
HAL Id: hal-01260577
https://hal.science/hal-01260577

Submitted on 22 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed-parameter algorithms for scaffold filling
Laurent Bulteau, Anna Paola Carrieri, Riccardo Dondi

To cite this version:
Laurent Bulteau, Anna Paola Carrieri, Riccardo Dondi. Fixed-parameter algorithms for scaffold filling.
Theoretical Computer Science, 2015, 568, �10.1016/j.tcs.2014.12.005�. �hal-01260577�

https://hal.science/hal-01260577
https://hal.archives-ouvertes.fr

Fixed-Parameter Algorithms for Scaffold Filling?

Laurent Bulteau1, Anna Paola Carrieri2, and Riccardo Dondi3

1 Department of Software Engineering and Theoretical Computer Science, Technische
Universität Berlin, Berlin - Germany

2 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di
Milano-Bicocca, Milano - Italy

3 Dipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo,
Bergamo - Italy

l.bulteau@gmail.com, annapaola.carrieri@disco.unimib.it,

riccardo.dondi@unibg.it

Abstract. The new sequencing technologies, called next-generation se-
quencing, provide a huge amount of data that can be used to reconstruct
genomes. However, the methods applied to reconstruct genomes often
are not able to reconstruct a complete genome and provide only an in-
complete information. Here we consider two combinatorial problems that
aim to reconstruct complete genomes by inserting a collection of missing
genes. The first problem we consider, called One-sided scaffold filling,
given an incomplete genome B and a complete genome A, asks for the
insertion of missing genes into an incomplete genome B with the goal of
maximizing the common adjacencies between genomes B′ (resulting from
the insertion of missing genes in B) and A. The second problem, called
Two-sided scaffold filling, given two incomplete genomes A, B, asks for
the insertion of missing genes into both genomes so that the resulting
genomes A′ and B′ have the same multiset of genes and the number of
common adjacencies between A′ and B′ is maximized. Both problems
were proved to be NP-hard, while their parameterized complexity, when
the parameter is the number of common adjacencies of the resulting
genomes, was left as an open problem. In this paper, we settle this open
problem by presenting fixed-parameter algorithms for One-sided scaffold
filling and Two-sided scaffold filling.

1 Introduction

Comparative genomics is a widely investigated field of bioinformatics in which
the genomic features of different organisms are compared in order to identify bio-
logical differences and similarities. The genomic features include DNA sequences,
genes, regulatory sequences and other genomic structural landmarks [22]. The
ultimate goal of the approaches in this field is to understand genome functions,
relationships between organisms and their evolutionary history. In this context,
several interesting combinatorial problems have been introduced and studied by
the computer science community (see for example [13]).

? A preliminary version of this paper appeared in the proceedings of ISCO 2014

The introduction of Next Generation Sequencing (NGS) technologies lead to
a huge increase on the amount of DNA/RNA and protein sequences available for
genomic and trascriptomic analyses [7]. NGS technologies produce millions of
short DNA/RNA fragments, called reads, that are joined together to reconstruct
longer sequences. While NGS technologies generate such a huge amount of data,
the cost of obtaining a complete genome is still high, in particular if compared
to the cost of sequencing. Due to this fact, often released genomes are unfinished
and incomplete [7]. When used in genomic analyses, incomplete draft genomes
(also called scaffolds) may introduce errors. Hence, a relevant problem for genome
comparison is the filling of scaffolds with missing genes, by mean of combinatorial
algorithms, in order to reconstruct complete genomes that share a high level of
similarities with a known reference genome.

A combinatorial problem that has been introduced recently is the One-sided
scaffold filling problem [20]. Such problem consists of filling a scaffold B so that
the resulting complete genome B′ minimizes the Double-Cut and Join (DCJ)
distance [23] with respect to the reference genome A. Given two genomes, the
DCJ distance is the minimum number of allowed rearrangement operations that
transform one genome into the other. The authors presented a polynomial-time
algorithm for the problem when the input genomes do not contain duplicated
genes.

Later in [16], the scaffold filling problem has been investigated considering
both the DCJ distance and the breakpoint distance. Given two related sequences
A and B, two consecutive elements ai and ai+1 in A form an adjacency if they
are also consecutive in B independently from the order (i.e., as aiai+1 or ai+1ai),
otherwise they form a breakpoint. Therefore, the breakpoint distance between A
and B is defined as the number of breakpoints in A, which is equal to that of B.
In [16] Jiang et al. introduced a new related variant of the combinatorial problem,
called Two-sided scaffold filling problem, where both genomes are incomplete. The
authors show that when the input genomes do not contain gene repetitions the
problem is polynomially solvable under both the DCJ distance and the breakpoint
distance. However, when genomes contain duplicated genes, the scenario changes.
Indeed, the authors showed that the One-sided problem is NP-complete even
under the breakpoint distance.

In this paper we consider a different similarity measure to compare genomes,
namely the maximum number of common adjacencies between two genomes.
This measure has been introduced for the One-sided/Two-sided scaffold filling
problems in [8]. The two problems were both proved to be NP-hard under this
similarity measure [17]. The same paper has investigated the approximation
complexity of the two problems, showing a 2-approximation algorithm for the
Two-sided scaffold filling problem, and a 4

3 -approximation algorithm for the
One-sided scaffold filling problem. This latter result has been recently improved
in [18], where an approximation algorithm of factor 5

4 for the One-sided scaffold
filling problem has been presented. An approximation algorithm for a related
variant of the problem has been given in [19].

2

In this paper, we focus on the parameterized complexity of One-sided scaffold
filling and Two-sided scaffold filling. Parameterized complexity aims to investigate
the computational complexity of a problem with respect to a set of interesting
parameters, with the goal of understanding if the exponential explosion of an
exact algorithm can eventually be confined only to the considered parameters
(and not to the overall input). We refer the reader to [11,21] for an introduction
to parameterized complexity.

A preliminary analysis of the parameterized complexity of the One-sided
scaffold filling problem started in [17]. The authors presented two Fixed Parameter
Tractable (FPT) algorithms for One-sided scaffold filling, under two different
parameterizations. In the first case, they considered as parameters the number k
of common adjacencies between a filled genome B′ and a reference genome A,
and the maximal number d of occurrences of a gene inside a genome, and gave
an FPT algorithm of time complexity O((2d)2kpoly(|A||B|)). In the second case,
the authors considered as parameters the number k of common adjacencies
between a filled genome B′ and a reference genome A and the size c of the
alphabet (that is the set of genes), and gave an FPT algorithm of time complexity
O(c2kpoly(|A||B|)). A natural problem, left open in [17], is to consider the
parameterized complexity of One-sided and Two-sided scaffold filling, when
parameterized only by the maximum number of common adjacencies k.

Our contribution. In this paper we present two FTP-algorithms for both
Scaffold Filling problems, thus answering the open question in [17]. More precisely,
we give an algorithm of time complexity 2O(k)poly(|A||B|) for One-sided scaffold
filling and an algorithm of time complexity 2O(k·log k)poly(|A||B|) for Two-sided
scaffold filling, where k is the number of common adjacencies between the resulting
genomes (A and B′ for the One-sided case, A′ and B′ for the Two-sided case).
We point out that the contribution of the paper is mainly theoretical, since in
practice the parameter k is often close to the length of the genomes.

