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ABSTRACT

This paper introduces Shannon-Kotelnikov (SK) mapping in the
SoftCast joint source-channel video coding scheme. On bandwidth
constrained channels, the performance of SoftCast saturates, due to
the large amount of data (chunks) dropped to match the bandwidth
requirements. Using SK mapping, it is possible to increase the
number of chunks that may be transmitted without increasing the
bandwidth requirements. The resulting scheme has an increased
number of design parameters for which we present a transmission-
power constrained optimization. This extends range of channel
SNRs over which the PSNR gracefully increases and improves the
end-to-end performance at medium to high SNRs. The price to be
paid is a performance degradation at low SNRs.

1. INTRODUCTION

The SoftCast-inspired video coders (SoftCast, WaveCast, or D-Cast
[1, 2, 3]) are recently developed joint source-channel (JSC) video
coding solutions, which have the potential for dramatically improve
the quality of the received video in challenging conditions, such as
video broadcast over wireless networks. SoftCast replaces nonlinear
parts of classical source coders and transmission devices (quantiza-
tion, entropy coding, channel coding) by linear operators, such as
full-frame 2D or full-GoP 3D transforms, power allocation schemes,
as well as analog modulations. The joint source coding and trans-
mission process may then be modeled as a linear operator. Thus, the
received quality improves gracefully with the quality of the channel,
without requiring any adaptation of the coding parameters.

For bandwidth-constrained channels, SoftCast has to limit the
number of chunks (groups of transformed and scaled pixels) trans-
mitted per GoP: the chunks containing most energy are transmitted,
the remaining ones being dropped. As a consequence, video qual-
ity increases until a given channel signal-to-noise ratio (C-SNR) is
reached, where the quality saturates at a level that depends on the
proportion of transmitted chunks.

The main idea of this paper is to use bandwidth-reducing
Shannon-Kotelnikov (SK) mappings [4, 5, 6] to increase the number
of chunks transmitted over bandwidth-constrained channels. SK
mappings (SKM) are N :1 bandwidth-reducing or 1:M bandwidth-
expanding non-linear mappings. Here, 2:1 mappings are used to
encode several pairs of chunks prior to transmission. Chunks with
the most energy are transmitted as with the plain SoftCast. Chunks
with less energy are SK-mapped. More information about medium-
energy chunks is thus transmitted, which may increase the video
quality for users with good channel conditions, without degrading
significantly the video quality of users with less good channels.

The rest of this paper briefly overviews the principles of SofCast
and SKM in Section 2. The proposed approach to improve SoftCast

with SKM is detailed in Section 3. A particular attention is paid to
the resource allocation between uncoded and SK-mapped chunks.
Experimental results are detailed in Section 4, before drawing some
conclusions in Section 5.

2. BACKGROUND

2.1. SoftCast

The basic idea of SoftCast is to encode the video content with linear
operators. Energy compaction is performed via a full-GoP 3D-DCT.
Entropy coding, which is highly non-linear, is avoided. Transformed
coefficients are grouped into chunks xi ∈ RN , i = 1, . . . , nT, where
N is the number of transformed coefficients per chunk, λi is the
variance of the coefficients of the i-th chunk, and nT is the number
of chunks per GoP.

An optimized chunk scaling is then performed to minimize the
expected reconstruction error at receiver yi = gixi. Even though
the scaling is linear, the adaptation to the channel bandwidth requires
transmitting only nC chucks par GoP, the remaining nT − nC being
dropped. This means that, even when the C-SNR is high, the recon-
structed video quality is limited by the value of nC.

Resilience to channel fades is obtained by giving up temporal
prediction and ensuring that all packets contribute equally to the
quality of the decoded video. For that purpose, SoftCast employs
an Hadamard transform of the kept chunks. The physical layer of
SoftCast uses, e.g., a classical OFDM framework with some total
transmission power constraint. The real-valued samples at the out-
put of the Hadamard transform are then used to modulate the I and
Q components of all carriers. In the original SoftCast, LMMSE es-
timation of the chunks is performed from the channel outputs. Here,
inverse Hadamard transform is considered prior to LMMSE estima-
tion of the chunks. This has the advantage of averaging the noise in-
troduced on each carrier and to simplify LMMSE estimation which
may be performed chunk per chunk. As a consequence, the part of
the transmission scheme between the direct and inverse Hadamard
transforms can be viewed as several parallel Gaussian channels with
identical noise variance.

