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Abstract. Co-clustering, that is, partitioning a matrix into “homoge-
neous” submatrices, has many applications ranging from bioinformatics to
election analysis. Many interesting variants of co-clustering are NP-hard.
We focus on the basic variant of co-clustering where the homogeneity
of a submatrix is defined in terms of minimizing the maximum distance
between two entries. In this context, we spot several NP-hard as well as a
number of relevant polynomial-time solvable special cases, thus charting
the border of tractability for this challenging data clustering problem.
For instance, we provide polynomial-time solvability when having to
partition the rows and columns into two subsets each (meaning that
one obtains four submatrices). When partitioning rows and columns into
three subsets each, however, we encounter NP-hardness even for input
matrices containing only values from {0, 1, 2}.

1 Introduction

Co-clustering, also known as biclustering, performs a simultaneous clustering of
the rows and columns of a data matrix. Roughly speaking, the problem is, given
a numerical input matrix A, to partition the rows and columns of A into subsets
minimizing a given cost function (measuring “homogeneity”). For a given subset
of rows I and a subset of columns J , the corresponding cluster consists of all
entries aij with i ∈ I and j ∈ J . The cost function usually defines homogeneity in
terms of distances (measured in some norm) between the entries of each cluster.
Note that the variant where clusters are allowed to “overlap”, meaning that some
rows and columns are contained in multiple clusters, has also been studied [10].
We focus on the non-overlapping variant which can be stated as follows.

Co-ClusteringL
Input: A matrix A ∈ Rm×n and two positive integers k, ` ∈ N.
Task: Find a partition of A’s rows into k subsets and a partition of A’s

columns into ` subsets such that a given cost function (defined with
respect to some norm L) is minimized for the corresponding clustering.

Co-clustering is a fundamental paradigm for unsupervised data analysis.
Its applications range from microarrays and bioinformatics over recommender
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systems to election analysis [1, 3, 10]. Due to its enormous practical significance,
there is a vast amount of literature discussing various variants; however, due
to the observed NP-hardness of “almost all interesting variants” [10], most of
the literature deals with heuristic, typically empirically validated algorithms.
Indeed, there has been very active research on co-clustering in terms of heuristic
algorithms while there is little substantial theoretical work for this important
clustering problem. Motivated by an effort towards a deeper theoretical analysis
as started by Anagnostopoulos et al. [1], we further refine and strengthen the
theoretical investigations on the computational complexity of a natural special
case of Co-ClusteringL for the maximum norm L = L∞.

Anagnostopoulos et al. [1] provided a thorough analysis of the polynomial-time
approximability of Co-ClusteringL (with respect to Lp-norms), presenting
several constant-factor approximation algorithms. While their algorithms are
almost straightforward, relying on one-dimensionally clustering first the rows and
then the columns, their main contribution lies in the sophisticated mathematical
analysis of the corresponding approximation factors. Note that Jegelka et al. [9]
further generalized this approach to higher dimensions, then called tensor cluster-
ing. In this work, we study (efficient) exact instead of approximate solvability. To
this end, we investigate a more limited scenario, focussing on Co-Clustering∞,
where the problem comes down to minimizing the maximum distance between
entries of a cluster. In particular, our exact and combinatorial polynomial-time
algorithms exploit structural properties of the input matrix and do not solely
depend on one-dimensional approaches.

Related work. Our main point of reference is the work of Anagnostopoulos et al. [1].
Their focus is on polynomial-time approximation algorithms, but they also provide
computational hardness results. In particular, they point to challenging open
questions concerning the cases k = ` = 2, k = 1, or binary input matrices. Within
our more restricted setting using the maximum norm, we can resolve parts of
these questions. The survey of Madeira and Oliveira [10]1 provides an excellent
overview on the many variations of Co-ClusteringL, there called biclustering,
and discusses many applications in bioinformatics and beyond. In particular, they
also discuss the special case where the goal is to partition into uniform clusters [8]
(that is, each cluster has only one entry value). Our studies indeed generalize
this very puristic scenario by not demanding completely uniform clusters (which
would correspond to clusters with maximum entry difference 0) but allowing
some variation between maximum and minimum cluster entries. Finally, Califano
et al. [4] aimed at clusterings where in each submatrix the distance between
entries within each row and within each column is upper-bounded. Except for
the work of Anagnostopoulos et al. [1], all investigations mentioned above are
empirical in nature.

