
HAL Id: hal-01260610
https://hal.science/hal-01260610

Submitted on 22 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multivariate Algorithmics for NP-Hard String Problems
Laurent Bulteau, Falk Hüffner, Christian Komusiewicz, Rolf Niedermeier

To cite this version:
Laurent Bulteau, Falk Hüffner, Christian Komusiewicz, Rolf Niedermeier. Multivariate Algorithmics
for NP-Hard String Problems. Bulletin- European Association for Theoretical Computer Science,
2014, 114. �hal-01260610�

https://hal.science/hal-01260610
https://hal.archives-ouvertes.fr


The Algorithmics Column
by

Gerhard J Woeginger

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
gwoegi@win.tue.nl

http://www.win.tue.nl
http://w3.tue.nl/en/
gwoegi@win.tue.nl


Multivariate Algorithmics for NP-Hard
String Problems

Laurent Bulteau∗ Falk Hüffner† Christian Komusiewicz
Rolf Niedermeier

Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Germany

l.bulteau@campus.tu-berlin.de
{falk.hueffner, christian.komusiewicz, rolf.niedermeier}@tu-berlin.de

Abstract

String problems arise in various applications ranging from text mining
to biological sequence analysis. Many string problems are NP-hard. This
motivates the search for (fixed-parameter) tractable special cases of these
problems. We survey parameterized and multivariate algorithmics results for
NP-hard string problems and identify challenges for future research.

1 Introduction
Parameterized and its sequel multivariate algorithmics strive for a fine-grained
complexity analysis of NP-hard problems, with the hope to spot provably tractable
cases. To this end, one analyzes how problem- and data-specific parameters in-
fluence the computational complexity of the considered problems [69, 80, 138].
So far problems from algorithmic graph theory are the main driving force for the
development of the field. Areas such as computational geometry [86], computa-
tional social choice [21, 39], scheduling [23, 130, 134], or string processing still
lead a comparatively quiet life in this research community. With this article, we
aim to stimulate more research on NP-hard string problems using tools of parame-
terized and multivariate complexity analysis. String problems appear in various
areas of algorithmic biology, but also in fields such as text processing, language
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theory, and coding theory. Notably, string problems typically come along with
several natural parameters such as size of the alphabet, number of input strings, or
some distance bound. Hence, it is natural to perform a multivariate complexity
analysis [76, 116, 139]. In this context, we present numerous NP-hard string
problems, discuss known results in terms of multivariate (exact) algorithmics, and
feature some challenging open research questions. To keep this overview focused
and within reasonable dimensions, we mostly discuss unweighted, plain string
problems.

This article is organized as follows. After introducing basic concepts and
notation in Section 2, we discuss consensus string problems in Section 3, common
sub- and superstructure problems in Section 4, distance computation problems
in Section 5, and miscellaneous NP-hard string problems in Section 6. Each
section contains concrete challenges for future research. We conclude with some
general remarks concerning potential directions for future work on NP-hard string
problems.

2 Preliminaries
Parameterized complexity basics. Parameterized algorithmics tries to analyze
problem difficulty not only in terms of the input size, but also for an additional
parameter, typically an integer p. Thus, formally, an instance of a parameterized
problem is a tuple of the unparameterized instance I and the parameter p. A
parameterized problem with parameter p is fixed-parameter tractable if there is an
algorithm that decides an instance (I, p) in f (p) · |I|O(1) time, where f is an arbitrary
computable function depending only on p. The complexity class that contains
the fixed-parameter tractable problems is called FPT. Clearly, if the problem is
NP-hard, we must expect f to grow superpolynomially. To concentrate on the
contribution of f to the running time, we sometimes use the O∗() notation, which
omits the running time part that is polynomial in the input size.

There are parameterized problems for which there is good evidence that they
are not fixed-parameter tractable. Analogously to the concept of NP-hardness,
the concept of W[1]-hardness was developed. It is widely assumed that a W[1]-
hard problem cannot have a fixed-parameter algorithm (hardness for the classes
W[t], t ≥ 2, has the same implication). To show that a problem is W[1]-hard,
a parameterized reduction from a known W[1]-hard problem can be used. This
is a reduction that runs in f (p) · |I|O(1) time and maps the parameter p to a new
parameter p′ which is bounded by some function g(p). If g is linear, that is,
p′ = O(p), then the reduction is called linear parameterized reduction.

While parameterized reductions can show that a problem is unlikely to be fixed-
parameter tractable, even tighter running time lower bounds can be achieved by



assuming the Exponential Time Hypothesis (ETH) [109]. The ETH states that the
3-SAT problem cannot be solved in 2o(n) time, where n is the number of variables.
By combining the ETH and linear parameterized reductions, one can obtain tight
hardness results [48]. More precisely, if there is a linear parameterized reduction
from Clique parameterized by solution size to a parameterized problem L and
the ETH holds, then L cannot be solved in |I|o(p) time. Similarly, if there is a
linear parameterized reduction from Dominating Set parameterized by solution
size to L and W[1] , FPT, then L cannot be solved in |I|o(p) time. For a survey on
ETH-based running time lower bounds, refer to Lokshtanov et al. [122].

The notion of a problem kernel tries to capture the existence of provably
effective preprocessing rules. More precisely, we say that a parameterized problem
has a problem kernel if every instance can be reduced in polynomial time to an
equivalent instance whose size depends only on the parameter. It can be shown
that a problem is fixed-parameter tractable if and only if it has a problem kernel.
However, the kernel derived from this might be impractically large; of particular
interest are kernelizations where the size of the reduced instance depends only
polynomially on the parameter. There are techniques that allow to show that a
problem does not have a polynomial kernel (unless NP ⊆ coNP/poly) [69, 117].

Since single parameters often lead only to intractability, it makes sense to
look at combined parameters. For example, Longest Common Subsequence is
W[2]-hard for the parameter “solution string length”, but fixed-parameter tractable
if additionally the alphabet size is a parameter. Depending on the application,
different parameter combinations might make sense. Thus, the goal is to explore
the “parameter ecology” [76, 116] of the problem and delineate the border between
tractability and intractability.

Notation. Most problems we consider take one or more strings as input, and have
one string as solution, which sometimes needs to fulfill some distance condition.
We use the following notation for the most relevant problem parameters:

• |Σ|: alphabet size;

• k: number of input strings;

• `: maximum length of an input string;

• occ: the maximum number of occurrences of any letter in the set S of input
strings, that is, occ := maxs∈S maxa∈Σ occ(a, s) where occ(a, s) is how often
letter a occurs in string s;

• m: solution string length;

• d: solution string distance.



Input

B A R A C A D A B R A
A B R A A C D A B R A
R B R A C A D A B C A
A C R A C A D A B C A
A B R A D A D A B C A

` = 11, d = 2
Output

A B R A C A D A B R A
B A R A C A D A B R A
A B R A A C D A B R A
R B R A C A D A B C A
A C R A C A D A B C A
A B R A D A D A B C A

Figure 1: Closest String

We use the terms substring and subsequence in the standard way, that is, a
substring must contain consecutive letters, while a subsequence may not. A p-
sequence is a string in which no letter appears twice. A permutation is a p-sequence
using all letters of the alphabet, so it has length |Σ|. The Hamming distance of two
strings with equal length is the number of positions in which they differ. We denote
by s[i] the letter which is at position i of the string s.

