N

N

Fixed-Parameter Algorithms for Scaffold Filling

Laurent Bulteau, Anna Paola Carrieri, Riccardo Dondi

» To cite this version:

Laurent Bulteau, Anna Paola Carrieri, Riccardo Dondi. Fixed-Parameter Algorithms for Scaffold
Filling. ISCO, 2014, Lisbon, Portugal. 10.1007/978-3-319-09174-7_12 . hal-01260583

HAL Id: hal-01260583
https://hal.science/hal-01260583

Submitted on 22 Jan 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01260583
https://hal.archives-ouvertes.fr

Fixed-Parameter Algorithms for Scaffold Filling

Laurent Bulteau®, Anna Paola Carrieri2, and Riccardo Dondi®

! Department of Software Engineering and Theoretical Computer Science, Technische
Universitédt Berlin, Berlin - Germany
2 Dipartimento di Informatica, Sistemistica e Comunicazione, Universita degli Studi di
Milano-Bicocca, Milano - Italy
3 Dipartimento di Scienze Umane e Sociali, Universita degli Studi di Bergamo,
Bergamo - Italy
1.bulteau@gmail.com, annapaola.carrieri@disco.unimib.it,
riccardo.dondi@unibg.it

Abstract. In this paper we consider two combinatorial problems re-
lated to genome comparison. The two problems, starting from possibly
incomplete genomes produced from sequencing data, aim to reconstruct
the complete genomes by inserting a collection of missing genes. More
precisely, in the first problem, called One-sided scaffold filling, we are
given an incomplete genome B and a complete genome A, and we look
for the insertion of missing genes into B with the goal of maximizing
the common adjacencies between the resulting genome B’ and A. In
the second problem, called Two-sided scaffold filling, we are given two
incomplete genomes A, B, and we look for the insertion of missing genes
into both genomes so that the resulting genomes A’ and B’ have the same
multi-set of genes, with the goal of maximizing the common adjacencies
between A’ and B’. While both problems are known to be NP-hard,
their parameterized complexity when parameterized by the number of
common adjacencies of the resulting genomes is still open. In this paper,
we settle this open problem and we present fixed-parameter algorithms for
the One-sided scaffold filling problem and the Two-sided scaffold filling
problem.

1 Introduction

Genome comparison is a fundamental problem in bioinformatics, and it aims to
identify differences and similarities among genomes, with the goal of understand-
ing their function and evolutionary history. In this context several interesting
combinatorial problems have been introduced (see for example [10]).

The introduction of new sequencing techniques (Next Generation Sequencing
technologies, NGS) has led to a huge increase of the amount of DNA/RNA and
protein sequences available for genomic and trascriptomic analyses [4]. These high-
throughput sequencing technologies produce millions of short DNA/RNA reads
that are joined together into longer sequences by means of assembly algorithms.

However, due to limitations of the NGS technologies, the cost of finishing
a genome is still high compared to the cost of sequencing, hence most of the
released genomes are unfinished and incomplete [4].

The use of incomplete draft genomes (called scaffolds) in genomic analyses
may introduce errors. Hence, a relevant combinatorial problem is to fill the
scaffolds with missing genes in order to obtain complete genomes that are as
similar as possible to a given reference genome. Recently in [14] it has been
introduced the One-sided scaffold filling problem that consists of filling a scaffold
B in order to obtain a complete genome B’ such that the Double-Cut and Join
(DCJ) distance [16] (the minimum number of allowed rearrangement operations
transforming one genome into the other) between B’ and the reference genome
A is minimized. Moreover, Jiang et al. in [11] considered the Two-sided scaffold
filling problem, where the second genome A (on which the comparison is based)
is incomplete as well.

In this paper we consider a different similarity measure, that is the mazimum
number of common adjacencies between two genomes, which has been introduced
for the One-sided/Two-sided scaffold filling problems in [5]. Both problems are
NP-hard under this similarity measure [12]. However, it has been shown that
both problems admit constant factor approximation algorithms. In [12] it has
been given a factor % approximation algorithm for the One-sided scaffold filling
problem and a factor 2 approximation algorithm for the Two-sided scaffold filling
problem. The former approximation factor has been recently improved in [13],
where it has been presented an approximation algorithm of factor % for the
One-sided scaffold filling problem.