Our contributions. In terms of defining “cluster homogeneity”, we focus on
minimizing the maximum distance between two entries within a cluster (maximum
1 According to Google Scholar, accessed September 2014, cited more than 1350 times.



Table 1: Overview of results for (k, `)-Co-Clustering∞ with respect to various pa-
rameter constellations (m: number of rows, |Σ|: alphabet size, k/`: size of row/column
partition, c: cost), where ∗ indicates a value being part of the input and ~ indicates
that the corresponding value(s) is/are the parameter.

m |Σ| k ` c Complexity

∗ ∗ ∗ ∗ 0 P [Observation 1]
∗ 2 ∗ ∗ ∗ P [Observation 1]
∗ ∗ 1 ∗ ∗ P [Theorem 4]
∗ ∗ 2 2 ∗ P [Theorem 5]
∗ ∗ 2 ~ 1 FPT [Corollary 2]
~ ∗ ~ ~ ~ FPT [Lemma 2]
∗ 3 3 3 1 NP-h [Theorem 1]
2 ∗ 2 ∗ 2 NP-h [Theorem 2]

norm). Table 1 surveys most of our results. Our main conceptual contribution is
to provide a seemingly first study on the exact complexity of a natural special case
of Co-ClusteringL, thus potentially stimulating a promising field of research.
Our main technical contributions are as follows. Concerning the computational
intractability results with respect to even strongly restricted cases, we put a
lot of effort in finding the “right” problems to reduce from in order to make
the reductions as natural and expressive as possible, thus making non-obvious
connections to fields such as geometric set covering. Moreover, seemingly for
the first time in the context of co-clustering, we demonstrate that the inherent
NP-hardness does not stem from the permutation combinatorics behind: the
problem remains NP-hard when all clusters must consist of consecutive rows
or columns. This is a strong constraint (the search space size is tremendously
reduced—basically from `n · km to

(
n
`

)
·
(

m
k

)
) which directly gives a polynomial-

time algorithm for k and ` being constants. Note that in the general case we
have NP-hardness for constant k and `. Concerning the algorithmic results, we
developed a novel reduction to SAT solving (instead of the standard reductions
to integer linear programming) which may prove beneficial on the theoretical
but also on the practical side. Notably, however, as opposed to previous work
on approximation algorithms [1, 9], our methods seem to be tailored for the
two-dimensional case (co-clustering) and the higher dimensional case (tensor
clustering) appears to be out of reach.

Due to the lack of space, several details are deferred to a full version.

2 Formal Definitions and Preliminaries

We use standard terminology for matrices. A matrix A = (aij) ∈ Rm×n consists
of m rows and n columns where aij denotes the entry in row i and column j. We
define [n] := {1, 2, . . . , n} and [i, j] := {i, i+ 1, . . . , j} for n, i, j ∈ N. Throughout
this paper, we assume that arithmetical operations require constant time.



0 4 3 0
2 2 1 3
1 3 4 1

A =
0 0 4 3
1 1 3 4
2 3 2 1
J1 J2

I1

I2

J1 = {1, 4}, J2 = {2, 3}
I1 = {2}, I2 = {1, 3}

0 3 0 4
2 1 3 2
1 4 1 3
J1 J2

I1

I2

J1 = {1, 3, 4}, J2 = {2}
I1 = {1}, I2 = {2, 3}

Fig. 1: The example shows two (2, 2)-co-clusterings (middle and right) of the same
matrix A (left-hand side). It demonstrates that by sorting rows and columns according
to the co-clustering, the clusters can be illustrated as submatrices of this (permuted)
input matrix. The cost of the (2, 2)-co-clustering in the middle is three (because of the
two left clusters) and that of the (2, 2)-co-clustering on the right-hand side is one.

