Unshuffling Permutations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Unshuffling Permutations

Résumé

A permutation is said to be a square if it can be obtained by shuffling two order-isomorphic patterns. The definition is intended to be the natural counterpart to the ordinary shuffle of words and languages. In this paper, we tackle the problem of recognizing square permutations from both the point of view of algebra and algorithms. On the one hand, we present some algebraic and combinatorial properties of the shuffle product of permutations. We follow an unusual line consisting in defining the shuffle of permutations by means of an unshuffling operator, known as a coproduct. This strategy allows to obtain easy proofs for algebraic and combinatorial properties of our shuffle product. We besides exhibit a bijection between square (213, 231)-avoiding permutations and square binary words. On the other hand, by using a pattern avoidance criterion on oriented perfect matchings, we prove that recognizing square permutations is NP-complete.
Fichier principal
Vignette du fichier
submission.pdf (299.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01260549 , version 1 (22-01-2016)
hal-01260549 , version 2 (03-03-2016)

Identifiants

Citer

Samuele Giraudo, Stéphane Vialette. Unshuffling Permutations. LATIN 2016, Apr 2016, Ensenada, Mexico. pp.509-521, ⟨10.1007/978-3-662-49529-2_38⟩. ⟨hal-01260549v2⟩
232 Consultations
351 Téléchargements

Altmetric

Partager

More