In this paper, we focus on the parameterized complexity of the two scaffold
filling problems. Parameterized complexity aims to characterize the complexity of
a problem with respect to interesting parameters, with the goal of understanding
if the exponential explosion of an exact algorithm can be confined only to the
considered parameters. For an introduction to parameterized complexity we refer
the reader to [8,15].

A first step in the analysis of the parameterized complexity of the One-sided
scaffold filling problem has started in [12]. The authors presented two Fixed
Parameter Tractable (FPT) algorithms for two special cases of the One-sided
scaffold filling problem. In the first case, the number k£ of common adjacencies
between a filled genome B’ and a reference genome A, and the maximal number
d of occurrences of a gene are considered as parameters, and it is presented
an FPT algorithm of time complexity O((2d)**poly(|A||B])). In the second
case, the authors consider, as parameters, the number k of common adjacencies
between a filled genome B’ and a reference genome A and the size ¢ of the
set of symbols (genes) and they give an FPT algorithm that runs in time
O(c**poly(|A||B|)). However, the parameterized complexity of the One/Two-
sided scaffold filling problems, when parameterized only by the maximum number
of common adjacencies k, has been left open in [12].

Our contribution. In this paper we present two FTP-algorithms for both
problems, thus answering an open question in [12]. More precisely, we present an
algorithm of time complexity 2°®) poly(|A||B|) for One-sided scaffold filling and
an algorithm of time complexity 20*1°8%)poly(|A||B|) for Two-sided scaffold
filling.

The rest of the paper is organized as follows. First, in Section 2 we introduce
some preliminary definitions and we formally define the two combinatorial prob-
lems we are interested in. Then, in Section 3, we describe the FPT algorithm
for the One-sided case, while in Section 4 we present the FPT algorithm for the
Two-sided case. We conclude the paper with some open problems. Some of the
proofs are omitted due to page limit.

2 Preliminaries

Let X be a non-empty finite set of symbols. An (unsigned) unichromosomal
genome A is represented as a string over an alphabet X, where the symbols in
A (that are genes) form a multiset [A] on X. For example A = abcdabedaa with
Y ={a,b,c,d} and [A] = {a,a,a,a,b,b,c,c,d,d}. We write Ali] for the symbol of
A in i-th position, and we write A[i. .. j] for the substring of A between positions
i and j.

Given a string A, an adjacency is an unordered pair of consecutive elements
of A (A[iJAli + 1] or A[i + 1]A[d]). A position ¢ induces an adjacency ab, if either
Ali] = a, A[i + 1] = b or A[i] = b and A[i + 1] = a. The endpoints of A, are the
first and the last position of A.

We write [A] for the multi-set of adjacencies of A (i.e., if A = abedabedaa,
then [A] = {aa, ab, ab, ad, ad, be, be, cd, cd}).

In order to deal with endpoints of the two strings, we assume that given a
string A, with |A| = n, A[1] = A[n] = £, where { is a dummy symbol. The dummy
symbols are not considered when defining the set of adjacencies [A], i.e. $A[1]
and A[nl]f are not in [A].

Comparing two strings A and B, we denote by X = [A] \ [B] the multi-set of
symbols of A missing in B, and by Y = [B] \ [4] the multi-set of symbols of B
missing in A. Given a multi-set of symbols [G] over alphabet X a scaffold is a
string on [G] with some missing elements.

The two scaffold filling problems we will deal with are based on the definition
of common adjacency between two genomes (strings).

Definition 1. Consider two strings A, B on alphabet X.. The multi-set of com-
mon adjacencies between A, B is defined as [A] N [B]. A matching M of the
adjacencies of A and the adjacencies of B is a relation between the positions of
A and the positions of B such that:

— for each position i of A or B, there exists at most one pair in M containing
i;

— for each position i of A and j of B, (i,j) € M if and only if position i and
position j induces the same adjacency;

— each position that induces a common adjacency belongs to some pair of M.

