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The aim of this note is to show the existence of a correspondance between certain algebraic continued fractions in fields of power series over a finite field and automatic sequences in the same finite field. This connection is illustrated by three families of examples and a counterexample.

Introduction

Let F q be the finite field containing q elements, with q = p s where p is a prime number and s 1 is an integer. We consider the field of power series in 1/T , with coefficients in F q , where T is a formal indeterminate. We will denote this field by F(q). Hence a non-zero element of F(q) is written as α = k k0 a k T k with k 0 ∈ Z, a k ∈ F q , and a k0 = 0. Noting the analogy of this expansion with a decimal expansion for a real number, it is natural to regard the elements of F(q) as (formal) numbers and indeed they are analogue to real numbers in many ways.

It is well known that the sequence of coefficients (or digits) (a k ) k k0 for α is ultimately periodic if and only if α is rational, that is α belongs to F q (T ). However, and this is a singularity of the formal case, this sequence of digits can also be characterized for all elements in F(q) which are algebraic over F q (T ). The origin of the following theorem can be found in the work of Christol [START_REF] Christol | Ensembles presques périodiques k-reconnaissables[END_REF] (see also the article of Christol, Kamae, Mendès France, and Rauzy [START_REF] Christol | Suites algébriques, automates et substitutions[END_REF]).

Theorem 1 (Christol). Let α in F(q) with q = p s . Let (a k ) k k0 be the sequence of digits of α and u(n) = a -n for all integers n 0. Then α is algebraic over F q (T ) if and only if the following set of subsequences of (u(n)) n 0 K(u) = (u(p i n + j)) n 0 | i 0, 0 j < p i is finite.

The sequences having the finiteness property stated in this theorem were first introduced in the 1960's by computer scientists. Considered in a larger setting (see the beginning of Section 3), they are now called automatic sequences, and form a class of deterministic sequences which can be defined in several different ways. A full account on this topic and a very complete list of references are to be found in the book of Allouche and Shallit [START_REF] Allouche | Automatic sequences. Theory, applications, generalizations[END_REF]. In this note we want to show a different type of connection between automatic sequences and some particular algebraic power series in F(q). Firstly, let us describe these particular algebraic elements. Let α be irrational in F(q). We say that α is hyperquadratic, if there exists r = p t , where t 0 is an integer, such that the elements α r+1 , α r , α, and 1 are linked over F q (T ). Hence an hyperquadratic element is algebraic over F q (T ), of degree r + 1. The subset of hyperquadratic elements in F(q) is denoted H(q). Note that this subset contains the quadratic power series (take r = 1) and also the cubic power series (take r = p). Originally, these algebraic elements were introduced in the 1970's by Baum and Sweet (see [START_REF] Baum | Continued fractions of algebraic power series in characteristic 2[END_REF]), in the particular case q = 2, and later considered in the 1980's by Mills and Robbins [START_REF] Mills | Continued fractions for certain algebraic power series[END_REF] and Voloch [START_REF] Voloch | Diophantine approximation in positive characteristic[END_REF], in all characteristic. It appears that H(q) contains elements having an arbitrary large algebraic degree. But hyperquadratic power series are rare: an algebraic power series of high algebraic degree has a small probability to be hyperquadratic. For different reasons, this subset H(q) could be regarded as the analogue of the subset of quadratic real numbers.

Besides, it is well known that any irrational element α in F(q) can be expanded as an infinite continued fraction where the partial quotients a n are polynomials in F p [T ], all of positive degree, except perhaps for the first one. We will use the traditional notation α = [a 1 , a 2 , . . . , a n , . . .]. The explicit description of continued fractions for algebraic power series over a finite field goes back to the works [START_REF] Baum | Continued fractions of algebraic power series in characteristic 2[END_REF][START_REF] Baum | Badly approximable power series in characteristic 2[END_REF] of Baum and Sweet, again when the base field is F 2 . It was carried on ten years later by Mills and Robbins in [START_REF] Mills | Continued fractions for certain algebraic power series[END_REF]. In the real case, no explicit continued fraction expansion, algebraic of degree n > 2, is known. On the other hand this expansion for quadratic real numbers is well known to be ultimately periodic. In the formal case, the situation is more complex. Quadratic power series have also an ultimately periodic continued fraction expansion, but many other hyperquadratic continued fractions can also be explicitly described. Most of the elements in H(q) have an unbounded sequence of partial quotients, but there are also expansions with all partial quotients of degree 1. This last phenomenon was discovered firstly by Mills and Robbins in [START_REF] Mills | Continued fractions for certain algebraic power series[END_REF], and later studied more deeply by Lasjaunias and Yao in [START_REF] Lasjaunias | Hyperquadratic continued fractions in odd characteristic with partial quotients of degree one[END_REF]. Even though the pattern of hyperquadratic expansions can sometimes be very sophisticated (see for instance the work [START_REF] Firicel | Sur le développement en fraction continue d'une généralisation de la cubique de Baum et Sweet[END_REF] of Firicel, where a generalization of the cubic introduced by Baum and Sweet is presented), it is yet doubtful wether this description, even partial, is possible for all power series in H(q).

