René Van Bevern

Robert Bredereck

Laurent Bulteau
email: l.bulteau@campus.tu-berlin.de

Jiehua Chen

Vincent Froese
email: vincent.froese@tu-berlin.de

Rolf Niedermeier

Gerhard J Woeginger

Star Partitions of Perfect Graphs

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

We study the computational complexity (tractable versus intractable cases) of the following basic graph problem.

Star Partition

Input: An undirected n-vertex graph G = (V, E) and an integer s ∈ N. Question: Can the vertex set V be partitioned into k := n/(s + 1) disjoint subsets V 1 , V 2 , . . . , V k , such that each subgraph G[V i] contains an s-star (a K 1,s)?

Two prominent special cases of Star Partition are the case s = 1 (finding a perfect matching) and the case s = 2 (finding a partition into connected triples). Perfect matchings (s = 1), of course, can be found in polynomial time. Partitions into connected triples (the case s = 2), however, are hard to find; this problem, denoted P 3 -Partition, was proven to be NP-complete by Kirkpatrick and Hell [START_REF] Kirkpatrick | On the complexity of general graph factor problems[END_REF].

Our goal in this paper is to achieve a better understanding of star partitions of certain classes of perfect graphs. We provide a fairly complete classification in terms of polynomial-time solvability versus NP-completeness on the most prominent subclasses of perfect graphs, leaving a few potentially challenging cases open; see Figure 1 for an overview of our results. bipartite [START_REF] Chalopin | Packing bipartite graphs with covers of complete bipartite graphs[END_REF] chordal bipartite bipartite permutation subcubic planar bipartite [START_REF] Ma | Weakly cooperative guards in grids[END_REF][START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF] subcubic grid series-parallel [START_REF] Takamizawa | Linear-time computability of combinatorial problems on series-parallel graphs[END_REF] tree However, on split graphs, Star Partition is polynomial-time solvable for s ≤ 2, while it is NP-complete for s ≥ 3. P 3 -Partition is solvable on interval graphs in quasilinear time. We are not aware of any result for permutation graphs, chordal bipartite graphs or interval graphs when s ≥ 3.

Motivation. The literature in algorithmic graph theory is full of packing and partitioning problems. From a more applied point of view, P 3 -Packing and P 3 -Partition find applications in dividing distributed systems into subsystems [START_REF] Kosowski | Parallel processing subsystems with redundancy in a distributed environment[END_REF] as well as in the Test Cover problem arising in bioinformatics [START_REF] De Bontridder | Approximation algorithms for the test cover problem[END_REF]. In particular, the application in distributed systems explicitly motivates the consideration of very restricted (perfect) graph classes such as grid-like structures. Star Partition on grid graphs naturally occurs in political redistricting problems [START_REF] Van Bevern | Network-based dissolution[END_REF]. We show that Star Partition remains NP-complete on subcubic grid graphs.

Interval graphs are another famous class of perfect graphs. Here, Star Partition can be considered a team formation problem: Assume that we have a number of agents, each being active during a certain time interval. Our goal is to form teams, all of same size, such that each team contains at least one agent sharing time with every other team member. This specific team member becomes the team leader, since he or she can act as an information hub. Forming such teams is nothing else than solving Star Partition on interval graphs. We present efficient algorithms for Star Partition on unit interval graphs (that is, for the case when all agents are active for the same amount of time) and for P 3 -Partition on general interval graphs.

Previous work. Packing and partitioning problems are central problems in algorithmic graph theory with many applications and with close connections to matching theory [START_REF] Yuster | Combinatorial and computational aspects of graph packing and graph decomposition[END_REF]. In the case of packing, one wants to maximize the number of graph vertices that are "covered" by vertex-disjoint copies of some fixed pattern graph H. In the case of partitioning, one wants to cover all vertices in the graph. We focus on the partitioning problem, which is also called H-Factor in the literature. In this work, we always refer to it as H-Partition. As Kirkpatrick and Hell [START_REF] Kirkpatrick | On the complexity of general graph factor problems[END_REF] established the NP-completeness of H-Partition on general graphs for every connected pattern H with at least three vertices, one branch of research has turned to the investigation of classes of specially structured graphs. For instance, on the upside, H-Partition has been shown to be polynomial-time solvable on trees and series-parallel graphs [START_REF] Takamizawa | Linear-time computability of combinatorial problems on series-parallel graphs[END_REF] and on graphs of maximum degree two [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF]. On the downside, P k -Partition (for fixed k ≥ 3) remains NP-complete on planar bipartite graphs [START_REF] Dyer | On the complexity of partitioning graphs into connected subgraphs[END_REF]; this hardness result generalizes to H-Partition on planar graphs for any outerplanar pattern H with at least three vertices [START_REF] Berman | Generalized planar matching[END_REF]. For every s ≥ 2, Star Partition is NP-hard on bipartite graphs [START_REF] Chalopin | Packing bipartite graphs with covers of complete bipartite graphs[END_REF]. Partitioning into triangles, that is, K 3 -Partition, is polynomial-time solvable on chordal graphs [START_REF] Dahlhaus | Matching and multidimensional matching in chordal and strongly chordal graphs[END_REF] and linear-time solvable on graphs of maximum degree three [START_REF] Van Rooij | Partition into triangles on bounded degree graphs[END_REF].