With these hypotheses, at the receiver side, one has ỹi = gixi+
ni, where the components of ni are realizations of iid zero-mean
Gaussian variables with variance σ2. The LMMSE estimate of xi
from ỹi is x̂i = αỹi, with α = λigi/

(
λig

2
i + σ2

)
. When σ2 is

small compared to λig2
i , i.e., the C-SNR is large enough, one may

use the approximation α = 1/gi. In this case, the total distortion,
i.e., the sum of the variance of the chunk coefficients reconstruction
error is

DT = E

(
1

N

nT∑
i=1

‖x̂i − xi‖2
)

=

nC∑
i=1

σ2

g2
i

+

nT∑
j=nC+1

λj . (1)



The last term in (1) is the contribution toDT of the nT−nC dropped
chunks, which limits the performance of SoftCast when the channel
is clear.

For a given value of nC, the gis that minimize (1) under a total
transmission power constraint

∑
i g

2
i λi 6 P are shown in [1] to be

gi =
√

P√
λi

∑nC
j=1

√
λj

.

2.2. Shannon-Kotelnikov mappings

SKMs are lossy JSC coding tools proposed in [4, 5, 6] for trans-
mitting memoryless sources over AWGN channels. An SKM maps
amplitude-continuous, time-discrete source samples directly onto
the channel using space-filling curves or surfaces. The source and
channel spaces can have different dimensions, thereby achieving ei-
ther compression or error control, depending on whether the source
bandwidth is smaller or larger than the channel bandwidth. In [6],
a general theory for 1:N and M :1 dimension-changing SKMs is
presented. These schemes show high spectral efficiency and provide
both graceful degradation and improvement for imperfect channel
state information at the transmitter.

SKMs constitute thus good candidates to match the bandwidth
requirements of the transmission of data generated by JSC video
coders and actual channel bandwidth: instead of dropping chunks,
they may be encoded using bandwidth-reducing SKM. Nevertheless,
this raises the problem of the optimum design of the characteristics
of the SKM, i.e., determining the proportion of SK-mapped chunks,
their scaling, the power allocation between plain and SK-mapped
chunks.

In what follow, the considered SKM are 2 : 1 bandwidth-
reducing double intertwined Archimedes’ spirals with parametric
equation {

f1 (θ) = ∆
π
θ cos θ

f2 (θ) = ∆
π
|θ| sin θ

, θ ∈ R, (2)

where (f1 (θ) , f2 (θ))T is a point of the spiral and ∆ is the distance
between the two neighboring arms of the spiral. Consider a realiza-
tion x = (x1, x2)T of some random pair X = (X1, X2)T, whereX1

and X2 are independent, zero-mean variables with variance λ1 and
λ2, with λ1 ≈ λ2. The 2 : 1 SK mapping of the pair x aims at deter-

mining the point x(θ̃) =
(
f1(θ̃), f2(θ̃)

)T
lying the closest to x on

the spiral. The angle θ̃ from the origin to x(θ̃) is then used to eval-
uate the scalar z(θ̃) = aθ̃2sgn(θ̃), where sgn is the sign function.
Taking a = 0.16∆ provides a good approximation of the curvilinear
abscissa of x(θ̃) on the spiral. Then, z(θ̃) has to be scaled by some
parameter γ to match the power constraint of the channel to get

y∆ (x) = γz, (3)

which represents the SK-mapped x. With the previous assumptions,
the variance of z may be approximated as

σ2
z = 2

(
0.16∆

π2

∆2
(λ1 + λ2)

)2

. (4)

