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Abstract—To guarantee its integrity, a wireless sensor network
needs to efficiently detect faulty nodes producing erroneous
measurements. This paper proposes a fully distributed fault
detection algorithm. A node first collects the measurements of
its neighborhood, processes them to decide whether they contain
outliers, and broadcasts the result. Then, it decides autonomously
about its functioning status. The detection algorithm is proposed
in two variants, depending on the proportion of faulty nodes in
the network. A theoretical analysis of the probability of error
and of the convergence of the algorithm is provided. The trade-
off between false alarm probability and detection probability is
characterized using simulation.1

I. INTRODUCTION

A wireless sensor network (WSN) consists of many ran-
domly deployed, autonomous devices, capable of acquiring
physical measurements, of processing them, and of commu-
nicating over wireless channels. The role of a WSN is to
evaluate some function of the whole set of measurements to
accomplish a predefined task (e.g., monitoring object detection
and tracking) [1].

Outliers are defined as abnormal measurements which
cannot be justified by the mere effects of sensing noise. They
may be informative because associated to the insurgence of
some critical event (e.g., a forest fire), or caused by some
sensor impairment. Outliers exhibit spatial and/or temporal
correlation when indicating some event of interest (when the
forest fire occurs, an entire region should have significantly
higher temperature) [2], while can be assumed as independent
if originated by defective sensors. Since the presence of un-
informative outliers in the set of measurements may seriously
disrupt the functionality of the system, the detection of the
defective sensors is very important.

Many distributed fault detection (DFD) algorithms have
already been proposed in the literature. The basic assumption
is that all the nodes take noisy measurements of the same
physical quantity. The algorithm devised in [3] allows each
node to estimate its own functioning status by comparing
the local measurement with the ones at neighboring nodes.
In a first phase only a tendency status (good, faulty, likely
good, or likely faulty) is determined. In the second phase the
tendency status of neighbors are collected and associated to
their measurements to obtain a more reliable assessment. In

1This work has been partly supported by the NEWCOM# NoE

[4] the local test is based on the comparison between the
local measurement and the median of the measurements of the
neighbors. Iterative algorithms are proposed in [5], [6], where
the weighted-median and the weighted average criterion are
considered, respectively. In both cases the local test weights
the measurements of the neighbors by the confidence level ob-
tained from the previous detection round, under the assumption
of permanent node failure. Intermittent faults in sensing and
in communication are considered in [7], which proposes an
adaptive DFD algorithm with a decision threshold adjusted at
each round.

In this work we propose a low complexity DFD algo-
rithm for large WSNs. Our approach differs with respect
to classical solutions in the fact that the comparison of the
local and neighboring measurements in the first phase of
the algorithm only determines whether an outlier is present
in the measurement set. This is usually an easier task than
attempting to identify it. Consider, for example, three sensors
measuring some constant temperature, e.g., with actual value
t = 20◦C. Suppose that a non-defective sensor has a bounded
measurement error, e.g., ±1 degree. Assume that the local
measurement of the first sensor is t1 = 19.5◦C, and that two
other sensors provide t2 = 20.8◦C and t3 = 18.2◦C, respec-
tively. Supposing that there is no defective sensor, and taking
into account the bounded measurement noise, one deduces that
t ∈ t1 = [t1 − 1, t1 + 1] = [18.5, 20.5], t ∈ t2 = [19.8, 21.8],
and t ∈ t3 = [17.2, 19.2]. Since t1 ∩ t2 ∩ t3 = ∅, there
exists at least one outlier. However, determining which sensor
produces the outlier is difficult as t1∩ t2 6= ∅ and t1∩ t3 6= ∅.
This type of result is reminiscent of group testing (GT) [8], a
statistical technique which allows to identify a small number
of defective items within a large population, with only a
limited number of tests. A DFD algorithm based on centralized
GT is proposed in [9], under the assumption of vanishing
ratio of defective sensors. The centralized approach suffers a
significant drawback in the communication overhead necessary
for node indexing and for the dissemination of the test results
from the cluster heads to the rest of the WSN.