Problem definition. We follow the terminology of Anagnostopoulos et al. [1].
For a matrix A ∈ Rm×n, a (k, `)-co-clustering is a pair (I,J ) consisting of
a k-partition I = {I1, . . . , Ik} of the rows of A (more specifically, a partition of
the row indices [m]) and an `-partition J = {J1, . . . , J`} of the columns (the
column indices [n], respectively) of A. We call the elements of I (J ) row blocks
(column blocks, resp.). Additionally, we require I and J to not contain empty
sets. For (r, s) ∈ [k] × [`], the set Ars := {aij ∈ A | (i, j) ∈ Ir × Js} is called a
cluster.

The cost of a co-clustering (under maximum norm, which is the only norm we
consider here) is defined as the maximum difference between any two entries in
any cluster, formally cost(I,J ) := max(r,s)∈[k]×[`](maxArs −minArs). Herein,
maxArs (minArs) denotes the maximum (minimum, resp.) entry in Ars.

The decision variant of Co-ClusteringL with maximum norm is as follows.

Co-Clustering∞
Input: A matrix A ∈ Rm×n, integers k, ` ∈ N, and a cost c ≥ 0.

Question: Is there a (k, `)-co-clustering (I,J ) of A with cost(I,J ) ≤ c?

See Figure 1 for an introductory example. We define Σ := {aij ∈ A | (i, j) ∈
[m] × [n]} to be the alphabet of the input matrix A (consisting of the values
that occur in A). We use the abbreviation (k, `)-Co-Clustering∞ to refer
to Co-Clustering∞ with constants k, ` ∈ N, and by (k, ∗)-Co-Clustering∞
we refer to the case where only k is constant and ` is part of the input. Clearly,
Co-Clustering∞ is symmetric with respect to k and ` in the sense that any
(k, `)-co-clustering of a matrix A is equivalent to an (`, k)-co-clustering of the
transposed matrix AT . Hence, we always assume that k ≤ `.

We next collect some simple observations. First, determining whether there is
a cost-zero (perfect) co-clustering is easy. Moreover, since, for a binary alphabet,
the only interesting case is a perfect co-clustering, we get the following.
Observation 1 Co-Clustering∞ is solvable in polynomial time for cost zero
and also for any size-two alphabet.

Proof. Let (A, k, `, 0) be a Co-Clustering∞ instance. For a (k, `)-co-clustering
with cost 0, it holds that all entries of a cluster are equal. This is only possible



if there are at most k different rows and at most ` different columns in A since
otherwise there will be a cluster containing two different entries. Thus, the
case c = 0 can be solved by lexicographically sorting the rows and columns
of A. ut

We further observe that the input matrix can, without loss of generality, be
assumed to contain only integer values (by some rescaling arguments preserving
the distance relations between elements).

Observation 2 For any Co-Clustering∞-instance with arbitrary alphabet Σ ⊆
R, one can find in O((mn)2) time an equivalent instance with alphabet Σ′ ⊆ Z
and cost value c′ ∈ N.

Parameterized algorithmics. We briefly introduce the relevant notions from
parameterized algorithmics. A parameterized problem, each instance consist-
ing of the “classical” problem instance I and an integer k, is fixed-parameter
tractable (FPT) if there is a computable function f and an algorithm solv-
ing any instance in f(k) · |I|O(1) time. The corresponding algorithm is called
FPT-algorithm.

3 Intractability Results

In the previous section, we observed that Co-Clustering∞ is easy to solve
for binary input matrices (Observation 1). In contrast to this, we show in this
section that its computational complexity significantly changes as soon as the
input matrix contains at least three different entries. In fact, even for very
restricted special cases we can show NP-hardness. These special cases comprise
co-clusterings with a constant number of clusters or input matrices with only
two rows. We also show NP-hardness of finding co-clusterings where the row and
column partitions are only allowed to contain consecutive blocks.