Assuming that y∆ (x) is transmitted on a AWGN channel with noise
variance σ2 and that the channel output is r, an MMSE estimation
of x may be performed from r, as in [7]. One may also resort to
a less-complex suboptimal LMMSE estimate. Estimating θ as θ̂ =√
|r|
aγ

sgnr allows to get the following approximation of the variance
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Fig. 1. Proposed approach: location of the 2nSK SK-mapped chunks

of the per-component reconstruction error between x and x(θ̂) =

(f1(θ̂), f2(θ̂))T (see [5] for more details):

σ2
r =

1

2

(
∆2

12
+
σ2

γ2

)
. (5)

3. PROPOSED APPROACH

The main idea of this work is to use SKMs together with SoftCast,
with the goal of improving the global power/distortion trade-off. In-
stead of dropping nT − nC chunks as in plain SoftCast, SKMs are
used to transmit nSK additional chunks with nSK < nC.

More precisely, assuming that chunks have been sorted by de-
creasing energy, those indexed from 1 to nSC = nC−nSK are trans-
mitted as with plain SoftCast. The following 2nSK chunks (from
nSC + 1 to nSC + 2nSK = nC + nSK) are combined into nSK pairs
which are SK-mapped. The remaining chunks nT − nC − nSK are
discarded. With this technique, the number of transmitted symbols
is NnC independently from the number of SK-mapped chunks. The
plain SofCast scheme is obtained taking nSK = 0.

The problem of optimal power allocation is made more difficult
by the presence of 2nSK SK-mapped chunks. The remainder of this
section formulates this problem and provides an optimal solution.

We transmit nSC plain chunks, i.e., non SK-mapped, using scal-
ing factors gi, and nSK SK-mapped pairs of chunks. More precisely,
considering the i-th chunk xi, the transmitted symbols are the ele-
ments of nC N -dimensional vectors yi = gixi, i = 1, . . . , nSC and
yi = γi−nSCzi−nSC , i = nSC + 1 . . . nSC + nSK, where gi and
γj are suitable scaling factors for the plain and SK-mapped pairs of
chunks, and

zj = SM(xnSC+2j−1,xnSC+2j). (6)

is the vector containing the SK-mapped pairs of coefficients in the
chunks xnSC+2j−1 and xnSC+2j , which is performed as in Sec-
tion 2.2.

The system parameters are nC, nSK, gi, γj , ∆j , and the refer-
ence variance of the channel noise σ2. These parameters are tuned
to minimize a total distortion under a total transmission power con-
straint, which are now evaluated.

3.1. Distortion evaluation

The total distortion at receiver side of a given GOP is the sum of the
average distortions of each chunk:

DT =

nT∑
i=1

Di =

nSC∑
i=1

Di +

nSK∑
j=1

D̄j +

nT∑
`=nT−nSC−2nSK

λ` (7)

where Di is the distortion of a plain chunk, D̄j the distortion of
a SK-mapped chunk, and the last term in (7) is the distortion as-
sociated to last discarded chunks as in (1). As in plain SoftCast,



Di = σ2

g2i
, see (1) where σ2 is the receiver noise variance. More-

over,

D̄j =
∆2
j

12
+
σ2

γ2
j

(8)

is directly deduced from (5), where one has taken into account the
fact that two chunks are jointly encoded.

3.2. Transmission power evaluation

The transmission power of the i-th plain chunk is g2
i λi; similarly,

the power for the j-th SK-mapped chunk zj is γ2
i σ

2
zj . Using (4),

one gets

σ2
zj = E[‖zj‖2] = 2

[
0.16

π2

∆j
(λnSC+2j−1 + λnSC+2j)

]2

Defining tj =
√

2 · 0.16π2 (λnSC+2j−1 + λnSC+2j), one deduces
the transmission power constraint of the SK-SoftCast scheme

nSC∑
i=1

g2
i λi +

nSK∑
j=1

γ2
j t

2
j

∆2
j

≤ P. (9)

3.3. Constrained optimization

The parameters of the proposed SK-SofCast scheme have to be tuned
to minimize the distortion (7) under the transmission power con-
straint (9). The problem being quite complex, we assume first that
nC, nSK, and σ2 are fixed and perform a constrained optimization
of the other parameters. The value of nC has to be chosen so that
the transmitted data fit the available bandwidth. As will be seen in
Section 4, the values of nSK and σ2 should be tuned based on the
distribution of the channel quality of the receivers. For the distortion
optimization, one focuses on the first two terms in (7).