In this paper we propose an algorithm able to overcome
the mentioned problems. The algorithm works in two stages:
measurement testing and fault detection. In the first stage each
node collects measurements from its neighborhood, performs
a local test to determine whether outliers are present among
them, and broadcasts the result. Such tests are easily available,



e.g., in the context of bounded-error estimation [10], [11].
Fault detection is performed in the second stage, on the basis
of the outcomes of the measurement tests performed in the
neighborhood. The robustness of the decision strategy is mea-
sured in terms of detection probability (PD) and of false alarm
probability (PFA), defined, respectively, as the probability of
defective sensors to be correctly detected, and the probability
of non-defective sensors to be wrongly diagnosed as defective.
The algorithm is proposed in two variants, non-adaptive and
adaptive, the second being better suited to WSNs with a large
proportion of defective sensors.

II. NOTATIONS AND SYSTEM MODEL

A. Network model

Consider an infinite plane where sensor nodes are uni-
formly and independently deployed, with spatial density ρ,
according to a 2D Poisson point process (PPP) [12]. Let S
denote the set of sensor nodes. A sensor is defective if it
produces measurement outliers, i.e., measurement corrupted by
noise samples whose characteristics differ significantly from
those of non-defective sensors. An example of outlier models
are introduced in Section IV-A. The sets of defective and non-
defective (good) sensors are denoted by D and G respectively,
with D ∪G = S. The densities of defective and non-defective
sensors are ρd and ρg, with ρ = ρd+ρg. Let θi denote the status
(defective or non-defective) of an arbitrary sensor i ∈ S , i.e.,
θi = 1 if i ∈ D and θi = 0 if i ∈ G. In this work, it is assumed
that θi remains constant during the time interval in which the
DFD is performed.

Assume that any pair of nodes (i, j) can communicate
if and only if ri,j ≤ R0, where ri,j represents their physi-
cal distance and R0 is the communication range, dependent
on the transmission power, transmitter and receiver char-
acteristics, and on the propagation scenario. Define Ni =
{j ∈ S | 0 < ri,j ≤ R0} as the set of the neighbors of the node
i. Let Ui = Ni ∪ {i}. The probability of having n sensors in
Ni is [12]

Pr {|Ni| = n} =
µn

n!
exp (−µ) , (1)

where µ = ρπR2
0 is the average number of sensors in the

neighborhood of sensor i. Similarly, one has µg = ρgπR
2
0 and

µd = ρdπR
2
0. The probability of having nd defective sensors

and ng = n− nd non-defective sensors in Ni is [12]

Pr {|Ni ∩ G| = ng, |Ni ∩ D| = nd} =
µnd

d µ
ng
g

nd!ng!
exp (−µ) ,

(2)
notice that µ = µg + µd.

B. Outlier detection test

Consider a generic set of sensors A ⊆ S and define

ϕ (A) =

{
1, if A ∩D 6= ∅,
0, otherwise,

(3)

as the indicator function for the presence of defective sensors
in A. At a given time instant, let the random variable Mi ∈ R
denote the measurement provided by sensor i ∈ A. The
measurements of all sensors in A are gathered in MA =

[Mi]i∈A ∈ R|A|. The physical quantities measured by the
sensors may be spatially correlated. The measurement noises
produced by different sensors are assumed as uncorrelated. For
a given realization mA ∈ R|A| of MA, denote T (mA) the
outcome of some local outlier detection test

T (mA) =

{
1, if at least an outlier is detected in mA,

0, otherwise.
(4)

Even if ϕ (A) = 1, i.e., at least one defective sensor belongs
to A, the noise characteristics of the defective sensors may
produce some realizations mA that do not allow the detection
of the outliers. Thus, one introduces the probability of outlier
detection

qD (MA) = Pr
{
T (MA) = 1

∣∣ϕ (A) = 1
}
. (5)

Similarly, one considers the probability of false alarm

qFA (MA) = Pr
{
T (MA) = 1

∣∣ϕ (A) = 0
}
. (6)

Specific properties of qFA and qD are provided in Section IV.
They depend on the considered fault model.