3.1 Constant Number of Clusters

We start by showing that for input matrices containing three different entries, Co-
Clustering∞ is NP-hard even if the co-clustering consists only of nine clusters.

Theorem 1. (3, 3)-Co-Clustering∞ is NP-hard for Σ = {0, 1, 2}.

Proof. We reduce from the NP-complete 3-Coloring [7], where the task is
to partition the vertex set of an undirected graph into three independent
sets. Let G = (V,E) be a 3-Coloring instance with V = {v1, . . . , vn} and
E = {e1, . . . , em}. We construct a (3, 3)-Co-Clustering∞ instance (A ∈
{0, 1, 2}m×n, k := 3, ` := 3, c := 1) as follows. The columns of A correspond to the
vertices V and the rows correspond to the edges E. For an edge ei = (vj , vj′) ∈ E
with j < j′, we set aij := 0 and aij′ := 2. All other matrix entries are set to one.
Hence, each row corresponding to an edge {vj , vj′} consists of 1-entries except for



the columns j and j′, which contain 0 and 2. Thus, every co-clustering of A with
cost at most c = 1 puts column j and column j′ into different column blocks. We
next prove that there is a (3, 3)-co-clustering of A with cost at most c = 1 if and
only if G admits a 3-coloring.

First, assume that V1, V2, V3 is a partition of the vertex set V into three inde-
pendent sets. We define a (3, 3)-co-clustering (I,J ) of A as follows. The column
partition J := {J1, J2, J3} one-to-one corresponds to the three sets V1, V2, V3,
that is, Js := {i | vi ∈ Vs} for all s ∈ {1, 2, 3}. By the construction above, each
row has exactly two non-1 entries being 0 and 2. We define the type of a row to
be a permutation of 0, 1, 2, denoting which of the column blocks J1, J2, J3 contain
the 0-entry and the 2-entry. For example, a row is of type (2, 0, 1) if it has a 2 in
a column of J1 and a 0 in a column of J2. The row partition I := {I1, I2, I3} is
defined as follows: All rows of type (0, 2, 1) or (0, 1, 2) are put into I1. Rows of
type (2, 0, 1) or (1, 0, 2) are contained in I2 and the remaining rows of type (2, 1, 0)
or (1, 2, 0) are contained in I3. Clearly, for (I,J ), it holds that the non-1 entries
in any cluster are either all 0 or all 2, implying that cost(I,J ) ≤ 1.

Next, assume that (I, {J1, J2, J3}) is a (3, 3)-co-clustering of A with cost at
most 1. The vertex sets V1, V2, V3, where Vs contains the vertices corresponding to
the columns in Js, form three independent sets: If an edge connects two vertices
in Vs, then the corresponding row would have the 0-entry and the 2-entry in the
same column block Js, yielding a cost of 2, which is a contradiction. ut

Theorem 1 can even be strengthened further.

Corollary 1. Co-Clustering∞ is NP-hard even when k = m (that is, each
row is in its own cluster), ` is fixed with ` ≥ 3, Σ = {0, 1, 2}, and the column
blocks are forced to have equal sizes |J1| = . . . = |J`|.

Proof (Sketch). Note that the reduction in Theorem 1 can easily be adapted to
the NP-hard `-Coloring problem with balanced partition sizes [7]. Note also
that the proof holds for any k ≥ 3. Hence, the problem is NP-hard for k = m
row blocks. ut

3.2 Constant Number of Rows

The reduction in the proof of Theorem 1 outputs matrices with an unbounded
number of rows and columns containing only three different values. We now show
that also the “dual restriction” is NP-hard, that is, the input matrix only has a
constant number of rows (two) but contains an unbounded number of different
values. Interestingly, this special case is closely related to a two-dimensional
variant of geometric set covering.

Theorem 2. Co-Clustering∞ is NP-hard for k = m = 2.