The rest of the paper is organized as follows. First, in Section 2 we introduce
some preliminary definitions that will be useful in the rest of the paper and we
give the formal definition of the two Scaffold Filling problems. In Section 3, we
present the FPT algorithm for the One-sided case, while in Section 4 we present
the FPT algorithm for the Two-sided case. We conclude the paper with some
possible future directions.

2 Preliminaries

Let Σ be an alphabet, that is a non-empty finite set of symbols. We represent an
(unsigned) unichromosomal genome A as a string over alphabet Σ. It follows that
the symbols in A (where each symbol represents a gene) form a multiset on Σ,
denoted by [A]. Consider, for example, the string A = abcdabcdaa on alphabet
Σ = {a, b, c, d}, then [A] = {a, a, a, a, b, b, c, c, d, d}. Given a string A, we denote
by A[i] the symbol of A in i-th position, and by A[i . . . j] the substring of A that
starts at position i and ends in position j. Moreover, we denote the size of A

3

by |A|. Note that since we mostly work with multi-sets, operations ∪, ∩ and \
are implicitely understood to be multi-set operations.

Given a string A, an adjacency of A is an unordered pair of consecutive
elements of A, that is A[i]A[i + 1] or A[i + 1]A[i], with 1 ≤ i ≤ |A| − 1. We
say that a position i, 1 ≤ i ≤ |A|, induces an adjacency ab, if (A[i] = a and
A[i+ 1] = b) or (A[i] = b and A[i+ 1] = a). We denote by JAK the multi-set of
adjacencies of A. Following the previous example, where A = abcdabcdaa, we have
that the multi-set of adjacencies of A is JAK = {aa, ab, ab, ad, ad, bc, bc, cd, cd}).

The endpoints of A, are its first and last position, that is A[1] and A[|A|]. In
order to deal with endpoints of the two strings, for all the strings we consider,
we assume that the first and the last positions contain a dummy symbol], that
is not contained in any other position. Formally, for a string A, with |A| = n, it
holds A[1] = A[n] =] and A[i] 6=] when 2 ≤ i ≤ n− 1. Notice that the dummy
symbol is not considered when the set of adjacencies JAK is defined, i.e.]A[2]
and A[n− 1]] are not in JAK.

When comparing two input strings A and B, we denote by X = [A] \ [B] the
multi-set of symbols of A missing in B, and by Y = [B] \ [A] the multi-set of
symbols of B missing in A. Given a multi-set of symbols on an alphabet Σ, a
scaffold is a string on Σ with some missing elements with respect to another
string. For the One-sided scaffold filling problem, the multi-set Y is empty.

The two scaffold filling problems we consider in this paper are both based on
the definition of common adjacency between two genomes (strings) (refer to Fig.
1 for an example).

Definition 1. Consider two strings A, B on alphabet Σ. The multi-set of com-
mon adjacencies between A, B is defined as JAK ∩ JBK. A matching M of the
adjacencies of A and the adjacencies of B is a relation between the positions of A
and the positions of B such that:

– for each position i of A or B, there exists at most one pair in M containing i;
– for each position i of A and j of B, (i, j) ∈M if and only if position i and

position j induce the same adjacency;
– each position that induces a common adjacency belongs to some pair of M .

We say that a position of A or B is matched, if it belongs to a pair of M .
Informally, M relates the positions inducing common adjacencies of the two
strings A and B. Notice that, unlike in permutations, where every position of
a permutation inducing a common adjacency matches exactly one position in
the other permutation, in strings a position of one string inducing a common
adjacency may correspond to many positions of the second string (in Fig. 1, notice
that position 1 of A, inducing adjacency ab, can match position 4 or position 5
of B′).

Given a scaffold B and a multi-set X of symbols, a string B′ is called a filling
of B with X if

1. [B′] = [B] ∪X
2. B is a subsequence of B′ such that the first and last symbols of B′ are

respectively the first and last symbols of B.

4

X = [A] \ [B] = {b, b, e}

A

B'

A

B

a b a c b d b e

c d a a b

c d a a bb b e

a a c b d b eb

Fig. 1: An instance for the One-sided SF-MNSA problem. Given the complete
genome A and the scaffold B, we compute the filled genome B′ by inserting
the symbols of X in B. The lines between A and B′ connect positions inducing
common adjacencies and represent a matching M between the adjacencies of A
and B′. The number of common adjacencies between A and B′ is 5.

Now, we are ready to present the formal definitions of the two Scaffold Filling
problems investigated in this paper. Notice that, since we are interested in the
parameterized complexity of the two problems, we give the definitions of the
parameterized versions of the two problems.

One-sided Scaffold Filling to Maximize the Number of common
String Adjacencies (One-sided SF-MNSA)

Input: Two strings A and B, such that [B] ⊆ [A].
Output: A filling B′ of B with X = [A] \ [B] such that A and B′ have at least k
common adjacencies.
Parameter: k.

Two-sided Scaffold Filling to Maximize the Number of common
String Adjacencies (Two-sided SF-MNSA)

Input: Two strings A and B.
Output: A filling B′ of B with X = [A]\[B] and a filling A′ of A with Y = [B]\[A]
such that A′ and B′ have at least k common adjacencies.
Parameter: k.

Notice that the One-sided SF-MNSA problem can be seen a restriction of
Two-sided SF-MNSA with Y = ∅.

Now, we discuss some properties that will be useful to design our FPT-
algorithms. First, we present the following property for the parameter k, proved
in [17].

Lemma 1 [17] Let A and B two strings, X = [A] \ [B], and Y = [B] \ [A].
Let k be the optimal number of common adjacencies for Two-sided SF-MNSA
between two fillings A′ and B′. Then |X|, |Y | ≤ k.

5

Notice that, since One-sided SF-MNSA problem can be seen as a restriction
of Two-sided SF-MNSA, Lemma 1 holds also for One-sided SF-MNSA, that is
when Y = ∅, it holds |X| ≤ k.

Let A and B be two strings of symbols over an alphabet Σ, which are input
of One-sided SF-MNSA or Two-sided SF-MNSA, and consider the multiset AD of
common adjacencies between A and B. We can assume that |AD| < k, otherwise
we already know that One-sided SF-MNSA/Two-sided SF-MNSA admits a
solution consisting of at least k common adjacencies. Now, since |AD| < k, we
can compute a partition of AD into two subsets as follows:

– the multiset ADpr ⊆ AD of common adjacencies that are preserved after the
filling of B and/or A;

– the multiset ADbr ⊆ AD of common adjacencies that are broken by inserting
symbols of X = [A] \ [B] (of Y = [B] \ [A] respectively) into B (into A
respectively).

Then the following easy property holds.

Property 1 Let A and B be two strings on alphabet Σ and let AD be the multiset
of common adjacencies between A and B. Consider a solution for One-sided
SF-MNSA/Two-sided SF-MNSA that partitions AD into multisets ADpr, ADbr,
then we can compute the partition of AD into the two multisets ADpr and ADbr
in time O(2k).