III. DISTRIBUTED FAULT DETECTION ALGORITHM

This section proposes two variants of a DFD algorithm
(non-adaptive and adaptive) to estimate the status of each
sensor using some local outlier detection test T . The variant
to be chosen depends on the defective sensor ratio µd/µ.

A. Non-adaptive DFD

The non-adaptive version of the proposed DFD algorithm
consists of two successive phases, repeated for L rounds,
followed by a final phase, whose outcome is, at each node
i, an estimate θ̂i of θi.

Algorithm 1 Non-adaptive DFD

1) Initialize θ̂(0)
i = 0 and z(0)

i = 0 for all i ∈ S.
2) For each round 1 ≤ ` ≤ L:

• Phase I: each sensor i broadcasts a packet con-
taining its local measurement m(`)

i , receives the
measurements produced by the sensors in Ni and
performs the test (4) with outcome

y
(`)
i = T

(
m

(`)
Ui

)
; (7)

• Phase II: each sensor broadcasts y(`)
i generated in

Phase I and updates z(`)
i as follows

z
(`)
i = z

(`−1)
i +

∑
j∈Ui

y
(`)
j , (8)

to accumulate the number of neighbors that have
a positive test result at Phase I up to round `.

3) After L rounds:
• Phase III: each sensor i estimates its status θi

θ̂i =

{
1 (defective) if z

(L)
i

L|Ui| > γ,

0 (non defective) otherwise,
(9)

where γ is some threshold.



defective sensor:

non-defective sensor:

Fig. 1. Example where k is the only defective sensor, (a) shows that z1k =
|Uk| = 7. In (b), sensor 1 belongs to Uk and z11 = 4. In (c), sensor 2 is
not in Uk but r2,k ≤ 2R0, which results in z12 = 1. In (d), sensor 3 has a
distance r2,k > 2R0, so z13 = 0.

The decision (9) in Phase III can result in both false alarm
(with probability PFA) and non-detection (with probability
1−PD). The values of γ and L determine the trade-off between
PD and PFA. They have to be adjusted to meet the targeted
performance. When γ is too large, PD may be low, with a
significant number of defective sensors diagnosed as good.
On the other hand, PFA may be high for small values of γ.
Increasing L provides a better averaging effect in (9), which
reduces the variance of θ̂i. However, L cannot be taken too
large, to preserve the assumption of constant θis during L
rounds.

Example 1. Figure 1 depicts a toy example. Let k be the
only defective sensor. Assume that both qFA defined in (6)
and qND defined in (5) are negligible: all the sensors in Uk
successfully detect outliers. Moreover consider L = 1 (unique
round) and take γ = 0.7. At the end of Phase II, z(1)

k =

|Uk| = 7, z(1)
1 = |Uk ∩ U1| = 4, z(1)

2 = |Uk ∩ U2| = 1, and
z

(1)
3 = |Uk ∩ U3| = 0. Since z(1)

k / |Uk| = 1 > γ, z(1)
1 / |U1| ≈

0.67 < γ, z(1)
2 / |U2| = 0.25 < γ, and z(1)

3 / |U3| = 0 < γ, only
sensor k determines itself as defective, according to (9), while
sensors 1, 2, and 3 diagnose themselves as non-defective.

As it will be discussed in Section VI, the non-adaptive DFD
performs well when µd � µg. However, PFA rapidly increases
with µd/µ. In the critical situation, where every non-defective
sensor has at least one defective sensor in its neighborhood,
for all sensors i ∈ S the test outcome is y(`)

i = 1 with a
high probability. As a consequence, non-defective sensors are
frequently diagnosed as defective.

B. Adaptive DFD

To improve the non-adaptive DFD algorithm for increasing
µd/µ, an adaptive version is described in Algorithm 2. In
the adaptive algorithm, sensors are allowed to take temporary
decisions about their status. At each of the first L1 rounds
of the algorithm, measurements are exchanged with neighbors
and a temporary decision θ̂(`)

i is taken. The decision at round
` − 1 affects the set of sensors from which sensor i gets
information at round `, i.e., Û (`)

i =
{
j ∈ Ui s.t. θ̂(`−1)

j = 0
}

.
This first part of the algorithm allows to discover most of the
defective sensors, while keeping PFA small.