Optimization versions of P k -Partition, called Min P k -Partition, have also received considerable interest in the literature. This version asks for a partition of a given graph into a minimum number of paths of length at most k. Clearly, all hardness results for P k -Partition carry over to the minimization version. If k is part of the input, then Min P k -Partition is hard for cographs [START_REF] Steiner | On the k-path partition problem in cographs[END_REF] and chordal bipartite graphs [START_REF] Steiner | On the k-path partition of graphs[END_REF]. In fact, Min P k -Partition is NP-hard even on convex graphs and trivially perfect graphs (also known as quasi-threshold graphs), and hence on interval and chordal graphs [START_REF] Asdre | NP-completeness results for some problems on subclasses of bipartite and chordal graphs[END_REF]. Min P k -Partition is solvable in polynomial time on trees [START_REF] Yan | k-path partitions in trees[END_REF], threshold graphs, cographs (for fixed k) [START_REF] Steiner | On the k-path partition problem in cographs[END_REF] and bipartite permutation graphs [START_REF] Steiner | On the k-path partition of graphs[END_REF].

Our contributions. So far, surprisingly little is known about the complexity of Star Partition for subclasses of perfect graphs. We provide a detailed picture of the complexity landscape of perfect graphs; see Figure 1 for an overview. Let us briefly summarize some of our results.

As a central result, we provide a quasilinear-time algorithm for P 3 -Partition, which is Star Partition with s = 2, on interval graphs; the complexity of Star Partition for s ≥ 3 remains open. Furthermore, we develop a polynomialtime algorithm for Star Partition on cographs. Most of our polynomial-time algorithms are simple to describe: they are based on dynamic programming or even on greedy approaches, and hence should work well in implementations. Their correctness proofs, however, are intricate.

On the boundary of NP-hardness, we strengthen a result of Ma lafiejski and Żyliński [START_REF] Ma | Weakly cooperative guards in grids[END_REF] and Monnot and Toulouse [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF] by showing that P 3 -Partition is NP-complete on grid graphs with maximum degree three. Note that in strong contrast to this, K 3 -Partition is linear-time solvable on graphs with maximum degree three [START_REF] Van Rooij | Partition into triangles on bounded degree graphs[END_REF]. Furthermore, we show P 3 -Partition to be NP-complete on chordal graphs, while K 3 -Partition is known to be polynomial-time solvable in this case [START_REF] Dahlhaus | Matching and multidimensional matching in chordal and strongly chordal graphs[END_REF]. We observe that P 3 -Partition is typically not easier than Star Partition for s ≥ 3. An exception to this rule is provided by the class of split graphs, where P 3 -Partition is polynomial-time solvable but Star Partition is NP-complete for any constant value s ≥ 3. Due to space constraints, most of our proofs are deferred to a full version [START_REF] Van Bevern | Star partitions of perfect graphs[END_REF].

Preliminaries. We assume basic familiarity with standard graph classes [START_REF] Brandstädt | Graph Classes: a Survey[END_REF][START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF]. Definitions of the graph classes are provided when first studied in this paper. We call the graph K 1,s an s-star.

For a graph G = (V, E), an s-star partition is a set of k := |V |/(s + 1) pairwise disjoint vertex subsets V 1 , V 2 , . . . , V k ⊆ V with 1≤i≤k V i = V such that each subgraph G[V i]
contains an s-star as a (not necessarily induced) subgraph. We refer to the vertex sets V i as stars, even though the correct description of a star would be arbitrary

K 1,s -subgraph of G[V i]. P 3 -

Interval graphs

In this section, we present algorithms that solve Star Partition on unit interval graphs in linear time and P 3 -Partition on interval graphs in quasilinear time.

