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Abstract—This paper investigates two classes of relay channels,
the Gaussian relay channel and the Gaussian two-way relay
channel, when additive noises at the relay and destination(s) are
correlated. Lattice codes are used to achieve the rate region for
Compress-and-Forward (relay channel) and Compress/Decode-
and-Forward (two-way relay channel). Numerical calculations
show that there exist particular values of the correlation co-
efficient such that the gap between the Cut-Set Bound (CSB)
and the proposed schemes is minimal.

I. INTRODUCTION

Lattice coding is interesting for AWGN channels as it
achieves capacity with a low decoding complexity [1]. It is
also a powerful tool for multi-user AWGN channels, like the
relay channel, the two-way relay channel, the multi-way relay
channel etc. In this paper we focus on the Gaussian relay
channel and two-way relay channel, when noises at the relay
and the destination(s) are correlated. The goal is to show that
lattices can be used for this two setups by proving first the
achievability of the rate region for the Compress-and-Forward
(CF) for the Gaussian relay channel (proposition 5 in [2])
and then studying a Compress/Decode-and-Forward (CDF)
protocol for the Gaussian two-way relay channel. For the latter,
we assume that the relay is close to one of the users and far
away from the other, thus neither the Decode-and-Forward
(DF) protocol nor the CF protocol alone are efficient, but we
can combine the two to build a more suitable protocol.

The rest of the paper is organized as follows: in Section II
we briefly present lattice coding. In Section III we prove
proposition 5 of [2] (achievable rate region using CF for the
Gaussian relay channel with correlated noise) using nested
lattices. We then use this result in Section IV to obtain the
achievable rate-region of the CDF protocol for the Gaussian
two-way relay channel with correlated noises.

II. LATTICE CODING

A lattice Λ ⊂ Rn is a discrete additive subgroup of Rn. If
λ1, λ2 ∈ Λ then λ1+λ2 ∈ Λ and λ1 − λ2 ∈ Λ.

The lattice quantizer QΛ maps any point x ∈ Rn to the
closest lattice point:

QΛ(x) = arg min
λ∈Λ
||x−λ||.

The fundamental Voronoi region V of Λ is the set of points
that are closer to the origin than to any other lattice point:

V = {x ∈ Rn|QΛ(x) = 0}.

The modulo Λ operation yields the quantization error:

x mod Λ = x−QΛ(x).

This operation always returns a point within the fundamental
Voronoi region of Λ.

The second moment per dimension σ2(Λ) defines the aver-
age power of the lattice Λ: σ2(Λ) = 1

nV

∫
V ||x||

2dx where V
is the volume of V , the fundamental Voronoi region of Λ.

The covering radius rcov is the radius of the smallest sphere
that covers V , the effective radius reff is the radius of a sphere
with the same volume as V .

A lattice Λ is said Rogers-good if lim
n→∞

rcov
reff

= 1.
A lattice Λ is said Poltyrev-good (good for AWGN coding)

if, for z ∼ N (0, σI), Pr(z /∈ V) ≤ e−nEp(µ) where Ep is the
Poltyrev exponent and µ is the volume-to-noise ratio defined
as µ = V 2/n

2πeσ .
For the single-user AWGN channel, where the average

transmit power is P and the average noise power is N ,
capacity can be achieved using nested lattices and random
dithers. To construct good lattice codebook, we intersect a
coding lattice Λc (of volume Vc) with the fundamental Voronoi
region V of a lattice Λ (of volume V ). In order to satisfy the
power constraint, we set σ2(Λ) = P .

Λ is called the coarse lattice and Λc the fine lattice
(Λ ⊆ Λc). Those lattices are chosen such that Λc is Poltyrev-
good and Λ is both Rogers- and Poltyrev-good. The codebook
is given by C = Λc ∩ V . The rate of this codebook is
R = 1

n log2
V
Vc

.
To transmit the codeword c ∈ C, the source transmits

X = [c+u] mod Λ,

where u is a random dither uniformly distributed over V and
is known to the source and the destination.

The destination receives Y = X+Z, where Z ∼ N (0, N).
To decode c, the destination scales its received signal by the
MMSE coefficient β = P

P+N , subtracts the dither and takes
the result modulo Λ.

Ỹ = [β(c+Z)+(β−1)u] mod Λ



The destination estimates c by quantization: ĉ = QΛc
(Ỹ ).

Erez and Zamir showed [1] that averaging over the
dither, perfect decoding is possible if R ≤ C

(
P
N

)
, where

C(x) = 1
2 log2(1+x).

