
HAL Id: hal-01260623
https://hal.science/hal-01260623

Submitted on 22 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorial voter control in elections
Laurent Bulteau, Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, Nimrod

Talmon

To cite this version:
Laurent Bulteau, Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, Nimrod Talmon. Com-
binatorial voter control in elections. Theoretical Computer Science, 2015, 589, pp.99-120.
�10.1016/j.tcs.2015.04.023�. �hal-01260623�

https://hal.science/hal-01260623
https://hal.archives-ouvertes.fr

Combinatorial Voter Control in ElectionsI,II

Laurent Bulteaub,1, Jiehua Chenb,2, Piotr Faliszewskic,3,
Rolf Niedermeierb, Nimrod Talmonb,4

a Inria Grenoble - Rhône-Alpes / LBBE, Université Lyon 1, CNRS, UMR5558,
F-69622 Villeurbanne, France

b Institut für Softwaretechnik und Theoretische Informatik, Technische Universität
Berlin, D-10587 Berlin, Germany

c AGH University of Science and Technology, P-30-059 Kraków, Poland

Abstract

Voter control problems model situations such as an external agent trying to
affect the result of an election by adding voters, for example by convincing
some voters to vote who would otherwise not attend the election. Tradition-
ally, voters are added one at a time, with the goal of making a distinguished
alternative win by adding a minimum number of voters. In this paper, we
initiate the study of combinatorial variants of control by adding voters. In
our setting, when we choose to add a voter v, we also have to add a whole
bundle κ(v) of voters associated with v. We study the computational com-
plexity of this problem for two of the most basic voting rules, namely the
Plurality rule and the Condorcet rule.

Keywords: Voting, NP-hard election control problem, domain restrictions,

IA preliminary short version of this work has been presented at the 39th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2014), Budapest,
August 2014 [12]. In this long version we provide an additional fixed-parameter tractability
result (Theorem 5) and all proofs that were omitted in the conference version.

IIThis work has been partly supported by COST Action IC1205 on Computational
Social Choice.

Email addresses: l.bulteau@gmail.com (Laurent Bulteau),
jiehua.chen@tu-berlin.de (Jiehua Chen), faliszew@agh.edu.pl (Piotr Faliszewski),
rolf.niedermeier@tu-berlin.de (Rolf Niedermeier), nimrodtalmon77@gmail.com
(Nimrod Talmon)

1Supported by the Alexander von Humboldt Foundation while visiting TU Berlin.
2Supported by the Studienstiftung des Deutschen Volkes.
3Supported by a DFG Mercator fellowship within project PAWS (NI 369/10) while

staying at TU Berlin, and by AGH University grant 11.11.230.124 afterward.
4Supported by DFG, RTG “Methods for Discrete Structures” (GRK 1408).

Preprint submitted to Elsevier January 22, 2016

the Plurality rule, Condorcet’s rule, parameterized complexity

1. Introduction

We study the computational complexity of control by adding vot-
ers [2, 31], investigating the case where the sets of voters that we can
add have some combinatorial structure. The problem of election control
by adding voters models situations where some agent (for example, a cam-
paign manager of one of the alternatives) tries to ensure a given alternative’s
victory by convincing some undecided voters to vote. Traditionally, in this
problem we are given a description of an election (that is, a set C of al-
ternatives and a set V of voters who already decided to vote), and also a
set W of undecided voters. For each voter in V ∪W we assume that we
know how this voter intends to vote, which is expressed as a linear order
over the set C; while this assumption is somewhat unrealistic, it is a stan-
dard assumption within computational social choice, and we might have a
good approximation of this knowledge from preelection polls. Our goal is to
ensure that our preferred alternative p becomes a winner by convincing as
few voters from W as possible to vote—provided that it is at all possible to
ensure p’s victory in this way.

Control by adding voters corresponds, for example, to situations where
supporters of a given alternative make direct appeals to other supporters of
the alternative to vote. For example, they may stress the importance of vot-
ing or help with the voting process by offering rides to the voting locations.
Unfortunately, in its traditional phrasing, control by adding voters does not
model larger-scale attempts at convincing people to vote. For example, a
campaign manager might be interested in airing a TV advertisement that
would motivate supporters of a given alternative to vote (though, of course,
it might also motivate some of this alternative’s enemies), or maybe launch
viral campaigns, where friends convince their own friends to vote. It is clear
that the sets of voters that we can add should have some sort of a combina-
torial structure. For instance, a TV advertisement appeals to a particular
group of voters and we can add all of them at the unit cost of airing the
advertisement. A public speech in a given neighborhood will convince a par-
ticular group of people to vote at the unit cost of organizing the meeting.
Convincing a person to vote will “for free” also convince her friends to vote.

The goal of our work is to formally define an appropriate computational
problem modeling a combinatorial variant of control by adding voters and
to study its computational complexity. We focus on the Plurality rule and

2

the Condorcet rule, and we do so for the following reasons. First, these
are the rules originally studied by Bartholdi et al. [2] in the first paper on
the complexity of election control. Second, the Plurality rule is the most
widely used rule in practice and the Condorcet rule models a large family
of Condorcet-consistent rules. Third, the Plurality rule is one of the few
rules for which the standard variant of control by adding voters is solvable
in polynomial time [2]. For the Condorcet rule the problem is NP-hard in
general [2], but becomes polynomial-time solvable if we assume that the
elections have a particular structure (for example, if they are either single-
peaked [24] or single-crossing [37]). For the case of single-peaked elections,
in essence, all our hardness results for the Condorcet rule directly translate
to all Condorcet-consistent voting rules, a large and important family of
voting rules. We defer the formal details, definitions, and concrete results
to the following sections. Instead, we state the high-level main messages
of our work. Herein, we assume that adding an unregistered voter means
adding a bundle (subset) of unregistered voters; in this way, it is easy to
see that the standard variant of control by adding voters is a special case of
the combinatorial variant (set the bundle of each unregistered voter to be a
singleton consisting of this single voter):

1. Many typical variants of combinatorial control by adding voters are
intractable, but there is also a rich landscape of tractable cases. For
instance, with bundle sizes up to two, the problem is either fixed-
parameter tractable with respect to the number k of bundles to add or
already polynomial-time solvable when requiring the bundling function
to be full-d (see Section 2 for the definition; informally, this means that
only voters with roughly the same preference orders can be bundled
together).

2. Assuming that voters have single-peaked preferences does not lower the
complexity of the problem (even though it does so in many other elec-
tion problems [7, 14, 24]). On the contrary, assuming single-crossing
preferences does lower the complexity of the problem.

We believe that our setting of combinatorial control, and—more generally—
of combinatorial problems that model manipulating elections, offers a very
fertile ground for future research and we intend the current paper as an
initial step.

Related Work. Bartholdi et al. [2] were the first to study the concept of
election control by adding/deleting voters/alternatives in a given election.

3

They considered the constructive variant of the problem, where the goal
is to ensure a given alternative’s victory (and we focus on this variant of
the problem as well). The destructive variant, where the goal is to prevent
someone from winning, was introduced by Hemaspaandra et al. [31]. These
papers focused on the Plurality rule and the Condorcet rule (for the destruc-
tive case of Hemaspaandra et al. [31], also the Approval rule). Since then,
many other researchers extended this study to a number of other rules and
models [39, 22, 23, 45, 25, 43].

We study our control problems using the tools and methods of param-
eterized complexity theory. Most frequently, parameterized complexity of
control problems is studied with respect to the number of alternatives as
the parameter [22, 23, 32]. The number of voters received far less attention
as a parameter (for the case of control, the parameter appears, for example,
in the works of Betzler and Uhlmann [3] and, very recently, of Chen et al.
[13]; Brandt et al. [8] consider it in the context of winner determination).
Several authors have also considered other parameters, such as the solution
size (for example, the number of voters one can add). Papers focusing on
this parameter include, for example, those of Liu et al. [36], Liu and Zhu
[35], and Erdélyi et al. [20].

Some of our results regard the complexity of election control for the case
where the voters’ preference orders are either single-peaked [5] or single-
crossing [41, 44] (intuitively, both these domain restrictions model cases
where there is a linear spectrum of opinions; single-peakedness assumes
that it is the alternatives that are ordered from one extreme to the other
within this spectrum, for example, the left-to-right political spectrum, while
single-crossingness assumes that the order is over the voters and their opin-
ions). For both types of domain restrictions there are algorithms that can
recognize elections with a given property (see, for example, the works of
Bartholdi and Trick [1] and Escoffier et al. [21] for the single-peaked domain
and those of Elkind et al. [18] and Bredereck et al. [9] for the single-crossing
domain). The complexity of control for single-peaked elections was stud-
ied by Faliszewski et al. [24] and was continued, for example, by Brandt
et al. [7] and Faliszewski et al. [26]. The case of control in single-crossing
elections was considered by Magiera and Faliszewski [37]. Generally speak-
ing, the complexity of control problems often drops from NP-completeness
to being polynomial-time solvable when one of these domain restrictions is
assumed. Naturally, single-peakedness and single-crossingness were studied
algorithmically in many other contexts as well. Perhaps the first authors
which observed that assuming them may lower the complexity of election
problems were Walsh [50] and Conitzer [14].

4

In all previous work on election control, the authors always assumed
that one could affect each entity of the election at unit cost only.5 For
example, one could add a voter at a unit cost and adding two voters always
is twice as expensive as adding a single voter. Only the paper of Faliszewski
et al. [25], where the authors study control in weighted elections, could be
seen as an exception: one could think of adding a voter of weight w as
adding a group of w voters, each with unit weight. On the one hand, the
weighted election model does not allow one to express rich combinatorial
structures as those that we study here, while on the other hand, in our study
we consider unweighted elections only (though adding weights to our model
would be seamless). Very recently, Chen et al. [13] studied the combinatorial
variant of both constructive as well as destructive control by either adding or
deleting alternatives. They discovered that with few voters, the complexity
of the corresponding control problem for different voting rules ranges from
polynomial-time solvable to NP-hard even for a constant number of voters.
Erdélyi et al. [19] also studied a variant of combinatorial control by adding,
deleting, or partitioning of the voters. They used a slightly different—though
also very natural—model of bundling voters, where each voter has a label
and each bundle consists exactly of the voters with a given label. Formally,
our models are incomparable and, indeed, we show hardness results for the
case of combinatorial control by adding voters with bundles of size two,
whereas in their model this case is easily seen to be polynomial-time solvable.

The specific combinatorial flavor of our model is inspired by the seminal
work of Rothkopf et al. [46]6 on combinatorial auctions (see, for example,
the work of Sandholm [47] for additional information). There, bidders can
place bids on combinations of items such that the bid on the combination
of a set of items might be less than, equal to, or greater than the sum of
the individual bids on each element from the same set of items. While in
combinatorial auctions one “bundles” items to bid on, in our scenario one
bundles voters.

In the computational social choice literature, combinatorial voting is typ-
ically associated with scenarios where voters express opinions over a set of al-
ternatives that themselves have a specific combinatorial structure (typically,
one uses CP-nets to model preferences over such sets of alternatives [6]). For
example, Conitzer et al. [15] studied a form of control in this setting and

5By “previous work,” we mean papers that were published prior to the conference
version of our paper.

6According to Google Scholar, accessed February 2015, cited more than 1000 times.

5

Mattei et al. [38] studied bribery problems. In contrast, we use the standard
model of elections where all alternatives and preference orders are given ex-
plicitly, but we have a combinatorial structure on the sets of voters which
can be added.

Paper Outline. In Section 2, we introduce notations used throughout the
whole paper and concepts necessary for the parameterized complexity anal-
ysis. In Section 3, we formally define our central problem and summarize
our contributions. Then, we go on to study the complexity of combinatorial
voter control problems where voters may have arbitrary preference orders:
in Section 4, we focus on the so-called canonical parameters, specifically,
the solution size, the number of alternatives, and the number of unregis-
tered voters, while in Section 5 we focus on parameters arising from the
combinatorial structure, that is, the maximum bundle size and the swap
distance. In Section 6, we analyze situations where the voters’ preference
orders are either single-peaked or single-crossing. We conclude in Section 7
with several future research directions.

2. Preliminaries

We assume familiarity with standard notions regarding algorithms and
complexity theory. For each nonnegative integer z, we write [z] to mean
{1, . . . , z}.

Elections. An election E := (C, V) consists of a set C of m alternatives and
a set V of voters v1, v2, . . . , v|V |. Each voter v has a linear order �v over
the set C, which we call a preference order (a vote). For example, let C =
{c1, c2, c3} be a set of alternatives. The preference order c1 �v c2 �v c3 of
voter v indicates that v likes c1 best (1st position), then c2, and c3 least (3rd

position). We call a voter v ∈ V a c-voter if c is at the first position of
v’s preference order. Given a subset C ′ ⊆ C of alternatives, if not stated
explicitly, we write 〈C ′〉 to denote an arbitrary but fixed preference order
over C ′.

