
HAL Id: hal-01260593
https://hal.science/hal-01260593

Submitted on 25 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Star Partitions of Perfect Graphs
René van Bevern, Robert Bredereck, Laurent Bulteau, Jiehua Chen, Vincent

Froese, Rolf Niedermeier, Gerhard J. Woeginger

To cite this version:
René van Bevern, Robert Bredereck, Laurent Bulteau, Jiehua Chen, Vincent Froese, et al.. Star
Partitions of Perfect Graphs. ICALP, 2014, Copenhague, Denmark. �10.1007/978-3-662-43948-7_15�.
�hal-01260593�

https://hal.science/hal-01260593
https://hal.archives-ouvertes.fr

Star Partitions of Perfect Graphs?

René van Bevern1, Robert Bredereck1, Laurent Bulteau1, Jiehua Chen1,
Vincent Froese1, Rolf Niedermeier1, and Gerhard J. Woeginger2

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany,
{rene.vanbevern, robert.bredereck, jiehua.chen,

vincent.froese}@tu-berlin.de, l.bulteau@campus.tu-berlin.de
2 Department of Mathematics and Computer Science, TU Eindhoven,

The Netherlands, gwoegi@win.tue.nl

Abstract. The partition of graphs into nice subgraphs is a central
algorithmic problem with strong ties to matching theory. We study the
partitioning of undirected graphs into stars, a problem known to be
NP-complete even for the case of stars on three vertices. We perform a
thorough computational complexity study of the problem on subclasses
of perfect graphs and identify several polynomial-time solvable cases, for
example, on interval graphs and bipartite permutation graphs, and also
NP-hard cases, for example, on grid graphs and chordal graphs.

1 Introduction

We study the computational complexity (tractable versus intractable cases) of
the following basic graph problem.

Star Partition
Input: An undirected n-vertex graph G = (V,E) and an integer s ∈ N.
Question: Can the vertex set V be partitioned into k := dn/(s+ 1)e disjoint sub-

sets V1, V2, . . . , Vk, such that each subgraph G[Vi] contains an s-star (a K1,s)?

Two prominent special cases of Star Partition are the case s = 1 (finding a
perfect matching) and the case s = 2 (finding a partition into connected triples).
Perfect matchings (s = 1), of course, can be found in polynomial time. Partitions
into connected triples (the case s = 2), however, are hard to find; this problem, de-
noted P3-Partition, was proven to be NP-complete by Kirkpatrick and Hell [13].

Our goal in this paper is to achieve a better understanding of star partitions
of certain classes of perfect graphs. We provide a fairly complete classification
in terms of polynomial-time solvability versus NP-completeness on the most
prominent subclasses of perfect graphs, leaving a few potentially challenging
cases open; see Figure 1 for an overview of our results.

? René van Bevern was supported by the DFG, project DAPA (NI 369/12), Robert
Bredereck by the DFG, project PAWS (NI 369/10), Vincent Froese by the DFG,
project DAMM (NI 369/13), Laurent Bulteau and Gerhard J. Woeginger by the
Alexander von Humboldt Foundation, Bonn, Germany, and Jiehua Chen by the
Studienstiftung des Deutschen Volkes.

NP-complete

P

perfect

chordal

splitinterval

unit
interval

comparability

permutation

cograph

trivially
perfect

threshold
(P3 known [23])

bipartite [6]

chordal
bipartite

bipartite
permutation

subcubic planar
bipartite [15, 16]

subcubic
grid

series-parallel [22]

tree

Fig. 1: Complexity classification of Star Partition. Bold borders indicate results
of this paper. An arrow from a class A to a class B indicates that A contains B. In
most classes, NP-completeness results hold for s = 2 (that is, for P3-Partition).
However, on split graphs, Star Partition is polynomial-time solvable for s ≤ 2,
while it is NP-complete for s ≥ 3. P3-Partition is solvable on interval graphs in
quasilinear time. We are not aware of any result for permutation graphs, chordal
bipartite graphs or interval graphs when s ≥ 3.

Motivation. The literature in algorithmic graph theory is full of packing and
partitioning problems. From a more applied point of view, P3-Packing and P3-
Partition find applications in dividing distributed systems into subsystems [14]
as well as in the Test Cover problem arising in bioinformatics [10]. In particular,
the application in distributed systems explicitly motivates the consideration
of very restricted (perfect) graph classes such as grid-like structures. Star
Partition on grid graphs naturally occurs in political redistricting problems [4].
We show that Star Partition remains NP-complete on subcubic grid graphs.

