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Multi-Player Diffusion Games on Graph Classes?

Laurent Bulteau??, Vincent Froese? ? ?, and Nimrod Talmon†

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

Abstract. We study competitive diffusion games on graphs introduced
by Alon et al. [1] to model the spread of influence in social networks.
Extending results of Roshanbin [7] for two players, we investigate the
existence of pure Nash equilibria for at least three players on different
classes of graphs including paths, cycles, and grid graphs. As a main
result, we answer an open question proving that there is no Nash equi-
librium for three players on m× n grids with min{m,n} ≥ 5.

1 Introduction

Social networks, and the diffusion of information within them, yields an in-
teresting and well-researched field of study. Among other models, competitive
diffusion games have been introduced by Alon et al. [1] as a game-theoretic ap-
proach towards modelling the process of diffusion (or propagation) of influence
(or information in general) in social networks. Such models have applications in
“viral marketing” where several companies (or brands) compete in influencing
as many customers (of products) or users (of technologies) as possible by ini-
tially selecting only a “small” subset of target users that will “infect” a large
number of other users. Herein, the network is modeled as an undirected graph
where the vertices correspond to the users, with edges modeling influence re-
lations between them. The companies, being the players of the corresponding
diffusion game, choose an initial subset of target vertices which then influence
other neighboring vertices via a certain propagation process. More concretely, a
vertex adopts a company’s product at some specific time during the process if he
is influenced by (that is, connected by an edge to) another vertex that already
adopted this product. After adopting a product of one company, a vertex will
never adopt any other product in the future. However, if a vertex gets influenced
by several companies at the same time, then he will not adopt any of them and
he is removed from the game (the reason being that the effects of these influ-
encing companies on the customer cancel out each other such that the customer
is ”too confused” to adopt any of the products). See Section 1.3 for the formal
definitions of the game.

In their initial work, Alon et al. [1] studied how the existence of pure Nash
equilibria is influenced by the diameter of the underlying graph. Following this
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line of research, Roshanbin [7] investigated the existence of Nash equilibria for
competitive diffusion games with two players on several classes of graphs such
as paths, cycles, and grid graphs. Notably, she proved that on sufficiently large
grids, there always exists a Nash equilibrium for two players, further conjectur-
ing that there is no Nash equilibrium for three players on grids. We extend the
results of Roshanbin [7] for two players to three or more players on paths, cycles,
and grid graphs, proving the conjectured non-existence of a pure Nash equilib-
rium for three players on grids as a main result. An overview of our results is
given in Section 1.2. After introducing the preliminaries in Section 1.3, we dis-
cuss our results for paths and cycles in Section 2, followed by the proof of our
main theorem on grids in Section 3. We finish with some statements considering
general graphs in Section 4.

1.1 Related Work

The study of influence maximization in social networks was initiated by Kempe
et al. [5]. Several game-theoretic models have been suggested, including our
model of reference, introduced by Alon et al. [1]. Some interesting generalizations
of this model are the model by Tzoumas et al. [11], who considered a more
complex underlying diffusion process (there, depending on its neighborhood, a
general scheme is used to determine whether a vertex adopts a product), and the
model studied by Etesami and Basar [3], allowing each player to choose multiple
vertices. Dürr and Thang [2] and Mavronicolas et al. [6] studied so-called Voronoi
games, which are closely related to our model (but not identical; there, instead
of an underlying diffusion process, each vertex is assigned to its closest player
and vertices can be shared). Concerning our model, Alon et al. [1] claimed the
existence of pure Nash equilibria for any number of players on graphs of diameter
at most two, however, Takehara et al. [10] gave a counterexample consisting
of a graph with nine vertices and diameter two with no Nash equilibrium for
two players.