Voting Rules. A voting rule R is a function that, given an election E =
(C, V), outputs a (possibly empty) set R(E) ⊆ C of the (tied) election
winners. We study the Plurality rule and the Condorcet rule. Given an
election, the Plurality score of an alternative c is the number of voters having
c at the first position in their preference orders; an alternative is a Plurality
winner if it has the highest Plurality score. An alternative c is a Condorcet
winner [16] if it beats all other alternatives in head-to-head contests, that

6

is, if for each alternative c′ ∈ C \ {c} it holds that |{v ∈ V | c �v c′}| >
|{v ∈ V | c′ �v c}|. Condorcet’s rule elects the (unique) Condorcet winner
if it exists, and returns an empty set otherwise. A voting rule is Condorcet-
consistent if it elects a Condorcet winner when there is one. However, if
there is no Condorcet winner, then a Condorcet-consistent rule is free to
provide any set of winners.

Domain Restrictions. Intuitively, an election is single-peaked [5] if it is pos-
sible to order the alternatives on a line in such a way that for each voter v
whose preferred alternative is c, the following holds: for each two alterna-
tives ci and cj such that both of them are on the same side of c (with respect
to the ordering of the alternatives on the line), among ci and cj , v prefers
the one closer to c. For example, single-peaked elections arise when we view
the alternatives as positioned on the standard political left-right spectrum
and voters form their preferences based solely on the alternatives’ positions
on this spectrum. Formally, we have the following definition.

Definition 1 (Single-peaked elections). Let C be a set of alternatives and
let L be a linear order over C (referred to as the societal axis). We say that
a preference order � (over C) is single-peaked with respect to L if for each
three alternatives c, c′, c′′ ∈ C it holds that:(

(c L c′ L c′′) ∨ (c′′ L c′ L c)
)

=⇒
(
(c � c′) =⇒ (c′ � c′′)

)
.

An election (C, V) is single-peaked with respect to L if the preference order
of each voter in V is single-peaked with respect to L. An election is single-
peaked if there is a societal axis with respect to which it is single-peaked.

There are polynomial-time algorithms that decide whether a given elec-
tion is single-peaked and, if so, provide a societal axis for it [1, 21].

Single-crossing elections, introduced by Mirrlees [41] and Roberts [44],
are based on similar idea as single-peaked ones, but from a different perspec-
tive. Here, it is assumed that it is possible to order the voters such that for
each two alternatives x and y either all voters rank x and y identically, or
there is a single point along this order where voters switch from preferring
one of the alternatives to preferring the other one (see the work of Sapor-
iti and Tohmé [48] for a number of real-life examples where single-crossing
elections may appear and for further references regarding this domain re-
striction). Formally, we have the following definition.

Definition 2 (Single-crossing elections). An election (C, V) is single-
crossing if there is an order L over V such that for each two alternatives c

7

and c′ and each three voters x, y, z with x L y L z it holds that:

(c �x c′ ∧ c �z c′) =⇒ c �y c′.

Just as for the case of single-peakedness, there are polynomial-time algo-
rithms that decide whether an election is single-crossing and, if so, produce
the voter order witnessing this fact [18, 9].

Combinatorial Bundling Functions. Given a voter set W , a combinatorial
bundling function κ : W → 2W (abbreviated as bundling function) is a
function assigning to each voter a subset of voters. For convenience, for
each subset W ′ ⊆ W , we let κ(W ′) =

⋃
x∈W ′ κ(x). For x ∈ W , κ(x) is

called x’s bundle and x is called the leader of this bundle. We assume that
x ∈ κ(x) so that κ(x) is never empty. We typically write b to denote the
maximum bundle size under a given κ (which will always be clear from
context). Intuitively, we use combinatorial bundling functions to describe
the sets of voters that we can add to an election at a unit cost. For example,
one can think of κ(x) as the group of voters that join the election under x’s
influence. Bundling functions can be represented explicitly: for each voter
x, simply list the voters in κ(x).

It is worthwhile to shortly discuss the model here. We could have defined
our problem differently, by having sets of voters as the bundles, without a
distinguished leader (somewhat similarly to the model of Erdélyi et al. [19],
but with each voter having possibly many labels). We chose our approach
based on the idea that upon convincing a single voter to attend the election,
his or her friends would likely follow. We mention that most of our results
transfer to this other model as well.

We are interested in various special cases of bundling functions. We say
that κ is leader-anonymous if for each two voters x and y with the same
preference orders, κ(x) = κ(y) holds. Furthermore, κ is follower-anonymous
if for each two voters x and y with the same preference orders, and each
voter z, it holds that x ∈ κ(z) if and only if y ∈ κ(z). We call κ anonymous
if it is both leader-anonymous and follower-anonymous. One possible way
of thinking about an anonymous bundling function is that it is a function
assigning to each preference order appearing in the input a subset of the
preference orders appearing in the input. For example, anonymous bun-
dling functions naturally model scenarios such as airing TV advertisements
that appeal to particular groups of voters.

The swap distance between two voters vi and vj is the minimum number
of swaps of consecutive alternatives that transform vi’s preference order into
that of vj . Given a number d ∈ N, we call κ a full-d bundling function if

8

for each x ∈ W , κ(x) is exactly the set of all y ∈ W such that the swap
distance between the preference orders of x and y is at most d. The idea is
that here, only voters whose preference orders are roughly the same can be
bundled together.

We introduce the concept of the bundling graph of an election, which,
roughly speaking, models how the bundles of two voters interact with each
other.

Definition 3 (Bundling graphs). Given a bundling function κ (over the
set W of voters), the bundling graph is a simple and directed graph G =
(V (G), E(G)). For each voter x there is a vertex ux ∈ V (G), and for each two
distinct voters z and y such that y ∈ κ(z), there is an arc (uz, uy) ∈ E(G).

We use the classic definition of connectivity and connected components
for directed graphs. That is, G is called (weakly) connected if the underlying
undirected graph is connected. Accordingly, a connected component of G is
a maximal connected subgraph of G.

Given a bundling graph and an alternative c, we say that a vertex is a
c-vertex if the corresponding voter is a c-voter; otherwise we call it a non-c-
vertex. Accordingly, we say that an arc is a (c1, c2)-arc if the source of this
arc is a c1-vertex and the target is a c2-vertex.

For a non-negative integer x, an x-star is a (directed) graph consisting
of (x+ 1) vertices and x arcs such that there is a vertex with x (in- or out-)
neighbors.

For arbitrary bundling functions, the bundling graph is a directed graph.
However, if κ is a full-d bundling function, that is, for each voter v, κ(v)
contains all the voters with swap distance at most d, then we can consider
it as an undirected one. The reason is that in this case for every two un-
registered voters x and y we have that y ∈ κ(x) if and only if x ∈ κ(y).
In consequence, for each arc (ux, uy) in the bundling graph, the reverse arc
(uy, ux) is also present.

Observation 1. If κ is a full-d bundling function, then for any unregistered
voter x and any y ∈ κ(x), it holds that x ∈ κ(y).

Proof. Note that for any two voters x and y if y ∈ κ(x), then the swap
distance between x and y is at most d. Therefore, since κ is a full-d bun-
dling function and the swap distance is clearly symmetric, x must be in
κ(y).

Note that the “mutual containment” property, as stated above, does not
hold for every bundling function. For example, κ with κ(x) = {x, y} and

9

κ(y) = {y} is a valid bundling function. The following is easy to observe, as
full-d bundling functions depend only on the preference orders and not on
the specific voters:

Observation 2. If κ is a full-d bundling function, then κ is also anonymous.

Proof. To show that κ is anonymous we need to show both leader-anonymity
and follower-anonymity. Suppose that κ is a full-d bundling function. Let
x, y, z be three voters such that x and y have the same preference order. If
z ∈ κ(x) (respectively, if x ∈ κ(z)), then z has a swap distance of at most d to
x, and hence, to y. By the definition of full-d bundling functions, z ∈ κ(y)
(respectively, y ∈ κ(z)). This shows the leader-anonymity (respectively,
follower-anonymity) of κ.

Parameterized Complexity. An instance (I, r) of a parameterized problem
consists of the actual instance I and of an integer r referred to as the pa-
rameter [17, 27, 42]. A parameterized problem is called fixed-parameter
tractable (is in FPT) if there is an algorithm solving it in time f(r) · |I|O(1),
where f is a computable function depending on the parameter r only. An al-
gorithm with running-time |I|f(r) shows membership in the class XP (clearly,
FPT ⊆ XP).

If a parameterized problem is fixed-parameter tractable due to a formu-
lation as an integer linear program (ILP), then we say that this problem is in
ILP-FPT. Of course, ILP-FPT is not a separate complexity class; we use this
notation because ILP-FPT problems are solved using the famous algorithm
of Lenstra [34], which means that while they are in FPT, the algorithms
for them might be not very practical and might not reveal any structural
properties of the problems.

One can show that a parameterized problem L is (presumably) not fixed-
parameter tractable by devising a parameterized reduction from a W[1]-hard
or a W[2]-hard problem to L. A parameterized reduction from a parame-
terized problem L to another parameterized problem L′ is a function that
acts as follows, for some two computable functions f and g: given an in-
stance (I, r), it computes in f(r) · |I|O(1) time an instance (I ′, r′) such
that r′ ≤ g(r) and (I, r) ∈ L ⇔ (I ′, r′) ∈ L′. Betzler et al. [4] survey
parameterized complexity investigations in voting.

In this paper, we use the following three problems parameterized by
the “solution size” to show parameterized intractability results: Clique,
Partial Vertex Cover, and Set Cover. The first two problems are
W[1]-complete while the last one is W[2]-complete [17]. We give the formal

10

definition of Clique in the proof of Theorem 2, Partial Vertex Cover
in the proof of Theorem 9, and Set Cover in the proof of Theorem 1.

3. Central Problem

For a given voting rule R, we define our central problem of combinatorial
constructive control by adding voters as follows:

R Combinatorial Constructive Control by Adding
Voters (R-C-CC-AV)
Input: An election E = (C, V), a set W of (unregistered) voters
with V ∩W = ∅, a bundling function κ : W → 2W , a preferred
alternative p ∈ C, and a non-negative integer bound k ∈ N.
Question: Is there a subset of voters W ′ ⊆ W of size at most
k such that p ∈ R(C, V ∪ κ(W ′))?

We use the so-called nonunique-winner model. That is, for a control action
to be successful it suffices for p to be one of the tied winners. Throughout
this work, we refer to each subset W ′ ⊆ W of voters such that p wins the
election (C, V ∪ κ(W ′)) and |W ′| ≤ k as a solution, and we refer to k as the
solution size (formally, k is a bound on the allowed solution size, but our
notation makes the discussion a bit simpler). For the Plurality rule, we also
assume that the score difference between the current winner and p does not
exceed the total number of p-voters in W .
R-C-CC-AV is a generalization of the well-studied problem R Con-

structive Control by Adding Voters (R-CC-AV) (in which, effec-
tively, κ is fixed so that for each w ∈ W we have κ(w) = {w}). The
non-combinatorial problem CC-AV is linear-time solvable for the Plurality
rule by a simple calculation [2] (see also the remark at the beginning of Sec-
tion 5), but is NP-complete for the Condorcet rule [36]. Therefore we have
the following observations:

Observation 3. If the maximum bundle size b is one, then Plurality-C-
CC-AV is solvable in linear time.

Observation 4. Condorcet-C-CC-AV is NP-hard even if the maximum
bundle size b is one.

Our Contributions. We introduce a new model for combinatorial control in
voting. Our results show that C-CC-AV is NP-hard even for the Plurality
rule. For this reason, we complement our study by focusing on a number of

11

Bundling
function κ

Unrestricted domain Restricted domain

Arbitrary
XP : O(nk) · (m+ n′)O(1) [Prop. 1]

W[2]-hard wrt. k [Thm. 1] (already when m = 2)
FPT wrt. k when b ≤ 2 [Thm. 5]

Anonymous

ILP-FPT wrt. m [Thm. 3]

NP-hard [Thm. 4]
(already when b = 2)

W[1]-hard wrt. k [Thm. 2]
(already when b = 3)

?

Full-d
(in effect,

anonymous
[Obs. 2])

P when b ≤ 2 [Thm. 6]

NP-hard [Thm. 7]
(already when b = 3 and

d = 3)

NP-hard [Thm. 8]
(already when b = 4 and

d = 1)

Single-peaked:
W[1]-hard wrt. k

[Thm. 9]

Single-crossing:
P [Thm. 10]

Table 1: Computational complexity classification of Plurality-C-CC-AV (since the non-
combinatorial problem CC-AV is already NP-hard for Condorcet’s rule, we concentrate
on the Plurality rule here). The parameters that we study here are “the number m of
alternatives”, “the number n′ of registered voters”, “the number n of unregistered voters”,
“the solution size k”, “the maximum bundle size b”, and “the maximum swap distance d
between the leader and its followers in a bundle”. We distinguish between unrestricted and
restricted domains (the left and the right column), and between arbitrary, anonymous, and
full-d bundling functions (respectively, the first, the second, and the third row). ILP-FPT
means FPT based on a formulation as an integer linear program. The question mark (?)
means that it is open whether the tractability result for full-d bundling functions also
holds for non-full bundling functions and whether the hardness results for unrestricted
domains transfer to single-peaked or single-crossing domains.

different parameters, showing both fixed-parameter tractability results and
parameterized hardness results. We almost completely resolve the complex-
ity of C-CC-AV for the Plurality rule and the Condorcet rule as a function
of the maximum bundle size b and the maximum distance d from a voter v
to the farthest element of v’s bundle. For example, for Plurality voting, the

12

complexity of the problem depends on b in the following way:

(1) If b = 1, then the problem is polynomial-time solvable (this is due to
Bartholdi et al. [2]; see Observation 3).