Power series in H(q) have particular properties concerning Diophantine approximation and this is also why they were first considered. The work [START_REF] Mahler | On a theorem of Liouville in fields of positive characteristic[END_REF] of Mahler in this area, is fundamental. There, a first historical example of hyperquadratic power series, on which we come back below in this note, was introduced. Note that the irrationality measure (also called approximation exponent, see for instance [16, p.214]) of a power series can be computed if the explicit continued fraction for this element is known. In this way, for many elements in H(q), the irrationality measure, often greater than 2 for non-quadratic elements, has been given. Hence, contrary to the real case, many algebraic power series of degree > 2, most of them hyperquadratic, are known to have an irrationality measure greater than 2. Actually, for algebraic power series which are not hyperquadratic, concerning their continued fraction expansions and their irrationality measure, not so much is known. The reader may consult Schmidt [START_REF] Schmidt | On continued fractions and diophantine approximation in power series fields[END_REF] and Lasjaunias [START_REF] Lasjaunias | A survey of Diophantine approximation in fields of power series[END_REF], for instance, for more informations and references on this matter.

With each infinite continued fraction in F(q), we can associate a sequence in F * q in the following way: if α = [a 1 , a 2 , . . . , a n , . . .] then, for n ≥ 1, we define u(n) as the leading coefficient of the polynomial a n . For several examples in H(q), we have observed that the sequence (u(n)) n≥1 is automatic. Indeed, a first observation in this area is due to Allouche [START_REF] Allouche | Sur le développement en fraction continue de certaines séries formelles[END_REF]. In the article [START_REF] Mills | Continued fractions for certain algebraic power series[END_REF] of Mills and Robbins, for all p 5, a particular family of continued fractions in H(p), having a n = λ n T for all integers n 1 with λ n in F * p , was introduced. Shortly after the publication of [START_REF] Mills | Continued fractions for certain algebraic power series[END_REF], Allouche could prove in [START_REF] Allouche | Sur le développement en fraction continue de certaines séries formelles[END_REF] that the sequence (λ n ) n 1 in F * p is automatic (see also the last section of [START_REF] Lasjaunias | Hyperquadratic continued fractions in odd characteristic with partial quotients of degree one[END_REF], where this question is discussed in a larger context). In the present note (Section 2), we shall describe several families of hyperquadratic continued fractions and we show in Section 3 that the sequence associated with them, as indicated above, is also automatic.

Yet it is an open question to know wether this is true for all elements in H(q). If the answer were negative, it would be interesting to be able to characterize the elements in H(q) which have this property. As mentioned above, very little is known, concerning continued fractions, for algebraic power series which are not hyperquadratic. However an element in F(3), algebraic of degree 4, was introduced by Robbins and Mills in [START_REF] Mills | Continued fractions for certain algebraic power series[END_REF]. This element is not hyperquadratic. In this note (Section 4), we show that the sequence in F * 3 , associated as above with its continued fraction expansion, is not automatic.

Three families of hyperquadratic continued fractions

In this section we shall use the notation and results found in [START_REF] Lasjaunias | Continued fractions for hyperquadratic power series over a finite field[END_REF]. Let α be an irrational element in F(q) with α = [a 1 , . . . , a n , . . .] as its continued fraction expansion. We denote by F(q) + the subset of F(q) containing the elements having an integral part of positive degree (i.e. with deg(a 1 ) > 0). For all integers n 1, we put α n = [a n , a n+1 , . . .] (α 1 = α), and we introduce the continuants x n , y n ∈ F q [T ] such that x n /y n = [a 1 , a 2 , . . . , a n ]. As usual we extend the latter notation to n = 0 with x 0 = 1 and y 0 = 0. Observe that the notation used here for the continuants x n and y n is different from the one used in [START_REF] Lasjaunias | Continued fractions for hyperquadratic power series over a finite field[END_REF], and hopefully simplified.

As above we set r = p t , where t 0 is an integer. Let P, Q ∈ F q [T ] such that deg(Q) < deg(P ) < r. Let 1 be an integer and A = (a 1 , a 2 , . . . , a ) a vector in (F q [T ]) such that deg(a i ) > 0 for 1 i . Then by Theorem 1 in [START_REF] Lasjaunias | Continued fractions for hyperquadratic power series over a finite field[END_REF], there exists an infinite continued fraction in F(q) defined by α = [a 1 , a 2 , . . . , a , α +1 ] such that α r = P α +1 + Q. This element α is hyperquadratic and it is the unique root in F(q) + of the following algebraic equation:

(1) y X r+1 -x X r + (y -1 P -y Q)X + x Q -x -1 P = 0.
Note that if r = 1, then α is quadratic. In this case P is a nonzero constant polynomial, i.e. P = ε ∈ F * q and Q = 0. Given and A , we have α = εα +1 , and this implies a +m = ε (-1) m a m , for all integers m 1. Hence the continued fraction expansion is purely periodic (a simple computation shows that the length of the period is at most 2 if is odd or (q -1) if is even).

We shall describe three families of continued fractions generated as above.