Our main point of reference is the work of Roshanbin [7], who studied the
existence (and non-existence) of pure Nash equilibria mainly for two players on
special graph classes (paths, cycles, trees, unicycles, and grids); indeed, our work
can be seen as an extension of that work to more than two players. Small [8]
already showed that there is a Nash equilibrium for any number of players on
any star or clique. Small and Mason [9] proved that there is always a pure Nash
equilibrium for two players on a tree, but not always for more than two players.
Janssen and Vautour [4] considered safe strategies on trees and spider graphs,
where a safe strategy is a strategy which maximizes the minimum pay-off of a
certain player, when the minimum is taken over the possible unknown actions
of the other players.

1.2 Our Results

We begin by characterizing the existence of Nash equilibria for paths and cycles,
showing that, except for three players on paths of length at least six, a Nash



equilibrium exists for any number of players playing on any such graph (Theo-
rem 1 and 2). We then prove Conjecture 1 of Roshanbin [7], showing that there
is no Nash equilibrium for three players on Gm×n, as long as both m and n are
at least 5 (Theorem 3). Finally, we investigate the minimum number of vertices
such that there is an arbitrary graph with no Nash equilibrium for k players.
We prove an upper bound showing that there always exists a tree on b 32kc + 2
vertices with no Nash equilibrium for k players (Theorem 4). Due to space con-
straints, some of the proofs are omitted. Please refer to the full version (available
at http://arxiv.org/abs/1412.2544).

1.3 Preliminaries

Notation. For i, j ∈ N with i < j, we define [i, j] := {i, . . . , j} and [i] :=
{1, . . . , i}. We consider simple, finite, undirected graphs G = (V,E) with vertex
set V and edge set E ⊆ {{u, v} | u, v ∈ V }. A path Pn = (V,E) on n vertices is
the graph with V = [n] and E = {{i, i + 1} | i ∈ [n − 1]}. A cycle Cn = (V,E)
on n vertices is the graph with V = [n] and E = {{i, i+1} | i ∈ [n−1]}∪{{n, 1}}.

For m,n ∈ N, the m × n grid Gm×n = (V,E) is a graph with vertices V =
[m]×[n] and edges E = {{(x, y), (x′, y′)} | |x−x′|+|y−y′| = 1}. We use the term
position for a vertex x ∈ V . We define the distance of two positions x = (x1, y1),
y = (x2, y2) ∈ V as ‖x− y‖1 := |x1 − x2|+ |y1 − y2| (note that this corresponds
to the length of a shortest path from x to y in the grid). We denote the number
of players by k and enumerate the players as Player 1, . . . , Player k.

Diffusion Game on Graphs. A game Γ = (G, k) is defined by an undirected
graph G = (V,E) and a number k of players, each having its distinct color
in [k]. The strategy space of each player is V , such that each Player i selects a
single vertex vi ∈ V at time 0, which is then colored by her color i. If two players
choose the same vertex v, then this vertex is removed from the graph. For Player
i, we use the terms strategy and position interchangeably, referring to its chosen
vertex. A strategy profile is a tuple (v1, . . . , vk) ∈ V k containing the initially
chosen vertex for each player. The pay-off Ui(v1, . . . , vk) of Player i is the number
of vertices with color i after the following propagation process. At time t + 1,
any so far uncolored vertex that has only uncolored neighbors and neighbors
colored in i (and no neighbors with other colors j ∈ [k] \ {i}) is colored in i.
Any uncolored vertex with more than two different colors among its neighbors is
removed from the graph. The process terminates when the coloring of the vertices
does not change between consecutive steps. A strategy profile (v1, . . . , vk) is a
(pure) Nash equilibrium if, for each Player i ∈ [k] and each vertex v′ ∈ V , it
holds that Ui(v1, . . . , vi−1, v

′, vi+1, . . . , vk) ≤ Ui(v1, . . . , vk).

2 Paths and Cycles

In this section, we fully characterize the existence of Nash equilibria on paths
and cycles, for any number k of players.

http://arxiv.org/abs/1412.2544
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Fig. 1: Illustrations for Theorem 1, showing a Nash equilibrium for 6 players on
P15 (top) and a Nash equilibrium for 5 players on P14 (bottom). The boxes show
the colored regions of each player.