3 Consensus Strings

In this section, we discuss consensus or median string problems. Here one searches
for a string that best represents a given set of strings. We will in particular discuss
the NP-complete problems Closest String (Section 3.1) and Closest Substring
(Section 3.2). The main parameters are the number of strings k, the maximum
input string length `, the alphabet size |Σ|, the allowed maximum distance d of the
solution string from the input strings, and (in the case of Closest Substring and
related problems) the length m of the solution string.

3.1 Closest String

Closest String is perhaps the most basic NP-complete consensus string problem,
with many applications in biology (motif search) [141, Section 8.6] but also in
coding theory (minimum radius problem) [81].

Closest String
Instance: A set of k length-` strings s1, . . . , sk over an alphabet Σ and a
positive integer d.
Question: Is there a length-` string s ∈ Σ∗ that has Hamming distance at
most d to each of s1, . . . , sk?



Figure 1 shows an example of an input instance of Closest String and its solu-
tion. Note that m = ` for this problem. Closest String is NP-complete even for
binary alphabet [81]. Thus, there is no hope to obtain fixed-parameter tractability
for the single parameter alphabet size |Σ|. A straightforward enumerative approach
(just trying all candidate closest strings) has running time O∗(|Σ|`). This fixed-
parameter tractability for the combined parameter |Σ| and ` yields feasible running
times only for small alphabets and short strings. Two obvious parameters, which
are often small in real-world applications, are the number k of input strings and
the maximum Hamming distance d, also referred to as radius. Using integer linear
programming results [82, 115, 119], fixed-parameter tractability with respect to k
can be derived [94]. This result is of purely theoretical interest due to a huge com-
binatorial explosion. Therefore, there have been efforts towards developing direct
combinatorial algorithms for constant values of k [10, 36, 93], but a combinatorial
fixed-parameter algorithm for parameter k is unknown.

Challenge 1. Is there a direct combinatorial fixed-parameter algorithm for Closest
String parameterized by the number k of input strings (thus avoiding integer linear
programming)?

The parameter d seems currently most promising in terms of obtaining practical
fixed-parameter tractability results for Closest String. A simple search tree
strategy basically employs the following idea: Assume that there exists a closest
string with maximum distance d from the input strings. Then it must be possible to
reach it from any of the input strings by changing at most d letter positions. The
corresponding search can be organized in a tree-like fashion as follows: Choose
any input string as a candidate closest string. As long as this candidate string
has distance more than d to at least one input string, branch the search into d +

1 cases where in each case one picks a position in which the strings differ and
changes the letter in the candidate string to the letter of the input string. This is
repeated at most d times and it can be shown that if a closest string with maximum
Hamming distance d exists, then this procedure finds it [94]. Altogether, this leads
to an O∗((d + 1)d)-time algorithm for Closest String. For small alphabets, this
algorithm has been improved by employing |Σ| as a second parameter [54, 55, 152],
achieving running times of the form O∗(|Σ|O(d)).

While most results in the literature care about fixed-parameter tractability
versus W-hardness (parameterized intractability), Lokshtanov et al. [121], provided
concrete lower bounds for algorithm running times. Assuming ETH, they showed
that there is no do(d) · (k · `)O(1)-time and no |Σ|o(d) · (k · `)O(1)-time algorithm
for Closest String. Thus, assuming ETH, the above-mentioned algorithms are
basically optimal.

In applications, Closest String is often attacked using (Integer) Linear Pro-
gramming [9, 58, 154]. Exact solutions (using Integer Linear Programming) seem



practically feasible for small input lengths `. Using (relaxed and more efficient)
Linear Programming, one only may hope for approximate solutions but one can
obtain lower bounds for the Hamming distance d of an optimal solution string. In
the spirit of previous work for the Vertex Cover problem [136] and the idea of pa-
rameterizing above guarantee [125]—the new (and potentially much smaller—thus
stronger) parameter then is the absolute value of the difference between the LP
lower bound (which can be computed in polynomial time) and the actual distance
value—this leads to the following.

Challenge 2. What is the complexity of Closest String parameterized above the
Linear Programming (LP) relaxation of an Integer Linear Programming formula-
tion of the problem?

Finally, we mention in passing that Chen et al. [56] developed randomized
fixed-parameter algorithms for Closest String, obtaining improvements (in terms
of the (constant) bases of exponential functions) over previous deterministic results
exploiting small alphabet sizes.

Variants. Nishimura and Simjour [140] presented parameterized enumeration
algorithms for Closest String and the slightly more general Neighbor String
problem, exploiting the parameters alphabet size |Σ| and maximum Hamming
distance d. Creignou et al. [63] initiated a study of parameterized enumeration
with ordering for Closest String and other problems, proposing a general strategy
for this task. Boucher and Omar [35] derived results on the hardness of counting
the number of closest strings.

Boucher and Ma [34] and Boucher et al. [37] presented several parameterized
tractability and intractability results for the Close toMost Strings problem. This
problem generalizes Closest String by relaxing the requirements for the solution:
the algorithm may choose to select a given number of “outliers” among input
strings, which are then simply ignored. Indeed, Closest String is the special
case where no outliers are allowed. For example, Close toMost Strings is fixed-
parameter tractable for the combined parameter maximum Hamming distance d
and number k of input strings [37].

Hermelin and Rozenberg [104] introduced the Closest String withWildcards
problem, where the input strings may contain wildcard letters ‘∗’ that match with
every other letter of the alphabet Σ. The solution is required to be without wildcard
letters. Clearly, Closest String is the special case where the input strings are
without wildcards. Some results for Closest String can be adapted, but new
techniques had to be developed for this more general problem to obtain fixed-
parameter tractability results. Amir et al. [12] introduced a generalization of
Closest String more suitable for clustering applications; here, one has to deal with
determining several center (closest) strings.



Closest String asks for a solution that has small “radius”. Amir et al. [8]
introduced the variant where one asks for small radius and small distance sum.
Their algorithms work for three-string inputs; the complexity for k ≥ 4 input strings
remains open. Moreover, Lee et al. [118] developed polynomial-time algorithms
for computing the (Hamming distance) consensus of three circular strings as
motivated by biological applications.

Most research focused on the Hamming metric as a distance measure. Several
further distance measures such as edit distance, swap distance, reversal distance,
or rank distance have been proposed [11, 67, 137]. So far, there are only few
parameterized complexity results here. A further variant of Closest String called
Shared Center, motivated by applications in haplotype inference in biology, has
also been studied [57].

We conclude this subsection with a very unspecific and general challenge based
on the following observation. Consensus problems play a prominent role not
only in the context of string problems, but also in the context of computational
social choice [21, 38]. For example, compare Closest String with the NP-hard
Kemeny Rank Aggregation problem. For the latter, given a set of permutations
(in other words, every letter appears exactly once in each input string) one seeks a
consensus permutation that minimizes the sum of inversions (that is, the number of
“bubble sort operations”) to the input permutations. Bachmaier et al. [15] started
an investigation of “maximum rank aggregation problems”, in particular including
the “maximum version” of Kemeny Rank Aggregation. Among other things they
showed how the above-mentioned search tree approach for Closest String [94]
can be extended to this setting. Similar parameterized complexity studies as for
Closest String have been performed for Kemeny Rank Aggregation [19, 20, 22],
leading to the natural quest for a deeper understanding of interactions and relations
between consensus problems from both areas.