A position of A or B is matched, if it belongs to a pair of M. Informally, M
relates the positions inducing common adjacencies.

Given a scaffold B and a multi-set of symbols X, a string B’ is a filling of
B with X if (1) [B’] = [B]U X, and (2) B is a subsequence of B’ such that the
first and last symbols of B’ are respectively the first and last symbols of B.

In the following we give the definitions of the two Scaffold Filling problems
(parameterized versions) investigated in this paper.

One-sided Scaffold Filling to Maximize the Number of common
String Adjacencies (One-sided SF-MNSA)
Input: Two strings A and B, such that [B] C [A].
Output: A filling B’ of B with X = [A] \ [B] such that A and B’ have at least k
common adjacencies.
Parameter: k.

Two-sided Scaffold Filling to Maximize the Number of common
String Adjacencies (Two-sided SF-MNSA)
Input: Two strings A and B.
Output: A filling B’ of B with X = [A]\[B] and a filling A’ of A with Y = [B]\[4]
such that A’ and B’ have at least k¥ common adjacencies.
Parameter: k.

Notice that the restriction of Two-sided SF-MNSA with Y = () is exactly the
One-sided SF-MNSA problem.
Now, we discuss some properties that will be useful to design our FPT-

algorithms. First, we present the following property for the parameter k, proved
in [12].

Lemma 1 [12] Let A and B two strings on an alphabet X, X = [A] \ [B], and
Y = [B]\ [A]. Let k be the optimal number of common adjacencies for Two-sided
SF-MNSA between two fillings A" and B'. Then | X|,|Y]| < k.

Notice that Lemma 1 holds also for One-sided SF-MNSA, that is when Y = 0,
it holds | X| < k.

Let A and B be two strings of symbols over an alphabet X, which are
input of One-sided SF-MNSA or Two-sided SF-MNSA. Consider now the set
AD of common adjacencies between A and B. Notice that we can assume that
|AD| < k, otherwise we already know that One-sided SF-MNSA /Two-sided
SE-MNSA admits a solution consisting of at least k& common adjacencies. Now,
we can compute a partition of AD into two subsets as follows:

— the set AD,, C AD of common adjacencies that are preserved after the filling
of B and/or A;

— the set ADy,. C AD of common adjacencies that are broken by inserting
symbols of X = [A] \ [B] (of Y = [B]\ [4] respectively) into B (into A
respectively).

Then the following easy property holds.

Property 1 Let A and B be two strings of symbols over alphabet X and let
AD be the set of common adjacencies between A and B. Then, if there exists a

solution for the One-sided SF-MNSA /Two-sided SFMNSA that partitions the set
AD into the sets AD,,., ADy,, we can compute the partition of AD into the two
subsets ADy, and ADy, in time O(2%).

This property is implicitly used in the two fixed-parameter algorithms to
guess which adjacencies of the set AD will be preserved, that is those adjacencies
induced by positions where no insertion is possible when computing a filling of
an input string. Hence, in what follows, we assume that when a string is inserted
into A or B, then it is not inserted in a position associated with an adjacency in
AD,,.

Color Coding. The FPT-algorithms we present are mainly based on the color-
coding technique and on the perfect family of hash functions [1]. Color-coding
is a well-known technique for designing fixed-parameter algorithms, and it has
been applied to several combinatorial problems, for example for the longest path
problem [1], for the graph motif problem [9,6,2,7] and for problems on strings [3].

Informally, given a set U of size n, color-coding aims to identify a subset
S C U of size k by coloring the elements of U with k colors, so that each element
in S is associated with a distinct color. While enumerating the subsets having
size k of U takes time O(n*), by means of the coloring and using combinatorial
properties of the problem, in some cases it is possible to compute whether a
solution of size k exists in time f(k)poly(n), thus leading to an FPT algorithm.