First family: F1. The simplest and first case that we consider is (P, Q) = (ε, 0) where ε ∈ F * q and consequently α r = εα l+1 . Due to the Frobenius isomorphism, we obtain, in the same way as above for r = 1, the relation a +m = ε (-1) m a r m for all integers m 1. Hence the continued fraction, depending on the arbitrary given first partial quotients, is fully explicit. These hyperquadratic continued fractions were studied independently by Schmidt [START_REF] Schmidt | On continued fractions and diophantine approximation in power series fields[END_REF] and Thakur [START_REF] Thakur | Diophantine approximation exponents and continued fractions for algebraic power series[END_REF] (particularly for ε = 1). Let us recall that the elements in H(q), called here hyperquadratic, were first named in [START_REF] Lasjaunias | Diophantine approximation and continued fraction expansions of algebraic power series in positive characteristic[END_REF] as algebraic of class I, and then the elements studied by Schmidt and Thakur were called algebraic of class IA. The possibility of choosing arbitrarily the vector A has an important consequence. Even though this is not truly the matter of this note, we have already mentioned the irrationality measure ν(α) of α in F(q). In his fundamental work [START_REF] Mahler | On a theorem of Liouville in fields of positive characteristic[END_REF], Mahler established (following an old result of Liouville in the real case) that if α ∈ F(q) is algebraic of degree d 2 over F q (T ), then we have ν(α) ∈ [2, d]. Besides ν(α) is directly depending on the sequence of the degrees of the partial quotients for α (see for instance [16, p.214]).

For an element of F1, this sequence of degrees (d n ) n 1 , satisfies d +m = rd m for all integers m 1, and consequently d n depends directly on the first degrees. Hence, Schmidt and Thakur, independently, could obtain (by a sophisticated computation) the irrationality measure for such an element, depending on r and the first degrees.

In this way they could establish the following result: for each rational number µ in the range [2, +∞[, there exists α in F1 such that ν(α) = µ.

Let us make a last observation on the simplest element in F1. We take = 1 and a 1 = T , with (P, Q) = (1, 0), then the corresponding continued fraction is Θ 1 = [T, T r , T r 2 , . . . , T r n , . . .], and Θ 1 satisfies X = T + 1/X r . Here the irrationality measure is easy to compute, and indeed we have ν(Θ 1 ) = r + 1. Since the degree d of Θ 1 satisfies d r + 1, using Mahler's argument, we see that Θ 1 has algebraic degree equal to r + 1. Note that for a general element α in F1, its exact algebraic degree is an undecided question.

Second and third families: F2 and F3. For an element α in F2, we assume (P, Q) = (ε 1 T, ε 2 ); and for an element α in F3, we assume (P, Q) = (ε 1 T 2 , ε 2 T ), where (ε 1 , ε 2 ) is a pair in (F * q ) 2 . Note that here we have r > 1 for elements in F2, but r > 2 for elements in F3. Our aim is to give the explicit continued fraction expansion for α. The integer 1, as above, is chosen arbitrarily. However we need to impose a restriction on the choice of the vector A , in both cases: we assume that T divides a i for all integers i with 1 i

. Then we can describe the sequence of partial quotients in the continued fraction expansion in both cases. Given A , chosen as indicated, for all integers n 0, we have: if α is in F2

a +4n+1 = a r 2n+1 ε 1 T , a +4n+2 = - ε 1 ε 2 T, a +4n+3 = - ε 2 2 a r 2n+2 ε 1 T , a +4n+4 = ε 1 ε 2 T and if α is in F3 a +4n+1 = a r 2n+1 ε 1 T 2 , a +4n+2 = - ε 1 ε 2 T, a +4n+3 = - ε 2 2 a r 2n+2 ε 1 , a +4n+4 = ε 1 ε 2 T.
The method to obtain these formulas is the same in both cases and it has been explained in [START_REF] Lasjaunias | Continued fractions for hyperquadratic power series over a finite field[END_REF]. Actually the formulas for α in F2 were published in [START_REF] Lasjaunias | Continued fractions for hyperquadratic power series over a finite field[END_REF] on the top of p.334. However, note that there is a mistake in the final statement given there and the pair (k, k + 1) to the right hand side of the first and third formulas must be replaced by the pair (2k -1, 2k). Concerning the formulas for α in F3, they were given by Firicel in [START_REF] Firicel | Sur le développement en fraction continue d'une généralisation de la cubique de Baum et Sweet[END_REF] (case ε 1 = ε 2 = -1). The reader is invited to consult this last work where the method is clearly explained. Note that the particular choice of the vector A , has been made in order to have an integer (polynomial) when dividing by T or T 2 (however a larger choice could have been possible for elements in F3, in a particular case: for example, if is odd, then it would be enough to assume that T divides a i only for odd indices i). Note that if we do not assume the particular choice we made for the vector A , the continued fraction for α does exist, but an explicit description is not given. We make a comment concerning the last family F3. It has been introduced to cover a particular case of historical importance. In his fundamental paper [START_REF] Mahler | On a theorem of Liouville in fields of positive characteristic[END_REF], Mahler presented the following power series