An interval graph is a graph whose vertices one-to-one correspond to intervals on the real line such that there is an edge between two vertices if and only if their representing intervals intersect. In a unit interval graph, all representing intervals are open and have the same length.

Star Partition on unit interval graphs

The restricted structure of unit interval graphs allows us to solve Star Partition using a simple greedy approach: repeatedly select the s + 1 leftmost intervals to form an s-star and then delete them. If, at some point, the s + 1 leftmost intervals do not contain an s-star, it can be shown that the graph cannot be partitioned into s-stars. This algorithm yields the following result. While it might not come as a surprise that Star Partition can be solved efficiently on unit interval graphs using a greedy strategy, this is far from obvious for general interval graphs. The obstacle here is that two intervals arbitrarily far apart from each other may eventually be required to form a P 3 in the solution. Indeed, the greedy strategy we propose to overcome this obstacle is naive in the Input: An interval representation of an interval graph with pairwise distinct event points in {1, . . . , 2n}. Output: true if the graph allows for a P3-partition, otherwise false. 1 A0 ← empty token list ∅; 2 for t ← 1 to 2n do sense of allowing wrong choices that can be corrected later. Note that, while we can solve the more general Star Partition in polynomial time on subclasses of interval graphs like unit interval graphs and trivially perfect graphs (see Figure 1), we are not aware of a polynomial-time algorithm for Star Partition with s ≥ 3 on interval graphs.

3 if t = start(x) then At ← At-1 ⊕ (x, x); 4 if t = end(x) then 5 if x / ∈ At-1 then At ← At-1;
Overview of the algorithm. The algorithm is based on the following analysis of a P 3 -partition of an interval graph. Each P 3 contains a center and two leaves connected to the center via edges called links. We associate with each interval two so-called tokens. We require that the link between a leaf and a center consumes both of the leaf's tokens (such that a leaf can have only one link) and one token of the center (which can thus be linked to two leaves).

The algorithm examines the event points (start and end points of intervals) of an interval representation in increasing order. We consider that a link {x, y} consumes the tokens of x and y as soon as one of the two intervals ends. Intuitively, a graph is a no-instance if, at some point, an interval with one or two remaining tokens ends, but there are not enough tokens in other intervals to create a link. It is a yes-instance if the number of tokens is always sufficient.

The algorithm works according to the following two rules: when an interval starts, its two tokens are added to a list; when an interval with remaining tokens ends, then three tokens are deleted from this list. Tokens are only picked from the earliest-ending intervals (this choice may not directly translate into a "sane" solution, with each link using tokens from only two intervals, but it turns out not to be problem). The algorithm is sketched in Algorithm 1. Figure 2 shows an example instance and the list of tokens maintained by the algorithm. Note that a token of an interval x is simply represented by a copy of interval x itself. We now introduce the necessary formal definitions.

Definitions. We consider a fixed interval graph G = (V, E). We assume that any vertex u ∈ V represents a right-open interval u = [start(u), end(u)[with integer endpoints start(u) < end(u). Moreover, without loss of generality, each position in (1, . . . , 2n) corresponds to exactly one event. Let P be a P 3 -partition and P = {x, y, z} ∈ P with end(x) < end(y) < end(z), we write rank P (x) = 1, rank P (y) = 2, and rank P (z) = 3 (we omit the subscript when there is no ambiuity). Moreover, we call the element among {y, z} having the earliest start point the center of P . The other two elements of P are called leaves. Note that the center of P intersects both leaves.

A token list Q is a list of intervals (q 1 , . . . , q k) sorted in decreasing order of their end points (end(q i) ≥ end(q j) for 1 ≤ i ≤ j ≤ k). We consider the list to be represented vertically, with the latest-ending interval on top (to distinguish from the left-to-right sequence of event points). We write Q for the length of Q, ∅ for the empty token list, and x ∈ Q if interval x appears in Q. We now define insertion, deletion and comparison of token lists: Q ⊕ (x 1 , . . . , x l) is the token list obtained from Q by inserting intervals x 1 . . . , x l so that the list remains sorted. For x ∈ Q, the list Q x is obtained by deleting one copy of x from Q (otherwise, Q x = Q); and Q (x 1 , . . . , x l) = Q x 1 . . . x l . We write (q 1 , . . . , q k) (q 1 , . . . , q k) if k ≤ k and ∀i ∈ {1, . . . k}, end(q i) ≤ end(q i).