Theorem 1. For any k ∈ N and any n ∈ N, there is a Nash equilibrium for k
players on Pn, except for k = 3 and n ≥ 6.

The general idea of the proof is to pair the players and distribute these pairs
evenly. In the rest of this section, we prove three lemmas whose straightforward
combination proves Theorem 1.

Lemma 1. For any even k ∈ N and any n ∈ N, there is a Nash equilibrium
for k players on Pn.

Proof. If n ≤ k, then any strategy profile where each vertex of the path is chosen
by at least one player is clearly a Nash equilibrium.

Otherwise, if n > k, then the idea is to build pairs of players, which are then
placed such that two paired players are neighboring and the distance of any
two consecutive pairs is roughly equal (specifically, differs by at most two). See
Figure 1 for an example. Intuitively, this yields a Nash equilibrium since each
player obtains roughly the same pay-off (specifically, differing by at most one),
therefore no player can improve. Since we have n vertices, we want each player’s
pay-off to be at least z := bnk c. This leaves r := n( mod k) other vertices, which
we distribute between the first r players such that the pay-off of any player is at
most z + 1. This can be achieved as follows. Let pi ∈ [n] denote the position of
Player i, that is, the index of the chosen vertex on the path. We define

pi :=

{
z · i+ min{i, r} if i is odd,

pi−1 + 1 if i is even.

Note that, by construction, it holds that p1 ∈ {z, z + 1} and pk = n − z + 1.
Moreover, for each odd indexed player i ≥ 3, we have that 2z − 1 ≤ pi − pi−1 ≤
2z + 1. We claim that ui := Ui(p1, . . . , pk) ∈ {z, z + 1} holds for each i ∈ [k].
Clearly, u1 = p1 ∈ {z, z + 1} and uk = n − pk + 1 = z. For all odd i ≥ 3, it is
not hard to see that ui = ui−1 = 1 + b(pi − pi−1 − 1)/2c ∈ {z, z + 1}, proving
the claim.

To see that the strategy profile (p1, . . . , pk) is a Nash equilibrium, consider
an arbitrary player i and any other strategy (pi 6=) p′i ∈ [n] that she picks.
Clearly, we can assume that p′i 6= pj holds for all j 6= i since otherwise Player i’s
pay-off is zero. If p′i < p1 or p′i > pk, then Player i gets a pay-off of at most z.
If pj < p′i < pj+1 for some even j ∈ [2, k − 2], then her pay-off is at most
1 + b(pj+1 − pj − 2)/2c ≤ z. ut



We can modify the construction given in the proof of Lemma 1 to also work for
odd numbers k greater than three.

Lemma 2. For any odd k > 3 ∈ N and for any n ∈ N, there is a Nash equilib-
rium for k players on Pn.

Proof. We give a strategy profile based on the construction for an even number of
players (proof of Lemma 1). The idea is to pair the players, placing the remaining
lonely player between two consecutive pairs.

This is best explained using a reduction to the even case. Specifically, given
the strategy profile (p′1, . . . , p

′
k+1) for an even number k+1 of players on Pn+1 as

constructed in the proof of Lemma 1, we define the strategy profile (p1, . . . , pk) :=
(p′1, . . . , p

′
k−2, p

′
k − 1, p′k+1 − 1). To see why this results in a Nash equilibrium,

let z := b(n + 1)/(k + 1)c and note that by construction it holds that p1 ∈
{z, z + 1}, pk = n− z + 1, and 2z − 1 ≤ pi+1 − pi ≤ 2z + 1, for all i ∈ [2, k − 1].
Moreover, each player receives a pay-off of at least z, therefore all players (except
for Player (k − 2)) cannot improve by the same arguments as in the proof of
Lemma 1. Regarding Player (k − 2), note that her pay-off is

1 + b(pk−1 − pk−2 − 1)/2c+ b(pk−2 − pk−3 − 1)/2c ≥ 2z − 1.