Interval graphs are another famous class of perfect graphs. Here, Star
Partition can be considered a team formation problem: Assume that we have
a number of agents, each being active during a certain time interval. Our goal
is to form teams, all of same size, such that each team contains at least one
agent sharing time with every other team member. This specific team member
becomes the team leader, since he or she can act as an information hub. Forming
such teams is nothing else than solving Star Partition on interval graphs. We
present efficient algorithms for Star Partition on unit interval graphs (that
is, for the case when all agents are active for the same amount of time) and for
P3-Partition on general interval graphs.

2

Previous work. Packing and partitioning problems are central problems in al-
gorithmic graph theory with many applications and with close connections to
matching theory [25]. In the case of packing, one wants to maximize the number
of graph vertices that are “covered” by vertex-disjoint copies of some fixed pattern
graph H. In the case of partitioning, one wants to cover all vertices in the graph.
We focus on the partitioning problem, which is also called H-Factor in the
literature. In this work, we always refer to it as H-Partition. As Kirkpatrick
and Hell [13] established the NP-completeness of H-Partition on general graphs
for every connected pattern H with at least three vertices, one branch of research
has turned to the investigation of classes of specially structured graphs. For
instance, on the upside, H-Partition has been shown to be polynomial-time
solvable on trees and series-parallel graphs [22] and on graphs of maximum degree
two [16]. On the downside, Pk-Partition (for fixed k ≥ 3) remains NP-complete
on planar bipartite graphs [11]; this hardness result generalizes to H-Partition
on planar graphs for any outerplanar pattern H with at least three vertices [2].
For every s ≥ 2, Star Partition is NP-hard on bipartite graphs [6]. Partitioning
into triangles, that is, K3-Partition, is polynomial-time solvable on chordal
graphs [9] and linear-time solvable on graphs of maximum degree three [17].

Optimization versions of Pk-Partition, called Min Pk-Partition, have also
received considerable interest in the literature. This version asks for a partition
of a given graph into a minimum number of paths of length at most k. Clearly,
all hardness results for Pk-Partition carry over to the minimization version.
If k is part of the input, then Min Pk-Partition is hard for cographs [20] and
chordal bipartite graphs [21]. In fact, Min Pk-Partition is NP-hard even on
convex graphs and trivially perfect graphs (also known as quasi-threshold graphs),
and hence on interval and chordal graphs [1]. Min Pk-Partition is solvable in
polynomial time on trees [24], threshold graphs, cographs (for fixed k) [20] and
bipartite permutation graphs [21].

Our contributions. So far, surprisingly little is known about the complexity of
Star Partition for subclasses of perfect graphs. We provide a detailed picture
of the complexity landscape of perfect graphs; see Figure 1 for an overview. Let
us briefly summarize some of our results.

As a central result, we provide a quasilinear-time algorithm for P3-Partition,
which is Star Partition with s = 2, on interval graphs; the complexity of
Star Partition for s ≥ 3 remains open. Furthermore, we develop a polynomial-
time algorithm for Star Partition on cographs. Most of our polynomial-time
algorithms are simple to describe: they are based on dynamic programming or
even on greedy approaches, and hence should work well in implementations. Their
correctness proofs, however, are intricate.

On the boundary of NP-hardness, we strengthen a result of Ma lafiejski and
Żyliński [15] and Monnot and Toulouse [16] by showing that P3-Partition is
NP-complete on grid graphs with maximum degree three. Note that in strong
contrast to this, K3-Partition is linear-time solvable on graphs with maximum
degree three [17]. Furthermore, we show P3-Partition to be NP-complete on
chordal graphs, while K3-Partition is known to be polynomial-time solvable in

3

this case [9]. We observe that P3-Partition is typically not easier than Star
Partition for s ≥ 3. An exception to this rule is provided by the class of split
graphs, where P3-Partition is polynomial-time solvable but Star Partition
is NP-complete for any constant value s ≥ 3. Due to space constraints, most of
our proofs are deferred to a full version [3].