Proof. Recall that |AD| < k, since otherwise we already know that the One-
sided/Two-sided SF-MNSA problem admits a solution consisting of at least k
common adjacencies. Then, it easy to see that there can be at most 2k sub-
sets ADpr of AD, hence at most 2k subsets ADbr of AD. ut

This property is implicitly used in the two fixed-parameter algorithms, pre-
sented in the next sections, in order to guess which adjacencies of the set AD will
be preserved. The latter adjacencies are induced by positions where no insertion
is possible when a filling of an input string is computed. Hence, we assume in
the following that when a string is inserted into A or B, it is not inserted in a
position that induces an adjacency in ADpr.

Color-Coding. The FPT algorithms we present are based on a well-known tech-
nique to design FPT algorithms, called color-coding [1]. Originally introduced to
identify subgraphs such as simple paths inside a larger graph [1], color-coding has
been applied to many graph problems, for example for the graph motif problem
and variant thereof [12,9,2,10]. We apply this technique in a different context,
that is for string comparison, following some recent examples [5,6].

Informally, given a set U of size n, the color-coding technique aims to find a
solution S ⊆ U of size k by coloring the elements of U with k colors, so that each
element of S is associated with a distinct color. While enumerating the subsets
having size k of U takes time O(nk), by means of the coloring and applying
combinatorial properties of the problem, it is possible in some cases to compute

6

whether a solution of size k exists in time f(k)poly(n), thus leading to an FPT
algorithm.

We now introduce the definition of a perfect family of hash functions, which
are used to compute the coloring.

Definition 2. [1] Let I be a set, a family F of hash functions from I to
{c1, . . . , ck} is called perfect if for any subset I ′ ⊆ I, with |I ′| = k, there
exists a function f ∈ F which is injective on I ′.

A perfect family F of hash functions from I to {c1, . . . , ck}, having size
O(log |I|2O(k)), can be constructed in time O(2O(k)|I| log |I|) [1].

3 An FPT algorithm for One-sided SF-MNSA

In this section we present an FPT algorithm for the One-sided SF-MNSA problem
parameterized by the number k of common adjacencies between the input string A
and a filling B′ of B with the multi-set X. We recall that X = [A] \ [B] and that
by Lemma 1, it holds |X| ≤ k. Furthermore, we assume that we have already
computed the two subset ADpr and ADbr of AD (the common adjacencies of A,
B) and that no insertion is possible during the filling in a position associated
with an adjacency of ADpr by the matching M of the common adjacencies of A
and B (see Prop. 1).

Let CA = {c1, . . . , ck} be a set of colors. Consider a family F of perfect hash
functions from the positions inducing the adjacencies of A in ADbr (recall that
ADbr = AD \ ADpr) to colors in CA. Informally, the coloring is used to identify
those positions of A that, due to the insertion of symbols in X, match positions
of B, hence inducing new adjacencies.

In the following, we consider a function f ∈ F , for the positions of A, and
we assume that such a function f is injective with reference to a filling B′ of B,
that is if there exists a filling B′ that induces k common adjacencies, we assume
that the positions of A inducing these common adjacencies are colored with k
distinct color by f .

Given a string S, S is said colorful for CA if there exist {sc | c ∈ CA} ⊆
(JSK∩ JAK), such that for each c ∈ CA there is a position of A colored by c which
induces the adjacency sc. Our objective is thus to compute a filling B′ of B which
is colorful for CA.

The algorithm is based on two levels of dynamic programming recurrences.
First, we present a dynamic programming recurrence to compute if there exists a
string on X to be inserted at a given position j of A so that the resulting string is
colorful for a given set Cj ⊆ CA. Then, this result is used to define the dynamic
programming recurrence for the insertion of a set of symbols in the string B[1, j]
so that the result is colorful for a set C ′ ⊆ CA.

7

Inserting symbols at a specific position. We first focus on inserting a given
set of symbols at one given position of B. Given a position j in B, two sets
Xj ⊆ X and Cj ⊆ CA, define Insj (Xj , Cj) ∈ {0, 1} as follows:

Insj (Xj , Cj) = 1⇔ there exists a filling of B[j − 1, j] with Xj which is

colorful for Cj .

Note that Insj (∅, ∅) = 1 for all j. In the following lemma, we show that Ins
can be computed in time O(22kk2) by dynamic programming.

Lemma 2 We can compute the values of Insj (Xj , Cj) — where Xj ⊆ X,
Cj ⊆ CA with |Xj |, |Cj | ≤ k, and j is an integer with 1 < j ≤ |B| — in overall
time O(22kk2|B|).

We compute the table Insj (Xj , Cj) by dynamic programming. More precisely,
for any fixed j, we compute a table Addα (X ′, C ′) ∈ {0, 1} defined over all subsets
X ′ ⊆ X, C ′ ⊆ C and symbols α ∈ X ′ as follows:

Addα (X ′, C ′) = 1⇔ there exists a string s′ with symbols [s′] = X ′ so that

the concatenation s = B[j − 1]s′ is colorful for C ′,

and the rightmost symbol of s is α

Intuitively, Add gives, for any set of colors C ′, the strings formed over X which
are colorful for C ′ if inserted after B[j − 1]. In fact, rather than computing the
precise ordering of each such string, the table only focuses on the set of symbols
(X ′) and the last symbol (α) for each one. Moreover, for any given j, the table
Add contains enough information to deduce the values of Insj (Xj , Cj) for all
pairs (Xj , Cj).

We prove that table Add can be computed using the following dynamic
programming recurrence.

Recurrence 1 Let X ′ ⊆ X,C ′ ⊆ CA, α ∈ Σ.

– if X ′ = ∅, then Addα (∅, C ′) = 1 iff C ′ = ∅ and α = B[j − 1]
– if |X ′| > 0 and α /∈ X ′, then Addα (X ′, C ′) = 0.
– if |X ′| > 0 and α ∈ X ′, then:

Addα (X ′, C ′) = max
β∈X′\{α}

Addβ (X ′ \ {α}, C ′)
∨∃c ∈ C ′, Addβ (X ′ \ {α}, C ′ \ {c}) and there exists

a position of A colored by c that induces

an adjacency αβ

Proof. Base case. Easily, any string s′ with [s′] = ∅ yields s = B[j−1]s′ = B[j−1].
Hence s is only colorful for the empty set of colors, and its last symbol is
α = B[j − 1].

8

Recurrence. The case where α /∈ X ′ is equally trivial (any s′ with [s′] = X ′

would be non-empty and have a last letter in X ′, and so would s = B[j − 1]s′).
We now consider the case where α ∈ X ′. Assume that, for some β ∈ X ′ \ {α}, we
have Addβ (X ′ \ {α}, C ′) = 1 or ∃c′ ∈ C ′, Addβ (X ′ \ {α}, C ′ \ {c′}) = 1. In the
former case there exists a string s′ such that B[j − 1]s′ is colorful for C ′, hence
also B[j − 1]s′α is colorful for C ′. In the latter case there exists a string s′ such
that B[j− 1]s′ is colorful for C ′ \ {c′}, where β is the last symbol of s′. Moreover,
there exists a position of A colored by c′ that induces an adjacency βα, hence
string s = B[j − 1]s′α is colorful for C ′. Note that in both cases, [s′] = X ′ \ {α}
and [s′α] = X ′.