Challenge 3. What are common features (problems, methods, techniques) that are
used in deriving parameterized complexity results in computational social choice
(particularly, rank aggregation problems) and stringology (particularly, consensus
string problems)?

Interestingly, Aziz et al. [14] closely connected Closest String with minimax
approval voting.

3.2 Closest Substring
Closest Substring is the computationally harder sister problem of Closest String.
Here, one searches for a consensus string that is close to a fixed-length substring in
every input string. Figure 2 shows an example.



Input

A B R A C A D A B R A
D A B A A C A D R
B R A B R A R A D A
R B B R A C A D R A
A B A R R A C A D

` = 11, m = 9, d = 1
Output

A B R A C A D
A B R A C A D A B R A

D A B A A C A D R
B R A B R A R A D A

R B B R A C A D R A
A B A R R A C A D

Figure 2: Closest Substring

Closest Substring
Instance: A set of k maximum-length-` strings s1, . . . , sk over an alpha-
bet Σ, and positive integers d and m.
Question: Is there a length-m string s ∈ Σ∗ such that each of s1, . . . , sk has
a length-m substring with Hamming distance at most d to s?

Closest Substring can be trivially solved by considering (` −m + 1)k instances
of the Closest String problem; clearly, this is inefficient if m is significantly smaller
than ` and for already moderate values of k. Another straightforward exhaustive
search algorithm is to test all possible candidate solution strings, resulting in
a running time of O(|Σ|m · k`2). On the negative side, even for constant-size
alphabets Closest Substring is W[1]-hard for the parameters maximum Hamming
distance d and number k of input strings [72, 75, 127]. On the positive side, Marx
[127] provided algorithms running in |Σ|d log d+2 · (k · `)O(log d) time and running in
|Σ|d · 2kd · dO(d log log k) · (k · `)O(log log k) time. Assuming the ETH, these algorithms
again are shown to be close to optimality [121, 127]. Moan and Rusu [135] and
Ma and Sun [124] investigated variants of Closest Substring where the pairwise
distance between input strings is bounded and showed that the (parameterized)
hardness results for Closest Substring remain valid.

Challenge 4. Given the notorious computational hardness of Closest Substring
and related problems, do there exist parameterizations that allow for fixed-parameter
tractability results? In particular, can analysis of real-world input instances lead
to useful data-driven parameterizations?

Variants. Consensus Patterns is the same as Closest Substring except that one
does not want to find a substring with small maximum distance but a substring
with a small sum of distances. Note that while Closest String becomes trivially
polynomial-time solvable when moving to sum of distances instead of maximum
distance, Consensus Patterns is NP-complete [120]. Compared to Closest Sub-
string, however, in terms of fixed-parameter tractability there are more encouraging



results. While for constant-size alphabets Consensus Patterns remains W[1]-hard
for the parameter number k of input strings, for the other standard parameters it
becomes fixed-parameter tractable as long as the alphabet size is bounded [127].

Distinguishing Substring Selection generalizes Closest Substring by having
“good” and “bad” input strings and searching for a solution string that is far away
from all substrings of good strings but close to at least one substring in every bad
string. The terms “good” and “bad” are motivated by applications concerning the
design of genetic markers. Historically, Distinguishing Substring Selection was
shown W[1]-hard (for constant alphabet size) for all standard parameters (in partic-
ular with respect to the parameter maximum Hamming distance d) before Closest
Substring—indeed, the corresponding hardness reductions may be considered
somewhat easier [95]. Notably, the special case Distinguishing String Selection in
terms of complexity is closer to Closest String than to Distinguishing Substring
Selection [152]. Note that Distinguishing String Selection has the two special
cases Closest String (here the set of good strings is empty) and Farthest String
(here the set of bad strings is empty) [152].

Finally, Basavaraju et al. [16] provided a first systematic study on the ker-
nelization complexity of many of the problems studied in Section 3. Notably,
Hufsky et al. [107] empirically studied polynomial-time data reduction combined
with search trees for Closest String. Kernelizability studies, however, are still
underrepresented in the context of NP-hard string problems. We thus conclude
with the following concrete question, also posed by Basavaraju et al. [16].

Challenge 5. Does Closest String parameterized by the number k of input strings
have a size-kO(1) problem kernel?

4 Common Structure

In this section, we examine the problem of finding a common sub- or superstruc-
ture of a given set of strings. The most basic problems are Longest Common
Subsequence (Section 4.1), Shortest Common Supersequence (Section 4.3), and
Shortest Common Superstring (Section 4.4). In addition, we cover the fairly
general Multiple Sequence Alignment problem (Section 4.2), which is of immense
importance in biological sequence analysis. The main parameters we consider are
the number of strings k, the solution string length m, the maximum input string
length `, and the alphabet size |Σ|.



Input

G C A A G T C T A A T A

C A A G G T T A T A T A

G C A A T T C T A T A A

C A A T T G A T A T A A

G C A A T C A T A T A T

Output

G C A A G T C T A A T A

C A A G G T T A T A T A

G C A A T T C T A T A A

C A A T T G A T A T A A

G C A A T C A T A T A T

Figure 3: Longest Common Subsequence (example from Skiena [146])

4.1 Longest Common Subsequence
Longest Common Subsequence is a classic NP-complete problem [84, SR10]. It
has applications for example in computational biology, data compression, or file
comparison (a variant is used in the Unix diff command) [18]. Figure 3 shows an
example.

Longest Common Subsequence
Instance: A set of k maximum-length-` strings s1, . . . , sk over an alpha-
bet Σ and a positive integer m.
Question: Is there a string s ∈ Σ∗ of length at least m that is a subsequence
of si for i = 1, . . . , k?

The case of two strings is well-studied and can be solved in O(`2) time by
dynamic programming. An alternative algorithm solves the problem in O((r +

`) log `) time, where r is the total number of ordered pairs of positions at which the
two sequences match [108]. In the worst case, this algorithm has a running time
of O(`2 log `); however, in many applications the value of r can be expected to be
closer to ` (for example in the Unix diff command, where each line occurring in the
input is a letter of the alphabet). Thus, this could be considered as a parameterized
algorithm for a polynomial-time solvable problem.

For an arbitrary number of strings, the problem is NP-hard even for a binary
alphabet [26, 126]. Bodlaender et al. [29] were the first to study the parameter-
ized complexity of Longest Common Subsequence. Currently known results are
summarized in Table 1. The problem is W[1]-hard for the possibly most appeal-
ing parameter, the number of strings k, even with a binary alphabet [142]. The
reduction to prove this claim is a linear parameterized reduction from Clique pa-
rameterized by solution size. Hence, assuming ETH a (k · `)o(k)-time algorithm for
Longest Common Subsequence is impossible. Similarly, the original reduction [29]
for showing W[2]-hardness of Longest Common Subsequence parameterized by
solution length m is a linear parameterized reduction from Dominating Set. This



alphabet size |Σ|

parameter unbounded parameter constant

k W[t]-hard [29] W[t]-hard [28] W[1]-hard, |Σ| = 2 [142]
m W[2]-hard [29] FPT [E] FPT [E]
k,m W[1]-hard [29, 97] FPT [E] FPT [E]
` FPT [E] FPT [E] FPT [E]

Table 1: Parameterized complexity of Longest Common Subsequence. Results
marked [E] follow from trivial complete enumeration; W[t]-hard refers to any t ≥ 1.

implies that, assuming W[1] , FPT, there is no (k · `)o(m)-time algorithm for
Longest Common Subsequence. The reduction, however, produces instances with
an unbounded number k of strings. Hence, the following question remains open.