Preliminaries. We assume basic familiarity with standard graph classes [5, 12].
Definitions of the graph classes are provided when first studied in this paper.
We call the graph K1,s an s-star. For a graph G = (V,E), an s-star partition
is a set of k := |V |/(s + 1) pairwise disjoint vertex subsets V1, V2, . . . , Vk ⊆ V
with

⋃
1≤i≤k Vi = V such that each subgraph G[Vi] contains an s-star as a (not

necessarily induced) subgraph. We refer to the vertex sets Vi as stars, even
though the correct description of a star would be arbitrary K1,s-subgraph of G[Vi].
P3-Partition is the special case of Star Partition with s = 2). Without
loss of generality, we assume throughout the paper that the input graph G is
connected (otherwise, we can solve the partition problem separately for each
connected component of G). Throughout the paper, we denote by n := |V | the
number of vertices and by m := |E| the number of edges in a graph G = (V,E).

2 Interval graphs

In this section, we present algorithms that solve Star Partition on unit interval
graphs in linear time and P3-Partition on interval graphs in quasilinear time.

An interval graph is a graph whose vertices one-to-one correspond to intervals
on the real line such that there is an edge between two vertices if and only if
their representing intervals intersect. In a unit interval graph, all representing
intervals are open and have the same length.

Star Partition on unit interval graphs

The restricted structure of unit interval graphs allows us to solve Star Partition
using a simple greedy approach: repeatedly select the s + 1 leftmost intervals
to form an s-star and then delete them. If, at some point, the s + 1 leftmost
intervals do not contain an s-star, it can be shown that the graph cannot be
partitioned into s-stars. This algorithm yields the following result.

Theorem 1. Star Partition is O(n+m) time solvable on unit interval graphs.

P3-Partition on interval graphs

While it might not come as a surprise that Star Partition can be solved
efficiently on unit interval graphs using a greedy strategy, this is far from obvious
for general interval graphs. The obstacle here is that two intervals arbitrarily far
apart from each other may eventually be required to form a P3 in the solution.
Indeed, the greedy strategy we propose to overcome this obstacle is naive in the

4

Algorithm 1: P3-partition of an interval graph

Input: An interval representation of an interval graph with pairwise distinct
event points in {1, . . . , 2n}.

Output: true if the graph allows for a P3-partition, otherwise false.
1 A0 ← empty token list ∅;
2 for t← 1 to 2n do
3 if t = start(x) then At ← At−1 ⊕ (x, x);
4 if t = end(x) then
5 if x /∈ At−1 then At ← At−1;
6 else if ‖At−1‖ < 3 then return false ;
7 else
8 (x, y, z)← lowest three elements of At−1 (intervals ending first);
9 At ← At−1 	 (x, y, z);

10 return true ;

sense of allowing wrong choices that can be corrected later. Note that, while we
can solve the more general Star Partition in polynomial time on subclasses of
interval graphs like unit interval graphs and trivially perfect graphs (see Figure 1),
we are not aware of a polynomial-time algorithm for Star Partition with s ≥ 3
on interval graphs.

Overview of the algorithm. The algorithm is based on the following analysis of
a P3-partition of an interval graph. Each P3 contains a center and two leaves
connected to the center via edges called links. We associate with each interval two
so-called tokens. We require that the link between a leaf and a center consumes
both of the leaf’s tokens (such that a leaf can have only one link) and one token
of the center (which can thus be linked to two leaves).

The algorithm examines the event points (start and end points of intervals)
of an interval representation in increasing order. We consider that a link {x, y}
consumes the tokens of x and y as soon as one of the two intervals ends. Intuitively,
a graph is a no-instance if, at some point, an interval with one or two remaining
tokens ends, but there are not enough tokens in other intervals to create a link.
It is a yes-instance if the number of tokens is always sufficient.

The algorithm works according to the following two rules: when an interval
starts, its two tokens are added to a list; when an interval with remaining tokens
ends, then three tokens are deleted from this list. Tokens are only picked from
the earliest-ending intervals (this choice may not directly translate into a “sane”
solution, with each link using tokens from only two intervals, but it turns out
not to be problem). The algorithm is sketched in Algorithm 1. Figure 2 shows an
example instance and the list of tokens maintained by the algorithm. Note that
a token of an interval x is simply represented by a copy of interval x itself. We
now introduce the necessary formal definitions.

Definitions. We consider a fixed interval graph G = (V,E). We assume that any
vertex u ∈ V represents a right-open interval u = [start(u), end(u)[with integer
endpoints start(u) < end(u). Moreover, without loss of generality, each position
in (1, . . . , 2n) corresponds to exactly one event.