Hence, she clearly cannot improve by choosing any position outside of [pk−3, pk−1].
Moreover, she cannot improve by choosing any other position in [pk−3, pk−1]. To
see this, note that her maximum pay-off from any position in [pk−3, pk−1] is

1 + b(pk−1 − pk−3 − 2)/2c = 1 + b(pk−1 − pk−2 − 1 + pk−2 − pk−3 − 1)/2c,

which is equal to the above pay-off since pk−1 − pk−2 and pk−2 − pk−3 cannot
both be even, by construction. ut

It remains to discuss the fairly simple (non)-existence of Nash equilibria for
three players. Note that Roshanbin [7] already stated without proof that there
is no Nash equilibrium for three players on G2×n and G3×n and that Small and
Mason [9] showed that there is no Nash equilibrium for three players on P7. For
the sake of completeness, we prove the following lemma.

Lemma 3. For three players, there is a Nash equilibrium on Pn if and only
if n ≤ 5.

Proof. If n ≤ 3, then a strategy profile where each vertex of the path is chosen
by at least one player is clearly a Nash equilibrium. For n ∈ {4, 5}, the strategy
profile (2, 3, 4) is a Nash equilibrium.

To see that there is no Nash equilibrium for n ≥ 6, consider an arbitrary
strategy profile (p1, p2, p3). Without loss of generality, we can assume that p1 <
p2 < p3 and consider the following two cases. First, we assume that p2 = p1 + 1
and p3 = p2 + 1. If p1 > 2, then Player 2 increases her pay-off by choosing
p1 − 1. Otherwise, it holds that p3 < n − 1 and Player 2 increases her pay-off
by moving to p3 + 1. Therefore, this case does not yield a Nash equilibrium. For



the remaining case, it holds that p1 < p2− 1 or p3 > p2 + 1. If p1 < p2− 1, then
Player 1 increases her pay-off by moving to p2 − 1, while if p3 > p2 + 1, then
Player 3 increases her pay-off by moving to p2 +1. Thus, this case does not yield
a Nash equilibrium as well, and we are done. ut

We close this section with the following result considering cycles. Interest-
ingly, for cycles there exists a Nash equilibrium also for three players.

Theorem 2. For any k, n ∈ N, there is a Nash equilibrium for k players on Cn.

Proof. It is an easy observation that the constructions given in the proofs of
Lemma 1 and 2 also yield Nash equilibria for cycles, that is, when the two
endpoints of the path are connected by an edge. Thus, it remains to show a
Nash equilibrium for k = 3 players for any Cn. We set p1 := 1, p2 := n and

p3 :=

{
bn/2c if n mod 4 = 1,

dn/2e otherwise.

It is not hard to check that (p1, p2, p3) is a Nash equilibrium. ut

3 Grid Graphs

In this section we consider three players on the m× n grid Gm×n and prove the
following main theorem.

Theorem 3. If n ≥ 5 and m ≥ 5, then there is no Nash equilibrium for three
players on Gm×n.

Before proving the theorem, let us first introduce some general definitions and
observations. Throughout this section, we denote the strategy of Player i, that is,
the initially chosen vertex of Player i, by pi := (xi, yi) ∈ [m]× [n]. Note that any
strategy profile where more than one player chooses the same position is never
a Nash equilibrium since in this case each of these players gets a pay-off of zero,
and can improve its pay-off by choosing any free vertex (to obtain a pay-off of
at least one). Therefore, we will assume without loss of generality that p1 6= p2,
p2 6= p3, and p1 6= p3. Further, note that the game is symmetric with respect to
the axes. Specifically, reflecting coordinates along a dimension or rotating the
grid by 90 degrees yields the same outcome for the game. Thus, in what follows,
we only consider possible cases up to these symmetries.

We define ∆x := maxi,j∈[k] |xi − xj | and ∆y := maxi,j∈[k] |yi − yj | to be the
maximum coordinate-wise differences among the positions of the players. We say
that a player strictly controls the other two players, if both reside on the same
side of the player, in both dimensions.