Challenge 6. Does Longest Common Subsequence admit a (k · `)o(k+m)-time algo-
rithm?

Note that when the alphabet size |Σ| and the length m of the string to be found
are parameters, we get a trivial FPT algorithm from enumerating all |Σ|m possible
solutions. It would be interesting to see if this parameterization also yields a small
kernel.

Challenge 7. Does Longest Common Subsequence have a polynomial-size problem
kernel for binary alphabet and parameter m, or more generally for the combined
parameter (m, |Σ|)?

A different brute-force algorithm is to enumerate all possible ways in which
individual letter positions can be matched exactly over all input strings to generate
common subsequences, using a dynamic programming table with O(`k) entries,
yielding a running time of O∗(`k) [71]. If we consider as parameter only the
maximum input string length `, we can also get a simple brute-force FPT algorithm:
For each of the 2` subsequences of the first string, check whether it is also a
subsequence of the other strings, and return the longest common subsequence thus
found.

Challenge 8. Does Longest Common Subsequence admit a (2 − ε)` · kO(1)-time
algorithm for some ε > 0?

Further parameters. Timkovskii [148] shows that Longest Common Subse-
quence remains NP-hard even when the input strings have length 2 and the maxi-
mum number of occurrences occ of a letter over all input strings is 3; several more



related results are given. If in addition to occ we use the number of strings k as a
parameter, we obtain fixed-parameter tractability [99]: the problem can be reduced
to finding a longest path in a directed acyclic graph with O(` · occk) vertices.

Blin et al. [26] study Longest Common Subsequence with fixed alphabet size |Σ|
and unbounded number of strings k, but fixed run-length (that is, maximum number
of consecutive identical letters). They show that the problem remains NP-complete
even when restricted to strings with run-length at most 1 over an alphabet of size 3
or strings with run-length at most 2 over an alphabet of size 2 (both results are
tight).

Extending the approach of Hunt and Szymanski [108], Hsu and Du [105]
present an algorithm running in O(k|Σ|(` + r)) time, where r is the number of
tuples (i1, i2, . . . , ik) such that s1[i1] = s2[i2] = · · · = sk[ik]. This clearly will be
most effective for very large alphabets. Irving and Fraser [110] give an algorithm
running in O(k`(` − m)k−1) time. This can be seen as a fixed-parameter algorithm
for the combined parameter k and number ` − m of omitted letters.

Challenge 9. Is Longest Common Subsequence fixed-parameter tractable for the
parameter number ` − m of omitted letters?

Relaxed versions. Motivated by biological applications, several variants of
Longest Common Subsequence have been studied where the input strings do not
simply consist of letters, but each position is a probability mass function that
describes how likely each letter is here (position weight matrix in biological liter-
ature). In this way, one can talk about the probability of a subsequence. Finding
the longest string such that the product of its probability in each of two input
strings exceeds some threshold can be done in polynomial time [6]; if however
a threshold probability needs to be exceeded in both input strings, the problem
becomes NP-hard [6], even for a binary alphabet [65]. The same dichotomy holds
for Shortest Common Supersequence [7].

Challenge 10. Analyze the parameterized complexity of the “most probable subse-
quence” version of Longest Common Subsequence.

Guillemot [97] studies the Longest Compatible Sequence problem which can
be seen as a variant of Longest Common Subsequence. The input strings are p-
sequences, that is, occ = 1, and the task is to compute a length-m string s such that
for each input string si the string s restricted to the alphabet of si is a subsequence
of si. Longest Compatible Sequence is W[1]-hard for the combined parameter (k, `)
and fixed-parameter tractable for the parameter |Σ| − m (note that |Σ| ≥ `) [97].

Constrained versions. A number of variants of Longest Common Subsequence
have been examined where the output string needs to have an additional property.



Most works consider only two input strings, so we assume this in this paragraph
except when noted otherwise.

The Constrained Longest Common Subsequence problem is the generalization
where the output must contain each of a given set of f restriction strings as
subsequence. It has applications in computational biology. The problem can be
solved in polynomial time for a single restriction string ( f = 1) [149], but is NP-
hard in general [90]. Chen and Chao [52] give a dynamic programming algorithm
with running time O(`2 ·

∏ f
i=1 ρi), where ρ1, . . . , ρ f are the lengths of the restriction

strings; thus, this is a fixed-parameter algorithm for the parameter “total length of
the restriction strings t”. Bonizzoni et al. [32] show that the problem is W[1]-hard
for the combined parameter ( f , |Σ|), using a reduction from Shortest Common
Supersequence.

The Restricted Longest Common Subsequence problem is the generalization
where the output must not contain any of a given set of f restriction strings as
subsequence. The problem is NP-hard already for two input strings and restriction
strings of length two, but can be solved with dynamic programming also for more
than two input strings in O(`k+ f ) time [91]. A different analysis of this algorithm
yields O(2t · `k) time, where t is the total length of the restriction strings; thus,
the problem is fixed-parameter tractable with respect to t. A different dynamic
programming algorithm solves the problem with running time O(`2 ·

∏ f
i=1 ρi),

where ρ1, . . . , ρ f are the lengths of the restriction strings [52]; this also implies
fixed-parameter tractability with respect to t.

In the Repetition-free Longest Common Subsequence problem [3], each letter
must appear at most once in the solution string. The application is to uncover
a genome rearrangement where at most one representative of each family of
duplicated genes is taken into account. The problem is NP-hard even if occ = 2 [3].
It can be solved in polynomial-time when the number of letters that appear multiple
times in the input is a constant [3]. The problem can be solved in randomized
O∗(2m) time and polynomial space [25], that is, it is fixed-parameter tractable
with respect to the solution size m. The algorithm uses the multilinear detection
technique, an algebraic approach; the idea is to exploit that we can efficiently
detect a multilinear monomial of a given degree in an arithmetic circuit, which is
a compressed encoding of a multivariate polynomial. On the negative side, the
problem does not have a polynomial-size kernel for parameter m unless NP ⊆
coNP/poly [25].