(2) If b = 2, then the complexity of the problem depends on the bundling
function. If the bundling function is full-d, then the problem is
polynomial-time solvable (Theorem 6). Otherwise, the problem is NP-
hard (Theorem 4), but is in FPT with respect to the solution size (The-
orem 5).

(3) If b = 3, then the problem is W[1]-hard even for anonymous bundling
functions (Theorem 2), and is NP-hard for full-d bundling functions,
even if d ≤ 3 (Theorem 7).

(4) For any constant b ≥ 4, the problem is NP-hard already for full-d
bundling functions with d = 1 (Theorem 8); for d = 0, which in essence
means looking at the weighted control case for the special case of unary-
encoded weights, the problem is polynomial-time solvable [25].

For the Condorcet rule, we obtain NP-hardness even when the input has
only two alternatives (of course, this result applies to the Plurality rule as
well; for two alternatives the two rules are identical).

Furthermore, we show that for both the Plurality rule and the Condorcet
rule C-CC-AV remains hard even when restricting the elections to be single-
peaked, but that it is polynomial-time solvable when we focus on single-
crossing elections. Our results for Plurality elections are summarized in
Table 1.

We make a final remark that the combinatorial variants of voter control
problems that we study are clearly contained in NP. Thus, our NP-hardness
results in fact imply NP-completeness results.

4. Canonical Parameterizations

In this section we provide our results for unrestricted elections, i.e., for
the case where voters may have arbitrary preference orders. Later, in Sec-
tion 6, we will consider single-peaked and single-crossing elections that only
allow “reasonably restricted” preference orders.

13

4.1. Parameterization by the Solution Size and by the Number of Unregis-
tered Voters

We start our discussion by considering the parameters “number |W | of
unregistered voters” and “solution size k”. A simple brute-force algorithm,
checking all possible combinations of k bundles, proves that both Plural-
ity-C-CC-AV and Condorcet-C-CC-AV are in XP for parameter k, and
in FPT for parameter |W | (the latter holds because k ≤ |W |). Indeed,
the same result holds for all voting rules with polynomial-time winner-
determination procedures.

Proposition 1. Plurality-C-CC-AV is solvable in time O(|W |k · (|V |+
|W |)) and Condorcet-C-CC-AV is solvable in time O(|W |k · (|V |+ |W |) ·
|C|2), implying that both for Plurality and Condorcet, CC-AV is in
XP for parameter k and in FPT for parameter |W |.

Proof. We can solve C-CC-AV by considering all elections resulting from
adding one of the

∑k
j=0

(|W |
k

)
≤ O(|W |k) possible combinations of (up to) k

bundles of unregistered voters. For each combination of (up to) k bundles
of voters, we use the standard winner determination algorithm for the given
voting rule. For Plurality, the winner can be computed in time O(|V |+
|W |); for Condorcet, the winner can be computed in time O((|V |+ |W |) ·
|C|2): for each pair of alternatives c and c′, we compute whether a strict
majority of voters prefers c to c′ or c′ to c (we can do so on a voter-by-voter
basis by storing the results for each pair of alternatives).

The XP result for Plurality-C-CC-AV parameterized by the solution
size k probably cannot be improved to fixed-parameter tractability. Indeed,
for parameter k we show that the problem is W[2]-hard, even for elections
with only two alternatives. This is quite remarkable because typically elec-
tion problems with a small number of alternatives are easy (they can be
solved either by brute-force or by integer linear programming employing the
famous FPT algorithm of Lenstra [34]; see the survey of Betzler et al. [4]
for examples). Nonetheless, there are other known examples of problems
where a small number of alternatives does not seem to lower the complexity
of a given election problem [10]. Furthermore, since our proof uses only two
alternatives, it applies to almost all natural voting rules: for two alterna-
tives almost all of them (including the Condorcet rule) are equivalent to the
Plurality rule. Also, every election with two alternatives is trivially single-
peaked and single-crossing, thus the next result extends to these domain
restrictions as well.

14

Theorem 1. Plurality-C-CC-AV is NP and W[2]-hard when parameter-
ized by the solution size k are W[2]-hard, even for two alternatives.

Proof. We first show the W[2]-hardness result by providing a parameterized
reduction from the W[2]-complete problem Dominating Set [17], defined
as follows (we take h to be the parameter):

Dominating Set
Input: An undirected graph G = (V (G), E(G)) and a non-
negative integer h ∈ N.
Question: Does G admit a dominating set of size at most h,
that is, a vertex subset U ⊆ V (G) with |U | ≤ h such that each
vertex from V (G) \U is adjacent to at least one vertex from U?

Let (G, h) be a Dominating Set instance. We construct an election
(C, V) as follows. We let the set of alternatives be C = {p, g}, where p is our
preferred alternative. Since our election has only two alternatives, when we
speak of a p-voter (a g-voter), we mean a voter with preference order p � g
(respectively, preference order g � p). The registered voter set V consists
of |V (G)| g-voters (and no p-voters). The unregistered voter set W consists
of one p-voter wi for each vertex ui ∈ V (G). We let the bundle κ(wi) of
wi consist of the p-voters corresponding to the closed neighborhood of ui.
Formally, we define W := {wi | ui ∈ V (G)} and κ(wi) = {wi} ∪ {wj |
{ui, uj} ∈ E(G)}. Observe that all unregistered voters are p-voters. In
order to let p win, we have to add bundles to the election that correspond
to the whole vertex set. Finally, we set k := h.

It is clear that our construction is a polynomial reduction and hence, a
parameterized reduction. It remains to show that there is a dominating set
of size at most h if and only if there is a subset W ′ of unregistered voters of
size at most k, such that if their respective bundles are added to the election,
then p becomes a Plurality winner of the election.

For the “if” part, suppose that there is a subset W ′ of size at most k
such that p is a winner of the Plurality election (C, V ∪ κ(W ′)). Define
U to be the set of vertices corresponding to the voters from W ′, that is,
U := {ui | wi ∈ W ′}. Then, it is easy to verify that |U | ≤ k = h and for
each vertex ui ∈ V (G) \ U there must be a vertex uj ∈ U which is adjacent
to ui, since otherwise p will not obtain enough points to become a winner.

For the “only if” part, given a dominating set U of size at most h, we
define W ′ to be the corresponding voter set, that is, W ′ := {wi | ui ∈ U}.
It is easy to verify that |W ′| ≤ h = k and p as well as g win with n points
both.

15

As already mentioned, the parameterized reduction we presented is in-
deed a polynomial-time reduction. Since the problem we reduce from is
NP-hard we can conclude that our problem is NP-hard even for two alter-
natives.

Since with two alternatives the Condorcet rule is equivalent to the strict
majority rule (that is, one needs to add enough p-voters such that p is
preferred to the second alternative by more than half of the voters) we
can adapt the above reduction for the Plurality rule to also work for the
Condorcet rule. Thus, the following holds.

Proposition 2. Condorcet-C-CC-AV is W[2]-hard when parameterized
by the solution size k, even for two alternatives.

Proof. We use the same unregistered voters as described in the proof for
Theorem 1, and we construct the original election with (n − 1) g-voters.
The correctness proof follows in an analogous way.

If we require the bundling functions to be anonymous and the maximum
bundle size to be three, then Plurality-C-CC-AV turns out to be W[1]-
hard (regarding the same parameter k).

Theorem 2. Plurality-C-CC-AV is W[1]-hard when parameterized by
the solution size, even when the maximum bundle size b is three and the
bundling function is anonymous.

Proof. To show the W[1]-hardness result, we provide a parameterized reduc-
tion from the W[1]-hard problem Clique [17], defined as follows (we take h
as the parameter):

Clique
Input: An undirected graph G = (V (G), E(G)) and h ∈ N.
Question: Does G admit a size-h clique, that is, a size-h vertex
subset U ⊆ V (G) such that G[U] is complete?

Let (G, h) be a Clique instance. Without loss of generality, we assume
that G is connected, h ≥ 3, and each vertex in G has degree at least h− 1.
We construct an election E = (C, V) with C := {p, f, g} ∪ {ce | e ∈ E(G)}
with p as our preferred alternative, and the intention of f being the current
winner, and g having sufficiently many unregistered supporters to ensure
that we indeed add a “clique solution” to the election. We use the edge
alternatives from {ce | e ∈ E(G)} to ensure that all the unregistered voters
have different preference orders.

16

We introduce registered voters such that initially, f wins with
(
h
2

)
+

h points, g has
(
h
2

)
points, our preferred alternative p has h points, and

all edge alternatives have zero points. Formally, the registered voter set V
consists of the following groups of voters:

(1) h voters, each with preference order p � 〈C \ {p}〉,

(2)
(
h
2

)
+ h voters, each with preference order f � 〈C \ {f}〉, and

(3)
(
h
2

)
voters, each with preference order g � 〈C \ {g}〉.

In this way, we enforce that p needs at least
(
h
2

)
points to become a winner.

By carefully constructing the preference orders of the unregistered voters,
we can enforce that the added voters correspond to a clique of size h. To this
end, for each vertex u ∈ V (G), we define C(u) := {ce | e ∈ E(G) ∧ u ∈ e},
that is, C(u) contains all edge alternatives that correspond to the incident
edges of u. Now, we construct the set W of unregistered voters as follows:

(1) For each vertex u ∈ V (G), we add an unregistered g-voter wu with
preference order

g � 〈C(u)〉 � p � 〈C \ ({g, p} ∪ C(u))〉.

We call these unregistered voters vertex voters. We set κ(wu) = {wu}.

(2) For each edge e = {u, u′} ∈ E(G), we add an unregistered p-voter we
with preference order

p � ce � g � 〈C \ {p, g, ce}〉.

We call these unregistered voters edge voters. We set κ(we) =
{wu, wu′ , we}.

Note that all unregistered voters have different preference orders. This
implies that our bundling function κ is anonymous (when all the unregis-
tered voters have different preference orders, then every bundling function
is anonymous). To complete our construction, we set k :=

(
h
2

)
.

We show that G has a size-h clique if and only if ((C, V),W, κ, p, k) is
a yes-instance for Plurality-C-CC-AV. For the “if” part, suppose that
there is a subset W ′ of at most k voters such that p wins the election (C, V ∪
κ(W ′)). We show that the vertex set U ′ := {u ∈ V (G) | we ∈ W ′ ∧ u ∈ e}
is a size-h clique for G. First, we observe that p needs at least

(
h
2

)
points

to become a winner because of the difference in scores between the initial

17

winner f and p. By our construction, only bundles which include an edge
voter can increase the score of p by adding one p-voter, while adding another
two g-voters. Since we can add at most k =

(
h
2

)
bundles, we must add

exactly k bundles of the edge voters. This means that E(G[U ′]) contains
k edges. However, in order to ensure p’s victory, κ(W ′) may only give at
most h additional points to g. By the construction of the bundles of the edge
voters, this means that U ′ contains at most h vertices. With |E(G[U ′])| ≥ k,
we conclude that U ′ is of size h and, hence, is a size-h clique for G.

For the “only if” part, suppose that U ′ ⊆ V (G) is a size-h clique for G.
We construct the subset W ′ by adding to it any edge voter we with e ∈
E(G[U ′]). Obviously, |W ′| = k. Now it easy to check that p co-wins with
both f and g the election (C, V ∪ κ(W ′)) with score

(
h
2

)
+ h.

4.2. Parameterization by the Number of Alternatives

From Theorem 1, we know that our central problem for both the Plural-
ity rule and the Condorcet rule is NP-hard already when the input election
has only two alternatives. The corresponding proof uses the non-anonymity
of the bundling function in a crucial way. Indeed, if we require the bundling
function to be anonymous, then C-CC-AV can be formulated as an integer
linear program (ILP) where the number of variables and the number of con-
straints are bounded by some function dependent only on the number m of
alternatives. Finding feasible solutions for such integer linear programs is
in FPT, parameterized by the number of variables, due to the famous result
of Lenstra [34].

Theorem 3. For Plurality and Condorcet, when parameterized by the num-
ber m of alternatives, C-CC-AV is NP-hard already for two alternatives,
while it is fixed-parameter tractable for anonymous bundling functions.

Proof. The NP-hardness result with two alternatives follows from Theo-
rem 1. Thus, we only need to show the fixed-parameter tractability result
for anonymous bundling functions. We prove this by describing an integer
linear program (ILP) with at most m! variables and at most 3m! +m con-
straints which solves Plurality-C-CC-AV, where m denotes the number
of alternatives. Fixed-parameter tractability then follows because every ILP
with ρ variables and L input bits is solvable in time O(ρ2.5ρ+o(ρ)L) [34, 33].
The case of Condorcet-C-CC-AV follows by a nearly identical argument;
we mention the necessary modifications at the end of the proof.