Definition 1. Player i strictly controls the other players, if either

∀j 6= i : xi < xj ∧ yi < yj ,

or ∀j 6= i : xi < xj ∧ yi > yj ,

or ∀j 6= i : xi > xj ∧ yi < yj ,

or ∀j 6= i : xi > xj ∧ yi > yj holds.



Fig. 2: Example of a strategy profile where Player 1 (white circle) has both other
players to her top right with distance at least three (the shaded region denotes
the possible positions for Player 2 and 3). Player 1 can increase her pay-off by
moving closer to the others (star).

The proof of Theorem 3 proceeds as follows.

Proof (Theorem 3). Let m ≥ 5 and n ≥ 5. We perform a case distinction based
on the relative positions of the three players. As a first case, we consider strategy
profiles where the players are playing “far” from each other, that is, there are
two players whose positions differ by at least four in some coordinate (formally,
max{∆x, ∆y} ≥ 3). For these profiles, we distinguish two subcases, namely,
whether there exists a player who strictly controls the others (Lemma 4) or not
(Lemma 5). We prove that none of these cases yields a Nash equilibrium by
showing that there always exists a player who can improve her pay-off. Notably,
the improving player always moves closer to the other two players. We are left
with the case where the players are playing “close” to each other, specifically,
their positions all lie inside a 3×3 subgrid (that is, max{∆x, ∆y} ≤ 2). For these
strategy profiles, we show that there always exists a player who can improve her
pay-off (Lemma 6), however the improving position depends not only on the
relative positions between the players, but also on the global positioning of this
subgrid on the main grid. This leads to a somewhat erratic behaviour, which we
overcome by considering all possible close positions (up to symmetries) in the
proof of Lemma 6. Altogether, Lemmas 4, 5, and 6, cover all possible strategy
profiles (ruling them out as Nash equilibria), thus implying the theorem. ut

In order to conclude Theorem 3, it remains to prove the lemmas mentioned
in the case distinction discussed above. To this end, we start with two easy
preliminary results. First, we observe (as can be easily proven by induction)
that a vertex for which the player with the shortest distance to it is unique is
colored in that player’s color.

Observation 1 Let x ∈ [m]× [n] and i ∈ [k]. If ‖pi−x‖1 < ‖pj −x‖1 holds for
all j 6= i, then x will be colored in color i at the end of the propagation process.

Based on Observation 1, we show that if a player has distance at least three
to the other players and both of them are positioned on the same side of that
player (with respect to both dimensions), then she can improve her pay-off by
moving closer to the others (see Figure 2 for an illustration).
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Fig. 3: Possible cases (up to symmetry) for Player 1 (white) strictly controlling
Player 2 (gray) and Player 3 (black). Circles denote the player’s strategies. The
shaded region contains the possible positions of both Player 2 and 3, whereas
the black regions denote possible positions for Player 3 only. A star marks the
position improving the pay-off of the respective player.

Proposition 1. If x1 ≤ xj, y1 ≤ yj, and ‖p1 − pj‖1 ≥ 3 holds for j ∈ {2, 3},
then Player 1 can increase her pay-off by moving to (x1 + 1, y1 + 1).

Proof. Let p′1 := (x1 + 1, y1 + 1) and x ∈ [x1]× [y1]. Note that ‖p′1−x‖1 = ‖p1−
x‖1 +2 < ‖pj−x‖1 = ‖p1−pj‖1 +‖p1−x‖1 ≥ ‖p1−x‖1 +3 holds for j ∈ {2, 3}.
Hence, Player 1 still has the unique shortest distance to x. By Observation 1, x
gets color 1. Moreover, for any other position x 6∈ [x1]× [y1], there is a shortest
path from p1 to x going through at least one of the positions (x1+1, y1), (x1, y1+
1), or p′1. Clearly, there is also a shortest path from p′1 to x of at most the same
length going through one of these positions. Thus, if x was colored in color 1
before, then x is still colored in color 1.