We now introduce the definition of a perfect family of hash functions, which
are used to compute the coloring.

Definition 2. Let I be a set, a family F of hash functions from I to {c1,...,cx}
is called perfect if for any subset I' C I, with |I'| = k, there exists a function
f € F which is injective on I'.

A perfect family F of hash functions from I to {ci,...,c;}, having size
O(log |I|2°)), can be constructed in time O(2°®)|I|1log |I|) [1].

3 An FPT algorithm for One-sided SF-MINSA

In this section we present an FPT algorithm for One-sided SF-MNSA parameter-
ized by k, the number of common adjacencies between the input string A and the
filling B’ of B with the multi-set X of symbols of A missing in B. Recall that,
by Lemma 1, it holds |X| < k. Furthermore, we assume that we have already
computed the subset AD,, of AD (the common adjacencies of A, B) where no
insertion is possible during the filling (see Prop. 1).

Let C4 ={c1,...,cr} be a set of colors. Consider a family F' of perfect hash
functions from the positions inducing the adjacencies of A in ADj, to colors in
C4. Informally, the coloring is used to identify a matching of the positions of
A and the positions of B that induce new adjacencies due to the insertion of
symbols in X.

In the following, we assume that the coloring of the positions of A is induced
by some injective function f € F. Given a string S, S is colorful for C4 if there
exist {s. | ¢ € Ca} C [S] such that for each ¢ € C4 there is a position of A
colored by ¢ which induces the adjacency s.. Our objective is thus to compute a
filling of B colorful for C4.

We first focus on inserting a set of elements at one given position of B. Given
J a position in B, X; C X and C; C Cy, define Ins; (X;,C;) as follows:

1 if there exists a filling of B[j — 1, j] with X; which is
Ins; (X;,C5) = colorful for Cj,

0 else.

Using dynamic programming, Ins can be computed in time O(22Fk?) yielding
the following lemma.

Lemma 2 Let X; C X, C; C Ca4, such that |X,|,|C;| <k and j be an integer
s.t. 7 < |B|. Then we can compute Ins; (X;,C;) in time O(22kk2).

We now define a table Fill; (X', C")) computed by the following recurrence.
The objective, as stated in Lemma 3, is to determine whether a prefix of B can
be filled with any given subset of X so as to be colorful for any given subset
of CA.

Recurrence 1 Let X' C X, Cy C Cy.

— For j =1, let Filly (X', CY) = Ins; (X', CY).
— For all j > 2, let:

Fill; ; (X'\ X;,C% \ C;
Fill; (X',C)) = max L1 (X7 X, G G)
x;ex,c;ccy | Alns; (X5, C5)
In the following, we prove that Fill g (X, C4) allows us to determine whether
B admits a filling with £ common adjacencies.

Lemma 3 Let (A, B) be an instance of One-sided Scaffold Filling, X = [A]\ [B],
k be an integer, C'4 be a set of k colors, and F be a perfect family of hash
functions from the positions of A to C4. Then the following propositions are
equivalent:

(i) There exists a filling B' of B with X such that A and B’ have k common
adjacencies;

(ii) There exists a coloring f € F for which Fill g (X,C4) = 1.

Next, we show how the recurrence described in Recurrence 1 yields a dynamic
programming algorithm to solve One-sided SF-MNSA.

Theorem 1 Let A, B be two strings of symbols on an alphabet X and let
X = [A]\ [B] be the multiset of symbols missing in B. It is possible to compute a
solution of One-sided SF-MNSA in time O(2°®)poly(|A| + | Bl)).

Proof. Recurrence 1 yields a dynamic programming algorithm: for each j from 1
to n + 1, compute the entry Fill; (X', ") for each set X’ C X and C’) C C4.
Then, by Lemma 3, there exists a filling B’ of B creating |C4| = k& common
adjaciencies if and only if Fill g (X,Ca) = 1.