5

a

e

fb c

d

a

b c

d

e
f

A0

∅
A1

a
a⊕

A2

a
a
b
b

⊕

A3

a

	

A4

a
c
c⊕

A5

a
d
d
c
c

⊕

A6

a
d

	

A7

e
e
a
d

⊕
A8

e

	

A9

e
A10

f
f
e

⊕
A11

∅
	

A12

∅

Fig. 2: Left: Interval graph with six vertices and a P3-partition P (bold). Right:
Interval representation of this graph and successive token lists A0, . . . , A12 com-
puted by Algorithm 1 (additions and deletions are marked with ⊕ and).

Let P be a P3-partition and P = {x, y, z} ∈ P with end(x) < end(y) < end(z),
we write rankP(x) = 1, rankP(y) = 2, and rankP(z) = 3 (we omit the subscript
when there is no ambiuity). Moreover, we call the element among {y, z} having
the earliest start point the center of P . The other two elements of P are called
leaves. Note that the center of P intersects both leaves.

A token list Q is a list of intervals (q1, . . . , qk) sorted in decreasing order of
their end points (end(qi) ≥ end(qj) for 1 ≤ i ≤ j ≤ k). We consider the list to
be represented vertically, with the latest-ending interval on top (to distinguish
from the left-to-right sequence of event points). We write ‖Q‖ for the length
of Q, ∅ for the empty token list, and x ∈ Q if interval x appears in Q. We now
define insertion, deletion and comparison of token lists: Q⊕ (x1, . . . , xl) is the
token list obtained from Q by inserting intervals x1 . . . , xl so that the list remains
sorted. For x ∈ Q, the list Q 	 x is obtained by deleting one copy of x from
Q (otherwise, Q	 x = Q); and Q	 (x1, . . . , xl) = Q	 x1 	 . . .	 xl. We write
(q1, . . . , qk) 4 (q′1, . . . , q

′
k′) if k ≤ k′ and ∀i ∈ {1, . . . k}, end(qi) ≤ end(q′i).

Let P be a P3-partition. We define tokens(P) as a tuple of 2n + 1 token lists
(T0, T1, . . . , T2n) such that T0 := ∅ and for t > 0,

– if t = start(x), then Tt := Tt−1 ⊕ (x, x),

– if t = end(x), then let P := {x, y, z} be the P3 in P containing x and

• if rank(x) = 1, then Tt := Tt−1 	 (x, x, c) where c is the center of P ,

• if rank(x) = 2, then Tt := Tt−1 	 (x, x, y, y, z, z),

• if rank(x) = 3, then Tt := Tt−1.

Note that in Figure 2, each token list Tt for P is equal to the respective At,
except for T6 = (d, d) and T7 = (e, e, d, d).

The following lemmas state that, on the one hand, if there is a P3-partition,
then each token list created by Algorithm 1 is comparable with the correspond-
ing Tt, hence it always contain enough tokens to create the next list, up to A2n,
and answer “true” in the end. On the other hand, if the algorithm returns
“true”, then it is indeed possible to construct a P3-partition using (indirectly)
the triples of intervals removed from the token list to create the links.

6

Lemma 1. If an interval graph G has a P3-partition P, then for all 0 ≤ t ≤ 2n,
Algorithm 1 defines set At with Tt 4 At and ‖Tt‖ − ‖At‖ ≡ 0 (mod 3), where
tokens(P) = (T0, T1, . . . , T2n).

Lemma 2. Let G be an interval graph such that Algorithm 1 returns true on G.
Then there exists a P3-partition of G.

The above lemmas allow us to conclude the correctness of Algorithm 1.

Theorem 2. P3-Partition on interval graphs is solvable in O(n log n+m) time.

3 Grid graphs

In this section, we show that P3-Partition is NP-hard even on grid graphs with
maximum degree three, thus strengthening a result of Ma lafiejski and Żyliński [15]
and Monnot and Toulouse [16], who showed that P3-Partition is NP-complete
on planar bipartite graphs of maximum degree three.

A grid graph is a graph with a vertex set V ⊆ N× N and edge set {{u, v} |
u = (i, j) ∈ V, v = (k, `) ∈ V, |i − k| + |j − `| = 1}. That is, its vertices can be
given integer coordinates such that every pair of vertices is joined by an edge if
and only if their coordinates differ by 1 in exactly one dimension.