Θ 2 = 1/T + 1/T r + • • • + 1/T r n + • • • .
Note that Θ 2 can be regarded as a dual of the element Θ 1 in F1, presented above. However we clearly have Θ 2 = 1/T + Θ r 2 , hence Θ 2 is hyperquadratic and algebraic of degree r. Mahler observed that we have ν(Θ 2 ) = r, and therefore the algebraic degree of Θ 2 is equal to r. Now let us consider the element of F3 defined as above by the pair (P, Q) = (-T 2 , -T ) with = 1 and a 1 = T . Then α is the unique root in F(p) + of the following algebraic equation:

X r+1 -T X r + T X = 0.
Set β = 1/α, and we get β = 1/T + β r . Since 1/β is in F(p) + , we obtain

β = Θ 2 = 1/T + 1/T r + 1/T r 2 + • • •
Let us recall that the sequence of partial quotients for Θ 2 has been long known (see for example [13, p.633] with the references therein. See also [15, p.224] for a different approach). As we wrote in the introduction, we are interested in the leading coefficients of partial quotients. If (a n ) n 1 is the sequence of partial quotients for α, we denote by u(n) the leading coefficient of a n . If α is in F1, since we have

u( + m) = ε (-1) m (u(m)) r
for all integers m 1, it is easy to see that the sequence (u(n)) n 1 is purely periodic. The length of the period might be a multiple of , and it depends on the value for ε and the relationships between p, q and r.

Now we turn to the case where α belongs to F2 or F3. Both recursive definitions for the sequence of partial quotients, wether α is in F2 or F3, imply the same recursive definition for the corresponding sequence (u(n)) n 1 . More precisely, for all integers 1, given values u(1), u(2), . . . , u( ) in F * q , we have, for all integers n 0,

u( + 4n + 1) = ε -1 1 (u(2n + 1)) r , u( + 4n + 2) = -ε 1 ε -1 2 , u( + 4n + 3) = -ε -1 1 ε 2 2 (u(2n + 2)) r , u( + 4n + 4) = ε 1 ε -1 2 .
In the next section we shall see in Theorem 3 that sequences of this type, for all integers 1, are 2-automatic sequences. To conclude this section, we go back to the special element 1/Θ 2 in F3, and the associated sequence (u(n)) n 1 where l = 1 and u(1) = 1. The latter is remarkable and has been studied extensively (see for example [2, Section 6.5]). We define recursively the sequence of finite words (W n ) n 1 by W 1 = 1, and

W n+1 = W n , -1, W R
n , where commas indicate here concatenation of words, and W R n is the reverse of the finite word W n . Let W be the infinite word beginning with W n for all integers n 1. Then one can check that the sequence (u(n)) n 1 coincides with W , and it is a special paperfolding sequence which is known to be 2-automatic (see for example [2, Theorem 6.5.4]).

A family of automatic sequences

In this section, we begin with the definition of automatic sequences. For more details about this subject, see the book [START_REF] Allouche | Automatic sequences. Theory, applications, generalizations[END_REF] of Allouche and Shallit.

Let A be a finite nonempty set, called an alphabet, of which every element is called a letter. Fix ∅ an element not in A and call it an empty letter over A. Let n 0 be an integer. If n = 0, define A 0 = {∅}. For n 1, denote by A n the set of all finite sequences in A of length n. Put A * = +∞ n=0 A n . Every element w of A * is called a word over A and its length is noted |w|, i.e. |w| = n if w ∈ A n . Take w, v ∈ A * . The concatenation between w and v (denoted by w * v or more simply by wv) is the word over A which begins with w and is continued by v.

Now we give below a definition of finite automaton (see for example [START_REF] Eilenberg | Automata, Languages and Machines[END_REF]):

A finite automaton A = (S, s 0 , Σ, τ ) consists of

• an alphabet S of states; one state s 0 is distinguished and called initial state.

• a mapping τ : S ×Σ → S, called transition function, where Σ is an alphabet containing at least two elements.

For any a ∈ S, put τ (a, ∅) = a. Extend τ over S × Σ * (noted again τ ) such that ∀ a ∈ S and l, m ∈ Σ * , we have τ (a, lm) = τ (τ (a, l), m).

Let k 2 be an integer and Σ k = {0, 1, . . . , k -1}. We call v = (v(n)) n 0 a k-automatic sequence if there exist a finite automaton A = (S, s 0 , Σ k , τ ) and a mapping o defined on S such that v(0) = o(s 0 ), and for all integers n 1 with standard k-adic

expansion n = l j=0 n j k j , we have v(n) = o(τ (s 0 , n l • • • n 0 )).
We recall that all ultimately periodic sequences are k-automatic for all k 2, adding a prefix to a sequence does not change its automaticity, and that a sequence is k-automatic if and only if it is k m -automatic for all integers m 1. In this work, we consider sequences of the form v = (v(n)) n 1 , and we say that v is k-automatic if the sequence (v(n)) n 0 is k-automatic, with v(0) fixed arbitrarily. We have the following important characterization:

a sequence v = (v(n)) n 1 is k-automatic if and only if its k-kernel K k (v) = (v(k i n + j)) n 1 | i 0, 0 j < k i
is a finite set. The origin of this characterization for automatic sequences is due to S. Eilenberg [12, p.107], who was one of the first to publish a general treatise on this matter.