Proof. We give a polynomial-time reduction from the NP-complete Box Cover
problem [6]. Given a set P ⊆ Z2 of n points in the plane and ` ∈ N, Box Cover
is the problem to decide whether there are ` squares S1, . . . , S`, each with side
length 2, covering P , that is, P ⊆

⋃
1≤i≤` Si.



Let I = (P, `) be a Box Cover instance. We define the instance I ′ :=
(A, k, `′, c) as follows: The matrix A ∈ Z2×n has the points p1, . . . , pn in P as
columns. Further, we set k := 2, `′ := `, c := 2.

The correctness can be seen as follows: Assume that I is a yes-instance, that
is, there are ` squares S1, . . . , S` covering all points in P . We define J1 := {i |
pi ∈ P ∩ S1} and Jj := {i | pi ∈ P ∩ Sj \ (

⋃
1≤l<j Sl)} for all 2 ≤ j ≤ `. Note

that (I = {{1}, {2}},J = {J1, . . . , J`}) is a (2, `)-co-clustering of A. Moreover,
since all points with indices in Jj lie inside a square with side length 2, it
holds that each pair of entries in A1j as well as in A2j has distance at most 2,
implying cost(I,J ) ≤ 2.

Conversely, if I ′ is a yes-instance, then let ({{1}, {2}},J ) be the (2, `)-co-
clustering of cost at most 2. For any Ji ∈ J , it holds that all points corresponding
to the columns in Ji have pairwise distance at most 2 in both coordinates. Thus,
there exists a square of side length 2 covering all of them. ut

3.3 Clustering into Consecutive Clusters

One is tempted to assume that the hardness of the previous special cases of Co-
Clustering∞ is rooted in the fact that we are allowed to choose arbitrary subsets
for the corresponding row and column partitions since the problem remains hard
even for a constant number of clusters and also with equal cluster sizes. Hence,
in this section, we consider a restricted version of Co-Clustering∞, where
the row and the column partition has to consist of consecutive blocks. Formally,
for row indices R = {r1, . . . , rk−1} with 1 < r1 < . . . < rk−1 ≤ m and column
indices C = {c1, . . . , c`−1} with 1 < c1 < . . . < c`−1 ≤ n, the corresponding
consecutive (k, `)-co-clustering (IR,JC) is defined as

IR := {{1, . . . , r1 − 1}, {r1, . . . , r2 − 1}, . . . , {rk−1, . . . ,m}},
JC := {{1, . . . , c1 − 1}, {c1, . . . , c2 − 1}, . . . , {c`−1, . . . , n}}.

The Consecutive Co-Clustering∞ problem now is to find a consecutive
(k, `)-co-clustering of a given input matrix with a given cost. Again, also this
restriction is not sufficient to overcome the inherent intractability of co-clustering,
that is, we prove it to be NP-hard. Similarly to Section 3.2, we encounter a close
relation of consecutive co-clustering to a geometric problem, namely to find an
optimal discretization of the plane [5]. The NP-hard Optimal Discretization
problem [5] is the following: Given a set S of points in the plane, each either
colored black B or white W , and integers k, ` ∈ N, decide whether there is a
consistent set of k horizontal and ` vertical (axis-parallel) lines. That is, the
vertical and horizontal lines partition the plane into rectangular regions such that
no region contains two points of different colors (see Figure 2 for an example).
Here, a vertical (horizontal) line is a simple number denoting its x-(y-)coordinate.

Theorem 3. Consecutive Co-Clustering∞ is NP-hard for Σ = {0, 1, 2}.

Proof (Sketch). We give a polynomial-time reduction from Optimal Discretiza-
tion. Let (S, k, `) be an Optimal Discretization instance and let X :=
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Fig. 2: Example instance of Optimal Discretization (left) and the corresponding
instance of Consecutive Co-Clustering∞ (right). A solution to the Consecutive
Co-Clustering∞ instance (shaded clusters) naturally translates into a consistent set
of lines.