Algorithm 2 Adaptive DFD

1) Set ` = 1; θ̂(0)
i = 0 for all i ∈ S.

2) If θ̂
(`−1)
i = 0, sensor i broadcasts its measurement,

calculates the sum z
(`)
i =

∑
j∈Û(`)

i
y

(`)
j , and performs the

decision

θ̂
(`)
i =

{
1, if z(`)

i /
∣∣∣Û (`)
i

∣∣∣ > γ1,

0, otherwise.
(10)

3) If θ̂(`−1)
i = 1, sensor i is silent, i.e., it does not broadcast

its measurement and performs the decision θ̂(`)
i = y

(`)
i .

4) ` = `+ 1. If ` ≤ L1, go to 2.
5) After round L1:

• each sensor i such that θ̂(L1)
i = 0 sets z(L1)

i = 0.
• each sensor i such that θ̂(L1)

i = 1 is determined as
defective. It stops broadcasting its measurements.
It does not participate in the non-adaptive DFD
during the following rounds.

6) Non-adaptive DFD is performed during L2 rounds with
threshold γ2.

At the beginning of the algorithm, a large amount of non-
defective sensors may be diagnosed as defective. In Step 3,
sensors become silent and stop broadcasting their measure-
ments if they are temporarily determined as defective. Step 4
gives a chance to revive to the non-defective sensors erro-
neously deemed defective (the PFA is high at the beginning):
if θ̂(`−1)

i = 1, the decision is made only based on the local
test of sensor i. In few rounds, PFA can thus be reduced to
an acceptable level. The following L2 rounds help to increase
PD, as shown in Section VI.

IV. OUTLIER DETECTION TEST

This section presents an example of outlier model and a
possible detection test.

A. Outlier model

Assume that each sensor i gets a noisy observation of some
scalar physical quantity φ

mi = φ+ wi, ∀i ∈ S. (11)

The components wi of the measurement noise in (11) are
assumed to be realizations of independent Gaussian random
variables Wi with the same standard deviation σ. For good
sensors (i.e., i ∈ G), the measurement noise is assumed zero-
mean. For the defective sensors, Wi has a random bias Ei
uniformly distributed over [−3ησ, 3ησ], where η > 1. With
this setting, each defective sensor has a different value of bias.

B. Outlier detection test

Consider the interval [mi] = [mi −∆,mi + ∆] of width
2∆ centered around the measurement mi. If i ∈ G, one has
Pr {φ ∈ [mi]} = 1 − erfc

(
∆√
2σ

)
. If i ∈ D, similarly, one

evaluates the probability that φ /∈ [mi] as a function of σ, ∆,
and η, when the fault model is that of Section IV-A.



Consider now the intersection of all [mi], ∀i ∈ A :[
φ̂ (mA)

]
=
⋂
i∈A

[mi] . (12)

With and without presence of outliers, one is able to evaluate
Pr
{[
φ̂
]

= ∅
}

as a function of σ, η, and ∆. These two
quantities may be used to define a low-complexity outlier
detection test

T (mA) =

{
1, if

[
φ̂ (mA)

]
= ∅,

0, else.
(13)

With this test, qFA and qD defined in (6) and (5) only depend
on ng and nd, where ng = |A ∩ G| and nd = |A ∩ D|. As[
φ̂ (mA ∪mj)

]
⊆
[
φ̂ (mA)

]
, T (mA) is more probable to get

close to 1 as the number of measurements increase. Therefore,
qFA (ng) is an increasing function of ng, and qD (ng, nd) is an
increasing function of both ng and nd.

V. THEORETICAL ANALYSIS

In this section we characterize analytically the probabilities
of fault detection PD and of false alarm PFA of the proposed
DFD algorithm, when the decision is taken after one single
round of the non-adaptive algorithm, i.e., after a single col-
lection of measurements from neighbors. Conditions for the
convergence of the adaptive algorithm are also evaluated.