The Doubly-Constrained Longest Common Subsequence [32] generalizes both
Constrained Longest Common Subsequence and Repetition-free Longest Common
Subsequence by demanding both constraints at the same time. Moreover, the
repetition-free constraint is generalized by requiring that the number of occurrences
of each letter a in the solution is bounded by some function τ(a). This models
a sequence comparison problem from computational biology. It is NP-complete



Input

G C AAG T C T AA T A

C AAAG T T A T T A

G C AAG T C C A T AAC

G C C AGA C T C A T A

G C T T C T AA T A

Output

G C A A ∆ G T C ∆ ∆ T A A T A

∆ C A A A G T ∆ ∆ ∆ T A T T A

G C A A ∆ G T C C A T A A C ∆

G C C A ∆ G A C ∆ ∆ T C A T A

G C ∆ ∆ ∆ T T C ∆ ∆ T A A T A

4 0 7 4 4 4 4 4 4 4 0 4 4 4 4
∑

: 55

Figure 4: Multiple Sequence Alignment with unit cost function φ.

already with a ternary alphabet but can be solved in time O∗(mm2O(m)) [32]. This
algorithm is based on the color-coding technique, which was introduced by Alon
et al. [5] for graph problems. The idea is to color each possible occurrence of a
letter in the solution (that is, each pair (σ, i) with σ ∈ Σ, i ∈ {1, . . . , τ(σ)}) randomly,
and then to look only for solutions that fulfill a certain colorfulness property with
respect to this coloring; this restriction makes the task much easier. If we repeat the
process frequently enough, we can ensure that the colorfulness property is fulfilled
at least once with high probability. By choosing the colorings from a perfect hash
family, it can also be ensured deterministically that at least one coloring makes the
solution colorful. An alternative algorithm based on finite automata has running
time O(m f +|Σ| · |Σ|`2) where f is the number of restriction strings that the solution
must contain [73].

Finally, in the Exemplar Longest Common Subsequence problem the alphabet
consists of mandatory and optional letters and one is asked to find a longest
common subsequence that contains each mandatory letter at least once [31]. On
the negative side, it is NP-hard to check whether there is any common subsequence
(without maximizing its length) even if each mandatory symbol occurs at most
three times in each input string. On the positive side, Exemplar Longest Common
Subsequence is fixed-parameter tractable for the parameter number of mandatory
letters.

4.2 Multiple Sequence Alignment

»From the viewpoint of biological applications, the class of multiple sequence
alignment problems form arguably the most relevant class of NP-hard string prob-
lems. From an alignment of protein, RNA, or DNA sequences, one may infer facts
about the evolutionary history of biological species or of the sequences themselves.
These problems have as input a set of k strings and the task is to find an alignment



of these strings that has minimum cost (see Figure 4 for an example). Herein, an
alignment is a rectangular array whose rows correspond to the input strings and
may also contain an additional gap symbol ∆. Informally, the goal of any multiple
sequence alignment problem is to maximize the total amount of similarity within
the alignment columns. There is a variety of possible cost functions to achieve
this vaguely defined task. For example, one may only count a column if it does
not contain any gap symbol and all its letters are equal. For this scoring function,
Multiple Sequence Alignment is equivalent to Longest Common Subsequence.

In this section, we focus on the so-called sum of pairs score. While it is difficult
to give a biological justification for this score, it is relatively easy to work with
and has been used in many studies. The sum of pairs score, or rather cost, as the
problems are often formulated as minimization problems, is simply the sum of
pairwise alignment costs over all pairs of input sequences. The pairwise alignment
cost is computed by summing pairwise “mutation” costs over all columns of
the alignment. The cost function is a problem-specific symmetric function φ :
(Σ ∪ {∆}) × (Σ ∪ {∆})→ R+ where φ(σ,σ) = 0 for each σ ∈ Σ ∪ {∆}.

Multiple Sequence Alignment (MSA) with SP-Score
Instance: A set S of k maximum-length-` strings s1, . . . , sk over an alpha-
bet Σ, a cost function φ and a positive integer m.
Question: Is there an alignment of S that has cost at most m?

Multiple Sequence Alignment is NP-complete for a wide range of cost functions
that fulfill the triangle inequality [30, 114]. In particular, Multiple Sequence
Alignment is NP-hard for all metric cost functions even for binary input strings [70].
This includes the most simple cost function, the unit cost function, that assigns a
cost of 0 for aligning identical letters and a cost of 1 for aligning a letter with a
different letter or with the gap symbol ∆.

Notably, none of the reductions behind these hardness results shows W[1]-
hardness for the number of strings k while an `O(k)-time algorithm can be achieved
by standard dynamic programming. Focusing on the algorithmically most funda-
mental cost function leads to the following challenge.

Challenge 11. Can Multiple SequenceAlignment with unit cost function be solved
in `o(k) time?

An `o(k)-time lower bound was presented for the somewhat harder LocalMul-
tiple Alignment problem [1].

4.3 Shortest Common Supersequence
Shortest Common Supersequence is another classic NP-hard problem [84, SR10].
Bodlaender et al. [28] mention applications in biology and suggest examining the



Input

A A C T A A

C A A T C A A

G A A A A T A

G C A G T A A

G A G C A T

Output

G C A A G T C T A A T A

A A C T A A

C A A T C A A

G A A A A T A

G C A G T A A

G A G C A T

Figure 5: Shortest Common Supersequence

alphabet size |Σ|

parameter unbounded parameter constant

k W[1]-hard [102] W[1]-hard [102] W[1]-hard [142]
m FPT [E] FPT [E] FPT [E]
` NP-hard ` = 2 [148] FPT [E] FPT [E]

Table 2: Parameterized complexity of Shortest Common Supersequence. Results
marked [E] follow from trivial complete enumeration.

parameterized complexity for various parameters and problem variants. Figure 5
shows an example.

Shortest Common Supersequence
Instance: A set of k maximum-length-` strings s1, . . . , sk over an alpha-
bet Σ and a positive integer m.
Question: Is there a string s ∈ Σ∗ of length at most m that is a superse-
quence of si for i = 1, . . . , k?

The case of two strings is easily solved in polynomial time by reducing to
Longest Common Subsequence. For an arbitrary number of strings, the problem
is NP-hard even when all input strings have length two [148], or with a binary
alphabet where each string contains exactly two 1’s [132].

Known results for the basic parameters are summarized in Table 2. We can
trivially enumerate all solutions in O(|Σ|m) time, and with |Σ| ≤ m and m ≤

` · |Σ|` the other results marked [E] follow. Parameterized by the number of
strings k, the problem is W[1]-hard, even when the alphabet size is fixed [142]. As
for Longest Common Subsequence, there is no `o(k)-time algorithm for Shortest
Common Supersequence [49].



Input

A G T A C

A C A T A

A T A G T

T A G T A

T A C A T

Output

A T A G T A C A T A

A T A G T

T A G T A

A G T A C

T A C A T

A C A T A

Figure 6: Shortest Common Superstring

Further parameters. Shortest Common Supersequence with occ = 1 and pa-
rameter m − ` (number of extra letters) is parameterized equivalent to the Directed
Feedback Vertex Set problem [74]. Thus, using the FPT algorithm for the lat-
ter [50], we obtain fixed-parameter tractability.

Challenge 12. Extend the fixed-parameter tractability of Shortest Common Su-
persequence for parameter m − ` to larger classes of inputs.