The notation x̄ = 1− x is used throughout the paper.

III. CF USING LATTICES FOR THE GAUSSIAN RELAY
CHANNEL WITH CORRELATED NOISES

The relay channel, depicted on Fig. 1, is a major building
block for wireless communications. The source wishes to send
its message to a destination with the help of a relay. In the
AWGN case, the source sends X1 of power P1 and the relay
XR of power PR. The received signals are given by

YR = gr1X1+ZR,

Y2 = g21X1+g2rXR+Z2,

where Z2 and ZR are Gaussian noises of variance N2 and
NR, respectively. We also assume full duplex nodes (a node
can receive and transmit at the same time) and correlated
noises. The correlation coefficient is defined as ρz = E[Z2ZR]√

N2NR
.

The relay channel with correlated noises is a generalization
that occurs when for instance a common interference signal
contributes to the noises at both receivers.
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Fig. 1. Relay channel

Proposition 1 Using CF based on lattice coding on the
Gaussian relay channel with correlated noises, the following
rate region is achievable:

RCF ≤ C
(
P1

N2

g221(NR+D)+g2r1N2−2g21gr1ρz
√
N2NR

NR(1−ρ2z)+D

)
with

D =
(g2r1N2+g

2
21NR)P1+N2NR(1−ρ2z)−2gr1g21P1ρz

√
N2NR

g22rPR
.

Remark: Note that this rate region is the same as obtained
theoretically in Proposition 5 of [2].

Proof: The encoding and decoding procedure is based on
block Markov coding and follows the ideas of [3].

A. Encoding

1) Source: The codebook for the source is given by
c1 ∈ C1 = Λc1 ∩ V1 where Λ1 ⊂ Λc1 and Λ1 is both Rogers-
and Poltyrev-good and Λc1 is Poltyrev-good. To ensure the
power constraints, we choose σ2(Λ1) = P1 and Λc1 such that
|C1| = RCF .

During block b, the source sends X1(b)=[c1(b)+u1]modΛ1.

2) Relay : The quantization codebook is given by
cq ∈ Cq = {ΛcQ ∩ VQ} where ΛQ ⊆ ΛcQ and ΛcQ is Rogers-
good and ΛQ is Poltyrev-good. We choose σ2(ΛcQ) = D and

σ2(ΛQ) = g2
r1P1+NR+D − (g21gr1P1+ρz

√
N2NR)2

g2
21P1+N2

.

Thus, Rq = 1
2 log2

(
σ2(ΛQ)
D

)
.

The codebook for the relay is given by
cR ∈ CR = {ΛcR ∩ VR} where ΛR ⊆ ΛcR and ΛR is
both Rogers- and Poltyrev-good and ΛcR is Poltyrev-good.
To ensure the power constraints, we choose σ2(ΛR) = PR.
Each compression index i is mapped to one codeword cR,
that is ΛR is chosen s.t. |CR| = Rq .

During block b, the relay sends

XR(b) = [cR(i(b− 1))+uR] mod ΛR.

B. Decoding

1) At the relay: During block b, the relay receives
YR(b) = gr1X1(b)+ZR(b) and quantizes it to

I(b) = [QcQ(gr1X1(b)+ZR(b)+ucQ)] mod ΛQ

= [gr1X1(b)+ZR(b)+ucQ−EcQ(b)] mod ΛQ,

where EcQ is the quantization error.
2) Decoding at the destination: During block b, the desti-

nation receives

Y2(b) = g21X1(b)+g2r[cR(i(b−1))+uR] mod ΛR+Z2(b).

It starts by decoding the quantization index, considering the
source signal as noise, which is possible if

Rq ≤ C
(

g2
2rPR

g2
21P1+N2

)
.

Then, it forms Ỹ2(b) = g21X1(b)+Z2(b).
The decoding of X1(b−1) is performed using Wyner-Ziv

coding. During the previous block, the destination formed
Ỹ2(b−1) which is used in block b as side information to
estimate ŶR(b− 1):

ŶR(b−1) =

[
gr1X1(b−1)+ZR(b−1)−EcQ(b−1)

−β
(
g21X1(b−1)+Z2(b−1)

)]
mod ΛQ

+β

(
g21X1(b−1)+Z2(b−1)

)
= gr1X1(b−1)+ZR(b−1)− EcQ(b−1).

The last equation is valid under perfect decoding, implying

σ2(Λ) = (gr1−βg21)2P1+NR+D+β2N2−2βρz
√
N2NR.