Let P be a P 3 -partition. We define tokens(P) as a tuple of 2n + 1 token lists (T 0 , T 1 , . . . , T 2n) such that T 0 := ∅ and for t > 0, if t = start(x), then T t := T t-1 ⊕ (x, x), if t = end(x), then let P := {x, y, z} be the P 3 in P containing x and

• if rank(x) = 1, then T t := T t-1 (x, x, c) where c is the center of P ,

• if rank(x) = 2, then T t := T t-1 (x, x, y, y, z, z), • if rank(x) = 3, then T t := T t-1 .
Note that in Figure 2, each token list T t for P is equal to the respective A t , except for T 6 = (d, d) and T 7 = (e, e, d, d).

The following lemmas state that, on the one hand, if there is a P 3 -partition, then each token list created by Algorithm 1 is comparable with the corresponding T t , hence it always contain enough tokens to create the next list, up to A 2n , and answer "true" in the end. On the other hand, if the algorithm returns "true", then it is indeed possible to construct a P 3 -partition using (indirectly) the triples of intervals removed from the token list to create the links.

Lemma 1. If an interval graph G has a P 3 -partition P, then for all 0 ≤ t ≤ 2n, Algorithm 1 defines set A t with T t A t and T t -A t ≡ 0 (mod 3), where tokens(P) = (T 0 , T 1 , . . . , T 2n).

Lemma 2. Let G be an interval graph such that Algorithm 1 returns true on G. Then there exists a P 3 -partition of G.

The above lemmas allow us to conclude the correctness of Algorithm 1.

Theorem 2. P 3 -Partition on interval graphs is solvable in O(n log n+m) time.

Grid graphs

In this section, we show that P 3 -Partition is NP-hard even on grid graphs with maximum degree three, thus strengthening a result of Ma lafiejski and Żyliński [START_REF] Ma | Weakly cooperative guards in grids[END_REF] and Monnot and Toulouse [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF], who showed that P 3 -Partition is NP-complete on planar bipartite graphs of maximum degree three.

A grid graph is a graph with a vertex set V ⊆ N × N and edge set {{u,

v} | u = (i, j) ∈ V, v = (k,) ∈ V, |i -k| + |j -| = 1}.
That is, its vertices can be given integer coordinates such that every pair of vertices is joined by an edge if and only if their coordinates differ by 1 in exactly one dimension.

To show NP-hardness of P 3 -Partition on grid graphs, we exploit the above mentioned result of Ma lafiejski and Żyliński [START_REF] Ma | Weakly cooperative guards in grids[END_REF] and Monnot and Toulouse [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF] and find a suitable embedding of planar graphs into grid graphs while maintaining the property of a graph having a P 3 -partition. This allows us to prove Theorem 3. P 3 -Partition is NP-hard on grid graphs of maximum degree three.

The following observation helps us embed planar graphs into grid graphs, as it allows us to replace edges by paths on 3i new vertices for any i ∈ N.

Observation 1. Let G be a graph, e = {v, w} be an edge of G, and G be the graph obtained by removing the edge e from G and by connecting v and w using a path on three new vertices. Then, G has a P 3 -partition if and only if G has.

We can now prove Theorem 3 by showing that G has a P 3 -partition if and only G has, where G is the graph obtained from a planar graph G of maximum degree three using the following construction.

Construction 1. Let G be a planar graph of maximum degree three. Using a polynomial-time algorithm of Rosenstiehl and Tarjan [START_REF] Rosenstiehl | Rectilinear planar layouts and bipolar orientations of planar graphs[END_REF] we obtain a crossing-free rectilinear embedding of G into the plane such that:

1. Each vertex is represented by a horizontal line. Fig. 3: Various embeddings of a planar graph. In the rectilinear embedding in Figure 3b, horizontal lines represent vertices of G, while vertical lines represent its edges. In Figure 3c, every intersection of a line with a grid point is a vertex, but only the vertices corresponding to vertices in Figure 3a are shown.