The transmission power constrained distortion optimization
problem may be solved introducing the following Lagrangian de-
duced from (7), (8), and (9)

L(g,γ,∆, µ) =

nSC∑
i=1

σ2

g2
i

+

nSK∑
j=1

(
∆2
j

12
+
σ2

γ2
j

)

+µ

[
nSC∑
i=1

g2
i λi +

nSK∑
j=1

γ2
j t

2
j

∆2
j

− P

]
,

(10)

where µ is the Lagrange multiplier.
Deriving L with respect to gi, one deduces the optimal scaling

factor for plain chunks

gi =

(
σ2

µλi

)1/4

. (11)

Then, deriving L with respect to γj , one obtains the optimal scaling
factor for SK-mapped chunks

γj =

(
∆2
jσ

2

µt2j

)1/4

(12)

Deriving L with respect to ∆j , one gets the optimal distance be-
tween spiral arms for each pair of SK-mapped chunks

∆j =
(
12µt2jγ

2
j

)1/4
. (13)

Combining (12) and (13), one deduces ∆2
j/12 = σ2/γ2

j , i.e., for
each SK-mapped pair of chunks, the power allocation is optimal
when the two contributions to the distortion D̄j (quantization and
channel noise) are identical. Moreover, using the same equations,
one may express the optimal values of γj and ∆j as functions of µ
and other known parameters only

∆j = (12
√
µtjσ))1/3 , γj =

(
12σ4

µt2j

)1/6

. (14)

To derive the value of µ in (10), one uses the total transmission
prower constraint (9), to show that µ has to satisfy

P = aµ−1/2 + bµ−2/3 (15)

where

a =σ

nSC∑
i=1

λ
1/2
i b =

(
σ2

12

)1/3 nSK∑
j=1

t
2/3
j . (16)

Then µ requires a numerical solution of (15), where a > 0 and
b > 0. The solution of (15) exists and is unique and positive, since
(15) is the sum of two strictly decreasing functions with image R+.
From µ, one determines gi using (11). Then ∆j and γj are obtained
from (14).

Fig. 2. PSNR of Foreman as a function of the frame index of SK-
SoftCast (SK) and SoftCast (SC) for various C-SNRs

4. EXPERIMENTAL RESULTS

The performance of the proposed SK-SoftCast scheme has been
compared to the reference SoftCast proposed in [1]. Two video se-
quences, foreman.cif and Kimono1_1920x1080_24 from the HEVC
test set have been considered. Only their lmuminace has been en-
coded. For both sequences, GoPs of 8 pictures are considered. The
chunk size is 36× 44 and nC = 128 for foreman whereas the chunk
size is 30 × 40 and nC = 512 for Kimono. This corresponds for
SoftCast to the transmission of 25% of the chunks for Foreman and
to 3.7% of the chunks for Kimono. The transmission power is taken
as P = 1. The value of σ2 depends on the C-SNR, which is usually
unknown at the transmitter and may vary among receivers in case of
broadcast applications. It has thus to be adjusted considering some
reference C-SNR.

Figure 2 shows the PSNR as a function of the frame index for
Foreman encoded with SK-SoftCast (SK) and SoftCast (SC) for var-
ious C-SNRs. The reference SNR is chosen as 20dB and nSK = 64



pairs of chunks have been SK-mapped. One observes that at a real
C-SNR of 10dB, SK experiences a degradation in PSNR of about
1.5dB, while between 20dB and 30dB, the performance improve-
ment reaches 2dB. This improvement is observed for all frames. This
tendency is confirmed by Figure 3(a). SK performs better than SC
when the C-SNR is above 17dB. Similar results are observed for the
HD sequence Kimono (Fig. 3(b)).