Let v = (v(n)) n 1 be a sequence. For all integers n 1, we define

(T 0 v)(n) = v(2n) and (T 1 v)(n) = v(2n + 1).
Then for all integers n, a 1, and 0 b < 2 a with binary expansion

b = a-1 j=0 b j 2 j (0 b j < 2),
with the help of the operators T 0 and T 1 , we obtain

v(2 a n + b) = (T ba-1 • T ba-2 • • • • • T b0 v)(n).
In particular, we obtain that v is 2-automatic if and only if both T 0 v, T 1 v are 2-automatic, for we have

K 2 (v) = {v} ∪ K 2 (T 0 v) ∪ K 2 (T 1 v).
With these definitions, we have the following theorem, which can be compared with a result of Allouche and Shallit (see [START_REF] Allouche | A variant of Hofstadter's sequence and finite automata[END_REF]Theorem 2.2]).

Theorem 2. Let m 0 be an integer, v = (v(n)) n 1 a sequence in an alphabet A, and σ a bijection on A.

(0 m ) If T 0 v is 2-automatic, and

(T 1 v)(n + m) = σ(v(n)) for all integers n 1, then v is 2-automatic; (1 m ) If T 1 v is 2-automatic, and (T 0 v)(n + m) = σ(v(n)) for all integers n 1, then v is 2-automatic.
Proof. Since A is finite, there exists an integer l 1 such that σ l = id A , the identity mapping on A.

In the following we shall show (0 m ) and (1 m ) by induction on m.

If m = 0, then under the conditions of (0 0 ), we have

T 1 v = σ(v) and K 2 (v) = {σ j (v) | 0 j < l} ∪ l-1 j=0 σ j (K 2 (T 0 v)). Thus K 2 (v) is finite since T 0 v is 2-automatic.
Similarly, under the conditions in (1 0 ), we have

T 0 v = σ(v) and K 2 (v) = {σ j (v) | 0 j < l} ∪ l-1 j=0 σ j (K 2 (T 1 v)). Thus K 2 (v) is finite since T 1 v is 2-automatic.
If m = 1, then we distinguish two cases below: Case (0 1 ): T 0 v is 2-automatic, and (T 1 v)(n+1) = σ(v(n)) for all integers n 1. Hence T 1 T 1 v = σ(T 0 v), and for all integers n 1, we have

(T 0 T 1 v)(n + 1) = (T 1 v)(2n + 2) = σ(v(2n + 1)) = σ((T 1 v)(n)).
Thus T 1 T 0 T 1 v = σ(T 0 T 1 v), and for all integers n 1, we have

(T 0 T 0 T 1 v)(n + 1) = (T 0 T 1 v)(2n + 2) = σ((T 1 v)(2n + 1)) = σ 2 (v(2n)) = σ 2 ((T 0 v)(n)).
So T 0 T 0 T 1 v is 2-automatic since it is obtained from σ 2 (T 0 v) by adding a letter before, and the latter is 2-automatic, for T 0 v is. Set w = T 0 T 1 v. Then T 0 w is 2-automatic, and T 1 w = σ(w). Thus by (0 0 ), we obtain that

T 0 T 1 v is 2-automatic. But T 1 T 1 v = σ(T 0 v) is also 2-automatic, consequently T 1 v is 2-automatic,
and then v is 2-automatic, for both T 0 v and T 1 v are 2-automatic.

Case (1 1 ):

T 1 v is 2-automatic, and (T 0 v)(n+1) = σ(v(n)) for all integers n 1. Hence T 1 T 0 v = σ(T 0 v),
and for all integers n 1, we have

(T 0 T 0 v)(n + 1) = (T 0 v)(2n + 2) = σ(v(2n + 1)) = σ((T 1 v)(n)).
So T 0 T 0 v is 2-automatic for it is obtained from σ(T 1 v) by adding a letter before. Set w = T 0 v. Then T 1 w = σ(w) and T 0 w is 2-automatic. Thus by (0 0 ), w = T 0 v is 2-automatic, and then v is 2-automatic since both T 0 v and T 1 v are 2-automatic. Now let m 1 be an integer, and assume that both (0 j ) and (1 j ) hold for 0 j m. Then [ m 2 ] + 1 m. We shall show that both (0 m+1 ) and (1 m+1 ) hold. For this, we distinguish two cases below:

Case (0 m+1 ): T 0 v is 2-automatic, and (T 1 v)(n+m+1) = σ(v(n)) for all integers n 0. We distinguish two cases again:

Case 1: m is odd. Then for all integers n 1, we have

(T 0 T 1 v)(n + [ m 2 ] + 1) = (T 1 v)(2n + m + 1) = σ(v(2n)) = σ((T 0 v)(n)), (T 1 T 1 v)(n + [ m 2 ] + 1) = (T 1 v)(2n + m + 2) = σ(v(2n + 1)) = σ((T 1 v)(n)). Hence T 0 T 1 v is 2-automatic for it is obtained from σ(T 0 v) by adding a prefix of length [ m 2 ] + 1. Put w = T 1 v.
Then T 0 w is 2-automatic, and for all integers n 1,

(T 1 w)(n + [ m 2 ] + 1) = σ(w(n)).
By applying (0

[ m 2 ]+1
) with w, we obtain at once that w is 2-automatic, and then v is 2-automatic since both T 0 v and T 1 v are 2-automatic.