{x∗1, . . . , x∗n} be the set of different x-coordinates and let Y := {y∗1 , . . . , y∗m} be
the set of different y-coordinates of the points in S. Note that n and m can be
smaller than |S| since two points can have the same x- or y-coordinate. Fur-
thermore, assume that x∗1 < . . . < x∗n and y∗1 < . . . < y∗m. We now define the
Consecutive Co-Clustering∞ instance (A, k + 1, ` + 1, c) as follows: The
matrix A ∈ {0, 1, 2}m×n has columns labeled with x∗1, . . . , x

∗
n and rows labeled

with y∗1 , . . . , y∗m. For (x, y) ∈ X×Y , the entry axy is defined as 0 if (x, y) ∈ B, 2 if
(x, y) ∈W , and otherwise 1. The cost is set to c := 1. Clearly, this instance can
be constructed in polynomial time. We prove correctness in a full version of the
paper. ut

Note that even though Consecutive Co-Clustering∞ is NP-hard, there still is
some difference in its computational complexity compared to the general version.
In contrast to Co-Clustering∞, the consecutive version is polynomial-time
solvable for constants k and ` by trying out all O(mkn`) consecutive partitions
of the rows and columns.

4 Tractability Results

In Section 3, we showed that Co-Clustering∞ is NP-hard for k = ` = 3 and
also for k = 2 in case of unbounded ` and |Σ|. In contrast to these hardness
results, we now investigate which parameter combinations yield tractable cases.
It turns out that the problem is polynomial-time solvable for k = ` = 2 and
for k = 1. We can even solve the case k = 2 and ` ≥ 3 for |Σ| = 3 in polynomial
time by showing that this case is in fact equivalent to the case k = ` = 2.
Note that these tractability results nicely complement the hardness results from
Section 3. We further show fixed-parameter tractability for the parameters size
of the alphabet |Σ| and the number of column blocks `.

We start by describing a reduction of Co-Clustering∞ to CNF-SAT (the
satisfiability problem for boolean formulas in conjunctive normal form). Later on,
it will be used in some special cases (see Theorem 5 and Theorem 7) because there
the corresponding formula—or an equivalent formula—only consists of clauses
containing two literals, thus being a polynomial-time solvable 2-Sat-instance.



4.1 Reduction to CNF-SAT Solving

To start with, we introduce the concept of cluster boundaries, which are basically
lower and upper bounds for the values in a cluster of a co-clustering. Formally,
given two integers k, `, an alphabet Σ, and a cost c, we define a cluster boundary
to be a matrix U = (urs) ∈ Σk×`. We say that a (k, `)-co-clustering of A satisfies
a cluster boundary U if Ars ⊆ [urs, urs +c] for all (r, s) ∈ [k]× [`]. It can easily be
seen that a given (k, `)-co-clustering has cost at most c if and only if it satisfies
at least one cluster boundary (urs), namely, the one with urs = minArs.

The following “subtask” of Co-Clustering∞ can be reduced to a certain
CNF-SAT instance: Given a cluster boundary U and a Co-Clustering∞-
instance I, find a co-clustering for I that satisfies U . The reduction provided by
the following lemma can be used to obtain exact Co-Clustering∞ solutions
with the help of SAT solvers and we use it in our subsequent algorithms.

Lemma 1. Given a Co-Clustering∞-instance (A, k, `, c) and a cluster bound-
ary U , one can construct in polynomial time a CNF-SAT-instance φ with at
most max{k, `} variables per clause such that φ is satisfiable if and only if there
is a (k, `)-co-clustering of A which satisfies U .

Proof. Given an instance (A, k, l, c) of Co-Clustering∞ and a cluster boundary
U = (urs) ∈ Σk×`, we define the following boolean variables: For each (i, r) ∈
[m]× [k], the variable xi,r represents the expression “row i could be put into row
block Ir”. Similarly, for each (j, s) ∈ [n] × [`], the variable yj,s represents that
“column j could be put into column block Js”.