Figure 3b illustrates such an embedding. Without loss of generality, every end point of a line lies on another line. Now, in polynomial time, we obtain a grid graph G from the rectilinear embedding, as follows:

1. We multiply all coordinates by six (see Figure 3c). 2. Every point in the grid touched by a horizontal line that represents a vertex v of G becomes a vertex in G . The horizontal path resulting from this horizontal line we denote by P (v). 3. For each vertical line, all its grid points become vertices in G , except for one point that we bypass by adding a bend of five vertices to the vertical line (see Figure 3c). 4. With each vertex v in G, we associate the vertex v of G that lies on P (v) and has degree three. There is at most one such vertex. If no such vertex exists, then we arbitrarily associate with v one of the end points of P (v).

Bipartite permutation graphs

In this section, we show that Star Partition can be solved in O(n 2) time on bipartite permutation graphs. The class of bipartite permutation graphs can be characterized using strong orderings of the vertices of a bipartite graph:

Definition 1 (Spinrad et al. [START_REF] Spinrad | Bipartite permutation graphs[END_REF]). A strong ordering ≺ of the vertices of a bipartite graph G = (U, W, E) is the union of a total order ≺ U of U and a total order ≺ W of W , such that for all {u, w}, {u , w } in E, where u, u ∈ U and w, w ∈ W , u ≺ u and w ≺ w implies that {u, w } and {u , w} are in E.

A graph is a bipartite permutation graph if and only if it is bipartite and there is a strong ordering of its vertices, which can be computed in linear time [START_REF] Spinrad | Bipartite permutation graphs[END_REF].

Our key to obtain star partitions in bipartite permutation graphs is a structural result that only a certain "normal form" of star partitions has to be searched for. This paves the way to developing a dynamic programming solution exploiting these normal forms. We sketch these structural properties of an s-star partition of bipartite permutation graphs in the following. Definition 2. Let (G, s) be a Star Partition instance, where G = (U, W, E) is a bipartite permutation graph, ≺ is a strong ordering of the vertices, and is the reflexive closure of ≺. Assume that G admits an s-star partition P.

Let X ∈ P form a star. By lm(X) (resp. rm(X)), we denote the leftmost (that is, the smallest), resp. the rightmost (that is, the largest) leaf of X with respect to ≺. The scope of star X is the set scope(X) := {v | x l v x r } containing all vertices from x l = lm(X) to x r = rm(X). The width of star X is the cardinality of its scope, that is, width(X) := | scope(X)| = r -l + 1. The width of P, width(P), is the sum of width(X) over all X ∈ P.

Let e = {u, w} and e = {u , w } be two edges. We say that e and e cross each other if either (u ≺ u and w ≺ w) or (u ≺ u and w ≺ w). The edgecrossing number of two stars X, Y ∈ P is the number of pairs of crossing edges e, e where e is an edge of X and e is an edge of Y . The edge-crossing number #edge-crossings(P) of P is the sum of the edge-crossing numbers over all pairs of stars X = Y ∈ P.

We identify the possible configurations of two stars, depending on the relative positions of their leaves and centers, see Figure 4. Among those, the following two configurations are favorable: Given X, Y ∈ P, we say that X and Y are non-crossing if their edge-crossing number is zero; interleaving if center(X) ∈ scope(Y) and center(Y) ∈ scope(X);

We say that P is good if any two stars X = Y ∈ P are either non-crossing or interleaving. We define the score of P as the tuple (width(P), #edge-crossings(P)). We use the lexicographical order to compare scores. This definition allows us to show a normal form for star partitions in bipartite permutation graphs. Lemma 3. Any s-star partition of a bipartite permutation graph G with minimum score is a good s-star partition.

Corollary 1. Let P be an s-star partition of a bipartite permutation graph G with minimum score. Then, for every star X ∈ P, there is at most one Y ∈ P such that X and Y are interleaving, and for all Z ∈ P \ {X, Y }, X and Z are non-crossing.

We now informally describe a dynamic programming algorithm for deciding whether there is a good s-star partition. It builds up a solution following the strong ordering of the graph from left to right. A partial solution can be extended in three ways only: either a star is added with the center in U , or a star is added with the center in W , or two interleaving stars are added. The algorithm can thus compute, for any given number of centers in U and in W , whether it is possible to partition the leftmost vertices of U and W in one of the three ways above. This algorithm leads to the following result.

Further Results

This section briefly summarizes our hardness and tractability results for cographs, split graphs, and chordal graphs.

