanish. From the definitionYofve get a supplementary*
which more than compensates for the denominatoappearing in4.84),
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1 (T
7 | Yo ot ldt=ca) (A36)

We now need to perform the same type of analysis on the approximate wave function
#(y,s, ) given by(4.70 adopted in the inner temporal region. There we use the varighled
so that the relations

dy=0d, and p=—idd, (A37)

have to be employed to compute the derivatives of the different pieces in the definition of
#i1(Y,s,6). In this case we need to show that

1 s1—¢
?f_ﬁl—‘g”Y(X'&X'5)¢I(Y(th),s(t),5)||dt

1 (s¢ 12
ZEJ_ g[f|Y<5y+a<sé>.6ay,5>¢.(y,s,5>|25dy] ds

5

2 1/2
<5z Sup U |Y(5y+a(s§),5ay,5)¢.(y,s,5)|25dy] (A38)
s b<g<s ¢

is of order 6° for some positivep as §—0. As above, we denoted at that the norm in the
“electronic” Hilbert space by a modulus. The estimatégl), (A5) remain valid and we have

|pe 719 = | 5(s6)|<C, (A39)
[p?e 0= |5(s5)| <C, (A40)

since 7(t) is uniformly bounded in the inner temporal regime. Noting thata(s5s)+ oy
=0(5¢%), we also get from the regularity of the orthonormal bdsis(x, 8),¥,(x,8)} around
(0,0) that

Ipy;(a(ds)+ 8y, 8)|=0(8), (A41)
[p?y(a(ds) + 8y, 8)|=O(8h) (A42)

for j=1,2. Finally, the functionsfy(y,s) and go(y,s) determined in(4.73—(4.76 and their
derivatives can be estimated using the following remark. Up to phases, these functions are given
as products of a Gaussian, a polynomialyina parabolic cylinder function, and a factors¥?

coming from the normalization of the functias) . Asymptotically, these parabolic cylinder func-
tions, their first and second derivatives are of ord®¢(s+|y[)%, O((s+]yl)), and
O((s+]lyl)?), respectively, where= (5 ¢). Hence we can write

o(y,S)| <Py (y)e Y72l 5172

fo(y,s)|<Py(y)e Y Hhdl" 512 (A43)
|pfo(y,s)|<P,(y)e Y 2 s-1/2r1-¢, (A44)
p2fo(y,S)|<Ps(y)e Y /A’ 512+ 2-2¢ (Ad5)

whereA, is the initial condition(4.43 andP;, j=1,2,3, are polynomials ig, the coefficients of
which are independent of. They depend on, the index of the chosen B-O state. Similar
estimates are valid fag, in place offy. Having
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P = SN NSWI (DF+F ) (Fohy + dot2) + F((plo) vy
+(PpYo) Yafo(Pi1) +9o(P¥2))] (A46)

and the above estimates, we can write
(DU (y.5,0)|<Pa(y)e Y 2hl"s 13 5140 114 624 516 (A47)
with another polynomiaP,. Hence the right hand-side ¢6.38 can be further estimated to give
1 1/2
STFE SUp [ Pya(y.s, 5)|26dy] =c(l)/5"*. (A48)
— 5 b<s<s"¢
By similar manipulations we also get
1

12
STFE Sup ( |pzz/;|(y,s,5)|25dy} <c()/8*<. (A49)
5 b<s<s ¢

We note that here the leading order contribution comes from the actipnoof the phase'®/®
which givess. The supplementary facta? in (6.1) yields the final estimate

1 s1-¢ B
2 751_§||Y(X,<9x,5)l/f|(Y(X,t),S(t),5)||dt<c(l)b\°’ £, (A50)
Hence the proposition holds wifh=3— &. O

Proof of Lemma V.6As noted above, we cannot directly use Gronwall’s lemma as stated in
the text. Hence we need to prove that the two evolutions stay close enough to each other between
timesty(d) and 7, where 7 will be small but independent of by a more refined analysis. We
consider the index4d and drop it in the notation.

First, it is easy to check the following asymptotic propertiesx@®)— (0,0),

s(x,8) — VB2(x,8) + y?(x,8) + a2(x,8) = O( %), (A51)
3,8(X, 8) — dy\ B2(X, 8) + ¥2(X, 8) + 02(X,8) = O i (A52)
o * ’ ’ ’ W+ 82)
S(X,8)=r{x°+ 8° (1+ O(x+ 9)), (A53)
3,8(x,8)=0(1), (A54)
2
92s(x,8) = ot O(1). (A55)
We collect some preliminary observations on the soluti¢r) to the equation,
At = —a,V(A(1),d) (A56)

for t e[tg, 7] with initial condition satisfying(5.42. We can choose>0 independent o, such
that

a(t) —a(to(6))=co(t—to(5)), (A57)

for somecy>0 and allt e[ty(5),7]. This implies easily by means ¢5.42) that
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a(t) —a(tg(0))=cy(t—to(5)) (A58)
for all te[ty(),] with a uniform constant. Hence we can write
X2+ 8% g =ca(8"+ (t—19(8)))%  Voe[A(t),at)]. (A59)
Consider now the identitie@lropping thes dependence in the arguments
a() - a() = V(@) - aVE®)
= 0B+ 77+ 0%(a(t) + V(a(t)) — A,S(A(t) — V(1)

= a(JBZ+ 2+ a?(a(t) —s(a(t))) + ax(V(a(t)) — Vs(a(t)))

— 35s(6,) (A(t) —a(t)) + dZV3( 6) (A(t) —a(t)), (AG0)
where 6, e (a(t),a(t)). Now the first order derivatives are of ordét/(5<+ (t—to(5)), whereas
the second order ones are of ord8f(5<+ (t—ty))3—see(A55) and (A59).