We now define a boolean CNF formula φA,U containing the following clauses:
A clause Ri := xi,1 ∨ xi,2 ∨ . . . ∨ xi,k for each row i ∈ [m] and a clause Cj :=
yj,1∨yj,2∨. . .∨yj,` for each column j ∈ [n]. Additionally, for each (i, j) ∈ [m]×[n]
and each (r, s) ∈ [k] × [`] such that element aij does not fit into the cluster
boundary at coordinate (r, s), that is, aij /∈ [urs, urs + c], there is a clause
Bijrs := ¬xi,r ∨ ¬yj,s. Note that the clauses Ri and Cj ensure that row i
and column j are put into some row and some column block respectively. The
clause Bijrs expresses that it is impossible to have both row i in block Ir and
column j in block Js if aij does not satisfy urs ≤ aij ≤ urs + c. Clearly, φA,U
is satisfiable if and only if there exists a (k, `)-co-clustering of A satisfying the
cluster boundary U . Note that φA,U consists of O(km+`n) variables and O(mnk`)
clauses. ut

4.2 Polynomial-Time Solvability

We first present a fairly simple algorithm for (1, ∗)-Co-Clustering∞, that is,
the variant where all rows belong to one row block.

Theorem 4. (1, ∗)-Co-Clustering∞ is solvable in O(n(m+ logn)) time.

Proof. We show that Algorithm 1 solves (1, ∗)-Co-Clustering∞. In fact, it
even computes the minimum ` such that A has a (1, `)-co-clustering of cost c.



Algorithm 1: Algorithm for (1, ∗)-Co-Clustering∞
Input: A ∈ Rm×n, ` ≥ 1, c ≥ 0
Output: A partition of [n] into at most ` blocks yielding a cost of at most c, or

no if no such partition exists.
1 for j ← 1 to n do
2 αj ← min{aij | 1 ≤ i ≤ m};
3 βj ← max{aij | 1 ≤ i ≤ m};
4 N ← [n];
5 for s← 1 to ` do
6 Let xs ∈ N be the index such that αxs is minimal;
7 Js ← {j ∈ N | βj − αxs ≤ c};
8 N ← N \ Js;
9 if N = ∅ then

10 return (J1, . . . , Js);

11 return no ;

If Algorithm 1 returns (J1, . . . , J`′) at line 10, then this is a column partition
into `′ ≤ ` blocks satisfying the cost constraint. First, it is a partition by
construction: The sets Js are successively removed from N until it is empty.
Now, let s ∈ [`′]. Then, for all j ∈ Js, it holds αj ≥ αxs

(by definition of xs)
and βj ≤ αxs + c (by definition of Js). Thus, A1s ⊆ [αxs , αxs + c] holds for
all s ∈ [`′], which yields cost({[m]}, {J1, . . . , J`′}) ≤ c. Otherwise, if Algorithm 1
returns no at Line 11, then it has computed indices xs, s ∈ [`], and there exists
at least one element x`+1 in N when the algorithm terminates. Consider any
1 ≤ s < s′ ≤ ` + 1. By construction, xs′ /∈ Js. Therefore, βxs′ > αxs

+ c holds,
and columns xs and xs′ contain elements with distance more than c. Thus, in
any co-clustering with cost at most c, columns x1, . . . , x`+1 must be in different
blocks, which is impossible by the pigeon-hole principle. Hence, this is indeed a
no-instance.

The time complexity is seen as follows. The first loop examines all elements
of the matrix in O(mn) time. The second loop can be performed in O(n) time if
the αj and the βj are sorted beforehand, requiring O(n logn) time. Overall, the
running time is in O(n(m+ logn)). ut

From now on, we focus on the k = 2 case, that is, we need to partition the rows
into two blocks. We first consider the simplest case, where also ` = 2.

Theorem 5. (2, 2)-Co-Clustering∞ is solvable in O(|Σ|2mn) time.