To see that Player 1 strictly increases her pay-off, note that ‖p′1 − x‖1 =
‖p1 − x‖1 − 2 holds for all x ∈ [x1 + 1, n]× [y1 + 1,m]. Hence, Player 1 now has
the unique shortest distance to all those positions where the distance from p1
was at most one larger than the shortest distance from any other player (clearly,
there exists at least one such position with color j 6= 1). By Observation 1, these
positions now get color 1, thus Player 1 strictly increases her pay-off. ut

We go on to prove the lemmas needed for Theorem 3, starting with the case
that the players play far from each other. The following lemma handles the first
subcase, that is, where one of the players strictly controls the others.

Lemma 4. A strategy profile with max{∆x, ∆y} ≥ 3 where one of the players
strictly controls the others is not a Nash equilibrium.

Proof. We assume without loss of generality that Player 1 strictly controls
Player 2 and Player 3, specifically, we assume that x1 < x2 and y1 < y2 and
x1 < x3 and y1 < y3 holds. Figure 3 depicts the three possible cases for the
positions of Player 2 and Player 3. For each case, we show that a player which
can improve her pay-off exists.

Case 1: We assume that (x2, y2) 6= (x1+1, y1+1) and (x3, y3) 6= (x1+1, y1+1).
By Proposition 1, Player 1 gets a higher pay-off from (x1 + 1, y1 + 1).
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Fig. 4: Possible cases (up to symmetry) when no player strictly controls the
others. Circles denote the positions of Player 1 (white) and Player 2 (gray).
The black regions contain the possible positions for Player 3. A star marks the
position improving the pay-off of the respective player.

Case 2: We assume without loss of generality that (x2, y2) = (x1 + 1, y1 + 1).
(a) We assume x2 < x3 and y2 < y3. Then, x3 > x2 + 1 or y3 > y2 + 1

holds since max{∆x, ∆y} ≥ 3. Note that Player 3 strictly controls
Player 1 and Player 2 and that this case is symmetric to Case 1.

(b) We assume x2 ≥ x3 or y2 ≥ y3. Then, it holds that x3 = x2
or y3 = y2. We assume x3 = x2 (the argument for y3 = y2 being
analogous). Since max{∆x, ∆y} ≥ 3, we have y3 > y2 + 1, thus
Player 3 can improve by moving to (x2, y2 + 1) because then all
positions in [m]× [y2 + 1, n] are colored in color 3, and before only
a strict subset of these positions were colored in her color. ut

The other subcase, where no player strictly controls the others, is handled by
the following lemma.

Lemma 5. A strategy profile with max{∆x, ∆y} ≥ 3 where no player strictly
controls the others is not a Nash equilibrium.

Proof. If no player strictly controls the others, then it follows that at least two
players have the same coordinate in at least one dimension. We perform a case
distinction on the cases as depicted in Figure 4.

Case 1: All three players have the same coordinate in one dimension. We as-
sume that x1 = x2 = x3 (the case y1 = y2 = y3 is analogous). Without
loss of generality also y1 < y2 < y3 holds. Since max{∆x, ∆y} ≥ 3,
it follows that yi+1 − yi ≥ 2 holds for some i ∈ {1, 2}, say for i = 2.
Clearly, Player 3 can improve her pay-off by choosing (x3, y2+1) (anal-
ogous to Case 2b in the proof of Lemma 4).

Case 2: There is a dimension where two players have the same coordinate but
not all three players have the same coordinate in any dimension. We
assume x1 = x2 < x3 and y1 < y2 (all other cases are analogous).
We also assume that y1 ≤ y3 ≤ y2, since otherwise Player 3 strictly
controls the others, and this case is handled by Lemma 4.
(a) We assume that y2 = y1 + 1. Then x3 ≥ x1 + 3 holds since

max{∆x, ∆y} ≥ 3. Player 3 increases her pay-off by moving to
(x1 + 2, y1) (analogous to Case 2b in the proof of Lemma 4).
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Fig. 5: Possible positions (up to symmetry) of three players playing inside a
subgrid of size at most 3× 3.