In a given election with m alternatives, there are at most m! voters
with pairwise different preference orders. Since the bundling function is

18

anonymous and, hence, follower-anonymous, there are at most m! differ-
ent bundles. Furthermore, we can assume that all voters in a solution W ′

have pairwise different preference orders (this is because, due to (leader)
anonymity, there is no additional gain in adding two voters with the same
preference order).

We introduce some notation for the description of our ILP: Let �1,�2

, . . . ,�m! be a sequence of all the possible preference orders over m alterna-
tives. For i ∈ [m!], let Ni be the number of voters with preference order �i
in W . For each alternative a ∈ C, we write F (a) to denote the set of pref-
erence orders in which a is ranked first, and write s(a) to denote a’s initial
score.

For each preference order �i, i ∈ [m!], we introduce two boolean vari-
ables, xi and yi. The intended meaning of xi = 1 is that the sought solu-
tion W ′ contains a voter with preference order �i. The intended meaning
of yi = 1 is that κ(W ′) contains voters with preference order �i. In our
ILP, we use the values of the variables xi to enforce the correct values of the
variables yi. We abuse our notation slightly and for each preference order �i
we write κ(�i) to denote the set of preference orders of the voters included
in the bundle of the voters with preference order �i. For each preference
order �j we define κ−1(�j) = {�i | �j ∈ κ(�i)} to be the set of preference
orders that include �j in their bundles.

Now we are ready to state our integer linear program (note that it suffices
to find a feasible solution and, thus, we do not specify any function to
minimize):

∑
i∈[m!]

xi ≤ k, (1)

xi ≤ Ni ∀i ∈ [m!], (2)∑
�i∈κ−1(�j)

xi ≤ m! · yj ∀j ∈ [m!], (3)

∑
�i∈κ−1(�j)

xi ≥ yj ∀j ∈ [m!], (4)

s(p) +
∑

�j∈F (p)

Nj · yj ≥ s(a) +
∑

�j∈F (a)

Nj · yj ∀a ∈ C \ {p}. (5)

This ILP requires some comments. First, constraint (1) ensures that at
most k voters are added to W ′ and constraint (2) ensures that the voters
added to W ′ are indeed present in W . Constraints (3) and (4) ensure that

19

variables yj , 1 ≤ j ≤ m!, have correct values. Indeed, if for some preference
order �i we have xi = 1 and �j ∈ κ(�i), then constraint (3) ensures that
yj = 1. On the other hand, if for some preference order �j we have that
for each preference order �i with �j ∈ κ(�i) it holds that xi = 0, then
constraint (4) ensures that yj = 0. Finally, constraint (5) ensures that p
has Plurality score at least as high as every other alternative (and, thus, is
a winner). Clearly, there is a solution for this integer linear program if and
only if there is a solution for the input instance.

For the case of the Condorcet rule, we modify constraint (5). Instead
of comparing alternatives’ Plurality scores, we formulate it to compare how
many voters prefer p to each given alternative a. Designing such a constraint
is an easy exercise.

5. Parameterization by the Maximum Bundle Size and by the
Swap Distance

We now focus on the complexity of Plurality-C-CC-AV as a function
of two combinatorial parameters: (a) the maximum size b of each voter’s
bundle, and (b) the maximum swap distance d between the leader and her
followers in one bundle. (By Observation 4, for the Condorcet rule the
problem is NP-hard already for b = 1, so we do not consider the Condorcet
rule in this section.)

Specifically, we show that Plurality-C-CC-AV is polynomial-time solv-
able if the maximum bundle size is one (that is, if we are in the non-
combinatorial setting already studied by Bartholdi et al. [2]), but it is NP-
hard already when the maximum bundle size is two and the bundling func-
tion is anonymous. We also show that when the maximum bundle size is
two, the problem for arbitrary bundling functions, parameterized by the so-
lution size, is in FPT. In contrast, if κ is a full-d bundling function (that is,
if each bundle contains all the voters at swap distance at most d from the
leader), then Plurality-C-CC-AV is polynomial-time solvable if the maxi-
mum bundle size is two, but is NP-hard already when the maximum bundle
size is three.

5.1. Bundle Size At Most Two—The Intractability Result

First, if b = 1, as mentioned in Observation 3, then C-CC-AV reduces
to CC-AV and, thus, can be solved in linear time [2]. Indeed, one only
needs to calculate the score difference of the preferred alternative and the
current winner and check whether k, the maximum number of voters one

20

may add, is at least as large as this difference and whether there are enough
p-voters from the unregistered voter set to add to the election.

Plurality-C-CC-AV becomes intractable as soon as the maximum
bundle size b is two, even for anonymous bundling functions. To show this
we reduce from the following restricted variant of 3SAT.

(2-2)-3SAT
Input: A collection C of size-two-or-three clauses over the vari-
able set X = {x1, . . . , xn}, such that each clause has either two
or three literals, and each variable appears exactly four times,
twice as a positive literal and twice as a negative literal.
Question: Is there a truth assignment that satisfies all the
clauses in C?

This variant remains NP-hard.

Lemma 1. (2-2)-3SAT is NP-complete.

Proof. Clearly, the problem belongs to NP. We provide a reduction from
the NP-complete 3SAT, where each clause has either two or three literals,
each variable occurs either two or three times, and at most one time as a
negative literal [49, Theorem 2.1].

First, we assume that no variable appears only positively: if this were
the case for some variable, then we could set it to true and simplify the
formula. For each variable xi that appears three times (two times positively
and one time negatively), we add one new variable yi, and two new clauses
{¬xi,¬yi, yi} and {¬yi, yi}. For each variable xi that appears two times (one
time positively and one time negatively), we add one new clause {¬xi, xi}.
It is easy to see that the original instance is a yes-instance if and only if the
newly constructed instance is a yes-instance for (2-2)-3SAT.

Theorem 4. Plurality-C-CC-AV is NP-hard even if the bundling func-
tion is anonymous and the maximum bundle size b is two.

Proof. We reduce from the NP-complete problem (2-2)-3SAT (Lemma 1).
Given a (2-2)-3SAT instance (C,X), where C is the set of clauses over
the set of variables X , we construct an election (C, V). We set k := 4|X |,
and define the set C of alternatives to be C := {p, g} ∪ {ci | Ci ∈ C} ∪
{d(1)j , d

(2)
j , d

(3)
j , d

(4)
j | xj ∈ X}. We refer to the alternatives ci as the clause

alternatives, and to the alternatives d
(z)
j as the dummy alternatives. We

use the clause alternatives to make sure that the solution to Plurality-
C-CC-AV encodes a satisfying truth assignment and we use the dummy

21

alternatives to ensure that all unregistered voters have distinct preference
orders (this ensures that our bundling function is anonymous).

We construct the set V of registered voters so that the initial score of g
is 4|X |, the initial score of each clause alternative ci is 4|X |−|Ci|+1 (where
|Ci| is the number of literals that clause Ci contains), and the initial score
of p is zero. We assume without loss of generality that no clause contains
the same literal more than once.

We construct the set W of unregistered voters as follows (throughout
the rest of the proof, we will often write `j to refer to a literal that contains
variable xj ; depending on the context, `j will mean either xj or ¬xj and the
exact meaning will always be clear). For each variable xj ∈ X that occurs
as a negative literal (¬xj) in clauses Ci and Cs, i < s, and as a positive
literal (xj) in clauses Cr and Ct, r < t, we construct:

(1) Four p-voters, denoted by p
(1)
j , p

(2)
j , p

(3)
j , p

(4)
j , with the following prefer-

ence orders:

p
(1)
j : p � d(1)j � 〈C \ {p, d

(2)
j }〉,

p
(2)
j : p � d(2)j � 〈C \ {p, d

(3)
j }〉,

p
(3)
j : p � d(3)j � 〈C \ {p, d

(4)
j }〉,

p
(4)
j : p � d(4)j � 〈C \ {p, d

(1)
j }〉;

we call these voters variable voters.

(2) Four clause voters, denoted by c
¬xj
i , c

xj
r , c

¬xj
s , c

xj
t , with the following pref-

erence orders:

c
¬xj
i : ci � d(1)j � 〈C \ {ci, d

(1)
j }〉,

c
xj
r : cr � d(2)j � 〈C \ {cs, d

(2)
j }〉,

c
¬xj
s : cs � d(3)j � 〈C \ {cr, d

(3)
j }〉,

c
xj
t : ct � d(4)j � 〈C \ {ct, d

(4)
j }〉.

Note that each clause Ci has exactly |Ci| corresponding clause voters.

We now describe our bundling function κ. Intuitively, κ is such that the
ensuing bundling graph (see Definition 3) contains a cycle for each variable

22

c
xj
r

p
(2)
j

c
¬xj
i

p
(1)
j

c
xj
t

p
(4)
j

c
¬xj
s

p
(3)
j

Figure 1: Part of the construction used in Theorem 4. Specifically, we show the cycle
corresponding to variable xj which occurs as a negative literal in clauses Ci and Cs, and
as a positive literal in clauses Cr and Ct.

(see Figure 1 for an illustration). Formally, we define κ as follows:

κ(p
(1)
j) := {p(1)j , c

¬xj
i }, κ(c

¬xj
i) := {c¬xji , p

(2)
j },

κ(p
(2)
j) := {p(2)j , c

xj
r }, κ(c

xj
r) := {cxjr , p(3)j },

κ(p
(3)
j) := {p(3)j , c

¬xj
s }, κ(c

¬xj
s) := {c¬xjs , p

(4)
j },

κ(p
(4)
j) := {p(4)j , c

xj
t }, κ(c

xj
t) := {cxjt , p

(1)
j }.

This completes the construction. It runs in polynomial time.
To show the correctness of the construction, the general idea is that in

order to let p win, all p-voters must be in κ(W ′) and no clause alternative ci
should gain more than (|Ci| − 1) points. More formally, we now show that
(C,X) has a satisfying truth assignment if and only if there is a size-k voter
subset W ′ ⊆ W such that p wins the election (C, V ∪ κ(W ′)) (recall that
k = 4|X |).

For the “if” direction, let β : X → {T, F} be a satisfying truth assign-
ment function for (C,X). Intuitively, β will guide us through constructing
the voter set W ′ in the following way: First, for each variable xj , we put

into W ′ those clause voters c
`j
i for whom β sets `j to false. This way in

κ(W ′) we include 2|X | p-voters and, for each clause ci, at most (|Ci| − 1)
ci-voters. The former is true because exactly |X | literals are set to false by

β, each literal is included in exactly two clauses, and adding each c
`j
i into W ′

also includes a unique p-voter into κ(W ′); the latter is true because if β is a

23

satisfying truth assignment then each clause Ci contains at most (|Ci| − 1)

literals set to false. Then, for each clause voter c
`j
i already in W ′, we also

add the voter p
(z)
j , 1 ≤ z ≤ 4, that contains c

`j
i in her bundle. This way we

include in κ(W ′) 2|X | additional p-voters without increasing the number of
clause voters included. Formally, we define W ′ as follows:

W ′ :={c¬xji , p
(z)
j | β(xj) = T ∧ ¬xj ∈ Ci ∧ c

¬xj
i ∈ κ(p

(z)
j)}∪

{cxji , p
(z)
j | β(xj) = F ∧ xj ∈ Ci ∧ c

xj
i ∈ κ(p

(z)
j)}.

As per our intuitive argument, one can verify that all p-voters are contained
in κ(W ′) and each clause alternative ci gains at most (|Ci| − 1) points.

For the “only if” part, let W ′ be a subset of voters such that p wins the
election (C, V ∪ κ(W ′)).

We say that a literal `j is selected if at least one voter c
`j
i is not in κ(W ′).

If for some variable xj all four voters c
`j
i are in κ(W ′), then we arbitrarily set

literal xj to be selected. Intuitively, selecting a literal means that it should
be set to true to make the formula satisfied. More precisely, in the same

way as all voters c
`j
i cannot be together in κ(W ′) for any alternative ci, all

literals in clause Ci cannot be set to false together.
Before we continue with defining the truth assignment, we first prove

that for each variable xj , literals xj and ¬xj cannot be both selected. This

is clear in the special case where all four c
`j
i are in κ(W ′). Now we observe

that for each two clauses that contain the same variable but not the same
literal, at least one corresponding clause voter must be added to the election
(otherwise κ(W ′) would not contain all unregistered p-voters). Thus, if one
clause voter is not contained in κ(W ′), then both of her “neighboring” (in
the sense of being adjacent in the bundling graph, depicted in Figure 1)
clause voters must be included in κ(W ′). This means that for each variable
xj , κ(W ′) must contain at least the two voters of the form cxj or the two
voters of the form c¬xj , which means in turn that only one of xj and ¬xj
is selected. Although this is not required for our proof, we further remark
that the solution could be edited so that only voters corresponding to the
unselected literals are in κ(W ′).

We now define the truth assignment β : X → {T, F} such that β(xj) :=
T if literal xj is selected and β(xj) := F if ¬xj is selected. Following
the previous arguments, function β is well-defined. It is a satisfying truth
assignment function for (C,X) because for each clause Ci, by the fact that
p is a winner in election (C, V ∪ κ(W ′)), we have that κ(W ′) contains at
most (|Ci| − 1) ci-voters for each clause alternative ci. There must be some

24

`j ∈ Ci such that c
`j
i /∈ κ(W ′), hence `j is selected. Thus, this literal is set

to true via β, and clause Ci is satisfied.
Overall, the formula is satisfiable if and only if it is possible to make p

win by adding 2|X | bundles, which completes the reduction.