Hence introducingl(t) =a(t) —a(t) we get an ODE of the form

d(tH="f(d(t),Hyd(t) +g(d(t),1), (AB1)

where we have tha priori bounds,
t t
f|f(d(s),s)|dss052j 15+ (s—tg))3ds<cs?(t ), (AB2)
to to
and since we can assume without loss thiat (t—ty(8)) <1,

t t cs®
J'to|g(d(s),s)|sftomd3$c53(|ln(5 )+ In(8*+ (t—to)|)

=0(8%In(4)). (AB3)
Equation(A61) is equivalent to
. t s
d(t):d(to)+(t—to)d(to)+ft ds t du(f(d(u),u)d(u)+g(d(u),u)). (A64)
0 0
Let us denote
D(t)= sup |d(s)|. (AB5)

se[tg,t]

We deduce from the above bounds

Al =ld(to)|+ (t—to)ldto) ¢ | ‘dsprs) s+ colin( o)
0

<c| |d(te)|+|d(te)| + 83|In(5)| + f:dsD(s) 52““)) (A66)
0

and, asD is not decreasing,
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. t
D(t)<c| |d(to)| +|d(te)| + a\?||n(a)|+J dsD(s)52<1—K>)
to

=c(|d(to)| +|d(to)| + 8%In(&)| + D () 8**~). (A67)
Since 5>(1~%) -0, we find that
D(t)=c(|d(to)| +|d(to)| + 6*IN(S)]). (A689)
Plugging this into(A64) finally yields
d(t)=d(to) + (t—to)d(te) + 082 (|d(te)|+|d(to) ) + 8% In()]). (AB9)

As an immediate consequence of this result énd?7) we have for anyt e[ty(d), 7] with our
choice ofty(5) and initial conditiong5.42),

a(t)—a(t)=0(s?), (A70)

(1) — () =0(5%). (A71)

Turning to (A(t),B(t)) and their approximations, we first note that by Ref. 13, p. 102, we
have with our choice ofy(9),

A(to) _(A(to) _
(E(to)) Bto) =0(1). (A72)
Then we consider the equatipequivalent to(4.42 and(4.43],
A(t))_ A(to)) t o i (A(S))
(B(t) =Bty +fto(i&§V(a(t)) o) B(s) (AT3)

and a similar one for the approximations with the tilded symbols everywhere. Introducing

[AM)] (AD
A= B(t))’
we compute
A(t)=A(t)+ft 0 ° 5(8))ds+r( ° i)A(s)ds
O J\ia2V(E(s) - a2via(s)) 0/ \B(s) Ll id2V(a(s)) 0 '

(A74)

But ||(g§3)|| = O(1) by Ref. 13} 72V(@(s))ds=0(621 ) and similarly for the untilded quan-

tities. Hence using the same type of manipulations as above, we deduce
A ]=c(*H 0 +]A(to)]). (A75)

It follows that

A(t)) - (A(t)

B(t) B(t)) =o(1) (A76)

holds for anyt e [ty(6), 7].
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In order to deal with the “electronic” eigenvectors we consider the perturbation series for the
resolvent b(x)+V,(x)+ 8W(x)—z) ! when the argumer runs through the circle of radius
| u(x,0)— uB(x,0)|/4 centered at any of the eigenvalué(x,0). Integration on this circle yields
the eigenprojectoQ;(x,6), j=A,B, and the estimates

Qj(x,8)=Q;(%,0 + O(SW(x)/| u(x,0) — uB(x,0)|) = Q;(x,0)+ O(/X), (A77)
9xQj(X,8)= 3xQ;(x,0) + O( /| u*(x,0) — u5(x,0)|?) = 3,P;(x,00 + O(8/x?).  (AT78)

This, in turn, yields the following estimates on the eigenvector&, 6) of the perturbed operator
h(x) + sW(X):

D;(x,8)= x;(X)+ O(5x), (A79)
9xD@;(X, 8) = dyx;(X) + O(81x?). (A80)

Now we consider one eigenvectpy(x) and drop the index. We note here that E¢3.58) in Ref.
13 shows that

A(w,t,8)=0(t/ 84 %), (A81)

so that)\,(w,te(8),8)=0(8?"1)—0 with 8. On the other hand, using the fact thatx) is
smooth and tha¥(t) is uniformly bounded onty(5),T] we find

ft idsn(s){(P(w,s,8)|dP(w+a(s),d))
to(9)

=ft ids(7(s)+0(8%) X ((P(w,s,d)
to(5)

+0O(8l(a(t) + )| (P (w+3E(s),8) + O(Sl(a(s) + w)?))))

=ft( )ids77(s)<ci>(w,s,5)|<9X&>(w+é(s),5)>+o(1)
to(d

+0(SIN((t+ w)/(tg+ w))) +O(S8(U(ty( ) + w) — 1t + w))). (A82)
Having w=(9(51*‘5') and (5.49, the error terms above can be estimated by
0(1)+O(8In(8)+ 8+ %) (A83)

which goes to zero ag—0. It follows then that

N(x,t,8)—N(x,t,8)=0(1) (A84)
and in turn we get

D(x,t,8)—D(x,t,8)=0(1), (A85)
which concludes the proof. O
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