The evolution of the PSNR gain on Foreman for SK compared
to SC is represented in Figure 4(a) as a function of the C-SNR for
nSK = 32, nSK = 64, and nSK = 96, all at a target C-SNR of
20dB. One sees that increasing nSK increases the PSNR gains at
high C-SNRs, but the price to be paid is an increased loss at low
C-SNRs. The value nSK = 64 seems to be a good compromise, as
shown by the averaged PSNR gain evaluated over the C-SNR inter-
val [0, 40]dB. Figure 4(b) presents similar results for five different
design SNRs, namely 10dB, 15dB, 20dB, 25dB, and 30dB, all for
nSK = 64. Each of the five configurations outperforms the other
when the actual C-SNR is around 17dB, which is somewhat sur-
prising, as one would expect that the transition is around the design
SNR. This is due to the bad quality of the SKM distorsion model (4)
at low C-SNR, see the next experiment. Finally, we also observe that
in the [0, 40]dB interval, the mean design SNR of 20dB provides the
best average performances.

To better understand the previous results, the evolution of the
SNR at receiver as a function of the C-SNR for a zero-mean unit-
variance Gaussian source is considered. This source generates pairs
of samples transmitted over a Gaussian channel allowing the trans-
mission of a single sample per channel use. The OPTA curve of this
setup [5] is

SNRdB = 10 log10

(√
1 + 10C-SNRdB/10

)
. (17)

The theoretical (Th) curves are obtained from (5), where σ2 depends
on the actual C-SNR and ∆ and γ have to be optimized consider-
ing some reference C-SNR. Three reference C-SNRs are considered,
namely, 10dB, 20dB, and 30dB. The corresponding results obtained
with the SK scheme are represented by the SK curves. Finally, the
performance of a system where only half of the samples are trans-
mitted is also provided (SC curve). This would correspond to the
behavior of SoftCast when all chunks have the same variance, and
only half of them are transmitted.

The theoretical curves are very close to the optimal performance
theoretically attainable (OPTA) when the C-SNR is close to the ref-
erence SNR. The actual performance of the SK scheme matches
much better the theoretical curves at high C-SNR and when the ref-
erence C-SNR is high than at low C-SNR. The discrepancy at low
C-SNR is due to the use of an LMMSE estimator, which effect is not
taken into account in (5). This explains the results obtained in Fig-
ure 4(b). In all cases, one sees that using SK-mappings is beneficial
compared to a solution where only half of the samples are transmit-
ted only when the C-SNR is above some threshold that depends on
the reference C-SNR. This explains the PSNR loss in Figures 3 and
4 when the C-SNR is low.

5. CONCLUSIONS

This paper introduces Shannon-Kotelnikov mappings in the SoftCast
JSC video coding scheme. With SofCast, a large proportion of the
encoded chunks have to be dropped to match the bandwidth con-
straint, when it is stringent. In the proposed SK-SoftCast scheme,
part of the chunks are SK-mapped, which increases the amount of
transmitted chunks, without increasing the bandwidth requirements.
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SK-SoftCast increases the range of C-SNRs over which the PSNR
gracefully increases, improves the performance at medium to high
SNRs, where SoftCast saturates. The price to be paid is a decrease
of the performance at low SNRs. This is mainly due to the fact that
at low SNR, LMMSE estimation of SK-mapped chunks is subopti-
mal compared to the more time-consuming MMSE estimate, see [7].
Moreover, the SK-mapping distortion model is better at medium to
high SNRs, than at low SNRs, which complicates optimization.

This work opens several research directions, related to the opti-
mization of the number of chunks to encode using SKMs, to the tar-
get SNR to consider. For that purpose, when considering broadcast
applications, the characteristics of the channels seen by the various
receivers may be useful to optimize these parameters. Beside that,
one may try to optimize the way SK-mappings are used, considering
the content of the GoPs.
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