Now, we consider the time complexity of the algorithm. Write n = |A| + | B].
First, a perfect family of hash functions that color-codes the positions of A
can be computed in time 2O(k)poly(n). Once the family is computed, there are
20() Jog(n) color codings to iterate through. For each color coding, the table
Fill; (X', C") is computed in time O(22*k2n) (see Lemma 2). Then the O(22kn)
entries of table Fill; (X’,C") are computed, where each entry requires O(2%)
look-ups, depending on the choice of X; and C;. Thus Recurrence 2 requires
O(2*n) to compute table Fill; (X’,C"). Finally, the overall complexity is
indeed 29" poly(n). O

4 An FPT algorithm for Two-sided SF-MNSA

In this section, we consider the Two-sided SF-MNSA problem and we give a fixed-
parameter tractable algorithm for it. As for the One-sided case, the algorithm
is based on color-coding and dynamic programming. However, new challenges
appear which make the problem more complicated. First, there exist a new kind
of common adjacencies: with adjacencies that are created in the fillings although
they never appear as such in the input strings. Also, unlike the One-sided case,
it is not known a priori whether a given adjacency may be used in a common
adjacency or should be split to insert a substring. We deal with the first issue by
bounding (and enumerating) the possible arrangments of such rare adjacencies,
and with the second by introducing “insertion” colors, where corresponding
adjacencies can only be used to insert a substring, not to create a common
adjacency.

Given two strings A and B over alphabet X', denote by k the number of
common adjacencies between two fillings A’ and B’ of A, B respectively. Let
X = [A] \ [B] be the multi-set of symbols of A missing in B and let Y = [B]\ [4]
be the multi-set of symbols of B missing in A, where X,Y # () (otherwise the
problem is equivalent to One-sided SF-MNSA) and X (Y = 0 (by the definition
of sets X and Y for the Two-sided SF-MNSA).

Recall that, by Lemma 1, the following property holds: | X, |Y| < k. Further-
more, as in the previous section, we assume that we have already computed the
subset AD,, of [A] N [B], that is those common adjacencies of A, B, that must
be preserved during the filling (see Prop. 1).

Before giving the details of the FPT-algorithm, we present an (informal)
overview. A filling B’ (A’ respectively) of B (of A respectively) consists of
inserting substrings over alphabet X (over alphabet Y respectively) into B (into
A respectively). In the first step, the algorithm “guesses” how these insereted
strings are formed from X and Y (since | X|, |Y| < k, the number of cases to try
depends only on a function of k, see Prop. 2).

We now identify two kinds of common adjacencies for two fillings A’, B’. In
the first kind, one adjacency appears already in [A] or [B]: this case can be dealt
with as in the one-sided algorithm. In the second kind, both adjacencies have
been created during the filling, using one element from X in B’ and one from Y
in A’. They are called (X,Y)-adjacencies. Since X N'Y = (), such adjacencies use
ezxactly one element of X and Y, hence they consist of an endpoint of an inserted
string as well as a letter already present in the original strings A and B. The
second step of the algorithm consists in identifying and matching the endpoints
of strings which corespond to such (X, Y)-adjacencies (see Def. 4 and Prop. 3).

In Step 3 the algorithm opportunely color-codes the positions of A and B in
order to (i) match non (X,Y")-adjacencies (like in the previous algorithm), and
(ii) identify the positions of A and B where an insertion is possible (we will show
that the number of these positions is bounded by k in Remark 2). This allows,
in Step 4, to finally insert the strings into A and B by dynamic programming
while creating the remaining adjacencies (see Recurrence. 2).

Y = [B]\[A] = {b, b}

B b achb X =[A]\[B] = {a, d}
A' :a:;b>a:d"b>c
B & bBa c{cib

Fig.1: An instance of the Two-sided SFMNA problem. Given two scaffolds A
and B, we obtain the filled genomes A’ and B’ by inserting symbols X in B and
Y in A (inserted symbols are in red). Lines connect common adjacencies, dotted
lines connect (X,Y)-adjacencies.

We can now present the details of the algorithm.