β is chosen as β = g21gr1P1+ρz
√
N2NR

g221P1+N2
to en-

sure that g21X1(b − 1) + Z2(b − 1) is orthogonal to
(gr1−βg21)X1(b−1)+ZR(b−1)−βZ2(b−1).



Thus, σ2(Λ) = g2
r1P1 +NR +D− (g21gr1P1+ρz

√
N2NR)2

g221P1+N2
.

Combining this with the quantization rate constraint, the
distortion is

D=
(g2
r1N2+g2

21NR)P1+N2NR(1−ρ2
z)−2gr1g21P1ρz

√
N2NR

g2
2rPR

.

In order to recover X1(b−1), the receiver combines ŶR(b−1)
and Ỹ2(b−1) as(
gr1
√
P1

NR+D
− g21

√
P1ρz

√
N2NR

N2(NR+D)

)
ŶR(b−1)

+

(
g21

√
P1

N2
− gr1

√
P1ρz

√
N2NR

N2(NR+D)

)
Ỹ2(b−1)

=X1(b−1)

((
g2

21(NR+D)+g2
r1N2−2g21gr1ρz

√
N2NR

)√
P1

N(N1+D)

)

+Z2(b−1)

((
g21(NR+D)−gr1ρz

√
N2NR

)√
P1

N(N1+D)

)

+(ZR(b−1)−EcQ(b−1))

((
gr1N2−g21ρz

√
N2NR

)√
P1

N(N1+D)

)
.

Thus, decoding succeeds if

RCF ≤ C
(
P1

N2

g2
21(NR+D)+g2

r1N2−2g21gr1ρz
√
N2NR

NR(1−ρ2
z)+D

)
.

In the next section, we combine this lattice-based scheme
with the one proposed in [4] for Decode-and-Forward for the
Gaussian relay channel to propose a Compress/Decode-and-
Forward scheme using lattices for the Gaussian two-way relay
channel with correlated noises.

IV. CDF FOR THE GAUSSIAN TWO-WAY RELAY CHANNEL,
WITH CORRELATED NOISES, USING LATTICES

The two-way relay channel is a natural extension of the
relay channel, in which two users wish to exchange their
messages with the help of one relay. This channel is depicted
on Fig. 2. In this paper we only consider restricted encoders,
so that the signal sent by each user only depends on its own
message and not on previously decoded ones. In the Gaussian
case, user 1 sends X1 of power P1, user 2 X2 of power P2

and the relay XR of power PR. The received signals are

YR = gr1X1+gr2X2+ZR,

Y1 = g12X2+g1rXR+Z1,

Y2 = g21X1+g2rXR+Z2,

where Z1, Z2 and ZR are Gaussian noises of variance N1,
N2 and NR respectively. Again, we assume full-duplex nodes
and correlation between the additive noises at the relay and
destinations:

ρz1 =
E[Z1ZR]√
N1NR

and ρz2 =
E[Z2ZR]√
N2NR

.
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Fig. 2. Two-way relay channel

Proposition 2 The cut-set bound (CSB) for the two-way relay
channel with correlated noise is given by the convex closure
of the cut-set region:⋃

0≤ρ1,ρ2≤1
0≤ρz1 ,ρz2≤1

(R1, R2) :

R1≤min

{
C

(
P1(1−ρ21−ρ22)(g221NR+g2r1N2−2g21gr1

√
N2NRρz2)

(1−ρ22)(1−ρ2z2)N2NR

)
,

C

(
g22rPR(1−ρ22)+g221P1+2g21g2rρ1

√
P1PR

N2

)}
R2≤min

{
C

(
P2(1−ρ22−ρ21)(g212NR+g2r2N1−2g12gr2

√
N1NRρz1)

(1−ρ21)(1−ρ2z1)N1NR

)
,

C

(
g21rPR(1−ρ21)+g212P2+2g12g1rρ2

√
P2PR

N1

)}
.

Proof: The cut-set region is given by{
R1 ≤ min[I(X1;YR, Y2|XR, X2), I(X1, XR;Y2|X2)]

R2 ≤ min[I(X2;YR, Y1|XR, X1), I(X2, XR;Y1|X1)]
.

The proof extensively uses the fact that the mean-squared error
of the linear MMSE estimate of Y given X is greater than or
equal to the conditional variance Var(Y |X). We introduced
two correlation coefficients :

ρ1 =
E[X1XR]√
P1PR

and ρ2 =
E[X2XR]√
P2PR

.

The detailed proof is omitted for space reasons.
In this part, we assume that the relay is very close to user

1 (and hence far from user 2), such that it can only decode
the message from user 1 but not the one of user 2. Instead
of only decoding the message from user 1, the relay will also
use a part of its power to send a compressed version of the
message of user 2.