To show NP-hardness of P3-Partition on grid graphs, we exploit the above
mentioned result of Ma lafiejski and Żyliński [15] and Monnot and Toulouse [16]
and find a suitable embedding of planar graphs into grid graphs while maintaining
the property of a graph having a P3-partition. This allows us to prove

Theorem 3. P3-Partition is NP-hard on grid graphs of maximum degree three.

The following observation helps us embed planar graphs into grid graphs, as it
allows us to replace edges by paths on 3i new vertices for any i ∈ N.

Observation 1. Let G be a graph, e = {v, w} be an edge of G, and G′ be the
graph obtained by removing the edge e from G and by connecting v and w using
a path on three new vertices. Then, G has a P3-partition if and only if G′ has.

We can now prove Theorem 3 by showing that G has a P3-partition if and only G′

has, where G′ is the graph obtained from a planar graph G of maximum degree
three using the following construction.

Construction 1. Let G be a planar graph of maximum degree three. Using a
polynomial-time algorithm of Rosenstiehl and Tarjan [18] we obtain a crossing-free
rectilinear embedding of G into the plane such that:

1. Each vertex is represented by a horizontal line.
2. Each edge is represented by a vertical line.
3. All lines end at integer coordinates with integers in O(n).
4. If two vertices are joined by an edge, then the vertical line representing this

edge ends on the horizontal lines representing the vertices.

7

a b

cd

(a) A planar graph G.

a

b

d

c

(b) A rectilinear em-
bedding of G.

a′

c′

d′

b′

(c) The grid graph G′

obtained from G.

Fig. 3: Various embeddings of a planar graph. In the rectilinear embedding in
Figure 3b, horizontal lines represent vertices of G, while vertical lines represent
its edges. In Figure 3c, every intersection of a line with a grid point is a vertex,
but only the vertices corresponding to vertices in Figure 3a are shown.

Figure 3b illustrates such an embedding. Without loss of generality, every end
point of a line lies on another line. Now, in polynomial time, we obtain a grid
graph G′ from the rectilinear embedding, as follows:

1. We multiply all coordinates by six (see Figure 3c).
2. Every point in the grid touched by a horizontal line that represents a vertex v

of G becomes a vertex in G′. The horizontal path resulting from this horizontal
line we denote by P (v).

3. For each vertical line, all its grid points become vertices in G′, except for one
point that we bypass by adding a bend of five vertices to the vertical line
(see Figure 3c).

4. With each vertex v in G, we associate the vertex v′ of G′ that lies on P (v)
and has degree three. There is at most one such vertex. If no such vertex
exists, then we arbitrarily associate with v one of the end points of P (v).

4 Bipartite permutation graphs

In this section, we show that Star Partition can be solved in O(n2) time on
bipartite permutation graphs. The class of bipartite permutation graphs can be
characterized using strong orderings of the vertices of a bipartite graph:

Definition 1 (Spinrad et al. [19]). A strong ordering ≺ of the vertices of a
bipartite graph G = (U,W,E) is the union of a total order ≺U of U and a total
order ≺W of W , such that for all {u,w}, {u′, w′} in E, where u, u′ ∈ U and
w,w′ ∈W , u ≺ u′ and w′ ≺ w implies that {u,w′} and {u′, w} are in E.

A graph is a bipartite permutation graph if and only if it is bipartite and there
is a strong ordering of its vertices, which can be computed in linear time [19].

8

Our key to obtain star partitions in bipartite permutation graphs is a structural
result that only a certain “normal form” of star partitions has to be searched for.
This paves the way to developing a dynamic programming solution exploiting
these normal forms. We sketch these structural properties of an s-star partition
of bipartite permutation graphs in the following.

Definition 2. Let (G, s) be a Star Partition instance, where G = (U,W,E)
is a bipartite permutation graph, ≺ is a strong ordering of the vertices, and 4 is
the reflexive closure of ≺. Assume that G admits an s-star partition P.

Let X ∈ P form a star. By lm(X) (resp. rm(X)), we denote the leftmost
(that is, the smallest), resp. the rightmost (that is, the largest) leaf of X with
respect to ≺. The scope of star X is the set scope(X) := {v | xl 4 v 4 xr}
containing all vertices from xl = lm(X) to xr = rm(X). The width of star X is
the cardinality of its scope, that is, width(X) := | scope(X)| = r − l + 1. The
width of P, width(P), is the sum of width(X) over all X ∈ P.