5.2. Bundle Size At Most Two—The Tractability Results

While we have just shown that Plurality-C-CC-AV is NP-hard even
if each bundle has at most two voters, intuitively it is plausible that some
tractability should stand out for this case, as this setting is very restrictive.
We justify this intuition by showing the following results.

(1) We give an FPT algorithm for the problem, parameterized by the solu-
tion size k (Theorem 5).

(2) We give a polynomial-time algorithm for the case where we restrict the
bundling function to be full-d (Theorem 6).

Both results rely on the fact that, for b = 2, we can work with the cor-
responding bundling graph in the following way. Intuitively, we should se-
lect arcs containing as many p-vertices as possible. Hence, we first find a
maximum matching among arcs whose both endpoints are p-vertices. We
then update the bundles (and the corresponding bundling graph) and add
to the solution all p-voters whose bundles are singletons. Finally, in the
non-full-d case, we brute-force search through the bundling graph structure
corresponding to the remaining part of the solution in FPT-time. In the
full-d case, we can solve the remaining problem greedily in polynomial time.

To implement our ideas, we first need some notions and observations con-
cerning the structure of the bundling graphs in our instances. Throughout
the remainder of the discussion of the b = 2 case, let I = ((C, V),W, κ, p, k)
be a Plurality-C-CC-AV instance, and let G = (V (G), E(G)) be the
bundling graph for I. We assume that this is a yes-instance and we let
W ′ be a solution of size up to k for I. We say that a solution is minimal if
it has the smallest size among all solutions, and we focus on such solutions.

Since b = 2, each bundle corresponds to one of the following four different
bundle types:

(1) bundles consisting of two p-voters, the corresponding bundling graph
notion for this type is a (p, p)-arc;

(2) bundles consisting of exactly one p-voter, the corresponding bundling
graph notion for this type is a p-vertex with no outgoing arcs;

25

(3) bundles consisting of one p-voter and one non-p-voter, the correspond-
ing bundling graph notion for this type is either a (p,non-p)-arc or a
(non-p, p)-arc; and

(4) bundles not containing p-voters.

Clearly, we never need to include bundles of the last type into our solu-
tion. Thus, we only need to take care of the bundles of the first three types
and, without loss of generality, we assume that G does not contain any arc
between two non-p-voters. Further, we can consider the first three bundle
types independently, in the same order as they are listed above. The next
two lemmas formalize this observation.

Lemma 2. If W ′ contains a c-voter w′ with c ∈ C (possibly p = c) whose
bundle κ(w′) is not of type (1) but there is at least one p-voter w ∈W \κ(W ′)
such that κ(w) is of type (1), then W ′′ := (W ′\{w′})∪{w} is also a solution
of the same size.

Proof. Let E′ := (C, V ∪ κ(W ′)) and let E′′ := (C, V ∪ κ(W ′′)). Clearly,
|W ′| = |W ′′|. Furthermore, p gets at least as many points in election E′′ as
in election E′ and every other alternative gets at most the same score in E′′

as in E′.

Lemma 3. If W ′ contains a p-voter w′ such that κ(w′) is of type (3) but
there is at least one p-voter w ∈ W \ κ(W ′) such that κ(w) is of type (2),
then W ′′ := (W ′ \ {w′}) ∪ {w} is also a solution of the same size.

Proof. Let E′ := (C, V ∪κ(W ′)) and let E′′ := (C, V ∪κ(W ′′)). Observe that
|W ′| = |W ′′| and p gets the same score in both election E′ and election E′′.
Furthermore, every other alternative gets at most the same score in E′ as
in E′′.

We need the following lemma to preprocess trivial yes-instances and to
upper-bound (by k) the number of p-vertices adjacent to a given vertex.

Lemma 4. Suppose that all the bundles are of type (3). If G contains (as
a subgraph) a k-star whose center is a c-vertex for some c ∈ C \ {p} and
whose leaves are p-vertices, then the following holds.

1. If c has at least k points more than p, then no solution can contain the
leader of any bundle corresponding to an arc of the star.

2. Otherwise, provided that p can become a winner at all, this star corre-
sponds to a solution of size k.

26

Proof. Suppose that c has at least k points more than p. Since all bundles
are of type (3), adding at most k bundles increases the score of p by at most
k points. Adding even one bundle corresponding to an arc from the star
increases the score of c by one, making the score difference between p and c
to be at least k. Thus, if it is only allowed to add at most k bundles, then
adding a bundle corresponding to an arc from the star makes it impossible
for p to be a Plurality winner.

In contrast, if c has at most k − 1 points more than p, then the best we
can do is to add all leaders of the k bundles corresponding to the k arcs of
the star. This increases the score of p by k (the highest possible value given
that all bundles are of type (3)) and keep the score of c not greater than
that of p. If it is possible to ensure p’s victory, then adding these k bundles
ensures p’s victory.

Now, we are ready to state and prove the two theorems relying on these
observations.

Theorem 5. If the maximum bundle size b is two, then Plurality-C-CC-
AV parameterized by the solution size k can be solved in O(m ·n2 + k4k ·m ·
n) time.

Proof. Following the discussion preceding the proof, our algorithm starts by
picking as many disjoint bundles of types (1) and (2) as possible. To do
so, we first find a maximum matching for the corresponding bundling graph
restricted to the (p, p)-arcs, and we add the bundles corresponding to this
matching (we also update the bundling function to take this into account;
indeed, some bundles may change type). Then, we add as many bundles with
exactly one p-voter as possible (that is, bundles of type (2)). By Lemmas 2
and 3, this greedy approach is correct. From now on, we assume that our
bundles are only of type (3) (and we assume that our value k is modified,
taking into account all the bundles we have added so far).

We now make several observations regarding our bundling graph G. We
assume that it is possible to ensure p’s victory, and we consider a specific
minimum-size solution, denoted by W ′. We let G′ be the subgraph of G
that corresponds to the solution W ′. Formally, G′ = (V (G′), E(G′)), where
V (G′) = V (G), and

E(G′) := {(u, v) ∈ E(G) |u corresponds to a leader x in W ′ such that

v corresponds to a follower in κ(x)}.

Claim 1. For each p-vertex in G′, it holds that the sum of its in-degree and
its out-degree is at most one.

27

Proof of Claim 1. Towards a contradiction, assume that there is a p-vertex u
for which the sum of its in-degree and its out-degree is at least two. Let
u1 and u2 be two neighbors of u (note that at least one of them is an
in-neighbor). Since all the bundles are of type (3), both u1 and u2 are
non-p-vertices. Let v1, v2 ∈ W be the voters to which u1 and u2 corre-
spond. At least one of them must be a leader (that is, must belong to W ′).
It is easy to verify that removing this voter from W ′ results in a correct
solution of smaller size, which contradicts the assumption that W ′ is mini-
mal. (of Claim 1) �

By the above claim, we conclude that each (weakly) connected compo-
nent of G′ is a star.

Claim 2. Each (weakly) connected component of G′ has the following prop-
erties:

1. It is a star.

2. The center of the star corresponds to a non-p-voter and all leaves to
p-voters.

3. The center of the star has at most one out-arc and at most k in-arcs.

Proof of Claim 2. Let F be a (weakly) connected component of G′. We first
show that F contains at most one non-p-vertex. Towards a contradiction,
suppose that F contains two non-p-vertices, u and u′. These two vertices
cannot be adjacent because we only have bundles of type (3). Thus, there is
a path between u and u′ that contains at least one p-vertex (we ignore the
direction of the edges on this path). However, the sum of the in-degree and
the out-degree of a p-vertex on such a path would be two, which by Claim 1
is impossible. Thus, F contains at most one non-p-vertex. Since for every
p-vertex the sum of its in-degree and its out-degree is at most one (Claim 1),
F is a star and we can take the p-vertices to be the leaves. Hence, we take
the non-p-vertex as the center (if we only had two vertices, one p-vertex and
one non-p-vertex, it would be possible to consider the p-vertex as the center
as well, but we do not do so). The last part of our claim follows by Lemma 4
and because every bundle has size two. (of Claim 2) �

Based on the above claims, we derive a search-tree algorithm for the
case where we are left with bundles of type (3) only. That is, the bundling
graph corresponding to a minimum solution consists only of stars where the
centers are non-p-voters. We start with an empty graph and we keep adding

28

to it “good” stars, one by one. To formalize this idea, we need one more
notion: Given two graphs, G1 and G2, such that G2 is a subgraph of G1, by
G1 \ G2 we mean the directed graph obtained from G1 by deleting all arcs
from G2 followed by deleting all isolated vertices.

Now, we are ready to describe our algorithm. First, we guess the size k′

(0 ≤ k′ ≤ k) of a minimum-size solution (this value equals the additional
score that p will gain). Then, we begin with an empty graph M and a
budget r, initialized to k′. We will repeatedly add “good” stars to the
graph M . Thus, when we speak of the jth star, we mean the jth star that
is, or will be, added to M . During the algorithm, we occasionally mark
some of the p-vertices as reserved for some of the stars that are yet to be
added to M . Similarly, we occasionally mark some alternatives as needed
by some of the to-be-added stars. Intuitively, if a p-vertex is reserved for a
star, it means that this star uses this vertex as a leaf. When an alternative
is needed by a star, it means that this star’s center must correspond to this
alternative.

The main part of our algorithm is to execute the following two steps in
a loop, until the whole budget is used up. Initially M is empty and the
budget r is set to k′. Let i be the number of stars in M added so far, plus
one (so, initially, i = 1).

(1) Find a star S from G\M that satisfies the following constraints (let the
center of S be a c-vertex, c 6= p):

(a) S contains all the p-vertices that have been reserved for the ith
star but no p-vertices that have been reserved for any i′th star with
i′ > i. If some alternative c′ is marked as needed for the ith star,
then the constraint c′ = c must hold.

(b) The original score of c plus the number of occurrences of the c-
vertices in M plus the number of times that c is needed for some
stars i′, i′ > i, is less than the original score of p plus k′, and

(c) S has the largest—but not larger than (r − t)—number of leaves
among all stars G \ G′ fulfilling the first two conditions, where t is
the number of p-vertices that are reserved for a star j, j > i.

If such a star does not exist, then we backtrack to the last step where
the (i − 1)th star has not yet been added to M (because the graph
constructed so far cannot be extended to a graph corresponding to a
size-k′ solution).

29

(2) There are three possibilities regarding the relation between S and the
bundling graph G′′ of a size-k solution, where G′′ contains M and re-
spects the current reservation and the current center requirements; we
guess which one of them actually applies:

(A) G′′ contains S. Let S be the ith star and add it to M , decrease the
budget r by the number of arcs in S.

(B) There is a value j, j > i, such that so far we did not mark any
alternative as needed by the jth star. Guess the value of j and
mark alternative c as needed by the jth star. If the number of stars
that need an alternative exceeds the budget, then we backtrack to
the beginning of Step (2) and branch into other possibilities.

(C) There is a value j, j > i, such that the jth star will use some
non-reserved vertex v from S. Guess the value of j and guess the
vertex v from S. Reserve v for the jth star. If all p-vertices from S
have been reserved, then backtrack to the beginning of Step (2)
and branch into other possibilities.

We show the correctness of this algorithm by the following inductive
argument. Suppose that the graph M computed so far is correct, that is,
there is a bundling graph G′ that satisfies the following.

(a) G′ contains M ,

(b) G′ corresponds to a size-k′ solution,

(c) G′ respects the current reservation requirements, that is, every re-
served p-vertex is contained in G′, no star in G′ contains two vertices
that are reserved for different stars, and if two p-vertices are reserved
for the same star j, then they are also contained in the same star of G′,
and

(d) G′ respects the current center requirements, that is, for each alterna-
tive c 6= p, it holds that the number of times that c is needed is at most
the number of c-vertices in G′.

Now, we show that there is a bundling graph G′′′ satisfying the four
conditions above such that one of the three branchings in Step (2) applies
to G′′′. Obviously, if G′ contains the center of S, then we can verify that
there is a bundling graph G′′′ satisfying the conditions (a)-(d) and containing
S (Branching (2A)). Now assume that G′ does not contain the center of S.

30

There are three cases regarding the intersection between G′ and S (we use
the following notation: if a star has some c-vertex as the center, c 6= p, we
say that this is a c-centered star):

1. Suppose that the bundling graph G′ does not contain any vertex from
the star S. Let S1 be a c-centered star in G′ \M if G′ \M contains
one. Otherwise, let S1 be an empty graph.

(a) If no p-vertex in S1 is reserved or if S1 is empty, then let S2 be a
supergraph of S1 and a subgraph of G′ \M such that S2 consists
of exactly s p-vertices that are not reserved for any star j with j >
i (note that such subgraph exists because of the constraint (1c)).
One can verify that the bundling graph G′′ := (G′\S2)∪S satisfies
the conditions (a)-(d) and contains S. Thus, branching (2A)
applies to G′′.