Reciprocally, assume that Addα (X ′, C ′) = 1, i.e. there exist strings s′ and s
ending with α such that [s′] = X ′ and s = B[j−1]s′ is colorful for C ′. Let j = |s|,
and consider the substring s∗ = s[1, j − 1]. Then s∗ is colorful for some C∗ ⊆ C ′
and write β for the last symbol of s∗. By definition, Addβ (X ′ \ {α}, C∗) = 1.
Now, we have two possible cases. If βα does not induce a common adjacency
(that is s∗ is colorful for C ′), then Addβ (X ′ \ {α}, C∗) = 1. If βα induces a
common adjacency (that is s∗ is colorful for C∗ = C ′ \ {c′}, for some c′ ∈ C ′),
then Addα (X ′ \ {α}′, C ′ \ {c′}) = 1. In both cases, the recurrence correctly sets
Addα (X ′, C ′) to 1.

ut

We now have all the tools to prove Lemma 2.

Proof (of Lemma 2). For any j, 1 < j ≤ |B|, the table Add can be computed
using Recurrence 1. It is easy to deduce the values of Insj :

Insj (Xj , Cj) = max
α∈Xj

Addα (Xj , Cj)

∨∃c ∈ C, Addα (Xj , Cj \ {c}) and there exists

a position of A colored by c that induces

an adjacency αB[j]

Indeed, if Insj (Xj , Cj) = 1, then it follows that there is a substring s over
alphabet Xj , such that B[j − 1]sB[j] is colorful for Cj . Write α for the last
symbol of B[j − 1]s. Then, either the substring B[j − 1]s is colorful for Cj , hence
Addα (Xj , Cj) = 1, or B[j − 1]s is colorful for Cj \ {c′}, for some color c′ ∈ Cj ,
hence Addα (Xj , Cj \ {c′}) = 1, and there exists a position of A colored by c′ that
induces an adjacency αB[j]. The reciprocal is clear with a similar decomposition.

Now, we discuss the time complexity of computing Addα (X ′, C ′). Table
Addα (X ′, C ′) consists of O(22kk) entries, since |X ′|, |C ′| ≤ k, hence we have 2k

possible subsets of each X ′ ⊆ X, C ′ ⊆ CA. Each entry is computed in time O(k2),
since the algorithm looks for at most k2 entries in the table, depending on the
chosen β ∈ X ′ and c ∈ C ′, and |X ′|, |C ′| ≤ k. Given the table Addα (X ′, C ′), the
time complexity to compute each entry Insj (Xj , Cj) is O(k2), since again in the
worst case we have to look for k2 entries, depending on the chosen α ∈ Xj and
c ∈ Cj . This process has to be repeated O(n) times, varying j ≤ |B|. Hence the
overall time complexity to compute the whole table Insj (Xj , Cj) is O(22kk2n).

ut

9

Inserting symbols in a prefix of B. Next we consider the general problem
of inserting a multiset of symbol in different positions of a prefix of B.

Given a multiset X ′ ⊆ X of symbols and a set C ′A ⊆ CA of colors, define
Fillj (X ′, C ′A) ∈ {0, 1} as follows:

Fillj (X ′, C ′A) = 1⇔ there exists a filling of B[1, . . . , j] with X ′ which is

colorful for C ′A.

We now prove that Fillj (X ′, C ′A) satisfies the following recurrence property.
The objective, as stated in Lemma 3, is to determine whether a prefix of B can
be filled with a given multiset of symbols X ′ contained in X, so that the resulting
filling is colorful for a subset of CA.

Recurrence 2 Let X ′ ⊆ X, C ′A ⊆ CA.

– For j = 2, Fill2 (X ′, C ′A) = Ins2 (X ′, C ′A).
– For all j > 2,

Fillj (X ′, C ′A) = max
Xj⊆X′,Cj⊆C′

A

{
Fillj−1 (X ′ \Xj , C

′
A \ Cj)

∧ Insj (Xj , Cj)

Proof. Base case. The case j = 2 is easily deduced by definition: Fillj (X ′, C ′A) =
1 if and only if Insj (X ′, C ′A) = 1.

Consider j > 2, and assume that Fillj (X ′, C ′A) = 1, that is there exists
a filling B′ of B[1, . . . , j] with X ′ colorful for C ′A. Consider the set of symbols
Xj ⊆ X inserted in position j of B and let Cj be a set of colors such that
there exists a set of positions of A colored by Cj associated by the matching
with adjacencies using elements of Xj . By definition, Insj (Xj , Cj) = 1 and
Fillj−1 (X ′ \Xj , C

′
A \ Cj) = 1, hence the recurrence formula correctly sets

Fillj (X,CA) to 1.
Assume now that Insj (Xj , Cj) = 1 and Fillj−1 (X ′ \Xj , C

′
A \ Cj) = 1 for

some Xj ⊆ X ′, Cj ⊆ C ′A, that is the recurrence formula sets Fillj (X ′, C ′A) to
1. Then by definition it follows that there exists a filling of B[1, . . . , j − 1] with
X ′ \Xj which is colorful for C ′A \Cj and a filling of B[j − 1, j] with Xj which is
colorful for Cj . Hence concatenating the two fillings (the filling of B[1, . . . , j − 1]
and the filling between B[j − 1, j]), we obtain a filling B′ of B[1, . . . , j] with X ′

which is colorful for C ′A, thus Fillj (X ′, C ′A) = 1. ut

In the following, we prove the correctness of Recurrence 2, that is that
Fill|B| (X,CA) allows us to determine whether B admits a filling with k common
adjacencies.

Lemma 3 Let (A,B) be an instance of One-sided Scaffold Filling, X = [A]\ [B],
k be an integer, CA be a set of k colors, and F be a perfect family of hash
functions from the positions of A to CA. Then the following propositions are
equivalent:

10

(i) There exists a filling B′ of B with X such that A and B′ have k common
adjacencies;
(ii) There exists a coloring f ∈ F for which Fill|B| (X,CA) = 1.

Proof. (i)⇒(ii) Let B′ be a filling of B with X such that A and B′ have k
common adjacencies; write I ′ = JAK ∩ JB′K. Since |I ′| = k, there exists f ∈ F
such that f is injective on the positions of A that induce I ′. For each color c ∈ CA,
there exists an adjacency f(c) in B′ such that f(c) is induced by a position of A
colored by c, hence B′ is colorful for CA. By definition of Fill, we thus have
Fill|B| (X,CA) = 1.

(ii)⇒(i) Assume that for some f ∈ F , Fill|B| (X,CA) = 1, then there exists a
filling of B with X colorful for CA. For each c ∈ CA, let xc be the unique position
of A colored by c inducing a common adjacencies with B′. Then {xc | c ∈ CA} is
a set of positions of size k yielding k common adjacencies between A and B′. ut

Next, we show how the recurrence described in Recurrence 2 yields a dynamic
programming algorithm to solve One-sided SF-MNSA.