(b) We assume that y2 = y1 + 2. Then x3 ≥ x1 + 3 holds since
max{∆x, ∆y} ≥ 3. Player 3 increases her pay-off by moving to
(x1 + 2, y1 + 1) (analogous to Case 2b in the proof of Lemma 4).

(c) We assume that y2 > y1 + 2 and |y2 − y3| ≤ |y1 − y3|. That
is, without loss of generality, Player 3 is closer to Player 2. Then,
by Proposition 1, Player 1 increases her pay-off by moving to (x1+
1, y1 + 1). ut

It remains to consider the cases where the players play close to each other.

Lemma 6. A strategy profile with max{∆x, ∆y} ≤ 2 is not a Nash equilibrium.

Proof. First, we assume that ∆x +∆y ≥ 2, as otherwise there would be at least
two players on the same position (so each one of them can improve by moving
to any free vertex). Without loss of generality, we also assume that ∆x ≤ ∆y,
leaving the cases depicted in Figure 5 for consideration. Due to space constrains,
we omit this case analysis. Please refer to the full version. ut

Fig. 6: A graph on 8 vertices with no Nash equilibrium for two players.

4 General Graphs

In this section, we study the existence of Nash equilibria on arbitrary graphs.
Using computer simulations, we found that for two players, a Nash equilibrium



u1 u2 u3

v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3

v4,1 v4,2 v4,3

Fig. 7: A tree with no Nash equilibrium for 9 players.

exists on any graph with at most n = 7 vertices. For n = 8, we obtained the graph
depicted in Figure 6, for which there is no Nash equilibrium for two players. As
it is clear that adding isolated vertices to the graph in Figure 6 does not allow
for a Nash equilibrium, we conclude the following.

Corollary 1. For two players, there is a Nash equilibrium on each n-vertex
graph if and only if n ≤ 7.

For more than two players, we can show the following.

Theorem 4. For any k > 2 and any n ≥ b 32kc + 2, there exists a tree with n
vertices such that there is no Nash equilibrium for k players.

Proof. We describe a construction only for n = b 32kc+2, as we can add arbitrarily
many isolated vertices without introducing a Nash equilibrium.

We first describe the construction for k being odd. We create one P3, whose
vertices we denote by u1, u2, and u3, such that u2 is the middle vertex of this P3.
For each i ∈ [2, dk2 e], we create a copy of P3, denoted by Pi, whose vertices we
denote by vi,1, vi,2, and vi,3, such that vi,2 is the middle vertex of Pi. For each
i ∈ [2, dk2 e], we connect vi,1 to u3. An example for k = 9 is depicted in Figure 7.

For k being even, we create one P2, whose vertices we denote by u1, u2.
For each i ∈ [2, k2 + 1], we create a copy of P3, denoted by Pi, whose vertices
we denote by vi,1, vi,2, and vi,3, such that vi,2 is the middle vertex of Pi. For
each i ∈ [2, k2 + 1], we connect vi,1 to u2. Due to space constraints, the analysis
showing that no Nash equilibrium exists for k players playing on these graphs is
omitted. Please refer to the full version. ut

5 Conclusion

We studied competitive diffusion games for three or more players on paths,
cycles, and grid graphs, answering—as a main contribution—an open question
concerning the existence of a Nash equilibrium for three players on grids [7]
negatively. Moreover, we provide a first systematic study of this game for more
than two players. However, there are several questions left open, of which we
mention some here.



An immediate question (generalizing Theorem 3) is whether a Nash equili-
brium exists for more than three players on grids. Also, giving a lower bound
for the number of vertices n such that there is a graph with n vertices with no
Nash equilibrium for k players is an interesting question as it is not clear that
the upper bounds given in Theorem 4 are optimal. In other words, is it true that
n ≤ 3

2k + 1 implies the existence of a Nash equilibrium for k players?
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