Case 2: m is even. Then for all integers n 1, we have

(T 0 T 1 v)(n + [ m 2 ] + 1) = (T 1 v)(2n + m + 2) = σ(v(2n + 1)) = σ((T 1 v)(n)), (T 1 T 1 v)(n + [ m 2 ]) = (T 1 v)(2n + m + 1) = σ(v(2n)) = σ((T 0 v)(n)). So T 1 T 1 v is 2-automatic for it is obtained from σ(T 0 v) by adding a prefix of length [ m 2 ]. Put w = T 1 v. Then T 1 w is 2-automatic, and (T 0 w)(n+[ m 2 ]+1) = σ(w(n)), for all integers n 1. By applying (1 [ m 2 ]+1
) with w, we obtain that w is 2-automatic, and then v is 2-automatic since both T 0 v and T 1 v are 2-automatic.

Case (1 m+1 ): T 1 v is 2-automatic, and (T 0 v)(n+m+1) = σ(v(n)) for all integers n 0. We distinguish two cases again:

Case 1: m is odd. Then for all integers n 1, we have

(T 0 T 0 v)(n + [ m 2 ] + 1) = (T 0 v)(2n + m + 1) = σ(v(2n)) = σ((T 0 v)(n)), (T 1 T 0 v)(n + [ m 2 ] + 1) = (T 0 v)(2n + m + 2) = σ(v(2n + 1)) = σ((T 1 v)(n)).
Hence T 1 T 0 v is 2-automatic for it is obtained from σ(T 1 v) by adding a prefix of length [ m 2 ] + 1. Put w = T 0 v. Then T 1 w is 2-automatic, and for all integers n 1,

(T 0 w)(n + [ m 2 ] + 1) = σ(w(n)).
By applying (1 [ m 2 ]+1 ) with w, we obtain immediately that w is 2-automatic, and then v is 2-automatic since both T 0 v and T 1 v are 2-automatic.

Case 2: m is even. Then for all integers n 1, we have

(T 0 T 0 v)(n + [ m 2 ] + 1) = (T 0 v)(2n + m + 2) = σ(v(2n + 1)) = σ((T 1 v)(n)), (T 1 T 0 v)(n + [ m 2 ]) = (T 0 v)(2n + m + 1) = σ(v(2n)) = σ((T 0 v)(n)).
So T 0 T 0 v is 2-automatic for it is obtained from σ(T 1 v) by adding a prefix of length [ m 2 ] + 1. Put w = T 0 v. Then T 0 w is 2-automatic, and (T 1 w)(n + [ m 2 ]) = σ(w(n)), for all integers n 1. By applying (0

[ m 2 ]
) with w, we obtain that w is 2-automatic, and then v is 2-automatic since both T 0 v and T 1 v are 2-automatic.

Finally we conclude that both (0 m ) and (1 m ) hold for all integers m 0.

We can now prove that the sequences, associated with the elements of F2 and F3 and described at the end of the previous section are 2-automatic. This follows from the more general result stated below, which is a direct application of Theorem 2. Theorem 3. Let p be a prime number, s 1 an integer, and q = p s . Denote by F q the finite field in q elements. Set r = p t , with t 0 an integer. Fix α, β, γ, δ ∈ F * q , and 1 an integer. Let u = (u(n)) n 1 be a sequence in F * q such that for all integers n 0, we have [START_REF] Allouche | Automatic sequences. Theory, applications, generalizations[END_REF] u( + 4n + 1) = α(u(2n + 1)) r , u( + 4n + 2) = β, u( + 4n + 3) = γ(u(2n + 2)) r , u( + 4n + 4) = δ.

Then the sequence u is 2-automatic.

Proof. For all x, y ∈ F * q , we put σ y (x) = yx r . Then σ y is a bijection on F * q . For all integers n 1, set u 0 (n) = u(2n) and u 1 (n) = u(2n + 1), and we need only show that both u 0 and u 1 are 2-automatic. For this, we distinguish below four cases.

Case I: = 4m + 1, with m 0 an integer. Then for all integers n 0, from Formula (2), we deduce (T 0 u 1 )(n + m + 1) = u(4(n + m + 1) + 1) = u( + 4n + 4) = δ,

(T 1 u 1 )(n + m) = u(4n + 4m + 3) = u( + 4n + 2) = β.
Since both T 0 u 1 and T 1 u 1 are ultimately constant, then u 1 is ultimately periodic, and thus 2-automatic.