A. PD and PFA for a single round of the non-adaptive DFD
algorithm

Consider the event

Ei,D (n) =

∑
j∈Ui

Yj > γ (n+ 1)

∣∣∣∣θi = 1, |Ni| = n

 , (14)

representing, according to (9), the situation where a defective
sensor i is detected as defective considering data coming from
n neighbors. The detection probability of a defective sensor
can be hence expressed as

PD =

∞∑
n=0

Pr {Ei,D (n)}Pr {|Ni| = n} (15)

As sensors cannot perform outlier detection when they have
no neighbors, Pr {Ei,D (0)} = 1.

Similarly, consider a non-defective sensor i, the conditional
false alarm event is

Ei,FA (n) =

∑
j∈Ui

Yj > γ (n+ 1)

∣∣∣∣θi = 0, |Ni| = n

 . (16)

The probability of false alarm is given by

PFA =

∞∑
n=0

Pr {Ei,FA (n)}Pr {|Ni| = n} . (17)

Lemma 1. Both PD and PFA are decreasing functions of γ.

Proof: The monotonicity of PD and PFA with respect to γ
is obvious, since if γ1 > γ2,

∑
j∈Ui Yj > γ1 (n+ 1) implies∑

j∈Ui Yj > γ2 (n+ 1).

Consider now the event

Yj,D (n) =

{
Yj = 1

∣∣∣∣j ∈ Ui, θi = 1, |Ni| = n

}
, (18)

with n > 0 and j ∈ Ui. For any j′ ∈ Ui such that j 6= j′,
Yj,D (n) and Yj′,D (n) are dependent. Their dependence comes
from the fact that in general Nj ∩ Nj′ 6= ∅. The probability
mass function (pmf) of

∑
j∈Ui Yj , necessary to evaluate PD, is

thus quite difficult to evaluate, since the dependency between
the Yjs is not explicit. The exact form of PD then becomes
quite complicated, but we can make the following conjecture.

Conjecture 1. PD is an increasing function of µd. Moreover,
µdPD is a convex function of µd.

The decision concerning the status of sensor i at the end
of the DFD algorithm is based on the results of the local tests
of all the sensors in Ui. If the local test results are more likely
to be 1, the final decision is reasonably more probable to be 1.
Thus, one conjectures that the monotonicity of PD with respect
to µd is inherited by the monotonicity of Pr {Yi = 1 | θi = 1}
and of Pr {Yi = 1 | θi = 0} with respect to µd. Define the
function

h (ng, nd) =

{
qFA (ng) , if nd = 0,

1− qND (ng, nd) , if nd 6= 0,
(19)

representing the probability of having Yi = 1 in a local test,
knowing that |G ∩ Ui| = ng, |D ∩ Ui| = nd. Thus, one may
introduce

f1 (µg, µd) = Pr {Yi = 1 | θi = 0}

=

∞∑
ng=0

∞∑
nd=0

h (ng + 1, nd)
µnd

d µ
ng
g

nd!ng!
exp (−µd − µg) ,

(20)

and

f2 (µg, µd) = Pr {Yi = 1 | θi = 1}

=

∞∑
ng=0

∞∑
nd=0

h (ng, nd + 1)
µnd

d µ
ng
g

nd!ng!
exp (−µd − µg) .

(21)

One has

∂f1

∂µg
=

∞∑
ng=0

∞∑
nd=0

µnd
d µ

ng
g

nd!ng!
exp (−µd − µg)

· (h (ng + 2, nd)− h (ng + 1, nd)) > 0, (22)

as h (ng + 2, nd) > h (ng + 1, nd). Similarly, one has ∂f1
∂µd

> 0,
∂f2
∂µg

> 0, and ∂f2
∂µd

> 0. We can conjecture that PD is an
increasing function of µd and µdPD is a convex function of µd.
These conjectures are verified experimentally in Section VI.

The monotonicity of PFA with respect to µg is more
complicated to analyze qualitatively. As µg increases, a good
sensor that has a defective sensor as its neighbor is more
probable to be diagnosed as defective. On the other hand,
the probability of having one defective sensor as neighbor
decreases with µg.