Proposition 3 Using Compress/Decode-and-Forward (CDF)
on the Gaussian two-relay channel with correlated noises and
lattices, the following rate region is achievable:⋃

0≤α≤1
0<γ<1

(R1, R2) :

R1 ≤ min

{
C

(
g2
r1ᾱP1

g2
r2P2+NR

)
,

1

2
log2

(
g2

21P1+g2
2rPR+N2+2g21g2r

√
αγ̄P1PR

g2
2rγPR+N2

)}



R2 ≤ C
(
P2

N1

g2
12(NR+D)+g2

r2N1−2g12gr2ρz1
√
N1NR

NR(1−ρ2
z1)+D

)
D =

(g2
r2N1+g2

12NR)P2+N1NR(1−ρ2
z1)

g2
1rγPR

− 2gr2g12P2ρz1
√
N1NR

g2
1rγPR

.

At user 1, α allows to trade off power between repeating the
message from the previous block and sending a new message.
γ controls the power trade off at the relay between the decoded
and the compressed part.

Proof: The encoding and decoding procedure is based on
block Markov coding.

A. Encoding

1) User 1: For user 1, we use a doubly nested lattice coding
scheme as proposed in [4] with Λs ⊆ Λm ⊆ Λc1. An example
of doubly nested lattices is depicted on Fig. 3. Λs is, as in the
standard nested lattice coding scheme, the shapping lattice that
insures the power constraint and Λc1 is the coding lattice. Λm
is a meso lattice that groups codewords into clusters. Using
these three lattices, we build the following three codebooks:

C1 = Λc1 ∩ Vs of rate R1,

C10 = Λc1 ∩ Vm of rate R10,

C11 = Λm ∩ Vs of rate R11,

(R1 = R10 +R11),

where Λs and Λm are both Rogers- and Poltyrev-good and
Λc1 is Poltyrev-good. We set σ2(Λs) = 1.

A codeword c1 ∈ C1 can be written as

c1 = [c10+c11] mod Λs, where

c10 = c1 mod Λm ∈ C10 and c11 = [c1−c10] mod Λs ∈ C11.
To simplify the notation, we scale C10 to a unit power

C∗10 = Λ∗c ∩ V∗m where σ2(Λ∗m) = 1.
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Fig. 3. Doubly-nested lattices used for user 1

During block b, user 1 sends

X1(b) =
√
αP1[c∗10(b−1)+u∗m] mod Λ∗m

+
√
ᾱP1[c1(b)+us] mod Λs.

2) User 2 : The codebook for the user 2 is given by
c2 ∈ C2 = Λc2 ∩ V2 where Λ2 ⊂ Λc2 and Λ2 is both Rogers-
and Poltyrev-good and Λc2 is Poltyrev-good. To ensure the
power constraint, we choose σ2(Λ2) = P2 and Λc2 such that
|C2| = R2.

During block b, user 2 sends X2(b) = [c2(b)+u2] mod Λ2.
3) Relay : The quantization codebook is given by

cq ∈ Cq = {ΛcQ ∩ VQ} where ΛQ ⊆ ΛcQ and ΛcQ is Rogers-
good and ΛQ is Poltyrev-good. We choose σ2(ΛcQ) = D,
where D is given in Proposition 3 and

σ2(ΛQ) = g2
r2P2+NR+D − (g12gr2P2+ρz1N1NR)2

g2
12P2+N1

.

Thus, Rq = 1
2 log2

(
σ2(ΛQ)
D

)
.

The codebook for the relay is given by
cR ∈ CR = {ΛcR ∩ VR} where ΛR ⊆ ΛcR and ΛR is
both Rogers- and Poltyrev-good and ΛcR is Poltyrev-good.
To ensure the power constraints, we choose σ2(ΛR) = PR.
Each compression index i is mapped to one codeword cR,
that is ΛR is chosen s.t. |CR| = Rq .

During block b, the relay sends

XR(b) =
√
γ̄PR[c∗10(b−1)+u∗m] mod Λ∗m

+
√
γ[cR(i(b−1))+uR] mod ΛR

where i is the quantization index.

B. Decoding

1) Decoding at the relay: During block b, the relay receives

YR(b) =gr2X2(b)+gr1(
√
αP1[c∗10(b−1)+u∗m] mod Λ∗m

+
√
ᾱP1[c1(b)+us] mod Λs)+ZR(b).