Similarly, for all integers n 0, we also have

(T 0 u 0 )(n + m + 1) = u(4(n + m + 1)) = u( + 4n + 3) = γ(u(2n + 2)) r = γ(u 0 (n + 1)) r , (T 1 u 0 )(n + m) = u(4n + 4m + 2) = u( + 4n + 1) = α(u(2n + 1)) r = α(u 1 (n)) r .
So T 1 u 0 is ultimately periodic as u 1 , and (T 0 u 0 )(n + m) = σ γ (u 0 (n)) for all integers n 1. Then by Theorem 3, we obtain that u 0 is 2-automatic.

Case II: = 4m + 2, with m 0 an integer. Then for all integers n 0, from Formula (2), we deduce

(T 0 u 0 )(n + m + 1) = u(4(n + m + 1)) = u( + 4n + 2) = β, (T 1 u 0 )(n + m + 1) = u(4n + 4m + 6) = u( + 4n + 4) = δ.
So u 0 is ultimately periodic, and thus 2-automatic.

Similarly, for all integers n 0, we also have

(T 0 u 1 )(n + m + 1) = u( + 4n + 3) = γ(u(2n + 2)) r = γ(u 0 (n + 1)) r , (T 1 u 1 )(n + m) = u( + 4n + 1) = α(u(2n + 1)) r = α(u 1 (n)) r .
Hence T 0 u 1 is ultimately periodic as u 0 , and (T 1 u 1 )(n + m) = σ α (u 1 (n)) for all integers n 1. Then by Theorem 3, we obtain that u 1 is 2-automatic.

Case III: = 4m + 3, with m 0 an integer. Then for all integers n 0, from Formula (2), we deduce

(T 0 u 1 )(n + m + 1) = u(4(n + m + 1) + 1) = u( + 4n + 2) = β, (T 1 u 1 )(n + m + 1) = u(4n + 4m + 7) = u( + 4n + 4) = δ.
So u 1 is ultimately periodic, and thus 2-automatic.

Similarly, for all integers n 0, we also have

(T 0 u 0 )(n + m + 1) = u(4(n + m + 1)) = u( + 4n + 1) = α(u(2n + 1)) r = α(u 1 (n)) r , (T 1 u 0 )(n + m + 1) = u(4n + 4m + 6) = u( + 4n + 3) = γ(u(2n + 2)) r = γ(u 0 (n + 1)) r .
Thus T 0 u 0 is ultimately periodic as u 1 , and (T 1 u 0 )(n + m) = σ γ (u 0 (n)) for all integers n 1. Then by Theorem 3, we obtain that u 0 is 2-automatic.

Case IV: = 4m + 4, with m 0 an integer. Then for all integers n 0, from Formula (2), we deduce

(T 0 u 0 )(n + m + 2) = u(4(n + m + 2)) = u( + 4n + 4) = δ, (T 1 u 0 )(n + m + 1) = u(4n + 4m + 6) = u( + 4n + 2) = β.
So u 0 is ultimately periodic, and thus 2-automatic.

Similarly, for all integers n 0, we also have

(T 0 u 1 )(n + m + 1) = u( + 4n + 1) = α(u(2n + 1)) r = α(u 1 (n)) r , (T 1 u 1 )(n + m + 1) = u( + 4n + 3) = γ(u(2n + 2)) r = γ(u 0 (n + 1)) r .
Hence T 1 u 1 is ultimately periodic as u 0 , and (T 0 u 1 )(n + m + 1) = σ α (u 1 (n)) for all integers n 1. Then by Theorem 3, we obtain that u 1 is 2-automatic.

Remark 1. As it is pointed out at the end of Section 2, the sequence associated with the special element 1/Θ 2 in F3, is a paperfolding sequence, thus not ultimately periodic (see for example [2, Theorem 6.5.3]). Inspired by this example, one can then ask whether the sequence u discussed in Theorem 3 can be ultimately periodic or not. Unfortunately for the moment, we do not know the answer of this problem.

A substitutive but not automatic sequence

In this section we are concerned with the following question: is it a specificity of (certain) hyperquadratic continued fractions to generate, in the way that we have described above, an automatic sequence? To such a wide question, we will only give a very partial answer, by considering a last example. As we remarked in the introduction, the possibility of describing explicitly the continued fraction expansion for an algebraic power series, which is not hyperquadratic, appears to be remote. However, a particular example, which was introduced by chance in [START_REF] Mills | Continued fractions for certain algebraic power series[END_REF], does exist. This example is the object of the theorem below.

First, we recall notions on substitutive sequences (see for example [START_REF] Allouche | Automatic sequences. Theory, applications, generalizations[END_REF]).