Step 1: Compute inserted strings.

Let Sx and Sy be the two multi-sets of strings over the multi-sets X and
Y that have to be inserted in B and A respectively in an optimal solution. The
algorithm simply iterates through all such pairs (Sx, Sy) of multi-sets of strings
over (X,Y): in some iteration, the correct pair (Sx, Sy) is clearly considered.
The following property bounds both the number of possible pairs (Sx, Sy) and
the number of positions where strings can be inserted in A and B.

Property 2 Let X, Y be two multi-sets of symbols to be inserted into the strings
B and A respectively. Then (1) the number of positions in each of A, B where a
string of Sy, Sx is inserted is bounded by k and (2) the number of possible multi-
sets Sx and Sy of strings over X, Y to be inserted into B and A respectively is
bounded by O(k2F).

Step 2: Identify (X,Y)-adjacencies.

We first define formally the concept of (X,Y)-adjacency (see Fig. 1 for an
example).

Definition 3. Consider a filling B’ of B with X and a filling A’ of A with Y.
A common adjacency z € [A'|U[B'] is an (X,Y)-adjacency if it is induced by
positions i, j of A’, B’ respectively, and either A'[i] or A'[i + 1] is the endpoint
of an inserted string s, € Sx, and either B'[§] or B'[j + 1] is the endpoint of an
inserted string s, € Sy.

Notice that, since X NY =), it follows that any new common adjacency of A’
(of B’ respectively) is either not involved in an insertion (hence, in one string, it
is induced by a position where no string is inserted), or it is an (X, Y")-adjacency.

Now, the algorithm defines which endpoints of the strings in Sx, Sy induce a
common (X, Y)-adjacency. Denote by Ex (Ey respectively), the set of endpoints
of the strings in set Sx (in set Sy respectively). We consider a procedure, called
number assignment, that associates with each endpoint in Fx and Fy a number
which identifies the (X,Y)-adjacency, if any, which uses this endpoint.

Definition 4. A number assignment for the strings in Sx USy is the data of an
integer k' and of a function from Ex U Ey to {0,1,...,k'}, where each number
{1,...,K'} is assigned to exactly one endpoint in Ex and one endpoint in Ey .

Consider a solution, a corresponding number assignment is obtained as follows.
Let k' be the number of (X, Y')-adjacencies. Consider an endpoint ¢, € Ex U Ey,
then:

— Endpoint e, is associated with 0 iff it is not involved in an (X, Y')-adjacency;
— Endpoint e, is associated with a number ¢ € {1,...,k'} iff it is involved in
the i-th (X, Y)-adjacency.

The set E% C Ex (E{ C Ey) denotes the set of endpoints of Ex (of Ey
respectively) associated with a positive number.

The following property gives an easy upper bound on the number of such
assignments.

Property 3 There are at most (2k)*+1 number assignments.

Hence, in what follows assume that the algorithm guesses the correct number
assignment to Ex U Ey. Now, we show how we can bound the possible symbols
that are adjacent to an endpoint in F’ U EY.. First, we introduce the following
definition.

Definition 5. Consider a string s, € Sx (s, € Sy respectively). Let e, € E'
(ey € E% respectively) be an endpoint of s, (of s, respectively). Then, v(ey)
(v(ey) respectively) is the symbol of Y (of X respectively) adjacent to e, in B’
(to ey in A’ respectively).

Notice that the number assignment immediately defines the values v(e;), v(ey),
for each e, € E', e, € EY. Indeed, if e, € F'y and e, € EY are associated with
the same number ¢, then v(e;) must be the symbol contained in s,[e,], while
v(ey,) must be the symbol contained in s;[e,].

Remark 1 A number assignment uniquely determines the value v(eyz) for e, €
E\ UE;,.

Using this value, the algorithm creates the following table which tells whether
or not, according to (X,Y)-adjacencies, a string can be inserted at a certain
position. Let Z be an input string among A, B, s € Sz , and j € {1,...,|Z|}.
Write s; and s, for the left and right endpoints of s respectively:

0 if (s; € B, and Z[j — 1] # v(s1))
XY-Fits; (Z,s) = or (s, € EY and Z[j] # v(s,))
1 otherwise.