Constrained version. Dondi [68] examines a generalization of Shortest Com-
mon Supersequence that he calls Constrained Shortest Common Supersequence.
The requirement is that in the solution string, each letter a must occur at least
τ(a) times. Only two input strings are considered. Constrained Shortest Common
Supersequence is NP-complete even when occ = 2 and τ(a) ≤ 3 for each a ∈ Σ,
but is polynomial-time solvable when τ(a) ≤ 2 for each a ∈ Σ [68]. Note that in a
shortest common supersequence s, letters must be part of the subsequence s1 or
the subsequence s2 or both (matching letters). If we know the matching letters, the
solution is easy to construct. Thus, we can solve the problem in O∗(2|s1 |) = O∗(2m)
time by trying all subsets of s1 that might form the matching letters. By case
distinction, this can be improved to O∗(1.733m) [68].

4.4 Shortest Common Superstring

Shortest Common Superstring is NP-complete [84, SR9]. It has applications in
DNA assembly (see e. g. [71]) and data compression (see e. g. [83]). For a survey,
see Gevezes and Pitsoulis [85]. Figure 6 shows an example.



alphabet size |Σ|

parameter unbounded parameter constant

k FPT [TSP] FPT [TSP] FPT [TSP]
m FPT [E] FPT [E] FPT [E]
` NP-hard ` = 3 [132] FPT [E] FPT [E]

Table 3: Parameterized complexity of Shortest Common Superstring. Results
marked [TSP] follow from a reduction to Traveling Salesman; results marked [E]
follow from trivial complete enumeration.

Shortest Common Superstring
Instance: A set S of k length-` strings s1, . . . , sk over an alphabet Σ and a
positive integer m.
Question: Is there a string s ∈ Σ∗ of length at most m that is a superstring
of si for i ∈ {1, . . . , k}?

Again, the case of two input strings is polynomial-time solvable, but for an
arbitrary number of sequences, the problem is NP-complete even when |Σ| = 2 or
the maximum input string length ` is 3 [83].

Bodlaender et al. [28] suggest examining the parameterized complexity of this
problem and variants. Evans and Wareham [71] give a survey on parameterized
results from the viewpoint of applications in molecular biology, including gen-
eralizations based on the applications. The results for the basic parameters are
summarized in Table 3. The problem remains NP-complete if the given strings
have length 3 and the maximum letter occurrence over all strings is 8 [132], or
if all strings are of the form 10p10q with p, q ≥ 0 [133]. Again, we can trivially
enumerate all solutions in O(|Σ|m) time, and with |Σ| ≤ m and m ≤ ` · |Σ|` the other
results marked [E] follow.

Any superstring can be created by concatenating the input strings in some order
and then merging overlaps, that is, if there is some string s that is both a suffix
of an input string and a prefix of the next input string in the ordering, then we
need s only once in the superstring. In a solution superstring, two adjacent strings
will always have maximum overlap. The maximum overlap can be calculated
in linear time. Thus, after O(k2`) time preprocessing, we can simply try all k!
possible orders of the input strings in the common superstring, and solve Shortest
Common Superstring in O(k! + k2`) time. Alternatively, we can reduce to the
Traveling Salesman problem (TSP) by creating a vertex for each of the k input
strings and weighing an arc (s1, s2) by the number of nonmatched letters in s1 in
the maximum overlap with s2 (Figure 7). A minimum-weight path that visits all
vertices then corresponds to a shortest common superstring. (Note that we do
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Figure 7: TSP instance for the Shortest Common Superstring instance from
Figure 6

not seek a round-trip, that is, we can start at any vertex and do not need to return
to the start after having visited all other vertices.) For TSP, we can use a classic
exponential-space dynamic programming algorithm [17, 103] to solve the problem
in O(k22k + k2`) time. No algorithm for TSP that is faster than O∗(2k) is known.
Note that the edge weights in the TSP instances resulting from this reduction are
not symmetric, which unfortunately makes many popular solution approaches for
TSP inapplicable. For the special case where the length of the input strings `
is three, Shortest Common Superstring can be solved in O∗(3k/3) = O∗(1.443k)
time [88]; more generally, when ` is bounded by some constant c, the problem can
be solved in randomized O∗(2(1− f (c))`) time, where f (c) = 1/(1 + 2c2) [89].

Challenge 13. Does Shortest Common Superstring admit a (2 − ε)` · kO(1)-time
algorithm for some ε > 0?

Note that the challenge does not become any easier when assuming a binary
alphabet [150].

Variants. Bonizzoni et al. [33] consider two variations of Shortest Common
Superstring, where in addition to the set of strings we are given extra input that
restricts possible solutions; the aim is not to cover all strings anymore, but a
maximum-size subset. In Swapped Common Superstring, we are additionally given
a string t, and the solution string must be a swap order of t, that is, it must be
obtainable from t by nonoverlapping swaps of adjacent letters. This problem is
NP-complete [92], but fixed-parameter tractable with respect to the number of input
strings covered in the solution [33]. In Restricted Common Superstring, we are



additionally given a multisetM of letters from the same alphabet, and the solution
string must be an ordering ofM. This problem is NP-complete, even with binary
alphabet or input string length bounded by 2 [60]. For the number of input strings
covered in the solution, the problem is W[1]-hard; however, with the additional
parameter of the maximum input string length `, it becomes fixed-parameter
tractable [33]. Both fixed-parameter algorithms are based on the color-coding
technique. On the negative side, the authors show that the parameterizations
that yield fixed-parameter tractability do not admit a polynomial kernel, unless
NP ⊆ coNP/poly [33].

5 Distances
The problems in this section aim at answering a common question: how similar
are two given strings? Easy answers can be obtained by counting the number
of local operations that are necessary to transform one string into the other. The
most important examples here are the Hamming distance and the Levenshtein
distances. More generally, for any combination of insertions, deletions, single-
letter changes, and adjacent swaps, the edit distance can be computed in polynomial
time, a notable exception being the edit distance where deletions and adjacent
swaps are allowed. Computing this distance is doable in polynomial time for
constant-size alphabets [131] but NP-hard in general [151], and fixed-parameter
tractable if parameterized by the distance [2]. Some models, however, require
nonlocal operations. Usually, this nonlocality makes the distance computation
more challenging.

5.1 Reversal and Transposition Distances
A rearrangement is a large-scale operation that transforms a string. The study
of rearrangements is motivated by the evolution of genomes during which differ-
ent types of rearrangements occur [79]. One of the most-studied rearrangement
operation is the reversal, where the order of the letters in a substring is reversed.
The reversal distance between two strings is the number of reversals needed to
transform one string into the other; see Figure 8 for an example.

String Reversal Distance
Instance: Two strings s1 and s2 of length ` and an integer d.
Question: Is the reversal distance between s1 and s2 at most d?

The problem is nontrivially posed only if each letter occurs with the same frequency
in s1 and s2; such strings are called balanced. For occ = 1, String Reversal
Distance is equivalent to transforming one permutation into another: the two input



Input

d = 2
A B R A C A D A B R A
A D A C A R R B A B A

Output

A B R A C A D A B R A

A D A C A R B A B R A

A D A C A R R B A B A

Figure 8: Sorting By Reversals

strings are balanced and thus |Σ| = `. Since one may assume without loss of
generality that s2 = 12 . . . `, the problem is called Sorting by Reversals in this
case. Sorting by Reversals is NP-hard [47]. String Reversal Distance is NP-hard
even if |Σ| = 2 [59]. Moreover, it remains hard even if |Σ| = 2 and the run-length
(that is, maximum number of subsequent identical letters) is two for one letter and
one for the other letter [46]. Besides the alphabet size |Σ|, the distance d is the most
natural parameter. Sorting by Reversals is trivially fixed-parameter tractable for
parameter d: If s1 contains substrings of the form i(i + 1)(i + 2) or (i + 2)(i + 1)i,
then these substrings and their counterparts in s2 can be replaced by smaller ones.
This reduces input instances to equivalent ones of length O(d). This approach,
however, does not extend to general strings. Thus, fixed-parameter tractability with
respect to d remains open.