(b) Otherwise, S1 contains a reserved p-vertex u. By assumption,
G′ does not contain any vertex of S. Therefore, from con-
straint (1a), we know that no p-vertex in G′ is reserved for the
ith star. This implies that u is reserved for a star j with j > i
and that we can guess one value j > i and mark the alternative c
as needed for the star j. Thus, branching (2B) applies to G′.

2. Suppose that the graph G′ \M contains two stars S1 and S2, S1 6= S2,
such that each star S`, ` ∈ {1, 2}, contains a vertex v` from S.

(a) If v1 (resp. if v2) is reserved, then v1 (resp. if v2) is reserved for
the ith star (constraint (1a)). This implies that v2 (resp. v1) is
not reserved. Then, we can guess one value j, j > i, and guess
one not yet reserved vertex v from S, and mark v as reserved for
the jth star.

(b) Otherwise, both v1 as well as v2 are not reserved. Since S1 and S2
cannot be the ith star at the same time, we can guess one value j,
j > i and guess one not yet reserved vertex v from S, and mark
v as reserved for the jth star.

In both cases, branching (2C) applies to G′.

3. Suppose that the graph G′ \ M contains exactly one star S1 which
contains a p-vertex u from S. Let the center of S1 be a c1-vertex.

(a) If c = c1 and if no p-vertex in S1 is reserved for a star j with
j > i, then let S2 be a supergraph of S1 and a subgraph of G′ \M

31

such that S2 consists of exactly s p-vertices that are not reserved
for star j with j > i (note that such subgraph exists because of
constraint (1c)). One can verify that the bundling graph G′′ :=
(G′ \ S2) ∪ S satisfies conditions (a)-(d) and contains S. Thus,
branching (2A) applies to G′′.

(b) If S1 has a p-vertex which is reserved for some star j′, j′ > i,
then this vertex cannot be u because of constraint (1a). Thus,
we can guess one value j, j > i, and guess one not yet reserved
vertex v from S, and mark v as reserved for the jth star. This
implies that branching (2C) applies to G′.

(c) If c 6= c′ and if no p-vertex in S1 is reserved, then by con-
straint (1c) we know that S1 has at most s arcs.

i. If the original score of c plus the number of occurrences of
the c-vertices in G′ is less than the original score of p plus k′,
then let S2 be a supergraph of S1 and a subgraph of G′ \M
such S2 consists of exactly s p-vertices that are not reserved
for star j with j > i (note that such subgraph exists because
S satisfies constraint (1c)). One can verify that the bundling
graph G′′ := (G′ \S2)∪S satisfies the conditions (a)-(d) and
contains S; note that G′′ and G′ have the same number of p-
vertices because S1 is the only star in G′ that has a p-vertex
from S, and that the score of c will not exceed the final score
of p because of constraint (1b). Thus, branching (2A) applies
to G′′.

ii. Otherwise, G′\M contains at least one c-centered star S2 due
to constraint (1b). Since S1 and S2 cannot be the ith star
simultaneously, we can guess one value j with j > i and guess
one not yet reserved vertex v from S, and mark v as reserved
for the jth star, or guess one value j with j > i and mark
c as needed for the jth star. Thus, either branching (2C) or
branching (2B) hold for G′.

We have shown the correctness of our algorithm. To see the running
time, note that constructing the bundling graph for a given instance runs in
time O(m · n2). The constructed graph has at most n vertices and at most
n arcs. Preprocessing bundles of type (1) by finding a maximum matching
runs in time O(n3/2) [40]. Preprocessing bundles of type (2) runs in O(n)
time. For the running time of the search-tree algorithm, note that S has
at most k arcs and there are at most k − 1 additional stars that need an

32

alternative. This leads to a total of 1 + k · (k − 1) + (k − 1) = k2 possible
guesses in Step (2). Moreover, after guessing the minimum solution size k′,
we build a search-tree algorithm which has depth at most 2k (the number
of stars in M plus the number of stars that need an alternative is at most
k while the number of reserved p-vertices is at most k) and has branching
factor k2. This means that our search tree has size at most (k2)2k. In
each branching node we can find in O(m · n) time an appropriate star S
fulfilling the constraints given in step (1). Thus, the combined running time
is O(m · n2 + k4k ·m · n).

If we require the bundling function to be full-d, then we obtain a
polynomial-time algorithm by extending the greedy algorithm of Bartholdi
et al. [2].

Theorem 6. If κ is a full-d bundling function and the maximum bundle
size b is two, then Plurality-C-CC-AV is solvable in O((|V |+ |W |) · |C|)
time.

Proof. As in Theorem 5, we first select as many p-vertices as possi-
ble without any non-p vertex. Since in our Plurality-C-CC-AV in-
stance ((C, V),W, κ, p, k) every bundle has at most two voters and κ is a
full-d bundling function, any two bundles are either equal or disjoint. Thus,
by Lemmas 2 and 3, we can greedily select all (disjoint) bundles of type (1)
and then all (disjoint) bundles of type (2) (note that by selecting a bundle
we mean to add the leader of the bundle to the solution; since both voters
corresponding to a bundle are leaders of the same bundle, we can choose
between them arbitrarily).

By Lemma 2 and Lemma 3 and due to all bundles being either equal
or disjoint, this greedy approach is correct. Thus, from now on, we assume
that our bundles are only of type (3).

The algorithm continues by sorting (in ascending order) the remaining
bundles by the score of the non-p-voter in each bundle (remember that we
have only bundles of type (3)) and by adding these bundles with respect to
this ordering.

The correctness of the algorithm is easy to verify.
For the running time, note that calculating the scores of all alternatives

costs O(|V | · |C|) time. Adding bundles with two p-voters or with one p-
voter and throwing away all irrelevant bundles costs O(|W |·|C|). Sorting the
bundles can be done in O(|W | · |C|) time as the values are upper-bounded in
the instance size. Then, looping over the sorted alternatives, for each bundle
possibly shifting the current alternative higher in the sorted sequence, can

33

c
xj
r

p
(4)
j

p
(3)
j

c
¬xj
i

p
(2)
j

p
(1)
j

c
xj
t

p
(8)
j

p
(7)
j

c
¬xj
s

p
(6)
j

p
(5)
j

Figure 2: Part of the construction used in Theorem 7. Specifically, we show the cycle
corresponding to variable xj which occurs as a negative literal in clauses Ci and Cs, and
as a positive literal in clauses Cr and Ct.

be done in O(|W | · |C|) time. Thus, the total running time is O((|V |+ |W |) ·
|C|).

5.3. Bundle Size Three or More

For b = 3, we obtain NP-hardness even for full-d bundling functions with
d ≤ 3. The proof is similar to the one used in the proof of Theorem 4.

Theorem 7. Plurality-C-CC-AV is NP-hard even for full-d bundling
functions with constant value d ≥ 3 and maximum bundle size b ≤ 3.

Proof. We give a reduction from (2-2)-3SAT. This reduction is almost the
same as the one given in the proof of Theorem 4. The main difference is
that we carefully construct the voters’ preference orders so that the bundling
function is full-3 and each bundle consists of at most three voters. This leads
to some technical differences, but the main idea of the construction remains
the same.

Let (C,X) be our input instance of (2-2)-3SAT, where C is the set
of clauses over the variables from the set X . We form the same set of
alternatives as in the proof of Theorem 4, i.e., we set C := {p, g} ∪ {ci |
Ci ∈ C} ∪ {d(1)j , d

(2)
j , d

(3)
j , d

(4)
j | xj ∈ X}. As in the proof of Theorem 4, we

construct the set of registered voters so that the initial score of alternative g
is 8|X |, the initial score of each clause alternative ci is 8|X |−|Ci|+1 (where
|Ci| is the number of literals in Ci), and the initial scores of all the other
alternatives are zero.

34

We construct the set of unregistered voters as follows. For each vari-
able xj ∈ X that occurs as a negative literal (¬xj) in some clauses Ci
and Cs, i < s, and as a positive literal (xj) in some clauses Cr and Ct, r < t,
we introduce eight unregistered p-voters with preference orders:7

p
(1)
j : p � ct � ci � cr � cs � d(1)j � d

(2)
j � d

(3)
j � d

(4)
j � · · · ,

p
(2)
j : p � ci � cr � cs � ct � d(1)j � d

(2)
j � d

(3)
j � d

(4)
j � · · · ,

p
(3)
j : p � ci � cr � cs � ct � d(2)j � d

(4)
j � d

(3)
j � d

(1)
j � · · · ,

p
(4)
j : p � cr � cs � ct � ci � d(2)j � d

(4)
j � d

(3)
j � d

(1)
j � · · · ,

p
(5)
j : p � cr � cs � ct � ci � d(3)j � d

(4)
j � d

(1)
j � d

(2)
j � · · · ,

p
(6)
j : p � cs � ct � ci � cr � d(3)j � d

(4)
j � d

(1)
j � d

(2)
j � · · · ,

p
(7)
j : p � cs � ct � ci � cr � d(4)j � d

(2)
j � d

(1)
j � d

(3)
j � · · · ,

p
(8)
j : p � ct � ci � cr � cs � d(4)j � d

(2)
j � d

(1)
j � d

(3)
j � · · · .

One can verify that, for each integer z ∈ [4], the following holds.

(1) The swap distance between the two p-voters p
(2z−1)
j and p

(2z)
j is exactly

three.

(2) For each z′ ∈ [8] \ {2z − 1, 2z}, the swap distances between p
(2z−1)
j and

p
(z′)
j , and between p

(2z)
j and p

(z′)
j , are at least four.

For each variable xj , we also introduce four unregistered clause voters with
the following preference orders:

c
¬xj
i : ci � p � cr � cs � ct � d(2)j � d

(1)
j � d

(4)
j � d

(3)
j � · · · ,

c
xj
r : cr � p � cs � ct � ci � d(4)j � d

(3)
j � d

(2)
j � d

(1)
j � · · · ,

c
¬xj
s : cs � p � ct � ci � cr � d(4)j � d

(1)
j � d

(3)
j � d

(2)
j � · · · ,

c
xj
t : ct � p � ci � cr � cs � d(1)j � d

(4)
j � d

(2)
j � d

(3)
j � · · · .

One can verify that, for each cy-voter c
`j
y , it holds that:

7We assume that those alternatives that we do not list explicitly in the preference
orders are ranked identically by these voters.

35

(A) The swap distance between c
`j
y and the p-voter p

(z)
j that ranks cy at

the second place is exactly three (one swap between p and ci and two

swaps among alternatives d
(1)
j , d

(2)
j , d

(3)
j , and d

(4)
j).

(B) The swap distance between c
`j
y and another clause voter is at least four

(because of the clause alternatives ci, cr, cs, and ct, and p).

(C) The swap distance between c
`j
y and every p-voter p

(z)
j , z ∈ [8] that

ranks cy below the second place is at least four (because of the clause
alternatives ci, cr, cs, and ct, and p).

Note that the swap distance between two voters that correspond to two dif-
ferent variables is much larger than three. We define our bundling function
to be a full-3 bundling function. In effect, for variable xj , we obtain the
following values of the bundling function (also depicted in Figure 2):

κ(p
(8)
j) = {p(7)j , p

(8)
j , c

xj
t }, κ(p

(2)
j) = {p(1)j , p

(2)
j , c

¬xj
i },

κ(c
xj
t) = {p(8)j , c

xj
t , p

(1)
j }, κ(c

¬xj
i) = {p(2)j , c

¬xj
i , p

(3)
j },

κ(p
(1)
j) = {cxjt , p

(1)
j , p

(2)
j }, κ(p

(3)
j) = {c¬xji , p

(3)
j , p

(4)
j },

κ(p
(4)
j) = {p(3)j , p

(4)
j , c

xj
r }, κ(p

(6)
j) = {p(5)j , p

(6)
j , c

¬xj
s },

κ(c
xj
r) = {p(4)j , c

xj
r , p

(5)
j }, κ(c

¬xj
s) = {p(6)j , c

¬xj
s , p

(7)
j },

κ(p
(5)
j) = {cxjr , p(5)j , p

(6)
j }, κ(p

(7)
j) = {c¬xjs , p

(7)
j , p

(8)
j }.

Finally, we set k := 4|X |.
The proof of the correctness is, in essence, the same as for the case of the

proof of Theorem 4. If there is a satisfying truth assignment β : X → {T, F}
for our input instance, then we can derive a solution to our problem as
follows. We say that a clause is failed by literal `j if either this clause
contains `j and β(`j) = F , or this clause contains ¬`j and β(`j) = T .
For each literal `j , we include in our solution these two clause voters that
correspond to the clauses failed by `j . Further, we include those p-voters who
have in their bundles these two clause voters. Since each literal is contained
in exactly two clauses, one can easily verify that a thus defined solution
contains exactly 4|X | voters and that it gives p additional 8|X | points. Since
every clause Ci is failed by at most |Ci| − 1 literals, each clause alternative
obtains at most |Ci| − 1 additional points. Thus, altogether, p, g, and all
clause alternatives tie for victory.

36

The proof for the other direction is the same as in the case of Theorem 4
(in particular, given a solution W , we declare a literal `j to be selected if at

least one voter c
`j
i is not included in κ(W); the proof that, if W is a correct

solution for our control problem then setting the selected literals to true leads
to a satisfying truth assignment, proceeds as the one of Theorem 4).