Let e = {u,w} and e′ = {u′, w′} be two edges. We say that e and e′ cross
each other if either (u ≺ u′ and w′ ≺ w) or (u′ ≺ u and w ≺ w′). The edge-
crossing number of two stars X,Y ∈ P is the number of pairs of crossing
edges e, e′ where e is an edge of X and e′ is an edge of Y . The edge-crossing
number #edge-crossings(P) of P is the sum of the edge-crossing numbers over
all pairs of stars X 6= Y ∈ P.

We identify the possible configurations of two stars, depending on the relative
positions of their leaves and centers, see Figure 4. Among those, the following
two configurations are favorable: Given X,Y ∈ P, we say that X and Y are

– non-crossing if their edge-crossing number is zero;
– interleaving if center(X) ∈ scope(Y) and center(Y) ∈ scope(X);

We say that P is good if any two stars X 6= Y ∈ P are either non-crossing or
interleaving. We define the score of P as the tuple (width(P),#edge-crossings(P)).
We use the lexicographical order to compare scores.

This definition allows us to show a normal form for star partitions in bipartite
permutation graphs.

Lemma 3. Any s-star partition of a bipartite permutation graph G with mini-
mum score is a good s-star partition.

Corollary 1. Let P be an s-star partition of a bipartite permutation graph G with
minimum score. Then, for every star X ∈ P, there is at most one Y ∈ P such that
X and Y are interleaving, and for all Z ∈ P \{X,Y }, X and Z are non-crossing.

We now informally describe a dynamic programming algorithm for deciding
whether there is a good s-star partition. It builds up a solution following the
strong ordering of the graph from left to right. A partial solution can be extended
in three ways only: either a star is added with the center in U , or a star is added
with the center in W , or two interleaving stars are added. The algorithm can
thus compute, for any given number of centers in U and in W , whether it is
possible to partition the leftmost vertices of U and W in one of the three ways
above. This algorithm leads to the following result.

9

Non-crossing

Interleaving

Configuration I

Configuration III

Configuration II

Configuration IV

Fig. 4: Possible interactions between two stars of a partition. Centers are marked
with circled nodes. The four possible configurations of star centers and scopes
that are neither non-crossing nor interleaving are labeled I to IV. By Lemma 3,
any partition containing one of the configurations I to IV can be edited to reduce
the score (see the thick light-color edges).

Theorem 4. Star Partition can be solved in O(n2) time on bipartite permu-
tation graphs.

5 Further Results

This section briefly summarizes our hardness and tractability results for cographs,
split graphs, and chordal graphs.

Cographs. A cograph is a graph that does not contain a P4 (path on four
vertices) as an induced subgraph. Cographs allow for a so-called cotree to be
computed in linear time [7]. Using a dynamic programming approach on the cotree
representation of the cograph, we can solve Star Partition in polynomial time.

Theorem 5. Star Partition can be solved in O(kn2) time on cographs.

Split graphs. A split graph is a graph whose vertices can be partitioned into a
clique and an independent set. Remarkably, split graphs are the only graph class
where we could show that P3-Partition is solvable in polynomial time, but
Star Partition for k ≥ 3 is NP-hard.

More precisely, we solve P3-Partition on split graphs by reducing it to
finding a restricted form of factor in an auxiliary graph; herein, a factor of a
graph G is a spanning subgraph of G (that is, a subgraph containing all vertices).
This graph factor problem then can be solved in polynomial time [8].

In contrast, we can show that Star Partition is NP-hard for each s ≥ 3 by
a reduction from Exact Cover by s-Sets.

10

Theorem 6. Star Partition on split graphs is solvable in O(m2.5) time for
s = 2, but is NP-hard for each s ≥ 3.

Chordal graphs. A graph is chordal if every induced subgraph containing a cycle
of length at least four also contains a triangle, that is, a cycle of length three. We
show that P3-Partition restricted to chordal graphs is NP-hard by reduction
from 3-Dimensional Matching.

Theorem 7. P3-Partition restricted to chordal graphs is NP-hard.