Conjecture 2. PFA is a decreasing function of µg, while µgPFA
is an increasing and concave function of µg.
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Fig. 2. Evolution with the rounds of the state of a sensor when applying
the adaptive DFD, notice that both automatas do not evolve in parallel
independently.

Again, Conjecture 2 is verified experimentally in Sec-
tion VI.

B. Convergence of the adaptive algorithm

Let the pair
(
θi, θ̂i

)
denote the state of sensor i, where θi

is its actual status and θ̂i is its estimated status. Among the
four possible states, (0, 0) and (1, 1) are states resulting from a
correct decision, (0, 1) corresponds to a false alarm, and (1, 0)

corresponds to a non-detection. Let µ(`)

θi,θ̂i
denote the density

of sensors in the state
(
θ

(`)
i , θ̂

(`)
i

)
at round `. The aim of this

section is to characterize the evolution of µ(`)

θi,θ̂i
to determine

whether the adaptive algorithm converges to a steady state.
The transition between states is described in Figure 2.

Before the first round of the adaptive algorithm, one has
µ

(0)
00 = µg, µ(0)

10 = µd, and µ(0)
01 = µ

(0)
11 = 0. Note that at any

round `, µ(`)
00 +µ

(`)
01 = µg and µ(`)

10 +µ
(`)
11 = µd. The transitions

from round ` to round `+ 1 are illustrated in Figure 2. Since
the actual status of a sensor is assumed constant during the
rounds of the DFD algorithm, the only possible transitions are
between states (0, 0) and (0, 1) and between states (1, 0) and
(1, 1). The evolution of the densities between rounds ` and
`+ 1 is given by

µ
(`+1)
00

µ
(`+1)
01

µ
(`+1)
10

µ
(`+1)
11

 =


P

(`)
0,00 P

(`)
0,10 0 0

P
(`)
0,01 P

(`)
0,11 0 0

0 0 P
(`)
1,00 P

(`)
1,10

0 0 P
(`)
1,01 P

(`)
1,11



µ

(`)
00

µ
(`)
01

µ
(`)
10

µ
(`)
11

 ,
(23)

with:

P
(`)
0,01 is the transition probability from (0, 0) to (0, 1). It

is equal to PFA in the first round. The sensors considered as
defective in the previous round are silent, so PFA is a function
of µ

(`)
00 and µ

(`)
10 , denoted as PFA

(
µ

(`)
00 , µ

(`)
10

)
. Obviously,

P
(`)
0,00 = 1− P (`)

0,01.

P
(`)
0,10 is the transition probability from (0, 1) to (0, 0).

Suppose that sensor i is in the state (0, 1). Recall that in the
proposed algorithm, sensor i does not broadcast, but still col-
lects measurements from its neighbors in state (0, 0) or (1, 0).
The measurement of sensor i is only considered in its own local
test. From (20), one deduces that P (`)

0,10 = 1− f1

(
µ

(`)
00 , µ

(`)
10

)
and P (`)

0,11 = f1

(
µ

(`)
00 , µ

(`)
10

)
.

P
(`)
1,00 is the transition probability from (1, 0) to (1, 0). This

is the probability of mis-detection of a defective sensor, i.e.,
1− PD

(
µ

(`)
00 , µ

(`)
10

)
. Moreover P (`)

1,01 = PD

(
µ

(`)
00 , µ

(`)
10

)
.

P
(`)
1,10 is the transition probability from (1, 1) to (1, 0),

which is similar to P (`)
0,10. One has P (`)

1,10 = 1− f2

(
µ

(`)
00 , µ

(`)
10

)
and P (`)

1,11 = f2

(
µ

(`)
00 , µ

(`)
10

)
.

From (23), one gets

µ
(`+1)
00 = µ

(`)
00 P

(`)
0,00 +

(
µg − µ(`)

00

)
P

(`)
0,10

= µ
(`)
00 (f1 − PFA) + µg (1− f1) (24)

and

µ
(`+1)
10 = µ

(`)
10 P

(`)
1,00 (`) +

(
µd − µ(`)

10

)
P

(`)
1,10

= µ
(`)
10 (f2 − PD) + µd (1− f2) . (25)

To lighten notations, the arguments µ(`)
00 and µ(`)

10 of PFA, PD,
f1, and f2 have been omitted in (24), (25), and in what follows
when there is no confusion.