Taking also the swap distance d into account, we find that Plurality-
C-CC-AV is NP-hard even if d = 1 and b = 4. This stands in contrast to
the case where d = 0, where R-C-CC-AV reduces to the CC-AV problem
for weighted elections [25], which, for Plurality voting, is polynomial-time
solvable by a simple greedy algorithm.

Theorem 8. Plurality-C-CC-AV is NP-hard even for full-d bundling
functions with constant value d ≥ 1, and even if the maximum bundle size b
is four.

Proof. We can apply the same construction in W[1]-hardness proof for The-
orem 9 (see the next section) to provide a polynomial-time reduction from
the Vertex Cover problem instead of from the Partial Vertex Cover
problem. The maximum swap distance remains the same, that is, it is one.
Since the maximum bundle size is exactly one more than the maximum ver-
tex degree of the Vertex Cover instance, and since the Vertex Cover
problem is NP-hard [28] already when the maximum vertex degree is three,
the statement of the theorem follows.

6. Single-Peaked and Single-Crossing Elections

In this section we consider the computational complexity of Plural-
ity-C-CC-AV and Condorcet-C-CC-AV for the restricted case where
the elections are required to be single-peaked or single-crossing. Further,
we focus on instances with full-d bundling functions; our hardness results
extend to anonymous (via Observation 2 in Section 2) or arbitrary bundling
functions . Moreover, the W[2]-hardness result for non-anonymous bundling
functions (Theorem 1) also extends to these restricted domains.

We find that the results for the combinatorial variant of control under our
domain restrictions are quite different than those for the non-combinatorial
case. Indeed, both for Plurality and for Condorcet, the voter control prob-
lems for single-peaked elections and for single-crossing elections are solvable
in polynomial time for the non-combinatorial case [7, 24, 37] (for the case of
Plurality, this is true even in the unrestricted case). For the combinatorial

37

case, we show hardness for both Plurality-C-CC-AV and Condorcet-
C-CC-AV for single-peaked elections, but we give polynomial-time algo-
rithms for single-crossing elections. We begin with the case of single-peaked
elections.

Theorem 9. Both Plurality-C-CC-AV and Condorcet-C-CC-AV pa-
rameterized by the solution size k are W[1]-hard for single-peaked elections,
even for full-d bundling functions and for any constant d ≥ 1.

Proof. We consider the Plurality rule first. We provide a parameterized re-
duction which is indeed a polynomial-time reduction from the problem Par-
tial Vertex Cover (PVC), which is W[1]-hard with respect to the pa-
rameter solution size h [30] and is defined as follows:

Partial Vertex Cover (PVC)
Input: An undirected graph G = (V (G), E(G)) and two non-
negative integers h, ` ∈ N.
Question: Does G admit a size-h vertex subset U ⊆ V (G)
which intersects at least ` edges in G?

Before describing the reduction itself, we first define the following canon-
ical preference order :

p � g � a1 � a1 � . . . � a|V (G)| � a|V (G)|.

Moreover, for each set P of disjoint pairs of alternatives which are neighbor-
ing with respect to the canonical preference order, we define the preference
order diff-order(P) to be identical to the canonical preference order except
that for each pair in P we swap the order of the alternatives in this pair.

We are now ready to describe the reduction itself. Let (G, h, `) be our
input instance for PVC. We form an instance for Plurality-C-CC-AV.
First, we set the parameter k := h. Second, we construct an election (C, V),
where:

(a) The set of alternatives is C := {p, g} ∪ {ai, ai | ui ∈ V (G)}.

(b) The set of registered voters is such that the initial score of g is h+` and
the initial scores of all the other alternatives are zero. We achieve this
by forming h+ ` voters, each with the canonical preference order as its
preference order.

We define the set W of unregistered voters as follows:

38

(1) For each edge e = {ui, uj} ∈ E(G), we create an edge voter we with pref-
erence order diff-order({{ai, ai}, {aj , aj}}) (we say that we corresponds
to edge e). All edge voters are p-voters.

(2) For each edge e = {ui, uj} ∈ E(G), we create a dummy voter de with
preference order diff-order({{p, g}, {ai, ai}, {aj , aj}}) (we say that de
corresponds to edge e). All dummy voters are g-voters.

(3) For each vertex ui ∈ V (G), we create a vertex voter wui with preference
order diff-order({{ai, ai}}) (we say that wui corresponds to ui). All
vertex voters are p-voters.

The preference orders of the voters in V ∪ W are single-peaked with
respect to the axis:

a|V (G)| � a|V (G)|−1 � . . . � a1 � p � g � a1 � a2 � . . . � a|V (G)|.

Finally, we define the function κ to be a full-1 bundling function. To
understand how κ works, below we calculate the swap distances between the
preference orders of all possible pairs of voters in W . We see the following.

(A) The distance between each two edge voters is at least two.

(B) The distance between each edge voter and each dummy voter is exactly
one if they correspond to the same edge, and is at least three otherwise.

(C) The distance between each edge voter we and each vertex voter wui is
one if ui ∈ e and otherwise is three.

(D) The distance between each two dummy voters is at least two.

(E) The distance between each dummy voter and each vertex voter is at
least two.

(F) The distance between each two vertex voters is two.

For each edge e = {ui, uj} ∈ E(G), we have κ(we) := {we, wui , wuj , de} and
κ(de) := {we, de}. For each vertex ui ∈ V (G), we have κ(wui) := {wui }∪{we |
ui ∈ e ∈ E(G)}. In this way, adding a dummy voter is never better than
adding her corresponding edge voter.

We show that (G, h, `) is a yes-instance for PVC if and only if there is a
size-k subset W ′ ⊆W such that p is a Plurality winner of the election (C, V ∪
κ(W ′)). Recall that all unregistered voters except the dummy voters are p-
voters and that p needs at least h+ ` points in order to win.

39

For the “only if” part, suppose that X ⊆ V (G) is a size-h vertex set and
Y ⊆ E(G) is a size-` edge set such that for every edge e ∈ Y it holds that
e ∩ X 6= ∅. We set W ′ := {wui | ui ∈ X}. It is easy to verify that κ(W ′)
consists of h vertex voters and at least ` edge voters. Each of them gives p
one point if added to the election. This results in p being a winner of the
election with score at least h+ `.

For the “if” part, suppose that there is a size-k subset W ′ ⊆ W such
that p is a Plurality winner of the election (C, V ∪ κ(W ′)). Observe that if
W ′ contains some dummy voter de, then we can replace her with we. If we is
already in W ′, then we can simply remove de from W ′. Thus we can assume
that W ′ does not contain any dummy voters. Now, assume that W ′ contains
some edge voter we, where e = {ui, uj}. Since, by the previous argument,
W ′ does not contain de, we have that de is not a member of κ(W ′ \ {we}).
This means that if both wui and wuj belong to κ(W ′ \ {we}), then we can
safely remove we from W ′; p will still be a winner of the election (C, V ∪
κ(W ′ \{we})). On the contrary, assume that exactly one of wui and wuj does
not belong to κ(W ′\{we}) and let wui be this voter. It is easy to see that p is
a winner of election (C, V ∪κ((W ′\{we})∪{wui })) (the net effect of including
the bundle of we is that p’s score increases by at most one, whereas the net
effect of including the bundle of wui is that p’s score increases by at least one).
Similarly, if neither wui nor wuj with i < j belong to κ(W ′ \ {we}), then it is
easy to verify that p is a winner of the election (C, V ∪κ((W ′\{we})∪{wui })).
All in all, we can assume that W ′ contains vertex voters only. Since all
vertex voters are p-voters, without loss of generality we can assume that W ′

contains exactly k = h of them.
We define X := {ui | wui ∈W ′} such that |X| = k, and Y := {e ∈ E(G) |

e ∩ {ui} 6= ∅}. By the construction of the edge voters’ preference orders,
κ(W ′) consists of k vertex voters and |Y | edge voters. This must add up to
at least h+ ` voters. Therefore, |Y | ≥ `, implying that at least ` edges are
covered by X. This completes the proof for the case of Plurality.

Let us now move on to the case of Condorcet rule. We use the same
unregistered voters as defined above and construct the original election with
h + ` − 1 registered voters whose preference orders are diff-order({g, p}).
We set k := h. Since all voters rank either p or g at the first position,
the Condorcet rule equals the Plurality rule for the unique-winner model.
Thus, using the same reasoning as used for the Plurality rule, one can verify
that (G, h, `) is a yes-instance for PVC if and only if there is a size-k subset
W ′ ⊆W such that p is a Condorcet winner of the election (C, V ∪κ(W ′)).

We now present our tractability results for single-crossing elections. Con-

40

sider an R-C-CC-AV instance ((C, V),W, d, κ, p, k), containing an elec-
tion (C, V) and an unregistered voter set W such that (C, V ∪W) is single-
crossing (thus, both (C, V) and (C,W) are single-crossing as well). This has
a crucial consequence for full-d bundling functions: for each unregistered
voter w ∈W , the voters in the bundle κ(w) appear consecutively along the
single-crossing order restricted to only the voters in W .8 Using the following
two lemmas, we can show that Plurality-C-CC-AV and Condorcet-C-
CC-AV are polynomial-time solvable for full-d bundling functions.

Lemma 5. Let I = ((C, V),W, d, κ, p, k) be a Plurality-C-CC-AV in-
stance such that (C, V ∪ W) is single-crossing and κ is a full-d bundling
function. Then, the following statements hold:

(i) The p-voters are ordered consecutively along the single-crossing order.

(ii) If I is a yes-instance, then there is a subset W ′ ⊆ W of size at most
k such that (a) p is a winner of election (C, V ∪ κ(W ′)), and (b) all
bundles of voters w ∈ W ′ contain only p-voters, except at most two
bundles which may contain some non-p-voters.

Proof. Let n := |W | and let α := 〈w1, w2, . . . , wn〉 be a single-crossing order
of the voters in W . Statement (i) follows directly from the definition of the
single-crossing property.

As for Statement (ii), let W ′ ⊆W be a size-k subset of the unregistered
voters such that p is a Plurality winner in the election (C, V ∪ κ(W ′)).
Without loss of generality, we assume that W ′ does not contain voters wi
whose bundles do not contain any p-voters. For each subset S ⊆W of voters,
we use 1st(S) (respectively, 2nd(S)) to denote the index j (respectively,
j′) of the first voter wj ∈ S (respectively, the last voter wj′ ∈ S) along
the single-crossing order. Suppose that there are two bundles, κ(wi) and
κ(wj), with 1st(κ(wi)) ≤ 1st(κ(wj)) such that both contain non-p-voters
and the first p-voter along α. If 2nd(κ(wi)) ≤ 2nd(κ(wj)), then κ(wi) does
not contain more p-voters than κ(wj) does, while containing at least as
many non-p-voters as κ(wj). Thus, we can remove wi from W ′. Otherwise,
2nd(κ(wi)) > 2nd(κ(wj)), which means that κ(wj) ⊂ κ(wi). Thus, we can
remove wj from W ′. In any case, we conclude that W ′ contains at most

8Note that for each single-crossing election, the order of the voters possessing the single-
crossing property is, in essence, unique (modulo voters with the same preference orders
and modulo the fact that if an order witnesses the single-crossing property of an election,
then its reverse does so as well).

41

one voter w whose bundle κ(w) contains a non-p-voter and the first p-voter
(along the single-crossing order).

Analogously, we can show that W ′ contains at most one voter w whose
bundle κ(w) contains a non-p-voter and the last p-voter (along the single-
crossing order). To complete the proof, it remains to observe that for each
w ∈ W it holds that if κ(w) contains both some p-voters and some non-p-
voters, then it also must contain either the first p-voter or the last p-voter
(along the single-crossing order). Altogether, this implies that W ′ contains
at most two voters whose bundles contain non-p-voters.

For Condorcet voting, we use the well-known median-voter theorem [5]
(we provide the proof for the sake of completeness).

Lemma 6. Let (C, V ∪ κ(W ′)) be a single-crossing election with single-
crossing voter order 〈x1, x2, . . . , xz〉 and set Xmedian := {xdz/2e} ∪
{xz/2+1 if z is even}, where z = |V | + |κ(W ′)|. Alternative p is a (unique)
Condorcet winner in (C, V ∪ κ(W ′)) if and only if every voter in Xmedian is
a p-voter.

Proof. Let X1 be the set of voters x1, x2, . . . , xdz/2e−1 and let X2 be the set
of voters V ∪ κ(W ′) \ (X1 ∪Xmedian).

For the “if” part, let c be an arbitrary alternative from C \{p}. Then, if
there is some voter in X1 which prefers c over p, then by the assumption that
every voter in Xmedian is a p-voter it follows that all voters in Xmedian ∪X2

are p-voters. Analogously, if there is some voter in X2 which prefers c over
p, then all voters in X1∪Xmedian are p-voters. In any case, a strict majority
of voters are p-voters. Thus, p is the (unique) Condorcet winner.

For the “only if” part, suppose for the sake of contradiction that p is a
Condorcet winner while there is a voter in Xmedian which is not a p-voter
but a c-voter with c ∈ C \ {p}. Then, analogously to the reasoning above,
at least half of the voters prefer c over p—a contradiction.