Cographs. A cograph is a graph that does not contain a P 4 (path on four vertices) as an induced subgraph. Cographs allow for a so-called cotree to be computed in linear time [START_REF] Corneil | A linear recognition algorithm for cographs[END_REF]. Using a dynamic programming approach on the cotree representation of the cograph, we can solve Star Partition in polynomial time. More precisely, we solve P 3 -Partition on split graphs by reducing it to finding a restricted form of factor in an auxiliary graph; herein, a factor of a graph G is a spanning subgraph of G (that is, a subgraph containing all vertices). This graph factor problem then can be solved in polynomial time [START_REF] Cornuéjols | General factors of graphs[END_REF].

In contrast, we can show that Star Partition is NP-hard for each s ≥ 3 by a reduction from Exact Cover by s-Sets. Theorem 6. Star Partition on split graphs is solvable in O(m 2.5) time for s = 2, but is NP-hard for each s ≥ 3.

Chordal graphs. A graph is chordal if every induced subgraph containing a cycle of length at least four also contains a triangle, that is, a cycle of length three. We show that P 3 -Partition restricted to chordal graphs is NP-hard by reduction from 3-Dimensional Matching.

Theorem 7. P 3 -Partition restricted to chordal graphs is NP-hard.

For the reduction, we use the construction that Dyer and Frieze [START_REF] Dyer | On the complexity of partitioning graphs into connected subgraphs[END_REF] used to show that P 3 -Partition is NP-complete and observe that we can triangulate the resulting graph while maintaining the correctness of the reduction.

Conclusion

We close with three open questions for future research. What is the complexity of Star Partition for s ≥ 2 on permutation graphs? What is the complexity of Star Partition for s ≥ 3 on interval graphs? Are there other important graph classes (not necessarily perfect ones) where Star Partition is polynomial-time solvable?

Fig. 1 :

 1 Fig. 1: Complexity classification of Star Partition. Bold borders indicate results of this paper. An arrow from a class A to a class B indicates that A contains B. In most classes, NP-completeness results hold for s = 2 (that is, for P 3 -Partition).However, on split graphs, Star Partition is polynomial-time solvable for s ≤ 2, while it is NP-complete for s ≥ 3. P 3 -Partition is solvable on interval graphs in quasilinear time. We are not aware of any result for permutation graphs, chordal bipartite graphs or interval graphs when s ≥ 3.

 Partition is the special case of Star Partition with s = 2). Without loss of generality, we assume throughout the paper that the input graph G is connected (otherwise, we can solve the partition problem separately for each connected component of G). Throughout the paper, we denote by n := |V | the number of vertices and by m := |E| the number of edges in a graph G = (V, E).

Theorem 1 .

 1 Star Partition is O(n+m) time solvable on unit interval graphs. P 3 -Partition on interval graphs

6 7 else 8 (

 78 else if At-1 < 3 then return false ; x, y, z) ← lowest three elements of At-1 (intervals ending first); 9 At ← At-1 (x, y, z); 10 return true ;

Fig. 2 :

 2 Fig. 2: Left: Interval graph with six vertices and a P 3 -partition P (bold). Right: Interval representation of this graph and successive token lists A 0 , . . . , A 12 computed by Algorithm 1 (additions and deletions are marked with ⊕ and).

2 .

 2 Each edge is represented by a vertical line. 3. All lines end at integer coordinates with integers in O(n). 4. If two vertices are joined by an edge, then the vertical line representing this edge ends on the horizontal lines representing the vertices. The grid graph G obtained from G.

Fig. 4 :

 4 Fig. 4: Possible interactions between two stars of a partition. Centers are marked with circled nodes. The four possible configurations of star centers and scopes that are neither non-crossing nor interleaving are labeled I to IV. By Lemma 3, any partition containing one of the configurations I to IV can be edited to reduce the score (see the thick light-color edges).

Theorem 4 .

 4 Star Partition can be solved in O(n 2) time on bipartite permutation graphs.

Theorem 5 .

 5 Star Partition can be solved in O(kn 2) time on cographs. Split graphs. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. Remarkably, split graphs are the only graph class where we could show that P 3 -Partition is solvable in polynomial time, but Star Partition for k ≥ 3 is NP-hard.

Acknowledgments. We are indebted to three anonymous ICALP reviewers whose constructive feedback helped to significantly improve our presentation.

was supported by the DFG, project DAPA (NI 369/12), Robert Bredereck by the DFG, project PAWS (NI 369/10), Vincent Froese by the DFG, project DAMM (NI 369/13), Laurent Bulteau and Gerhard J. Woeginger by the Alexander von Humboldt Foundation, Bonn, Germany, and Jiehua Chen by the Studienstiftung des Deutschen Volkes.