Theorem 1 Let A, B be two strings of symbols on an alphabet Σ and let
X = [A] \ [B] be the multiset of symbols missing in B. It is possible to compute a
solution of One-sided SF-MNSA in time 2O(k)poly(|A|+ |B|).

Proof. By Lemma 3, it suffices to compute a family F of hash functions from the
positions of A to CA. Then the problem admits a solution if and only if there
exists a coloring f ∈ F for which Fill|B| (X,CA) = 1. Recurrence 2 together with
Lemma 2 yields a dynamic programming algorithm to compute Fill|B| (X,CA)
for each coloring.

Now, we consider the time complexity of the algorithm. Write n = |A| +
|B|. First, a perfect family F of hash functions that color-codes the positions
of A can be computed in time 2O(k)poly(n). Once the family is computed,
the algorithm iterates over the 2O(k) log(n) possible functions f ∈ F and the
respective color codings. For each function f ∈ F , the table Insj (X ′, C ′A) is
computed in time O(22kk2|B|) (see Lemma 2). Then the O(22k|B|) entries of table
Fillj (X ′, C ′A) are computed (Recurrence 2), where each entry requires O(22k)
look-ups, depending on the choice of Xj and Cj . Thus the algorithm requires
O(24kn) time to compute table Fillj (X ′, C ′A). Finally, the overall complexity is
indeed 2O(k)poly(n). ut

4 An FPT algorithm for Two-sided SF-MNSA

In this section, we consider the Two-sided SF-MNSA problem and we present
a fixed-parameter tractable algorithm for it. As for the One-sided case, the
algorithm is based on color-coding and dynamic programming. However, the
same approach described in the previous section cannot be applied directly and
new challenges make Two-sided SF-MNSA more complicated than One-sided SF-
MNSA. First, there exist a new kind of common adjacencies, namely adjacencies

11

that are created in the fillings although they never appear as such in any of the
input strings. Also, unlike the One-sided case, it is not known a priori whether a
given adjacency of the string A may be used in a common adjacency or should
be split to insert a substring. We deal with the first issue by bounding (and
enumerating) the possible arrangements of such adjacencies, and with the second
by introducing “insertion” colors, so that the positions associated with such colors
can only be used to insert a substring and not (directly) to create a common
adjacency.

Given two strings A and B over alphabet Σ, denote by k the number of
common adjacencies between two fillings A′ and B′ of A, B respectively. We
denote by X = [A] \ [B] the multi-set of symbols of A missing in B and by
Y = [B] \ [A] the multi-set of symbols of B missing in A, where X,Y 6= ∅
(otherwise the problem is equivalent to One-sided SF-MNSA) and X

⋂
Y = ∅

(by the definition of sets X and Y for the Two-sided SF-MNSA).
Recall that, by Lemma 1, the following property holds: |X|, |Y | ≤ k. Further-

more, as in the previous section, we assume that we have already computed the
subset ADpr of JAK ∩ JBK, that is those common adjacencies of A and B, that
must be preserved during the filling (see Prop. 1).

Before giving the details of the FPT-algorithm, we present an informal
overview. A filling B′ (A′ respectively) of B (of A respectively) consists of
inserting substrings on alphabet X (on alphabet Y respectively) into B (into A
respectively). Now, the algorithm consists of four steps.

Step 1. In the first step, the algorithm “guesses” (that is iterates over all possible
cases) how the letters from X and Y should be arranged into strings to be inserted
into A and B. Such strings are called filler strings. Note that we do not guess
the insertion point of those strings, and since |X|, |Y | ≤ k, the number of cases
to try depends only on a function of k (see Prop. 2).

Step 2. The second phase identifies two kinds of common adjacencies for two
fillings A′, B′. In the first kind, one adjacency appears already in JAK or JBK:
this case can be dealt with as in the One-sided algorithm. In the second kind,
both adjacencies inducing a common adjacency of A′ and B′ have been created
during the filling, using one element from X in B′ and one from Y in A′. They
are called (X,Y)-adjacencies. Since X ∩ Y = ∅, such adjacencies use exactly one
element of X and one element of Y . Therefore these adjacencies consist of an
endpoint of an inserted string as well as a symbol already present in the original
strings A and B. The second step of the algorithm identifies and matches the
endpoints of inserted strings (computed in Step 1) which correspond to such
(X,Y)-adjacencies (see Def. 4 and Prop. 3).

Step 3. In the third step, the algorithm opportunely color-codes the positions
of A and B with two disjoint sets of colors, in order to:

1. match non (X,Y)-adjacencies (like in the previous algorithm)
2. identify the positions of A and B where an insertion is possible (we will show

that the number of these positions is bounded by k in Remark 2)

12

Step 4. Step 4 finally inserts the strings into A and B by dynamic programming,
while creating the remaining adjacencies (see Recurrence 3).

a bcb

a a c Y = [B] \ [A] = {b, b}

A'

B'

A

B

d

c da a bb

a a d bb

X = [A] \ [B] = {a, d}

c

Fig. 2: An instance of the Two-sided SF-MNSA problem. Given two scaffolds A
and B, we obtain the filled genomes A′ and B′ by inserting symbols X in B and Y
in A (inserted symbols are in red). Straight Lines connect common adjacencies,
dotted lines connect (X,Y)-adjacencies. Notice for example that the bd common
adjacency is an (X,Y)-adjacency induced by the insertion of b into string A and
of d into string B.

Now we are able to present the details of the different steps of the algorithm.

Step 1: Compute filler strings.
Consider a solution of Two-sided SF-MNSA (A′, B′) inducing k common

adjacencies. We call filler string a non-empty string consisting of elements of X
or of Y inserted into B or A to create B′ or A′. We write SX and SY for the two
multi-sets of filler strings over the multi-sets X and Y that are inserted into B
and A respectively. The algorithm simply iterates through all such pairs (SX , SY)
of multi-sets of strings over (X,Y): in some iteration, the correct pair (SX , SY)
will eventually be considered. The following property bounds both the number of
possible pairs (SX , SY) and the number of positions where filler strings can be
inserted into A and B.

Property 2 Let X, Y be two multi-sets of symbols to be inserted into the string B
and A respectively. Then (1) the number of positions in each of A, B where a filler
string is inserted is bounded by k and (2) the number of possible multi-sets SX
and SY of filler strings over X, Y to be inserted into B and A respectively is
bounded by O(k2k).

Proof. (1) The property follows easily from the fact that, since |X|, |Y | ≤ k,
|SX |, |SY | ≤ k.

(2) By Lemma 1, |X|, |Y | ≤ k. Now, consider w.l.o.g. a multi-set SX of filler
strings inserted into B. This multi-set obviously consists of at most k strings,
where each one has length bounded by |X| ≤ k. Hence, the number of possible
multi-sets of filler strings to be inserted into B is bounded by O(kk). We can
conclude that the overall possible multi-sets of filler strings over X, Y inserted
into B and A respectively, in order to obtain two fillings B′, A′, is bounded by
O(k2k). ut

13

Step 2: Identify (X,Y)-adjacencies.
We first define formally the concept of (X,Y)-adjacency (see Fig. 2 for an

example).