Step 3: Color-code the positions in A and B.

We are now able to define the color-coding of the positions of A and B.
Consider a coloring f of the positions of A and B with a set C of z, z < 2k,
colors. Moreover, we partition C' into disjoint subsets Car,4, Cum, B, Cr,4, Cr.B
defined as follows:

— Let Ca,p (C,a respectively) be a set of colors associated with positions
of B (of A respectively) that matches positions of A’ (of B’ respectively).
Notice that in a position colored by Cas,a (Car, respectively) a string of
Sx (of Sy respectively) cannot be inserted.

— Let Cr,g (Cr,a respectively) be a set of colors assigned to positions in B
(in A respectively) where insertions of strings of Sx (of Sy respectively) are
allowed.

Note that, since Sx, Sy and the number assignment with &’ (X, Y)-adjacencies
are fixed, we only consider partitions where |C7 4| = |Sy|, |C1 58| = |Sx|, and
|Crr,al + |Cr Bl + K = F.

There are k values of z to test. For each z, there are O(2°(*) logn) colorings
[1], and for each coloring, 4* ways of partitionning C' into Cps 4, Cum.5, Cr,4,
C7.p. Overall, there are thus O(2°*) logn) cases to consider.

Step 4: Insert strings by dynamic programming.

Now, we can define the dynamic programming recurrence. Similarly to the
One-sided case, we define Insz ; (s,Cuy ;), where C}, ;. C Cyw and W, Z are
different strings of {A, B}, as follows:

1 if XY-Fits; (Z,s) =1 and the string Z[j — 1]sZ[j]
Insz; (s,Cnmy) = is colorful for Cyy j,

0 otherwise.

Similary to Property 2, any entry Insyz ; (s, CMW) can be computed in time
O(2%n).

Lemma 4 Let CJ/\LW C Cyw, and j be an integer s.t. j < |W/|. Then we can
compute Insz ; (s,C)y) @n time O(2%%n).

10

We can now compute a filling of B satisfying all the above constraints.
We define the following table Fill-B; (SS(,C’}V[,A,C’},B) for each S% C Sk,
Cyra €©Cua, Crp CCrpand 0 <j <|[B].

Recurrence 2 Let S% C Sy, C}\/[,A C Cumya, C’},B CCrB

— For j =0, Fi11-B; (S%,Ciy 4, C1) = 1 iff S% = Cyya = Crp = 0.

— Forallj > 1, Fill-B; (S&,C;VI,A,C}7B) =1 iff one of the following is true:
- Fi11-B;_; (S%,Cly 4. C 5) = 1.
- f(j) € Cr g and 3s; € S%,Cnr,; € Cy 4 such that

Fill-B; 1 (S% \ {s2}, Chra \ Car, Crp \ {f(4)})
Alnspg (Sz, CMJ)

A filling of A is computed using a table Fill-A; (S, Cu,p,Cr,a) defined
similarly.

Lemma 5 Let (A, B) be an instance of One-sided Scaffold Filling, X = [A]\[B],
Y = [B]\ [A], k be an integer, C be a set of colors, and F be a perfect family of
hash functions from the positions of A and B to C. Then the following propositions
are equivalent:

(i) There exists a filling A’ of A with' Y and a filling B' of B with X such that
A’ and B’ have k common adjacencies;

(ii) There exist two multi-sets of strings Sx and Sy over X, Y, a number
assignment, a color-coding f € F' and a partition C' = Cpr, aUCh,gUCT 4UCT B
such that Fill—A‘A‘ (Sy, CM,B, CLA) = Fill—B|B‘ (Sx, C]W,A, OI,B) =1.

We present now the main result of this section.