Challenge 14. Is String Reversal Distance fixed-parameter tractable for the
parameter d?

Another natural parameter which obviously yields fixed-parameter tractability
is the string length `. A trivial search tree algorithm is to branch into all `2

possibilities for the first reversal and then solve the problem recursively with d − 1
for each of the resulting permutations. This gives a running time of `O(`). Obviously,
a significant improvement of this running time is desirable.

Challenge 15. Does String Reversal Distance admit a 2O(`)-time algorithm?

A further parameter that was proposed for String Reversal Distance is the
number b of blocks, that is, maximal substrings in which only one letter occurs.
This parameter is motivated by the hardness for |Σ| = 2; for such strings the block
number can be much smaller than the string length `. String Reversal Distance
can be solved in O∗((6b)2b) time [46]. The core idea is to first guess how the blocks
get rearranged by the successive reversals: Which block is inside, outside, or split
by each reversal? Since the reversal distance between two strings with at most b
blocks is O(b), the search tree size depends only on b. Then, the precise end-points
of the reversals within each block are computed with a network flow algorithm.



Input

A B R A C A D A B R A

C A D R A A B A B R A

A B R A C A D A B R A

Output

C A D R A A B A B R A

Figure 9: Minimum Common String Partition

Further rearrangement distances. The transposition operation is to exchange
two consecutive substrings. In the String Transposition Distance problem one
asks whether one string can be transformed into another by at most d transpositions.
Similarly to the reversal case, String Transposition Distance is NP-hard even
if occ = 1 [43] or |Σ| = 2 [144]. A further variant of rearrangement operations
are prefix reversals and transpositions, where the first letter of the string must be
affected by the rearrangement. Motivated by applications in genomics one may
also take into account the orientation (or sign) of the elements of the string when
performing a reversal. Notably, the signed version of Sorting By Reversals is
solvable in polynomial time. However, for occ = 2 [144] the problem becomes
NP-hard. Moreover, Signed String Reversal Distance and Signed String Trans-
position Distance are NP-hard even for unary alphabet, that is, |Σ| = 1 [46]. The
above-mentioned fixed-parameter algorithm for the parameter block number b can
be extended (with different running times) to many other rearrangement distances,
including transposition distance, and signed and prefix variants of reversal distance
and transposition distance.

5.2 Minimum Common String Partition
The Minimum Common String Partition problem aims at splitting one input string
into few substrings which can be rearranged to obtain the other substring. Formally,
a common string partition of two strings s1 and s2 is a partition P of s1 into
s1 = s1

1 · s
2
1 · . . . · s

d−1
1 · sd

1 and of s2 into s2 = s1
2 · s

2
2 · . . . · s

d−1
2 · sd

2 such that there
exists a permutation M of {1, . . . , d} where each si

1 is the same string as sM(i)
2 ; see

Figure 9. Here, d represents the size of the partition, and the substrings s j
i are called

blocks. The problem, introduced independently by Chen et al. [51], Goldstein et al.
[87], and Swenson et al. [147] (who call it Sequence Cover) is defined as follows.

Minimum Common String Partition
Instance: Two strings s1 and s2 of length ` and an integer d.
Question: Is there a common string partition of s1, s2 of size at most d?

Similar to reversal distance, two strings have a common string partition only if they
are balanced, that is, each letter appears with the same frequency in both strings.



The problem can be seen as a relaxation of problems like Sorting By Transpo-
sitions, where one aims only at identifying conserved regions without building a
precise evolution scenario. In particular, the number of blocks is a good approxi-
mation of the actual transposition distance. Minimum Common String Partition
can also be seen as a way of creating a bijection between elements of each string.
This can be used to identify similar genes across different genomes [51].

Minimum Common String Partition is NP-hard even if |Σ| = 2 or if occ = 2 [87].
Damaschke [66] identified Minimum Common String Partition as a challenging
problem for parameterized algorithmics. He described a fixed-parameter algorithm
for the combined parameter block number d and repetition number r, defined
as the maximum power of any substring of s1 or s2. Herein, the power of a
string w is a number r such that there is a string u with w = ur. Minimum Common
String Partition can also be solved in O((2x)dd!`) time where x is the maximum
difference between a block size and the average block size `/d [112]. A further
fixed-parameter algorithm has running time O∗((occ)!d). This running time was
subsequently improved to O∗(occ2d) [44]. The main idea behind the improved
algorithm is as follows. Assume that some elements of both strings, called seeds,
are already matched across the two strings. Draw a graph over the set of elements
of both strings as follows. Add an edge between any pair of elements (one in each
string) which may be matched if they are in the same block as a seed. If the resulting
graph admits a perfect matching, then there exists a common string partition with
as many blocks as seeds. Otherwise, some connected component does not have
a perfect matching. A new seed can be found using one of the elements of this
component and an element with the same letter in the other sequence. The overall
number of options for this new seed is occ2. The running time bound follows from
the fact that at most d seeds need to be considered which bounds the depth of the
search tree.

Finally, Minimum Common String Partition is fixed-parameter tractable for
the parameter d [41]. The corresponding algorithm, however, has an impractical
running time of O∗(d21d2

). This algorithm uses the following framework, also
proposed by Damaschke [66]. First split the input strings into O(d) pieces. Then
guess which pieces are completely contained in a block. Continue recursively on
the remaining pieces, until all blocks have been discovered. The main technical
difficulty is to reduce the size of the remaining pieces in order to find at least one
new block in each splitting round.

Variants. A signed variant where each element is given a sign (+ or −) and a
block of s1 may be matched either to an identical block in s2, or to its reverse
(where both the order and the signs of the elements are inverted) has also been
considered [51]. To deal with unbalanced strings, the following model has been



proposed [44]: some elements may be deleted from each input string, but only
between two consecutive blocks and only as few as necessary so that the resulting
strings are balanced (that is, the same letter may not be deleted from both strings).
An efficient algorithm that solves both of these extensions would be desirable.
Towards this goal, one could first address the following problem.

Challenge 16. Is Signed Minimum Common String Partition fixed-parameter
tractable for the parameter d?

A generalization of Minimum Common String Partition, where blocks are
allowed to have a small number of mismatches, and may additionally not partition
exactly the input strings is studied by Lopresti and Tomkins [123] under the name
Block edit distance. Most variants of Block edit distance are NP-hard; some
interesting special cases can be solved in polynomial-time. Gu et al. [96] consider
the one-sided Minimum Common String Partition problem, termed Exact Block
Cover: Here one sequence is already partitioned into d blocks and the task is to
partition the other sequence accordingly. Exact Block Cover is NP-complete even
with binary alphabet, but polynomial-time solvable when occ ≤ 3. Further, it can
be solved in O∗(2d) time.