Let µ∗00 and µ∗10 be the values at equilibrium of µ(`)
00 and

µ
(`)
10 , respectively. From (24) and (25), one deduces that µ∗00

and µ∗10 should satisfy

µg − µ∗00 =
µ∗00PFA (µ∗00, µ

∗
10)

1− f1 (µ∗00, µ
∗
10)

, (26)

and
µd − µ∗10 =

µ∗10PD (µ∗00, µ
∗
10)

1− f2 (µ∗00, µ
∗
10)

. (27)

Lemma 2. Assume that Conjectures 1 and 2 hold, then (26)
and (27) admit a unique solution.

Proof: In the case of (27), when we study the left-hand
side, µg − µ∗00 is a continuous and monotonically decreasing
function of µ∗00 over [0, µg], with

lim
µ∗00→0

µg − µ∗00 = µg and lim
µ∗00→µg

µg − µ∗00 = 0.

We need now to study the behavior of the right hand side for a
fixed value of µ∗10. As f1 and µ∗00PFA are increasing functions
of µ∗00, obviously, µ∗00PFA/ (1− f1) is an increasing function
of µ∗00. As 0 < f1 < 1, one has

lim
µ∗00→0

µ∗00PFA (µ∗00, µ
∗
10)

1− f1 (µ∗00, µ
∗
10)

= 0.

Thus for any fixed µ∗10, and for any decision threshold 0 <
γ < 1, there exists exactly one µ∗00 satisfying (26).

Similarly, one may show that for any fixed µ∗00, and for
any decision threshold 0 < γ < 1, there exists only one µ∗10
satisfying (27).

Lemma 3. Let G1 (µ00, µ10) = (µ00 − µg) ·f1 (µ00, µ10) and
G2 (µ00, µ10) = (µ10 − µd) · f2 (µ00, µ10). Assume that

∂G1

∂µ00
> 0, ∀µ00 ∈ [0, µg] , µ10 ∈ [0, µd] , (28)

∂G2

∂µ10
> 0, ∀µ00 ∈ [0, µg] , µ10 ∈ [0, µd] , (29)



and Conjectures 1 and 2 hold, then the equilibrium point
(µ∗00, µ

∗
10) is locally stable.

Proof: Consider a linearization of (24) around equilibrium
with µ(`)

00 = µ∗00 + δ
(`)
0 , one gets

δ
(`+1)
0 = δ

(`)
0 ·

∂F1

∂µ00
(µ∗00, µ

∗
10) , (30)

where F1 (µ00, µ10) = µ00 · (f1 − PFA) + µg · (1− f1), with
0 ≤ µ00 ≤ µg and 0 ≤ µ10 ≤ µd. Since ∂F1

∂µ00
(µ∗00, µ

∗
10) does

not depend on `, the system (30) is locally stable around µ∗00
if ∣∣∣∣ ∂F1

∂µ00
(µ∗00, µ

∗
10)

∣∣∣∣ < 1. (31)

Notice that

∂F1

∂µ00
= f1︸︷︷︸

<1

− (µg − µ00)
∂f1

∂µ00︸ ︷︷ ︸
>0

− ∂ (µ00PFA)

∂µ00︸ ︷︷ ︸
>0

< 1 (32)

holds since µ00PFA has been assumed to be an increasing
function of µ00. On the other hand, one needs ∂F1

∂µ00
> −1,

which leads to

PFA (µ00, µ10) + µ00
∂PFA

∂µ00
+ (µg − µ00)

∂f1

∂µ00
− f1

=
∂ (µ00 · PFA)

∂µ00
+ (µg − µ00)

∂f1

∂µ00
− f1

=
∂ (µ00 · PFA)

∂µ00
− ∂G1

∂µ00
< 1 (33)

One has assumed that µ00PFA is concave, then

∂ (µ00PFA)

∂µ00
< lim
µ00→0

∂ (µ00PFA)

∂µ00
≤ 1. (34)

From (34) and (28), one obtains (33), thus (31) holds.