Theorem 2 Let A, B be two strings over alphabet X and let X = [A]\ [B] be the
multiset of symbols of A missing in B and Y = [B] \ [4] the multiset of symbols
of B missing in A. It is possible to compute a solution of Two-sided SFMNSA
over instance (A, B) in time 20*198%) poly (n).

Proof. The correctness of the algorithm is directly given by Lemma 5: once a
perfect family of hash functions F is fixed and two multi-sets of strings Sx
and Sy over X, Y, a number assignment, a color-coding f € F' and a partition
C = Cp,aUCn,BUCT 4 UCT B are selected by exhaustive branching, it suffices to
compute the entries Fill-A 4| (Sy,Cur,B,Cr,4) and Fill-B|p (Sx, C,4,Cr,B),
and return the corresponding fillings of A and B if both entries are equal to 1.
The time complexity of the algorithm is dominated by the iteration over all
possible pairs (Sx, Sy) and of the number assignment. The number of possible sets
Sx, Sy is bounded by k2* from Prop. 2. By Prop. 3 there are O(2k**1) number
assignments to iterate through. The dynamic programming recurrence requires
time O(2%n). Since a family of perfect hash function of size O(2°®)poly(n))
can be computed in time O(2°®poly(n)) [1], and the possible partitions of C
into sets Car,a, Cm.B, Cr,4, Car,p are less than 94k (including the constraint
|Cral + |Cu,sl + k' = k), it follows that the overall time complexity of the
algorithm is bounded by O((2k)?*+120F) poly(n)) = 20108 %) poly(n). O

11

5

Conclusion

In this paper we presented two FPT algorithms for the One-sided SF-MNSA
problem and the Two-sided SF-MNSA problem. There are some interesting
open problems from an algorithmic perspective. First, it would be interesting to
improve upon the time complexity of the algorithms we presented. Moreover, the
approximation complexity of the Scaffold Filling problems, in particular of the
Two-sided case, should be further investigated. An interesting open problem in
this direction is whether it is possible to design an approximation algorithm for
Two-sided SF-MNSA with approximation factor better than 2.

References

1.

2.

©ww

10.

11.

12.

13.

14.

15.

16.

Alon, N.; Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844-856
(1995)

Betzler, N., van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.:
Parameterized algorithmics for finding connected motifs in biological networks.
IEEE/ACM Trans. Comput. Biology Bioinform. 8(5), 1296-1308 (2011)
Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y.: Variants of constrained
longest common subsequence. Inf. Process. Lett. 110(20), 877-881 (2010)

Chain, P., Gratham, D., Fulton, R., Fitzgerald, M., Hostetler, J., Muzny, D., Ali, J.,
et al: Genome project standards in a new era of sequencing. Science 326, 236—237
2009

(Chen? Z., Fu, B., Yang, B., Xu, J., Zhao, Z., Zhu, B.: Non-breaking similarity of
genomes with gene repetitions. Proc. of the 18th Symposium on Combinatorial
Pattern Matching (CPM 2007) LNCS 4580, 119-130 (2007)

Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pattern
matching. J. Discrete Algorithms 9(1), 82-99 (2011)

Dondi, R., Fertin, G., Vialette, S.: Finding approximate and constrained motifs in
graphs. Theor. Comput. Sci. 483, 10-21 (2013)

Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)

Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for
finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799-811 (2011)

Fertin, G., Labarre, A., Rusu, 1., Tannier, E., Vialette, S.: Combinatorics of genome
rearrangements. The MIT Press, Cambridge (2009)

Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint
distance. In: Tannier, E. (ed.) RECOMB-CG 2010 LNCS, 6398, 83-92 (2010)
Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and
related distances. IEEE/ACM Trans. Comput. Biology Bioinform 9(4), 1220-1229
2012

(Liu, 13?, Jiang, H., Zhu, D., Zhu, B.: Approximation algorithm for scaffold filling to
maximize the common adjacencies. COCOON 2013 pp. 397-408 (2013)

Munoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold filling,
contig fusion and gene order comparison. BMC Bioinformatics 11, 304 (2010)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 3340-3346
(2005)

12