It first starts by removing [c∗10(b−1)+u∗m] mod Λ∗m (the part
of the message it has already decoded in the previous block)
and decodes c1(b) which is possible if

R1 ≤ C
(

g2
r1ᾱP1

g2
r2P2+NR

)
.

Thus it can form ỸR(b) = gr2X2(b)+ZR(b) and compress it
to I(b) = [QcQ(gr2X2(b)+ZR(b)+ucQ)] mod ΛQ.

2) Decoding at user 1: At block b, user 1 receives

Y1(b) =g12X2(b)+g1r

√
γ̄PR[c∗10(b−1)+u∗m] mod Λ∗m

+g1r
√
γ[cR(i(b−1))+uR] mod ΛR+Z1(b).

It subtracts [c∗10(b−1)+u∗m] mod Λ∗m and then the decoding
of X2(b−1) is performed as in Section III and succeeds if

R2 ≤ C
(
P2

N1

g2
12(NR+D)+g2

r2N1−2g12gr2ρz1
√
N1NR

NR(1−ρ2
z1)+D

)
.



3) Decoding at user 2: At block b, user 2 receives

Y2(b) =

(
g21

√
αP1+g2r

√
γ̄PR

)
[c∗10(b−1)+u∗m] mod Λ∗m

+g21

√
ᾱP1[c1(b)+us] mod Λs

+g2r
√
γ[cR(i(b−1))+uR] mod ΛR+Z2(b).

The user won’t decode the quantization index but instead
consider it as noise. It starts by decoding c∗10(b−1) which is
possible if

R10 ≤ C
(
αg2

21P1+g2
2rγ̄PR+2g21g2r

√
αγ̄P1PR

g2
21ᾱP1+g2

2rγPR+N2

)
.

Then, it decodes c11(b−1) from the previous block which
is possible if

R11 ≤ C
(

g2
21ᾱP

g2
2rγPR+N2

)
.

Thus, the decoding of c1(b−1) succeeds if

R1 ≤
1

2
log2

(
g2

21P1+g2
2rPR+N2+2g21g2r

√
αγ̄P1PR

g2
2rγPR+N2

)
.

We now compare the sum-rate achieved with CDF, DF and
the direct links only.

Recall that, in case of correlated noise, the rate-region
achieved with DF is the same as for the standard two-way relay
channel, without correlated noises, since the relay decodes
everything. The achievable rate region for this protocol can
be found for example in [5].

For our numerical examples, we consider the following way
to assign the channel gains: gr1 = g1r = d and gr2 = g2r =
(1− d) (0 ≤ d ≤ 1).

One major result of [2] is that if ρz1 = g2r
g21

for the Gaussian
relay channel with N1 = NR, then CF can achieve the CSB.

For the two-way relay channel, numerical evaluations show
that the gap between the CSB and CDF is also minimal for
this value of ρz1 (i.e. ρz1 = (1−d)

g21
).

On Fig. 4 and Fig. 5, we represent the sum-rate as a function
of ρz1. In both cases, the value ρz1 = (1−d)

g21
minimizes the

gap between the CSB and CDF. In both cases, DF achieves
low sum-rate since the relayed links are very asymmetric. We
can note that on Fig. 4, using only the direct links achieves
a higher sum-rate than using the relay, since the direct link is
better than at least on of the relayed links, but on Fig. 5 we
see that when the direct link is worse than both the relayed
links, using the relay achieves higher sum-rate.

V. CONCLUSION

We have shown that lattice coding can achieve the CF
rates for the Gaussian relay channel when noises at the
relay and the destination are correlated. We then used this
achievability scheme to propose a CDF protocol for the two-
way relay channel when noises at the relay and the destinations
are correlated. This protocol combines doubly-nested lattice
coding at one user and standard lattice coding at the other.
Numerical examples show that, given the channel gains, CDF
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Fig. 4. Sum-rate as a function of ρz1, g21 = 0.9, P1 = P2 = PR = 10,
N1 = N2 = NR = 1 d = 0.75, gr1 = d, gr2 = 1 − d, minimal gap
between the cut-set bound and CDF is achieved for ρz1 = 0.27.
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Fig. 5. Sum-rate as a function of ρz1, g21 = 0.9, P1 = P2 = PR = 10,
N1 = N2 = NR = 1 d = 0.95, gr1 = d, gr2 = 1 − d, minimal gap
between the cut-set bound and CDF is achieved for ρz1 = 0.05.

can outperform a transmission only over the direct links or
two-way DF. We also noted that a particular value of the
correlation coefficient minimizes the gap between the CDF
and the CSB.
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