Proof. We use the reduction to CNF-SAT provided by Lemma 1. First, note
that a cluster boundary U ∈ Σ2×2 can only be satisfied if it contains the
elements minΣ and min{a ∈ Σ | a ≥ maxΣ − c}. The algorithm enumerates
all O(|Σ|2) of these cluster boundaries. For a fixed U , we construct the boolean
formula φA,U . Observe that this formula is in 2-CNF form: The formula consists
of k-clauses, `-clauses, and 2-clauses, and we have k = ` = 2. Hence, we can
determine whether it is satisfiable in linear time [2] (note that the size of the



formula is in O(mn)). Overall, the input is a yes-instance if and only if φA,U is
satisfiable for some cluster boundary U . ut

Finally, we claim that it is possible to extend the above result to any number
of column blocks for size-three alphabets (refer the full version for a proof).

Theorem 6. (2, ∗)-Co-Clustering∞ is polynomial-time solvable for |Σ| = 3.

4.3 Fixed-Parameter Tractability

We develop an algorithm solving (2, ∗)-Co-Clustering∞ for c = 1 based on our
reduction to CNF-SAT (see Lemma 1). The main idea is, given matrix A and
cluster boundary U , to simplify the boolean formula φA,U into a 2-Sat formula
which can be solved efficiently. This is made possible by the constraint on the cost,
which imposes a very specific structure on the cluster boundary. This approach
requires to enumerate all (exponentially many) possible cluster boundaries, but
yields fixed-parameter tractability for the combined parameter (`, |Σ|).

Theorem 7. (2, ∗)-Co-Clustering∞ is O(|Σ|3`n2m2)-time solvable for c = 1.

A subresult in the proof of Theorem 7 (deferred to a full version), is the following
lemma, which we use to solve the case where the number 2m of possible row
partitions is less than |Σ|`.

Lemma 2. For a fixed row partition I, one can solve Co-Clustering∞ in
O(|Σ|k`mn`) time. Moreover, Co-Clustering∞ is fixed-parameter tractable
with respect to the combined parameter (m, k, `, c).

Proof. Given a fixed row partition I, the algorithm enumerates all |Σ|k` different
cluster boundaries U = (urs). We say that a given column j fits in column
block Js if, for each r ∈ [k] and i ∈ Ir, we have aij ∈ [urs, urs + c] (this can be
decided in O(m) time for any pair (j, s)). The input is a yes-instance if and only
if for some cluster boundary U , every column fits in at least one column block.

Fixed-parameter tractability with respect to (m, k, `, c) is obtained from two
simple further observations. First, all possible row partitions can be enumerated
in O(km) time. Second, since each of the k` clusters contains at most c+1 different
values, the alphabet size |Σ| for yes-instances is upper-bounded by (c+ 1)k`. ut

Finally, we obtain the following simple corollary.

Corollary 2. (2, ∗)-Co-Clustering∞ with c = 1 is fixed-parameter tractable
with respect to parameter |Σ| and with respect to parameter `.

Proof. Theorem 7 presents an FPT-algorithm with respect to the combined pa-
rameter |Σ| and `. For (2, ∗)-Co-Clustering∞ with c = 1, both parameters are
equivalent. Indeed, ` < |Σ|2 (otherwise there are two column blocks with identical
cluster boundaries, which could be merged) and |Σ| < 2(c+1)` = 4` (each column
block may contain two intervals, each covering at most c+ 1 elements). ut



5 Conclusion

Contrasting previous theoretical work on approximation algorithms [1, 9], we
started to closely investigate the time complexity of exactly solving the NP-hard
Co-Clustering∞ problem, contributing a detailed view on its computational
complexity landscape. Refer to Table 1 for an overview on most of our results.
From a practical perspective, both our polynomial-time algorithms and our
reduction to CNF-SAT solving—notably, exact solving approaches for Co-
ClusteringL so far mostly rely on integer linear programming—may prove
useful.

Several open questions derive from our work. Perhaps the most pressing
open question is whether the most basic three-dimensional case—(2,2,2)-Co-
Clustering∞ on three-dimensional input matrices—is polynomial-time solvable
or NP-hard. Indeed, other than the techniques for deriving approximation algo-
rithms [1, 9] our exact methods do not seem to generalize to higher dimensions.
Acknowledgment. We thank Stéphane Vialette for stimulating discussions.
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