Definition 3. Consider a filling B′ of B with X and a filling A′ of A with Y .
A common adjacency z ∈ JA′K ∪ JB′K is an (X,Y)-adjacency if it is induced by
positions i, j of A′, B′ respectively, such that

– one of A′[i] or A′[i+ 1] is the endpoint of a filler string sy ∈ SY ,
– and one of B′[j] or B′[j + 1] is the endpoint of a filler string sx ∈ SX

Notice that, since X ∩ Y = ∅, it follows that any new common adjacency
of A′ (of B′ respectively) is either involved in only one insertion (hence, in one
input string, it is induced by a position where no insertion occurs), or it is an
(X,Y)-adjacency.

Now, the algorithm considers the endpoints of the filler strings computed in
the previous step, and defines which endpoints induce a common (X,Y)-adjacency.
Denote by EX (EY respectively), the set of endpoints of the strings in set SX
(in set SY respectively). Note that we consider that each string yields two end-
points, even length-one filler strings. In order to compute which endpoints of EX
and EY induce a common (X,Y)-adjacency, we use a procedure, called number
assignment, that associates with each endpoint in EX and EY a number which
identifies the (X,Y)-adjacency, if any, which uses this endpoint. The procedure
assumes that k′ is the number of induced (X,Y)-adjacencies.

Definition 4. A number assignment for the strings in SX ∪ SY is a function
from EX ∪ EY to {0, 1, . . . , k′}, where each number {1, . . . , k′} is assigned to
exactly one endpoint in EX and one endpoint in EY .

Consider a solution of Two-sided SF-MNSA, a corresponding number as-
signment is obtained as follows (recall that k′ denotes the number of (X,Y)-
adjacencies). Consider an endpoint ez ∈ EX ∪ EY , then:

– endpoint ez is associated with 0 if and only if it is not involved in an (X,Y)-
adjacency;

– endpoint ez is associated with a number i ∈ {1, . . . , k′} if and only if it is
involved in the i-th (X,Y)-adjacency.

The set E′X ⊆ EX (E′Y ⊆ EY) denotes the set of endpoints of EX (of EY
respectively) associated with a positive number.

Next, we show how to compute a number assignment in time O((4k)k+1). The
following property gives an easy upper bound on the number of such assignments.

Property 3 There exist at most (4k)k+1 number assignments.

Proof. Notice that |EX∪EY | ≤ 4k, since |SX |, |SY | ≤ k. Moreover, each endpoint
is assigned a number in {0, 1, . . . , k′}, with k′ ≤ k, hence there exist at most
(4k)k+1 number assignments. ut

14

The algorithm iterates over each possible number assignment, hence, in what
follows we assume that the algorithm guesses the correct number assignment to
EX ∪ EY .

Once we have defined through the number assignment which endpoints in
E′X ∪ E′Y induce a common adjacency, we have to bound the possible symbols
adjacent to an endpoint in E′X ∪ E′Y . Indeed, when we will insert into A a filler
string sy whose endpoint induces an (X,Y)-adjacency, we will not be able to
define a matching between this adjacency and an adjacency of B, because we
still have to insert the “companion” strings in B (that is the filler string sx
that induces an (X,Y)-adjacency with sy). However, by restricting the possible
symbols that must be made adjacent to the filler strings, we will be able to ensure
that a common adjacency is eventually induced.

Now, we show how we can restrict the possible symbols that are adjacent to
an endpoint in E′X ∪ E′Y . First, we introduce the following definition.

Definition 5. Consider a solution (A′, B′) to the scaffold-filling problem and a
filler string sx ∈ SX (sy ∈ SY respectively). Let ex ∈ E′X (ey ∈ E′Y respectively)
be an endpoint of sx (of sy respectively) yielding an (X,Y)-adjacency. Then we
define v(ex) (v(ey) respectively) as the symbol of Y (of X respectively) adjacent
to ex in B′ (to ey in A′ respectively).

The symbols v(ex), v(ey), for each ex ∈ E′X , ey ∈ E′Y are immediately deduced
from the number assignment. Indeed, if ex ∈ E′X and ey ∈ E′Y are associated
with the same number i (that is they induce an (X,Y)-adjacency), then v(ex)
must be the symbol of the filler strings at endpoint ey, while v(ey) must be the
symbol at endpoint ex.

Remark 1 A number assignment uniquely determines the value v(ez) for ez ∈
E′X ∪ E′Y .

Proof. Consider the case that ex ∈ EX and ey ∈ EY are associated by the
number assignment with the same number i ∈ {1, . . . , k′}. Since X ∩ Y = ∅, it
follows that ex must be inserted in a position of B containing the same symbol
as ey and ey must be inserted in a position of A containing the same symbol
as ex. ut

Using the number assignment and the values v(ez), with ez ∈ E′X ∪ E′Y , the
algorithm creates the following table which tells whether, according to (X,Y)-
adjacencies, a filler string can be inserted at a certain position. We define the table
for filler strings of SX , the definition for SY being similar. Let j ∈ {1, . . . , |B|}, s
be a filler string in SX , and sl, sr for the left and right endpoints of s respectively:

XY-FitsB,j (s) =

0 if (sl ∈ E′X and B[j − 1] 6= v(sl))

or (sr ∈ E′X and B[j] 6= v(sr))

1 otherwise.

Step 3: Color-code the positions in A and B.

15

Our next goal is to distinguish, for each input string, adjacencies that need
to be broken to insert a filler string, from adjacencies that will yield a common
adjacency when the other filling is created. Since there are at most k adjacencies
of either kind, we use color-coding to achieve this goal. Consider a coloring f ∈ F
of the positions of A and B with a set C of z, k ≤ z ≤ 2k, colors. We partition
C into disjoint subsets CM,A, CM,B , CI,A, CI,B defined as follows:

– Let CM,B (CM,A respectively) be a set of colors associated with positions
of B (of A respectively) that matches positions of A′ (of B′ respectively).
Notice that in a position colored by CM,A (CM,B respectively) a string of SX
(of SY respectively) cannot be inserted.

– Let CI,B (CI,A respectively) be a set of colors assigned to positions in B
(in A respectively) where insertions of strings of SX (of SY respectively) are
allowed.

Since the two multisets of strings SX , SY are fixed, and the number assignment
of the k′ (X,Y)-adjacencies is fixed, we only consider partitions where |CI,A| =
|SY |, |CI,B | = |SX |, and |CM,A|+ |CM,B |+ k′ = k.

Step 4: Insert strings by dynamic programming.

Now we have all the tools to decide where each string must be inserted.
Thanks to Steps 1–3, we can now deal with both sides independently, hence
without loss of generality we describe the algorithm inserting filler strings of SX
in B. The constraints one needs to observe are the following.

– Filler strings are inserted at positions colored by CI,B . Note that we do not
require to insert a filler string in every colors of CI,B : we only need to ensure
that no adjacency having a color in CM,B is broken.

– (X,Y)-adjacencies are created as guessed during Step 3, that is each filler
string s inserted at position j yields XY-FitsB,j (s) = 1

– The remaining created adjacencies yield enough common adjacencies with A.
More precisely, for each color c ∈ CM,A, we create at least one adjacency
which can be matched to an adjacency with color c in A.