5.3 Other Distances

The following string distances are particularly complex. They have been the subject
of very little or no studies in terms of fixed-parameter tractability. In the first of
these distances, the task is to find common subsequences of input strings which are
permutations that are close with respect to some distance measure on permutations.

Exemplar δ Distance (where δ is a given distance function over permuta-
tions)
Instance: Two strings s1 and s2 over an alphabet Σ and an integer d.
Question: Are there p-sequences s′1, s

′
2 of length |Σ| such that s′1 is a

subsequence of s1, s′s is a subsequence of s2, and δ(s′1, s
′
2) ≤ d?

For each distance function δ, we obtain a different problem. When d = 0, these
problems coincide, thus leading to the 0-Exemplar Distance problem, which has a
straightforward formulation.

0-Exemplar Distance
Instance: Two strings s1 and s2 over an alphabet Σ.
Question: Is there a p-sequence s of length |Σ| which is a common subse-
quence of s1 and s2?



Input

A B R A C A D A B R A
A C D A D B A C A B A

Output
d = 3

A B R A C A D A B R A

A C D A D B A C A B A

Figure 10: Maximum Strip Recovery

0-Exemplar Distance is NP-hard [113] even if occ = 2. This implies NP-
hardness of Exemplar δ Distance for all distance functions δ. Furthermore, for
many distance functions, including Hamming distance and breakpoint distance, NP-
hardness can be shown even if one of the two input strings is a permutation [13, 40].

The last problem we consider, Maximal Strip Recovery, aims at grouping
elements of each string into nonoverlapping strips [153]. Here, a strip is a common
subsequence of length at least 2; see Figure 10. In the proposed application, “single”
elements which cannot be attached to any strip are considered as noise which can be
deleted. The number d of such elements gives a measure of dissimilarity between
the two input strings.

Maximal Strip Recovery
Instance: Two strings s1, s2 of length ` and an integer d.
Question: Are there q strings (wi)1≤i≤q, each of length at least 2, and a
permutation σ of {1, . . . , q} such that: w1 · . . . · wq is a subsequence of s1,
wσ(1) · . . . · wσ(q) is a subsequence of s2, and

∑q
i=1 |wi| ≥ ` − d?

Maximal Strip Recovery is NP-hard, even if occ = 1 [53] or if we force the strips
wi to actually be substrings instead of subsequences [45]. The problem restricted to
permutations is fixed-parameter tractable for d [42, 111], the current best running
time being O∗(2.36d) [42]. It is unclear whether this result extends to strings.

Challenge 17. Is Maximal Strip Recovery fixed-parameter tractable for the pa-
rameter d?

6 Miscellaneous

In this section, we point to some further NP-hard string problems which do not fit
into the above classification but nevertheless yield interesting research questions.



String problems with variables. The NP-hard StringMorphism problem is to
generate from a source string s1 over alphabet Σ1 a target string s2 over an alpha-
bet Σ2 by uniformly replacing letters in Σ1, called variables, by strings from Σ∗2.
The task is to decide whether such a replacement exists. String Morphism is
NP-hard even for very restricted inputs [77]. Fernau et al. [78] consider different
parameters such as |Σ1|, |Σ2|, the maximum length ω of the strings substituted for
the variables in Σ1, and the maximum number occ1 of occurrences of a letter in s1.
For a wide range of combined parameters, for example for the combined parame-
ter (|Σ1|, |Σ2|, occ1), the problem becomes W[1]-hard; a fixed-parameter algorithm
exists for example for the combined parameter (|Σ1|, ω) [78]. StringMorphism is a
special case of the problem of deciding whether a word equation [143] is solvable;
further investigations could thus address this more general problem.

Collision-aware string partitioning. This new family of string problems is
motivated by applications in biotechnology [62]. Informally, these problems are
defined as follows: partition a string into substrings such that no two substrings
of the partition are similar. For example, one may demand that all substrings
of the partition are unequal or that no substring of the partition is a prefix of
another substring. All of the considered problems remain hard even for binary
strings [61, 62]. The parameterized complexity of the problems is open.

Local search for hard string problems. A common heuristic for hard optimiza-
tion problems is local search. This approach works as follows. Each problem is
equipped with a set of feasible solutions and each solution has an objective value.
Start with some some solution. Then, check whether there is a better solution
that is in a suitably defined neighborhood of the current solution. If yes, then
continue the process with this solution. Otherwise, output the current, locally
optimal solution. For the four string problems Closest String, Longest Common
Subsequence, Shortest Common Supersequence, and Shortest Common Super-
string the set of feasible solutions are strings on the input alphabet Σ. One possible
neighborhood of a string s is the set of strings with Hamming distance at most d.
This neighborhood has size |s|O(d). Thus, an interesting question is whether this
neighborhood can be efficiently searched, for example in f (d) · |s|O(1) time. For all
four problems it is W[1]-hard to decide for a given solution string whether there is
a better solution string within Hamming distance d [101]. Moreover, if the ETH is
true, then for all problems except Shortest Common Superstring it is impossible to
find an algorithm with running time `o(d) [101]. Despite this initial set of negative
results, local search should still be a worthwhile research direction in the realm
of string problems. The following challenge for Shortest Common Superstring
demonstrates how diverse the questions in this area can be. Recall that Shortest



Common Superstring may be reduced to finding an optimal tour in a TSP instance.
Thus, the set of feasible solutions can be also seen as a permutation of the set of
input strings. Now the neighborhood of a solution is defined by a suitable distance
between permutations, for example swap distance which counts the number of
pairwise exchanges of (not necessarily adjacent) elements needed to transform one
permutation into the other.

Challenge 18. Is the following problem fixed-parameter tractable with respect
to d? Given a set of k strings {s1, . . . , sk} and a permutation π of {s1, . . . , sk} such
that the superstring corresponding to π has length m, is there a permutation π′ of
{s1, . . . , sk} such that the superstring corresponding to π′ has length m′ < m and
the swap distance between π and π′ is at most d?

To answer the challenge it might be useful to exploit known results on the
parameterized complexity of local search variants of TSP [100, 129].

7 Outlook
NP-hard string problems offer a rich working area for multivariate algorithmics
research. In particular, compared to graph-theoretic problems there are several
issues that so far have been widely neglected:

• Kernelization issues [98, 117] including topics such as Turing kerneliza-
tion [117] or partial kernelization [20].

• Parameter hierarchies [116] for gaining an even more refined view of param-
eterized complexity. To identify new nontrivial parameters and parameter
relationships, one might draw from the rich set of results on combinatorics
on words [64].

• Algorithm engineering and empirical validation [106] of fixed-parameter
string algorithms.

• Parameterized approximation algorithms [128] for string problems.

• Distance to triviality [99] and width-based parameterizations (such as treewidth)
are very successful in algorithmic graph theory—are there analogous types
of parameterizations for string problems? A first step in this direction was
undertaken by Reidenbach and Schmid [145] who study a width-based
parameterization for the NP-complete membership problem for pattern lan-
guages.



Finally, we clearly did not cover all relevant research on multivariate algorith-
mics for (unweighted) string problems. In particular, certain types of “annotated”
and more general problems such as arc-annotated string problems [4, 24, 27] as
motivated by applications in analyzing RNA sequences have been completely
omitted.
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