With these two lemmas available, we describe next polynomial-time al-
gorithms for both Plurality-C-CC-AV and Condorcet-C-CC-AV, for
the case of single-crossing elections and full-d bundling functions.

Theorem 10. Both Plurality-C-CC-AV and Condorcet-C-CC-AV
are polynomial-time solvable for the single-crossing case with full-d bundling
functions.

Proof. First, we find a (unique) single-crossing voter order for (C, V ∪W)
in quadratic time [18, 9]. Due to Lemma 5 and Lemma 6, we only need

42

to store the most preferred alternative of each voter in order to find the
solution set W ′. Thus, the running time from now on only depends on the
number of voters. We start with the Plurality rule and let α := 〈w1, w2,
. . . , w|W |〉 be a single-crossing voter order.

Due to Lemma 5 (ii), the two bundles in κ(W ′) which may contain
non-p-voters appear at the beginning and at the end of the p-voter block,
along the single-crossing order. We first guess these two bundles, and af-
ter this initial guess, all remaining bundles in the solution contain only
p-voters (Lemma 5 (i)). Thus, the remaining task is to find the maximum
score that p can gain by selecting k′ bundles containing only p-voters. This
problem is equivalent to the Maximum Interval Cover problem, which
is solvable in O(|W |2) time, by using dynamic programming, as described
by Golab et al. [29, Section 3.2].

For the Condorcet rule, we propose a slightly different algorithm. The
goal is to find a subset W ′ ⊆ W of minimum size such that p is the
(unique) Condorcet winner in (C, V ∪ κ(W ′)). Let β := 〈x1, x2, . . . , xz〉
be a single-crossing voter order for (C, V ∪ W). Considering Lemma 6,
we begin by guessing at most two voters in V ∪ W whose bundles may
contain the median p-voter (or, possibly, several p-voters) along the single-
crossing order of voters restricted to the final election (for simplicity, we
define the bundle of each registered voter to be her singleton). Let these two
bundles be A1 := {xi, xi+1, . . . , xi+t′} and A2 := {xi+t′′ , xi+t′′+1, . . . , xi+j}
for some i ≥ 1, t′, t′′, j ≥ 0. Let W1 := {xs ∈ W | s < i}, and let
W2 := {xs ∈W | s > i+ j}. We guess two integers z1 ≤ |W1| and z2 ≤ |W1|
with the property that there are two subsets B1 ⊆ W1 and B2 ⊆ W2 with
|B1| = z1 and |B2| = z2 such that the median voter(s) in V ∪B1∪A1∪A2∪B2

are indeed p-voters (for now, only the sizes z1 and z2 matter, not the ac-
tual sets). These four guesses require time O(|V ∪ W |2 · |W |2). The re-
maining task is to find two subsets W ′1 and W ′2 of minimum size such that
κ(W ′1) ⊆ W1, κ(W ′2) ⊆ W2, |κ(W ′1)| = z1, and |κ(W ′2)| = z2. As discussed
for the case of the Plurality rule, this can be done in time O(|W |2) using
the algorithm of Golab et al. [29, Section 3.2]. We conclude that one can
find a minimum-size subset W ′ ⊆W such that p is the (unique) Condorcet
winner in (C, V ∪ κ(W ′)) in time O(|V ∪W |2 · |W |4).

7. Conclusion

Our work provides several opportunities for future research. First, we
did not discuss destructive control and the related problem of combinatorial
deletion of voters. For Plurality, we conjecture that combinatorial addition

43

of voters for destructive control, and combinatorial deletion of voters for
either constructive or destructive control behave similarly to combinatorial
addition of voters for constructive control.

Another field of future research is to study other combinatorial vot-
ing models—this may include controlling the swap distance, “probabilistic
bundling”, “reverse bundling”, or using other distance measures than the
swap distance. Naturally, it would also be interesting to consider other
problems than election control (with bribery indeed, in a follow-up to this
work some of the co-authors consider a combinatorial variant of Shift
Bribery [11]).

Finally, instead of studying a “leader-follower model” as we did, one
might also be interested in an “enemy model” referring to control by adding
alternatives: the alternatives of an election “hate” each other so that if one
alternative is added to the election, then all of its enemies are also added
to the election. This scenario of combinatorial candidate control deserves
future investigation, already partially conducted by Chen et al. [13].

References

[1] J. J. Bartholdi, III and M. Trick. Stable matching with preferences
derived from a psychological model. Operations Research Letters, 5(4):
165–169, 1986.

[2] J. J. Bartholdi, III, C. A. Tovey, and M. A. Trick. How hard is it to
control an election. Mathematical and Computer Modelling, 16(8–9):
27–40, 1992.

[3] N. Betzler and J. Uhlmann. Parameterized complexity of candidate
control in elections and related digraph problems. Theoretical Computer
Science, 410(52):5425–5442, 2009.

[4] N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. Studies in com-
putational aspects of voting—a parameterized complexity perspective.
In The Multivariate Algorithmic Revolution and Beyond, volume 7370
of Lecture Notes in Computer Science, pages 318–363. Springer, 2012.

[5] D. Black. On the rationale of group decision making. Journal of Polit-
ical Economy, 56(1):23–34, 1948.

[6] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole.
CP-nets: A tool for representing and reasoning with conditional ce-

44

teris paribus preference statements. Journal of Artificial Intelligence
Research, 21:135–191, 2004.

[7] F. Brandt, M. Brill, E. Hemaspaandra, and L. A. Hemaspaandra.
Bypassing combinatorial protections: Polynomial-time algorithms for
single-peaked electorates. In Proceedings of the 24th AAAI Conference
on Artificial Intelligence (AAAI ’10), pages 715–722. AAAI Press, 2010.

[8] F. Brandt, P. Harrenstein, K. Kardel, and H. G. Seedig. It only takes
a few: On the hardness of voting with a constant number of agents.
In Proceedings of the 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’13), pages 375–382. IFAA-
MAS, 2013.

[9] R. Bredereck, J. Chen, and G. J. Woeginger. A characterization of
the single-crossing domain. Social Choice and Welfare, 41(4):989–998,
2013.

[10] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and R. Nieder-
meier. Prices matter for the parameterized complexity of shift bribery.
In Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI ’14), pages 1398–1404. AAAI Press, 2014.

[11] R. Bredereck, P. Faliszewski, R. Niedermeier, and N. Talmon. Large-
scale election campaigns: Combinatorial shift bribery. In Proceedings
of the 14th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS ’15). IFAAMAS, 2015.

[12] J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. Combina-
torial voter control in elections. In Proceedings of the 39th Interna-
tional Symposium on Mathematical Foundations of Computer Science
(MFCS ’14), volume 8635 of Lecture Notes in Computer Science, pages
153–164. Springer, 2014.

[13] J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. Elections with
few voters: Candidate control can be easy. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence (AAAI ’15), pages 2045–
2051. AAAI Press, 2015.

[14] V. Conitzer. Eliciting single-peaked preferences using comparison
queries. Journal of Artificial Intelligence Research, 35:161–191, 2009.

45

[15] V. Conitzer, J. Lang, and L. Xia. How hard is it to control sequential
elections via the agenda? In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI ’09), pages 103–108. AAAI
Press, 2009.

[16] M. J. A. N. C. de Condorcet. Essai sur l’application de l’analyse
à la probabilité des décisions rendues à la pluralité des voix. Paris:
L’Imprimerie Royale, 1785.

[17] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

[18] E. Elkind, P. Faliszewski, and A. Slinko. Clone structures in voters’
preferences. In Proceedings of the 13th ACM Conference on Electronic
Commerce (EC ’12), pages 496–513. ACM Press, 2012.

[19] G. Erdélyi, E. Hemaspaandra, and L. A. Hemaspaandra. More
natural models of electoral control by partition. Technical report
arXiv:1410.2652, Oct. 2014.

[20] G. Erdélyi, M. R. Fellows, J. Rothe, and L. Schend. Control complex-
ity in Bucklin and fallback voting: A theoretical analysis. Journal of
Computer and System Sciences, 81(4):632–660, 2015.

[21] B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and
its complexity. In Proceedings of the 18th European Conference on
Artificial Intelligence (ECAI ’08), pages 366–370. IOS Press, 2008.

[22] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.
Llull and Copeland Voting Computationally Resist Bribery and Con-
structive Control. Journal of Artificial Intelligence Research, 35:275–
341, 2009.

[23] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. Multimode
control attacks on elections. Journal of Artificial Intelligence Research,
40:305–351, 2011.

[24] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.
The shield that never was: Societies with single-peaked preferences are
more open to manipulation and control. Information and Computation,
209(2):89–107, 2011.

46

[25] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. Weighted
electoral control. In Proceedings of the 12th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS ’13), pages
367–374. IFAAMAS, 2013.

[26] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complex-
ity of manipulative attacks in nearly single-peaked electorates. Artificial
Intelligence, 207:69–99, 2014.

[27] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer,
2006.

[28] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976.

[29] L. Golab, H. Karloff, F. Korn, A. Saha, and D. Srivastava. Sequential
dependencies. In 35th International Conference on Very Large Data
Bases (PVLDB ’09), volume 2(1), pages 574–585. VLDB Endowment,
2009.

[30] J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of
Vertex Cover variants. Theory of Computing Systems, 41(3):501–520,
2007.

[31] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Anyone but him:
The complexity of precluding an alternative. Artificial Intelligence, 171
(5–6):255–285, 2007.

[32] L. A. Hemaspaandra, R. Lavaee, and C. Menton. Schulze and ranked-
pairs voting are fixed-parameter tractable to bribe, manipulate, and
control. In Proceedings of the 12th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS ’13), pages 1345–
1346. IFAAMAS, 2013.

[33] R. Kannan. Minkowski’s convex body theorem and integer program-
ming. Mathematics of Operations Research, 12(3):415–440, 1987.

[34] H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8(4):538–548, 1983.

[35] H. Liu and D. Zhu. Parameterized complexity of control problems in
Maximin election. Information Processing Letters, 110(10):383–388,
2010.

47

[36] H. Liu, H. Feng, D. Zhu, and J. Luan. Parameterized computational
complexity of control problems in voting systems. Theoretical Computer
Science, 410(27-29):2746–2753, 2009.

[37] K. Magiera and P. Faliszewski. How hard is control in single-crossing
elections? In Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI ’14), pages 579–584. IOS Press, 2014.

[38] N. Mattei, M. S. Pini, F. Rossi, and K. B. Venable. Bribery in vot-
ing over combinatorial domains is easy. In Proceedings of the 12th
International Symposium on Artificial Intelligence and Mathematics
(ISAIM ’12), 2012.

[39] R. Meir, A. Procaccia, J. Rosenschein, and A. Zohar. The complexity
of strategic behavior in multi-winner elections. Journal of Artificial
Intelligence Research, 33:149–178, 2008.

[40] S. Micali and V. V. Vazirani. An O(
√
|V | · |E|) algorithm for finding

maximum matching in general graphs. In Proceedings of the 21st Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’80),
volume 21, pages 17–27. IEEE Computer Society Press, 1980.

[41] J. A. Mirrlees. An exploration in the theory of optimal income taxation.
Review of Economic Studies, 38(2):175–208, 1971.

[42] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006.

[43] D. Parkes and L. Xia. A complexity-of-strategic-behavior comparison
between Schulze’s rule and ranked pairs. In Proceedings of the 26th
AAAI Conference on Artificial Intelligence (AAAI ’12), pages 1429–
1435. AAAI Press, 2012.

[44] K. W. Roberts. Voting over income tax schedules. Journal of Public
Economics, 8(3):329–340, 1977.

[45] J. Rothe and L. Schend. Control complexity in Bucklin, fallback, and
plurality voting: An experimental approach. In Proceedings of the
11th International Symposium on Experimental Algorithms (SEA ’12),
volume 7276 of Lecture Notes in Computer Science, pages 356–368.
Springer, June 2012.

48

[46] M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally
manageable combinational auctions. Management Science, 44(8):1131–
1147, 1998.

[47] T. Sandholm. Optimal winner determination algorithms. In P. Cram-
ton, Y. Shoham, and R. Steinberg, editors, Combinatorial Auctions,
chapter 14. MIT Press, 2006.

[48] A. Saporiti and F. Tohmé. Single-crossing, strategic voting and the
median choice rule. Social Choice and Welfare, 26(2):363–383, 2006.

[49] C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete
Applied Mathematics, 8(1):85–89, 1984.

[50] T. Walsh. Uncertainty in preference elicitation and aggregation. In Pro-
ceedings of the 22nd Conference on Artificial Intelligence (AAAI ’07),
pages 3–8. AAAI Press, 2007.

49

	Introduction
	Preliminaries
	Central Problem
	Canonical Parameterizations
	Parameterization by the Solution Size and by the Number of Unregistered Voters
	Parameterization by the Number of Alternatives

	Parameterization by the Maximum Bundle Size and by the Swap Distance
	Bundle Size At Most Two—The Intractability Result
	Bundle Size At Most Two—The Tractability Results
	Bundle Size Three or More

	Single-Peaked and Single-Crossing Elections
	Conclusion