The first two constraints can clearly be checked in constant time for any filler
string s at any position j. The third constraint is dealt with as follows.

Let s ∈ SX be a filler string, and j be a position of B. Let H be the substring
of B[j−1]sB[j] from which B[j−1] is removed if sl ∈ E′B and from which B[j] is
removed if sr ∈ E′B . That is, if the string s is inserted at position j in B, then H
covers the positions which may create a common adjacency which is not an
(X,Y)-adjacency. In order to determine whether H induces enough new common
adjacencies for a given set of colors, we define Col-FitsB,j (s, Cj) ∈ {0, 1} for all
Cj ⊆ CM,A:

Col-FitsB,j (s, Cj) = 1⇔ H is colorful for Cj

16

Combining with the first two constraints, and similarly to the One-sided case,
we define InsB,j (s, Cj) ∈ {0, 1}, where Cj ⊆ CM,A, as follows:

InsB,j (s, Cj) = 1⇔ B[j − 1] is assigned a color in CI,B

∧ XY-FitsB,j (s) = 1

∧ Col-FitsB,j (s, Cj) = 1

We extend the definition to deal with the empty string ε:

InsB,j (ε, Cj) = 1⇔ Cj = ∅

Here table InsB,j (s, Cj) is easier to compute than in the one-sided case,
because the string to be insterted is known (and not only the set of its elements).
Each entry can be computed in time O(k3) using a matching algorithm.

Lemma 4 Let j be an integer s.t. j ≤ |B| and Cj ⊆ CM,B. Then we can compute
InsB,j (s, Cj) in time O(k3).

Proof. Recall that the color ofB[j−1] is known from Step 3 and that XY-FitsB,j (s)
is directly deduced from the number assignment computed at Step 2. Hence com-
puting InsB,j (s, Cj) only requires to compute the value of Col-FitsB,j (s, Cj),
which in turn goes down to deciding whether a given string H is colorful for a
given set of colors Cj . This can be achieved as follows.

Let H = JHK be the multiset of adjacencies of H (that is, the ones created
by inserting string s which need to cover all colors in Cj). Create a bipartite
graph G with vertex set H ∪ Cj . Add an edge (h, c) for each h ∈ H and c ∈ Cj
such that there exists a position with color c inducing an adjacency h. Then
string H is colorful for C if and only if graph G admits a matching covering
all vertices of Cj . The existence of such a matching can be determined in

time O(
√
|H|+ |Cj ||H||Cj |) = O(k3) [15]. We can then deduce the values of

Col-FitsB,j (s, Cj) and InsB,j (s, Cj). ut

We can now compute a filling of B satisfying all the above constraints. We
do this by dynamic programming, i.e. filling progessively B while keeping track
of inserted substrings and covered colors.

Definition 6. Let S′X ⊆ SX , C ′M,A ⊆ CM,A, and 1 ≤ j ≤ |B|. We define

Fill-Bj
(
S′X , C

′
M,A

)
∈ {0, 1} as follows. Fill-Bj

(
S′X , C

′
M,A

)
= 1 if and only if

there exists a filling B′ of B[1, . . . , j] such that:

1. B′ is obtained by inserting all strings in S′X in different positions of B[1, . . . , j],
2. the inserted strings are inserted at positions colored by CI,B,
3. for any inserted string s ∈ SX at position j, XY-FitsB,j (s) = 1,
4. the filling is colorful for C ′M,A after removing (X,Y)-adjacencies.

We observe that the entries of Fill-B can be computed using the following
dynamic programming recurrence.

17

Recurrence 3 Let S′X ⊆ SX , C ′A ⊆ CA.

– For j = 1, Fill-Bj
(
S′X , C

′
M,A

)
= 1 iff S′X = ∅ and C ′M,A = ∅.

– For all j ≥ 2,

Fill-Bj
(
S′X , C

′
M,A

)
= max
sj∈SX∪{ε}
Cj⊆C′

M,A

{
Fill-Bj−1

(
S′X \ {sj}, C ′M,A \ Cj

)
∧ InsB,j (sj , Cj)

Proof. In case j = 1, note that no substring can be inserted in the size-1
string B[1 . . . 1], hence Fill-Bj

(
S′X , C

′
M,A

)
= 1 implies that S′X = ∅. Note

that in this case (S′X = ∅), no common adjacencies can be created, hence
Fill-Bj

(
S′X , C

′
M,A

)
= 1 if and only if C ′M,A = ∅.

We now prove the recurrence formula.
Assume that Fill-Bj

(
S′X , C

′
M,A

)
= 1. Let B′ be a filling of B[1, . . . , j]

using S′X and colorful for C ′M,A. If there is no string inserted at position j − 1

(i.e. in B[j − 1, j]), then we directly have Fill-Bj−1
(
S′X , C

′
M,A

)
= 1. Using

sj = ε, and since Ins∅ (B, ε) j = 1, the formula is correct in this case. Otherwise,
assume that a string sj ∈ SX is included between B[j − 1] and B[j], creating
a string B[j − 1]sjB[j] that is colorful for some Cj ⊆ C ′M,A (after removing
(X,Y)-adjacencies). Then, for this particular string sj and this subset Cj , we
have both Fill-Bj−1

(
S′X \ {sj}, C ′M,A \ Cj

)
= 1 and InsB,j (sj , Cj) = 1. Thus,

again, the recurrence formula correctly sets Fill-Bj
(
S′X , C

′
M,A

)
to 1.

Conversely, assume that

max
sj∈SX∪{ε}
Cj⊆C′

M,A

{
Fill-Bj−1

(
S′X \ {sj}, C ′M,A \ Cj

)
∧ InsCj

(B, sj) j
= 1

Consider first the case where the maximum is obtained for sj = ε and some Cj ⊆
C ′M,A. Then InsCj

(B, ε) j = 1 yields Cj = ∅. Hence Fill-Bj−1
(
S′X , C

′
M,A

)
= 1,

and there exists a filling of B[1, . . . , j − 1] which is trivially extended to a filling
B′ of B[1, . . . , j] by adding element B[j]. Filling B′ directly satisfies Definition 6.
Otherwise, the max is obtained for some sj ∈ S′X and some Cj ⊆ C ′M,A. We thus
obtain a filling of B[1, . . . , j−1], and augment this filling by adding string sjB[j].
It is easy to check that this new filling satisfies Definition 6. In both cases, we
have Fill-Bj

(
S′X , C

′
M,A

)
= 1 ut

The following Lemma sums up all the results from Steps 1–4. Note that since
Step 4 must be run for both A and B independently, we define and compute a
table Fill-A similarly to table Fill-B.

Lemma 5 Let (A,B) be an instance of Two-sided Scaffold Filling, X = [A]\ [B],
Y = [B] \ [A], k be an integer, C be a set of colors, and F be a perfect family of
hash functions from the positions of A and B to C. Then the following propositions
are equivalent:
(i) There exists a filling A′ of A with Y and a filling B′ of B with X such that
A′ and B′ have k common adjacencies;

18

(ii) There exist two multi-sets of strings SX and SY over X, Y , a number
assignment, a color-coding f ∈ F and a partition C = CM,A∪CM,B ∪CI,A∪CI,B
such that Fill-A|A| (SY , CM,B) = Fill-B|B| (SX , CM,A) = 1.