Let A be an alphabet with A = {a 1 , a 2 , ..., a N }. A substitution on A is a morphism σ : A * → A * . With the morphism σ, there is associated a matrix M σ = (m i,j ) 1 i,j N , where m i,j is the number of occurrences of a i in the word σ(a j ). Since M σ is a non-negative integer square matrix, by the famous Frobenius-Perron theorem (see for example [START_REF] Gantmacher | The theory of matrices[END_REF]), M σ has a real eigenvalue α, called the dominating eigenvalue of M σ , which is an algebraic integer and greater than or equal to the modulus of any other eigenvalue, thus a Perron number. If there exists a letter a ∈ A such that σ(a) = ax for some x ∈ A * \ {∅}, and lim n→∞ |σ n (a)| = +∞, then σ is said to be prolongable on a. Since for all integers n 0, σ n (a) is a prefix of σ n+1 (a), and |σ n (a)| tends to infinity with n, the sequence (σ n (a)) n 0 converges, But we also have W 1 = o(a), and W 2 = 1221 = o(abca) = o(σ(a)) = o(V 1 ), thus o(σ n (a)) satisfies the same relations as W n+1 , consequently they coincide. Set v = lim n→∞ σ n (a). Then σ(v) = v, and W = o(v). So W is substitutive. Finally we also have

M σ =   2 1 0 1 0 0 1 1 1   ,
whose characteristic polynomial is equal to (λ -1)(λ 2 -2λ -1), and 1 + √ 2 is the dominating eigenvalue. Hence W is (1 + √ 2)-substitutive. Since 1 + √ 2 is multiplicatively independent with all integers k 2, according to Cobham's characterization and Durand's theorem, we see that W cannot be k-automatic unless it is ultimately periodic. To conclude the proof, we need only prove that W is not ultimately periodic. To do so, we compute the frequency of 2 in W . For all integers n 0, put l n = |W n |. Then we have l 0 = 0, l 1 = 1, and l n = 2l n-1 + l n-2 + 2, for all integers n 2, from which we deduce l n = -1

+ 2+ √ 2 4 (1 + √ 2) n + 2- √ 2 4 (1 - √ 2)
n , for all integers n 0. For all integers n 0, let m n be the number of occurences of 2 in W n . Then m 0 = m 1 = 0, and m n = 2m n-1 + m n-2 + 2, for all integers n 2, from which we obtain m n = -1

+ 1 2 (1 + √ 2) n + ((1 - √ 2)
n , for all integers n 0. If W were ultimately periodic, then the frequency of 2 in W would exist, and it would be a rational number, in contradiction to lim n→∞ m n /l n = 2 -√ 2.
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and we denote its limits by σ ∞ (a). The latter is the unique infinite fixed point of σ starting with a. Let o be a mapping defined on A, extended pointwisely over A * ∪ A N . We put v = o(σ ∞ (a)), and call it an α-substitutive sequence.

We have the following important characterization for automatic sequences in terms of substitutive sequences, due to Cobham [START_REF] Cobham | Uniform tag sequences[END_REF]:

Now let α, β be two multiplicatively independent Perron numbers. By generalizing another classical theorem of Cobham [START_REF] Cobham | On the base-dependence of sets of numbers recognizable by finite automata[END_REF], Durand has finally shown in [11, Theorem 1, p.1801] the remarkable result that a sequence is both α-substitutive and β-substitutive if and only if it is ultimately periodic.

We can now state and prove the following theorem.

Theorem 4. The algebraic equation

. . , a n , . . .] be its continued fraction expansion and u(n) be the leading coefficient of a n for all integers n 1. The sequence W = (u(n)) n 1 is the limit of the sequence (W n ) n 0 of finite words over the alphabet {1, 2}, defined recursively as follows:

(3)

where commas indicate here concatenation of words. Then α is not hyperquadratic, and the sequence W = (u(n)) n 1 is substitutive but not automatic.

Proof. The existence in F(p) of the root of the quartic equation stated in this theorem was observed firstly by Mills and Robbins in [START_REF] Mills | Continued fractions for certain algebraic power series[END_REF], for all prime numbers p.

For p = 3, in the same work, a conjecture on its continued fraction expansion, based on computer observation, was given. Buck and Robbins established this conjecture in [START_REF] Buck | The continued fraction expansion of an algebraic power series satisfying a quartic equation[END_REF]. Shortly after another proof of this conjecture was given in [START_REF] Lasjaunias | Diophantine approximation and continued fraction expansions of algebraic power series in positive characteristic[END_REF]. We have α = [0, a 1 , a 2 , . . . , a n , . . .] and the sequence of polynomials (a n ) n 1 is obtained as the limit of a sequence of finite words (Ω n ) n 0 with letters in F 3 [T ], defined by: ( 4)

where commas indicate concatenation of words, and Ω

n-2 denote the word obtained by cubing each letter of Ω n-2 . Since x 3 = x for all x in F * 3 , we obtain immediately for W the desired formulas (3) from (4).

The fact that α is not hyperquadratic was proved in [START_REF] Lasjaunias | Diophantine approximation and continued fraction expansions of algebraic power series in positive characteristic[END_REF] (see the remark after Theorem A, p.209). Indeed the knowledge of the continued fraction allows to show that the irrationality measure is equal to 2. However the sequence of partial quotients is clearly unbounded, and it was proved by Voloch [START_REF] Voloch | Diophantine approximation in positive characteristic[END_REF] that if α were hyperquadratic with an unbounded sequence of partial quotients, then the irrationality measure would be strictly greater than 2 (the reader may consult [16, p.215-216], for a presentation of these general statements). For all integers n 0, set V n = σ n (a). Then for all integers n 2, we have

Now we show that