For the reduction, we use the construction that Dyer and Frieze [11] used to
show that P3-Partition is NP-complete and observe that we can triangulate
the resulting graph while maintaining the correctness of the reduction.

6 Conclusion

We close with three open questions for future research. What is the complexity
of Star Partition for s ≥ 2 on permutation graphs? What is the complexity of
Star Partition for s ≥ 3 on interval graphs? Are there other important graph
classes (not necessarily perfect ones) where Star Partition is polynomial-time
solvable?

Acknowledgments. We are indebted to three anonymous ICALP reviewers whose
constructive feedback helped to significantly improve our presentation.

Bibliography

[1] K. Asdre and S. D. Nikolopoulos. NP-completeness results for some problems
on subclasses of bipartite and chordal graphs. Theor. Comput. Sci., 381
(1-3):248–259, 2007.

[2] F. Berman, D. Johnson, T. Leighton, P. W. Shor, and L. Snyder. Generalized
planar matching. J. Algorithms, 11(2):153–184, 1990.

[3] R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J.
Woeginger. Star partitions of perfect graphs. Manuscript, TU Berlin, Feb.
2014. arXiv:1402.2589 [cs.DM].

[4] R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J.
Woeginger. Network-based dissolution. Manuscript, TU Berlin, Feb. 2014.
arXiv:1402.2664 [cs.DM].

[5] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey,
volume 3 of SIAM Monographs on Discrete Mathematics and Applications.
SIAM, 1999.

[6] J. Chalopin and D. Paulusma. Packing bipartite graphs with covers of
complete bipartite graphs. Discrete Applied Mathematics, 168(0):40–50,
2014.

[7] D. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for
cographs. SIAM J. Comput., 14(4):926–934, 1985.

11

[8] G. Cornuéjols. General factors of graphs. J. Combin. Theory Ser. B, 45(2):
185–198, 1988.

[9] E. Dahlhaus and M. Karpinski. Matching and multidimensional matching
in chordal and strongly chordal graphs. Discrete Appl. Math., 84(1-3):79–91,
1998.

[10] K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J.
Hurkens, J. K. Lenstra, R. Ravi, and L. Stougie. Approximation algorithms
for the test cover problem. Math. Program., 98(1-3):477–491, 2003.

[11] M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into
connected subgraphs. Discrete Appl. Math., 10(2):139–153, 1985.

[12] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of
Discrete Mathematics. Elsevier, Amsterdam, Boston, Paris, 2004.

[13] D. G. Kirkpatrick and P. Hell. On the complexity of general graph factor
problems. SIAM J. Comput., 12(3):601–608, 1983.

[14] A. Kosowski, M. Ma lafiejski, and P. Żýlinski. Parallel processing subsystems
with redundancy in a distributed environment. In Parallel Processing and
Applied Mathematics, 6th International Conference, PPAM 2005, volume
3911 of LNCS, pages 1002–1009. Springer, 2006.

[15] M. Ma lafiejski and P. Żyliński. Weakly cooperative guards in grids. In Proc.
5th ICCSA, volume 3480 of LNCS, pages 647–656, 2005.

[16] J. Monnot and S. Toulouse. The path partition problem and related problems
in bipartite graphs. Oper. Res. Lett., 35(5):677–684, 2007.

[17] J. M. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender.
Partition into triangles on bounded degree graphs. Theory Comput. Syst.,
52(4):687–718, 2013.

[18] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar
orientations of planar graphs. Discrete Comput. Geom., 1(1):343–353, 1986.

[19] J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs.
Discrete Appl. Math., 18(3):279–292, 1987.

[20] G. Steiner. On the k-path partition problem in cographs. Congressus
Numerantium, 147:89–96, 2000.

[21] G. Steiner. On the k-path partition of graphs. Theor. Comput. Sci., 290(3):
2147–2155, 2003.

[22] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of
combinatorial problems on series-parallel graphs. J. ACM, 29(3):623–641,
1982.

[23] J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete
Appl. Math., 69(3):247–255, 1996.

[24] J.-H. Yan, G. J. Chang, S. M. Hedetniemi, and S. T. Hedetniemi. k-path
partitions in trees. Discrete Appl. Math., 78(1-3):227–233, 1997.

[25] R. Yuster. Combinatorial and computational aspects of graph packing and
graph decomposition. Computer Science Review, 1(1):12–26, 2007.

12

	Star Partitions of Perfect Graphs