Proof. (i)⇒(ii) Let A′ be a filling of A with Y and B′ be a filling of B with X
such that A′ and B′ have k common adjacencies;

Define SX , SY , a number assignment, a color-coding f ∈ F and a partition
C = CM,A∪CM,B∪CI,A∪CI,B according to these two fillings, so that Definition 6
is satisfied. Then it follows that Fill-A|A| (SY , CM,B) = Fill-B|B| (SX , CM,A) =
1.

(ii)⇒(i) Reciprocally, assume that Fill-A|A| (SY , CM,B) = 1 and Fill-B|B| (SX , CM,A) =
1. Then it follows that SX , CM,A, CI,B satisfy Definition 6 for B[1, |B|]. The
same property holds for SY , CM,B , CI,A satisfying Definition 6 for A[1, |A|]. This
leads to a filling of A and B with k adjacencies as follows: k′ (X,Y)-adjacencies
obtained from the endpoints of the corresponding inserted strings (remember that
XY-FitsB,j (s) = 1 for any s inserted at a position j in string B), and at least
|CM,A| (resp |CM,B |) other common adjacencies between the filling of B (resp.
the filling of A) and A (resp. of B). Note that these last common adjacencies
appear also in the filling of A (resp., of B) since no substring may break them
(all substring are inserted in positions colored by CI,B and CI,A). Thus there are,
overall, k′ + |CM,A|+ |CM,B | = k common adjacencies between the fillings of A
and B. ut

We present now the main result of this section.

Theorem 2 Let A, B be two strings over alphabet Σ and let X = [A]\ [B] be the
multiset of symbols of A missing in B and Y = [B] \ [A] the multiset of symbols
of B missing in A. It is possible to compute a solution of Two-sided SF-MNSA
over instance (A,B) in time 2O(k log k)poly(n).

Proof. The correctness of the algorithm is directly given by Lemma 5: once a
perfect family of hash functions F is fixed and two multi-sets of strings SX
and SY over X, Y , a number assignment, a color-coding f ∈ F and a partition
C = CM,A∪CM,B∪CI,A∪CI,B are selected by exhaustive branching, it suffices to
compute the entries Fill-A|A| (SY , CM,B) and Fill-B|B| (SX , CM,A), and return
the corresponding fillings of A and B if both entries are equal to 1.

The time complexity of the algorithm is dominated by the iteration over all
possible pairs (SX , SY) and of the number assignment. The number of possible
sets SX , SY is bounded by k2k from Prop. 2. By Prop. 3 there are O(4kk+1)
number assignments to iterate through. The dynamic programming recurrence
requires time O(24kn).

Consider now, the color-coding. There exists k values of z to test. For each z,
there are O(2O(z) log n) colorings [1], and for each coloring, 4z ways of partition-
ning C into CM,A, CM,B , CI,A, CI,B . Overall, there are thus O(2O(k) log n) cases
to consider.

Since a family of perfect hash function of size O(2O(k)poly(n)) can be com-
puted in time O(2O(k)poly(n)) [1], and the possible partitions of C into sets CM,A,

19

CM,B , CI,A, CM,B are less than 24k (including the constraint |CM,A|+ |CM,B |+
k′ = k), it follows that the overall time complexity of the algorithm is bounded
by O((2k)2k+12O(k)poly(n)) = 2O(k log k)poly(n). ut

5 Conclusion

In this paper we investigated two variants of the Scaffold Filling problem (One-
sided SF-MNSA and the Two-sided SF-MNSA), a problem related to the recon-
struction of complete genomes from incomplete draft genomes. We presented two
FPT algorithms for the two variants of Scaffold Filling, where the parameter is
the number of common adjacencies in the resulting genomes.

There are some interesting open problems from an algorithmic perspective.
First, it would be interesting to improve upon the time (and space) complexity
of the two algorithms. In this direction, it would be interesting to investigate
whether the algebraic technique applied to Graph Motif [3,14] and Repetition
Free Longest Common Subsequence [4] can be useful in this context. Then, it
would be interesting to study the kernelization complexity of the two problems.
Moreover, the approximation complexity of the Scaffold Filling problems, in
particular of the Two-sided case, should be further investigated. An interesting
open problem in this direction (see [19]) is whether it is possible to design an
approximation algorithm for Two-sided SF-MNSA with approximation factor
better than 2.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

2. Betzler, N., van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.:
Parameterized algorithmics for finding connected motifs in biological networks.
IEEE/ACM Trans. Comput. Biology Bioinform. 8(5), 1296–1308 (2011)

3. Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: Portier,
N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 20–31. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2013)

4. Blin, G., Bonizzoni, P., Dondi, R., Sikora, F.: On the parameterized complexity of
the repetition free longest common subsequence problem. Inf. Process. Lett. 112(7),
272–276 (2012)

5. Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y.: Variants of constrained
longest common subsequence. Inf. Process. Lett. 110(20), 877–881 (2010)

6. Bonizzoni, P., Dondi, R., Mauri, G., Zoppis, I.: Restricted and swap common
superstring: a multivariate algorithmic perspective. Algorithmica (to appear)

7. Chain, P., Grafham, D., Fulton, R., Fitzgerald, M., Hostetler, J., Muzny, D., Ali,
J., et al.: Genomics. genome project standards in a new era of sequencing. Science
326, 236–237 (2009)

8. Chen, Z., Fu, B., Goebel, R., Lin, G., Tong, W., Xu, J., Yang, B., Zhao, Z., Zhu, B.:
On the approximability of the exemplar adjacency number problem for genomes
with gene repetitions. Theoretical Computer Science 550, 59–65 (2014)

20

9. Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pattern
matching. J. Discrete Algorithms 9(1), 82–99 (2011)

10. Dondi, R., Fertin, G., Vialette, S.: Finding approximate and constrained motifs in
graphs. Theor. Comput. Sci. 483, 10–21 (2013)

11. Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)
12. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for

finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799–811 (2011)

13. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of genome
rearrangements. The MIT Press, Cambridge (2009)

14. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica
65(4), 828–844 (2013)

15. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

16. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint
distance. In: Tannier, E. (ed.) RECOMB-CG 2010 LNCS, 6398, 83–92 (2010)

17. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and
related distances. IEEE/ACM Trans. Comput. Biology Bioinform. 9(4), 1220–1229
(2012)

18. Liu, N., Jiang, H., Zhu, D., Zhu, B.: An improved approximation algorithm for
scaffold filling to maximize the common adjacencies. IEEE/ACM Trans. Comput.
Biology Bioinform. 10(4), 905–913 (2013)

19. Liu, N., Zhu, D.: The algorithm for the two-sided scaffold filling problem. Algorith-
mica (to appear)

20. Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold filling,
contig fusion and gene order comparison. BMC Bioinformatics 11, 304 (2010)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

22. Xia, X.: Comparative Genomics. SpringerBriefs in Genetics (2013)
23. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations

by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346
(2005)

21