We can also prove that (27) is stable at µ∗10 in the similar
way if Conjecture 1 and (29) hold. We conclude that the
equilibrium point (µ∗00, µ

∗
10) is locally stable if the conditions

mentioned in Lemma 3 are satisfied.

VI. SIMULATION RESULTS

Consider a WSN of 1000 sensors randomly deployed
according to a 2D PPP over a square of size 10 × 10 units,
with µ = 7. To avoid boundary effects, only the sensors in the
square of size (10− 2R0)×(10− 2R0) units are considered in
the evaluations of PD and PFA. In the outlier model presented
in Section IV-A, η = 10. All results have been averaged over
2000 realizations of the WSN.

First, Conjecture 1 and 2 are verified experimentally in
Figure 3 and 4 respectively, for different values of parameters.
The conditions in (28) and (29) are also verified numerically
in Figure 5.

The performance of a single round of the non-adaptive
DFD algorithm described in Section III-A is evaluated. Set-
ting µ = 7, Figure 6 shows PD as a function of PFA for
different values of the threshold γ ∈ [0, 1] and for various
µd/µ ∈ {0.02, 0.05, 0.1, 0.2}.
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Fig. 3. Verification of Conjecture 1, with µg ∈ {3, 10, 20}, and γ = 0.8.
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Fig. 6. PD as a function of PFA for the non-adaptive DFD with different γ
and different densities of defective sensors; here µ = 7.
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The roles played by the number of rounds on the achievable
performance of both non-adaptive DFD and adaptive DFD are
then investigated in Figure 7, which shows PD and PFA as a
function of the round number 1 ≤ ` ≤ L, for L = 10 and
µ = 7. We set γ = 0.6 in the non-adaptive DFD, As can be
observed, PD rapidly increases, whereas PFA almost remains
constant. In the case of adaptive DFD, we consider L1 = 7,
L2 = 3, γ1 = 0.95, and γ2 = 0.6. Here γ1 is chosen to be
large to make the adaptive DFD easier to converge and to result
in small PFA. PFA can be reduced significantly during the first
seven adaptive rounds. During the three following non-adaptive
rounds, PD improves rapidly, while PFA remains small. This
is due to the fact that most of the defective sensors have been
detected and turned off during the previous adaptive phase,
hence at the beginning of the non-adaptive rounds the residual
µd/µ is much lower than the initial µd/µ. Thus, the adaptive
DFD algorithm performs better than the non-adaptive DFD
algorithm: to achieve the similar PD, the resulting PFA is much
smaller by using the adaptive algorithm.

In Figure 8, the comparison between the proposed DFD
and a reference DFD in [3] is reported in terms of PD and
PFA, after 10 rounds of the algorithm, in the case where
µ = 7. A fair comparison between the two algorithms is quite
difficult because they are based on different tests with non
homogeneous parameters. In fact, in the reference DFD, the
only parameter one can control is the threshold of a local
test (similar to ∆ in our case), whereas the performance of
the proposed DFD depends on ∆, γ1, γ2, L1, and L2. For
example, we fix ∆ = 3σ, L1 = 7, L2 = 3, γ1 = 0.95 and
vary the value of γ2. As can be seen in Figure 8, one may
have better performance (with respect to PFA and PD) if the
parameters are properly chosen in the proposed DFD.

VII. CONCLUSIONS

This work proposed two variants of a two-staged DFD
algorithm, which allows each node to decide whether its
sensor is producing outliers. The performance of the non-
adaptive algorithm has been theoretically characterized. An
analytical framework for the analysis of the adaptive variant
has been sketched. The performance of both variants have been
characterized by simulations, which enables to draw insights
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Fig. 8. PFA as a function of PD for the reference DFD and the proposed
DFD after 10 rounds, with µd/µ ∈ {0.1, 0.2, 0.3}.

on the impact of the algorithm parameters (number of rounds,
local test threshold) and of the network topology (density
of faulty sensors, size of the neighborhood) on the trade-off
between PD and PFA. The future work will be devoted to the
study of other noise and outlier models and to a more formal
verification of the conjectures.
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